CINXE.COM
Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids | PNAS
<!DOCTYPE html> <html lang="en" dir="ltr" xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <head profile="http://www.w3.org/1999/xhtml/vocab"><script type="text/javascript" src="/_static/js/bundle-playback.js?v=HxkREWBo" charset="utf-8"></script> <script type="text/javascript" src="/_static/js/wombat.js?v=txqj7nKC" charset="utf-8"></script> <script>window.RufflePlayer=window.RufflePlayer||{};window.RufflePlayer.config={"autoplay":"on","unmuteOverlay":"hidden"};</script> <script type="text/javascript" src="/_static/js/ruffle/ruffle.js"></script> <script type="text/javascript"> __wm.init("https://web.archive.org/web"); __wm.wombat("http://www.pnas.org:80/content/114/9/2119","20180714115531","https://web.archive.org/","web","/_static/", "1531569331"); </script> <link rel="stylesheet" type="text/css" href="/_static/css/banner-styles.css?v=S1zqJCYt" /> <link rel="stylesheet" type="text/css" href="/_static/css/iconochive.css?v=3PDvdIFv" /> <!-- End Wayback Rewrite JS Include --> <!--[if IE]><![endif]--> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"/> <link rel="dns-prefetch" href="//web.archive.org/web/20180714115531/http://pnas-movie.glencoesoftware.com/"/> <link rel="dns-prefetch" href="//web.archive.org/web/20180714115531/http://scholar.google.com/"/> <link rel="dns-prefetch" href="//web.archive.org/web/20180714115531/http://stats.g.doubleclick.net/"/> <link rel="dns-prefetch" href="//web.archive.org/web/20180714115531/http://cdnjs.cloudflare.com/"/> <link rel="dns-prefetch" href="//web.archive.org/web/20180714115531/http://www.google-analytics.com/"/> <meta name="viewport" content="initial-scale=1, maximum-scale=1, width=device-width, user-scalable=yes"/> <link rel="shortcut icon" href="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/images/favicon.ico" type="image/vnd.microsoft.icon"/> <meta name="citation_funding_source" content="citation_funder_id=100000879;citation_grant_number=FG-2015‐65783;"/> <meta name="citation_funding_source" content="citation_funder_id=100000913;citation_grant_number=JSMF Grant no. 22020474;"/> <meta name="issue_cover_image" content="http://www.pnas.org/sites/default/files/highwire/pnas/114/9.cover-source.jpg"/> <meta name="type" content="article"/> <meta name="category" content="research-article"/> <meta name="HW.identifier" content="/pnas/114/9/2119.atom"/> <meta name="HW.pisa" content="pnas;114/9/2119"/> <meta name="DC.Format" content="text/html"/> <meta name="DC.Language" content="en"/> <meta name="DC.Title" content="Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids"/> <meta name="DC.Identifier" content="10.1073/pnas.1614721114"/> <meta name="DC.Date" content="2017-02-28"/> <meta name="DC.Publisher" content="National Academy of Sciences"/> <meta name="DC.Rights" content="© . Freely available online through the PNAS open access option."/> <meta name="DC.AccessRights" content="open-access"/> <meta name="DC.Relation" content="10.1073/pnas.1703403114"/> <meta name="DC.Relation" content="10.1073/pnas.1703403114"/> <meta name="DC.Relation" content="10.1073/pnas.1703403114"/> <meta name="DC.Relation" content="10.1073/pnas.1703403114"/> <meta name="DC.Description" content="Turbulence provides an important mechanism for energy redistribution and mixing in interstellar gases, planetary atmospheres, and the oceans. Classical turbulence theory suggests for ordinary 3D fluids or gases, such as water or air, that larger vortices can transform into smaller ones but not vice versa, thus limiting energy transfer from smaller to larger scales. Our calculations predict that bacterial suspensions and other pattern-forming active fluids can deviate from this paradigm by creating turbulent flow structures that spontaneously break mirror symmetry. These results imply that the collective dynamics of swimming microorganisms can enhance fluid mixing more strongly than previously thought."/> <meta name="DC.Contributor" content="Jonasz Słomka"/> <meta name="DC.Contributor" content="Jörn Dunkel"/> <meta name="og:title" property="og:title" content="Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids"/> <meta name="og:url" property="og:url" content="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/114/9/2119"/> <meta name="og:site_name" property="og:site_name" content="PNAS"/> <meta name="og:image" property="og:image" content="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/highwire/pnas/114/9.cover-source.jpg"/> <meta name="og:description" property="og:description" content="Turbulence provides an important mechanism for energy redistribution and mixing in interstellar gases, planetary atmospheres, and the oceans. Classical turbulence theory suggests for ordinary 3D fluids or gases, such as water or air, that larger vortices can transform into smaller ones but not vice versa, thus limiting energy transfer from smaller to larger scales. Our calculations predict that bacterial suspensions and other pattern-forming active fluids can deviate from this paradigm by creating turbulent flow structures that spontaneously break mirror symmetry. These results imply that the collective dynamics of swimming microorganisms can enhance fluid mixing more strongly than previously thought."/> <meta name="og:type" property="og:type" content="article"/> <meta name="article:published_time" content="2017-02-28"/> <meta name="article:section" content="Physical Sciences"/> <meta name="citation_title" content="Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids"/> <meta name="citation_abstract" lang="en" content="<p>Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade.</p>"/> <meta name="citation_abstract" lang="en" scheme="executive-summary" content="<h3>Significance</h3> <p>Turbulence provides an important mechanism for energy redistribution and mixing in interstellar gases, planetary atmospheres, and the oceans. Classical turbulence theory suggests for ordinary 3D fluids or gases, such as water or air, that larger vortices can transform into smaller ones but not vice versa, thus limiting energy transfer from smaller to larger scales. Our calculations predict that bacterial suspensions and other pattern-forming active fluids can deviate from this paradigm by creating turbulent flow structures that spontaneously break mirror symmetry. These results imply that the collective dynamics of swimming microorganisms can enhance fluid mixing more strongly than previously thought.</p>"/> <meta name="citation_journal_title" content="Proceedings of the National Academy of Sciences"/> <meta name="citation_publisher" content="National Academy of Sciences"/> <meta name="citation_publication_date" content="2017/02/28"/> <meta name="citation_mjid" content="pnas;114/9/2119"/> <meta name="citation_id" content="114/9/2119"/> <meta name="citation_public_url" content="http://www.pnas.org/content/114/9/2119"/> <meta name="citation_abstract_html_url" content="http://www.pnas.org/content/114/9/2119.abstract"/> <meta name="citation_full_html_url" content="http://www.pnas.org/content/114/9/2119.full"/> <meta name="citation_pdf_url" content="http://www.pnas.org/content/114/9/2119.full.pdf"/> <meta name="citation_issn" content="0027-8424"/> <meta name="citation_issn" content="1091-6490"/> <meta name="citation_journal_abbrev" content="PNAS"/> <meta name="citation_doi" content="10.1073/pnas.1614721114"/> <meta name="citation_pmid" content="28193853"/> <meta name="citation_volume" content="114"/> <meta name="citation_issue" content="9"/> <meta name="citation_num_pages" content="6"/> <meta name="citation_article_type" content="Research Article"/> <meta name="citation_section" content="Physical Sciences"/> <meta name="citation_firstpage" content="2119"/> <meta name="citation_lastpage" content="2124"/> <meta name="citation_access" content="all"/> <meta name="citation_author" content="Jonasz Słomka"/> <meta name="citation_author_institution" content="Massachusetts Institute of Technology"/> <meta name="citation_author" content="Jörn Dunkel"/> <meta name="citation_author_institution" content="Massachusetts Institute of Technology"/> <meta name="citation_author_email" content="dunkel@math.mit.edu"/> <meta name="citation_reference" content="citation_title=Turbulence;citation_year=2004"/> <meta name="citation_reference" content="citation_title=The Physics of Fluid Turbulence;citation_year=1990"/> <meta name="citation_reference" content="citation_journal_title=Astrophys J;citation_author=JC. Higdon;citation_title=Density fluctuations in the interstellar medium: Evidence for anisotropic magnetogasdynamic turbulence. I - Model and astrophysical sites;citation_pages=109-123;citation_volume=285;citation_year=1984"/> <meta name="citation_reference" content="citation_journal_title=Astron Astrophys;citation_author=C. Federrath;citation_author=J. Roman-Duval;citation_author=RS. Klessen;citation_author=W. Schmidt;citation_author=M-M. Mac Low;citation_title=Comparing the statistics of interstellar turbulence in simulations and observations-Solenoidal versus compressive turbulence forcing;citation_pages=A81;citation_volume=512;citation_year=2010;citation_doi=10.1051/0004-6361/200912437"/> <meta name="citation_reference" content="citation_journal_title=Living Rev Solar Phys;citation_author=R. Bruno;citation_author=V. Carbone;citation_title=The solar wind as a turbulence laboratory;citation_pages=2;citation_volume=10;citation_year=2013"/> <meta name="citation_reference" content="citation_journal_title=Nature;citation_author=GD. Nastrom;citation_author=KS. Gage;citation_author=WH. Jasperson;citation_title=Kinetic energy spectrum of large-and mesoscale atmospheric processes;citation_pages=36-38;citation_volume=310;citation_year=1984"/> <meta name="citation_reference" content="citation_journal_title=J Fluid Mech;citation_author=E. Lindborg;citation_title=Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?;citation_pages=259-288;citation_volume=388;citation_year=1999;citation_doi=10.1017/S0022112099004851"/> <meta name="citation_reference" content="citation_title=The Turbulent Ocean;citation_year=2005"/> <meta name="citation_reference" content="citation_journal_title=ICES J Mar Sci;citation_author=RM. Enriquez;citation_author=JR. Taylor;citation_title=Numerical simulations of the competition between wind-driven mixing and surface heating in triggering spring phytoplankton blooms;citation_volume=72;citation_year=2015;citation_issue=6;citation_doi=10.1093/icesjms/fsv071"/> <meta name="citation_reference" content="citation_journal_title=Science;citation_journal_abbrev=Science;citation_author=JR. Taylor;citation_author=R. Stocker;citation_title=Trade-Offs of Chemotactic Foraging in Turbulent Water;citation_pages=675-679;citation_volume=338;citation_year=2012;citation_issue=6107;citation_pmid=23118190;citation_doi=10.1126/science.1219417"/> <meta name="citation_reference" content="citation_journal_title=J Fluid Mech;citation_author=A. Noullez;citation_author=G. Wallace;citation_author=W. Lempert;citation_author=RB. Miles;citation_author=U. Frisch;citation_title=Transverse velocity increments in turbulent flow using the RELIEF technique;citation_pages=287-307;citation_volume=339;citation_year=1997;citation_doi=10.1017/S0022112097005338"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev E;citation_author=GS. Lewis;citation_author=HL. Swinney;citation_title=Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow;citation_pages=5457-5467;citation_volume=59;citation_year=1999;citation_issue=5"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=H. Xu;citation_author=M. Bourgoin;citation_author=NT. Ouellette;citation_author=E. Bodenschatz;citation_title=High order Lagrangian velocity statistics in turbulence.;citation_pages=024503-024503;citation_volume=96;citation_year=2006;citation_issue=2;citation_pmid=16486587"/> <meta name="citation_reference" content="citation_journal_title=Dokl Akad Nauk SSSR;citation_author=AN. Kolmogorov;citation_title=The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers;citation_pages=301-305;citation_volume=30;citation_year=1941"/> <meta name="citation_reference" content="citation_journal_title=);citation_author=AN. Kolmogorov;citation_title=On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid;citation_pages=538-540;citation_volume=31;citation_year=1941"/> <meta name="citation_reference" content="citation_journal_title=Dokl Akad Nauk SSSR;citation_author=AN. Kolmogorov;citation_title=Dissipation of energy in locally isotropic turbulence;citation_pages=16-18;citation_volume=32;citation_year=1941"/> <meta name="citation_reference" content="citation_journal_title=Phys Fluids;citation_author=RH. Kraichnan;citation_title=Inertial ranges in two-dimensional turbulence;citation_pages=1417-1423;citation_volume=10;citation_year=1967;citation_issue=7;citation_doi=10.1063/1.1762301"/> <meta name="citation_reference" content="citation_journal_title=Rep Prog Phys;citation_author=RH. Kraichnan;citation_author=D. Montogomery;citation_title=Two-dimensional turbulence;citation_pages=547-619;citation_volume=43;citation_year=1980;citation_doi=10.1088/0034-4885/43/5/001"/> <meta name="citation_reference" content="citation_journal_title=Phys Fluids A;citation_author=F. Waleffe;citation_title=The nature of triad interactions in homogeneous turbulence;citation_pages=350-363;citation_volume=4;citation_year=1992;citation_issue=2"/> <meta name="citation_reference" content="citation_journal_title=Rep Prog Phys;citation_author=H. Kellay;citation_author=WI. Goldburg;citation_title=Two-dimensional turbulence: A review of some recent experiments;citation_pages=845-894;citation_volume=65;citation_year=2002;citation_doi=10.1088/0034-4885/65/5/204"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=A. Pumir;citation_author=H. Xu;citation_author=E. Bodenschatz;citation_author=R. Grauer;citation_title=Single-particle motion and vortex stretching in three-dimensional turbulent flows;citation_pages=124502;citation_volume=116;citation_year=2016"/> <meta name="citation_reference" content="citation_year=2012"/> <meta name="citation_reference" content="citation_journal_title=J Fluid Mech;citation_author=RH. Kraichnan;citation_title=Helical turbulence and absolute equilibrium;citation_pages=745-752;citation_volume=59;citation_year=1973;citation_issue=4;citation_doi=10.1017/S0022112073001837"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=L. Biferale;citation_author=S. Musacchio;citation_author=F. Toschi;citation_title=Inverse energy cascade in three-dimensional isotropic turbulence.;citation_pages=164501-164501;citation_volume=108;citation_year=2012;citation_issue=16;citation_pmid=22680722;citation_doi=10.1103/PhysRevLett.108.164501"/> <meta name="citation_reference" content="citation_journal_title=Annu Rev Fluid Mech;citation_author=G. Boffetta;citation_author=RE. Ecke;citation_title=Two-dimensional turbulence;citation_pages=427-451;citation_volume=44;citation_year=2012;citation_issue=1;citation_doi=10.1146/annurev-fluid-120710-101240"/> <meta name="citation_reference" content="citation_journal_title=Phys Usp;citation_author=SD. Danilov;citation_author=D. Gurarie;citation_title=Quasi-two-dimensional turbulence;citation_pages=921-968;citation_volume=170;citation_year=2000"/> <meta name="citation_reference" content="citation_journal_title=J Fluid Mech;citation_author=HK. Moffatt;citation_title=The degree of knottedness of tangled vortex lines;citation_pages=117-129;citation_volume=35;citation_year=1969;citation_issue=1;citation_doi=10.1017/S0022112069000991"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev;citation_author=CS. Wu;citation_author=E. Ambler;citation_author=RW. Hayward;citation_author=DD. Hoppes;citation_author=RP. Hudson;citation_title=Experimental test of parity conservation in beta decay;citation_pages=1413-1415;citation_volume=105;citation_year=1957;citation_doi=10.1103/PhysRev.105.1413"/> <meta name="citation_reference" content="citation_journal_title=Nature;citation_journal_abbrev=Nature;citation_author=JD. Watson;citation_author=FHC. Crick;citation_title=Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid.;citation_pages=737-738;citation_volume=171;citation_year=1953;citation_issue=4356;citation_pmid=13054692;citation_doi=10.1038/171737a0"/> <meta name="citation_reference" content="citation_journal_title=Science;citation_journal_abbrev=Science;citation_author=S. Armon;citation_author=E. Efrati;citation_author=R. Kupferman;citation_author=E. Sharon;citation_title=Geometry and Mechanics in the Opening of Chiral Seed Pods;citation_pages=1726-1730;citation_volume=333;citation_year=2011;citation_issue=6050;citation_pmid=21940888;citation_doi=10.1126/science.1203874"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=FG. Woodhouse;citation_author=RE. Goldstein;citation_title=Spontaneous circulation of confined active suspensions;citation_pages=168105;citation_volume=109;citation_year=2012;citation_issue=16;citation_pmid=23215137;citation_doi=10.1103/PhysRevLett.109.168105"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=H. Wioland;citation_author=FG. Woodhouse;citation_author=J. Dunkel;citation_author=JO. Kessler;citation_author=RE. Goldstein;citation_title=Confinement stabilizes a bacterial suspension into a spiral vortex;citation_pages=268102;citation_volume=110;citation_year=2013;citation_issue=26;citation_pmid=23848925;citation_doi=10.1103/PhysRevLett.110.268102"/> <meta name="citation_reference" content="citation_journal_title=Nat Phys;citation_author=H. Wioland;citation_author=FG. Woodhouse;citation_author=J. Dunkel;citation_author=RE. Goldstein;citation_title=Ferromagnetic and antiferromagnetic order in bacterial vortex lattices;citation_pages=341-345;citation_volume=12;citation_year=2016;citation_issue=4;citation_pmid=27213004;citation_doi=10.1038/nphys3607"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=A. Sokolov;citation_author=IS. Aranson;citation_title=Physical properties of collective motion in suspensions of bacteria;citation_pages=248109;citation_volume=109;citation_year=2012;citation_pmid=23368392;citation_doi=10.1103/PhysRevLett.109.248109"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=J. Dunkel;citation_title=Fluid dynamics of bacterial turbulence;citation_pages=228102;citation_volume=110;citation_year=2013;citation_issue=22;citation_pmid=23767750;citation_doi=10.1103/PhysRevLett.110.228102"/> <meta name="citation_reference" content="citation_journal_title=EPJ ST;citation_author=J. Słomka;citation_author=J. Dunkel;citation_title=Generalized Navier-Stokes equations for active suspensions;citation_pages=1349-1358;citation_volume=224;citation_year=2015"/> <meta name="citation_reference" content="citation_year=2016"/> <meta name="citation_reference" content="citation_journal_title=Nature;citation_journal_abbrev=Nature;citation_author=T. Sanchez;citation_author=DTN. Chen;citation_author=SJ. DeCamp;citation_author=M. Heymann;citation_author=Z. Dogic;citation_title=Spontaneous motion in hierarchically assembled active matter.;citation_pages=431-434;citation_volume=491;citation_year=2012;citation_issue=7424;citation_pmid=23135402;citation_doi=10.1038/nature11591"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev X;citation_author=L. Giomi;citation_title=Geometry and topology of turbulence in active nematics;citation_pages=031003;citation_volume=5;citation_year=2015"/> <meta name="citation_reference" content="citation_journal_title=Nature;citation_author=A. Bricard;citation_author=J-B. Caussin;citation_author=N. Desreumaux;citation_author=O. Dauchot;citation_author=D. Bartolo;citation_title=Emergence of macroscopic directed motion in populations of motile colloids;citation_pages=95-98;citation_volume=503;citation_year=2013;citation_pmid=24201282;citation_doi=10.1038/nature12673"/> <meta name="citation_reference" content="citation_journal_title=Soft Matter;citation_author=A. Walther;citation_author=AHE. Muller;citation_title=Janus particles;citation_pages=663-668;citation_volume=4;citation_year=2008;citation_doi=10.1039/b718131k"/> <meta name="citation_reference" content="citation_journal_title=New J Phys;citation_author=S. Thutupalli;citation_author=R. Seemann;citation_author=S. Herminghaus;citation_title=Swarming behavior of simple model squirmers;citation_pages=073021;citation_volume=13;citation_year=2011;citation_issue=7;citation_doi=10.1088/1367-2630/13/7/073021"/> <meta name="citation_reference" content="citation_journal_title=C R Acad Sci Paris;citation_author=VI. Arnold;citation_title=Sur la topologie des écoulements stationnaires des fluides parfaits;citation_pages=17-20;citation_volume=261;citation_year=1965"/> <meta name="citation_reference" content="citation_journal_title=J Fluid Mech;citation_author=T. Dombre;citation_title=Chaotic streamlines in the ABC flows;citation_pages=353-391;citation_volume=167;citation_year=1986"/> <meta name="citation_reference" content="citation_journal_title=Nonlinearity;citation_author=J. Etnyre;citation_author=R. Ghrist;citation_title=Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture;citation_pages=441-458;citation_volume=13;citation_year=2000;citation_issue=2"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=H-R. Jiang;citation_author=N. Yoshinaga;citation_author=M. Sano;citation_title=Active motion of a Janus particle by self-thermophoresis in a defocused laser beam.;citation_pages=268302-268302;citation_volume=105;citation_year=2010;citation_issue=26;citation_pmid=21231718;citation_doi=10.1103/PhysRevLett.105.268302"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=I. Buttinoni;citation_title=Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles;citation_pages=238301;citation_volume=110;citation_year=2013;citation_pmid=25167534;citation_doi=10.1103/PhysRevLett.110.238301"/> <meta name="citation_reference" content="citation_journal_title=Proc Natl Acad Sci USA;citation_author=HH. Wensink;citation_title=Meso-scale turbulence in living fluids;citation_volume=109;citation_year=2012;citation_issue=36;citation_pmid=22908244;citation_doi=10.1073/pnas.1202032109"/> <meta name="citation_reference" content="citation_journal_title=Proc Natl Acad Sci USA;citation_author=V. Bratanov;citation_author=F. Jenko;citation_author=E. Frey;citation_title=New class of turbulence in active fluids;citation_volume=112;citation_year=2015;citation_issue=49;citation_pmid=26598708;citation_doi=10.1073/pnas.1509304112"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=RA. Simha;citation_author=S. Ramaswamy;citation_title=Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles.;citation_pages=058101-058101;citation_volume=89;citation_year=2002;citation_issue=5;citation_pmid=12144468;citation_doi=10.1103/PhysRevLett.89.058101"/> <meta name="citation_reference" content="citation_journal_title=Phys Fluids;citation_author=D. Saintillan;citation_author=M. Shelley;citation_title=Instabilities, pattern formation and mixing in active suspensions;citation_pages=123304;citation_volume=20;citation_year=2008;citation_doi=10.1063/1.3041776"/> <meta name="citation_reference" content="citation_journal_title=Rev Mod Phys;citation_author=MC. Marchetti;citation_title=Hydrodynamics of soft active matter;citation_pages=1143-1189;citation_volume=85;citation_year=2013;citation_doi=10.1103/RevModPhys.85.1143"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=M. Ravnik;citation_author=JM. Yeomans;citation_title=Confined active nematic flow in cylindrical capillaries;citation_pages=026001;citation_volume=110;citation_year=2013;citation_pmid=23383919;citation_doi=10.1103/PhysRevLett.110.026001"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=C. Dombrowski;citation_author=L. Cisneros;citation_author=S. Chatkaew;citation_author=RE. Goldstein;citation_author=JO. Kessler;citation_title=Self-concentration and large-scale coherence in bacterial dynamics.;citation_pages=098103-098103;citation_volume=93;citation_year=2004;citation_issue=9;citation_pmid=15447144;citation_doi=10.1103/PhysRevLett.93.098103"/> <meta name="citation_reference" content="citation_journal_title=Exp Fluids;citation_author=LH. Cisneros;citation_author=R. Cortez;citation_author=C. Dombrowski;citation_author=RE. Goldstein;citation_author=JO. Kessler;citation_title=Fluid dynamics of self-propelled micro-organisms, from individuals to concentrated populations;citation_pages=737-753;citation_volume=43;citation_year=2007;citation_doi=10.1007/s00348-007-0387-y"/> <meta name="citation_reference" content="citation_title=Advances in Mathematical Fluid Mechanics;citation_title=Incompressible bipolar and non-Newtonian viscous fluid flow;citation_year=2014"/> <meta name="citation_reference" content="citation_journal_title=Physica D;citation_author=Y-P. Ma;citation_author=EA. Spiegel;citation_title=A diagrammatic derivation of (convective) pattern equations;citation_pages=150-165;citation_volume=240;citation_year=2011"/> <meta name="citation_reference" content="citation_journal_title=Physica D;citation_author=IA. Beresnev;citation_author=VN. Nikolaevskiy;citation_title=A model for nonlinear seismic waves in a medium with instability;citation_pages=1-6;citation_volume=66;citation_year=1993"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=MI. Tribelsky;citation_author=K. Tsuboi;citation_title=New scenario for transition to turbulence?;citation_pages=1631-1634;citation_volume=76;citation_year=1996;citation_issue=10;citation_pmid=10060478;citation_doi=10.1103/PhysRevLett.76.1631"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev E;citation_author=MI. Tribelsky;citation_title=Patterns in dissipative systems with weakly broken continuous symmetry;citation_pages=035202;citation_volume=77;citation_year=2008"/> <meta name="citation_reference" content="citation_journal_title=Phys Fluids;citation_author=NT. Ouellette;citation_author=JP. Gollub;citation_title=Dynamic topology in spatiotemporal chaos;citation_pages=064104;citation_volume=20;citation_year=2008;citation_issue=6"/> <meta name="citation_reference" content="citation_journal_title=Soft Matter;citation_author=A. Varshney;citation_title=Multi-scale flow in a microscale oil-in-oil emulsion;citation_pages=1759-1764;citation_volume=12;citation_year=2016"/> <meta name="citation_reference" content="citation_journal_title=ACS Nano;citation_author=AP. Bregulla;citation_author=H. Yang;citation_author=F. Cichos;citation_title=Stochastic localization of microswimmers by photon nudging;citation_pages=6542-6550;citation_volume=8;citation_year=2014;citation_issue=7"/> <meta name="citation_reference" content="citation_journal_title=Soft Matter;citation_author=DA. Fedosov;citation_author=A. Sengupta;citation_author=G. Gompper;citation_title=Effect of fluid–colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids;citation_pages=6703-6715;citation_volume=11;citation_year=2015;citation_pmid=26223678;citation_doi=10.1039/C5SM01364J"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=F. Kümmel;citation_title=Circular motion of asymmetric self-propelling particles;citation_pages=198302;citation_volume=110;citation_year=2013;citation_issue=19;citation_pmid=23705745"/> <meta name="citation_reference" content="citation_journal_title=Physica D;citation_author=BA. Malomed;citation_author=MI. Tribelsky;citation_title=Bifurcations in distributed kinetic systems with aperiodic instability;citation_pages=67-87;citation_volume=14;citation_year=1984;citation_issue=1"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=P. Coullet;citation_author=RE. Goldstein;citation_author=GH. Gunaratne;citation_title=Parity-breaking transitions of modulated patterns in hydrodynamic systems.;citation_pages=1954-1957;citation_volume=63;citation_year=1989;citation_issue=18;citation_pmid=10040723;citation_doi=10.1103/PhysRevLett.63.1954"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=E. Knobloch;citation_author=J. Hettel;citation_author=G. Dangelmayr;citation_title=Parity breaking bifurcation in inhomogeneous systems.;citation_pages=4839-4842;citation_volume=74;citation_year=1995;citation_issue=24;citation_pmid=10058612;citation_doi=10.1103/PhysRevLett.74.4839"/> <meta name="citation_reference" content="citation_journal_title=Prog Theor Phys;citation_author=H. Fujisaka;citation_author=T. Honkawa;citation_author=T. Yamada;citation_title=Amplitude equation of higher-dimensional Nikolaevskii turbulence;citation_volume=109;citation_year=2003;citation_issue=6;citation_doi=10.1143/PTP.109.911"/> <meta name="citation_reference" content="citation_journal_abbrev=PHYSICAL REVIEW. A;citation_author=RE. Goldstein;citation_author=GH. Gunaratne;citation_author=L. Gil;citation_author=P. Coullet;citation_title=Hydrodynamic and interfacial patterns with broken space-time symmetry.;citation_pages=6700-6721;citation_volume=43;citation_year=1991;citation_issue=12;citation_pmid=9905022;citation_doi=10.1103/PhysRevA.43.6700"/> <meta name="citation_reference" content="citation_journal_title=Phys Usp;citation_author=MI. Tribelsky;citation_title=Short-wavelength instability and transition to chaos in distributed systems with additional symmetry;citation_pages=159-180;citation_volume=40;citation_year=1997;citation_issue=2;citation_doi=10.1070/PU1997v040n02ABEH000193"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=A. Sokolov;citation_author=IS. Aranson;citation_author=JO. Kessler;citation_author=RE. Goldstein;citation_title=Concentration dependence of the collective dynamics of swimming bacteria.;citation_pages=158102-158102;citation_volume=98;citation_year=2007;citation_issue=15;citation_pmid=17501387;citation_doi=10.1103/PhysRevLett.98.158102"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=LM. Smith;citation_author=JR. Chasnov;citation_author=F. Waleffe;citation_title=Crossover from Two- to Three-Dimensional Turbulence.;citation_pages=2467-2470;citation_volume=77;citation_year=1996;citation_issue=12;citation_pmid=10061961"/> <meta name="citation_reference" content="citation_journal_title=Phys Fluids;citation_author=LM. Smith;citation_author=F. Waleffe;citation_title=Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence;citation_pages=1608-1622;citation_volume=11;citation_year=1999;citation_doi=10.1063/1.870022"/> <meta name="citation_reference" content="citation_journal_title=J Fluid Mech;citation_author=LM. Smith;citation_author=F. Waleffe;citation_title=Generation of slow large scales in forced rotating stratified turbulence;citation_pages=145-168;citation_volume=451;citation_year=2002;citation_doi=10.1017/S0022112001006309"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=H. Xia;citation_author=H. Punzmann;citation_author=G. Falkovich;citation_author=MG. Shats;citation_title=Turbulence-condensate interaction in two dimensions.;citation_pages=194504-194504;citation_volume=101;citation_year=2008;citation_issue=19;citation_pmid=19113273;citation_doi=10.1103/PhysRevLett.101.194504"/> <meta name="citation_reference" content="citation_journal_title=Phys Fluids;citation_author=PD. Mininni;citation_author=A. Alexakis;citation_author=A. Pouquet;citation_title=Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers;citation_pages=015108;citation_volume=21;citation_year=2009;citation_issue=1"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=A. Celani;citation_author=S. Musacchio;citation_author=D. Vincenzi;citation_title=Turbulence in more than two and less than three dimensions.;citation_pages=184506-184506;citation_volume=104;citation_year=2010;citation_issue=18;citation_pmid=20482182"/> <meta name="citation_reference" content="citation_journal_title=Nat Phys;citation_author=H. Xia;citation_author=D. Byrne;citation_author=G. Falkovich;citation_author=M. Shats;citation_title=Upscale energy transfer in thick turbulent fluid layers;citation_pages=321-324;citation_volume=7;citation_year=2011;citation_issue=4;citation_doi=10.1038/nphys1910"/> <meta name="citation_reference" content="citation_journal_title=Rep Prog Phys;citation_author=AR. Vasavada;citation_author=AP. Showman;citation_title=Jovian atmospheric dynamics: An update after Galileo and Cassini;citation_pages=1935-1996;citation_volume=68;citation_year=2005;citation_doi=10.1088/0034-4885/68/8/R06"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=MA. Rutgers;citation_title=Forced 2D turbulence: Experimental evidence of simultaneous inverse energy and forward enstrophy cascades;citation_pages=2244-2247;citation_volume=81;citation_year=1998;citation_doi=10.1103/PhysRevLett.81.2244"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=D. Bernard;citation_author=G. Boffetta;citation_author=A. Celani;citation_author=G. Falkovich;citation_title=Inverse turbulent cascades and conformally invariant curves.;citation_pages=024501-024501;citation_volume=98;citation_year=2007;citation_issue=2;citation_pmid=17358610"/> <meta name="citation_reference" content="citation_journal_title=Nat Phys;citation_author=D. Bernard;citation_author=G. Boffetta;citation_author=A. Celani;citation_author=G. Falkovich;citation_title=Conformal invariance in two-dimensional turbulence;citation_pages=124-128;citation_volume=2;citation_year=2006;citation_issue=2;citation_doi=10.1038/nphys217"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Fluids;citation_author=K. Gustavsson;citation_author=L. Biferale;citation_title=Preferential sampling of helicity by isotropic helicoids;citation_pages=054201;citation_volume=1;citation_year=2016"/> <meta name="citation_reference" content="citation_journal_title=Spectral Methods in Fluid Dynamics;citation_year=1988"/> <meta name="citation_reference" content="citation_year=1995"/> <meta name="citation_reference" content="citation_journal_title=SIAM J Numer Anal;citation_author=UM. Ascher;citation_author=SJ. Ruuth;citation_author=BTR. Wetton;citation_title=Implicit-explicit methods for time-dependent partial differential equations;citation_pages=797-823;citation_volume=32;citation_year=1995;citation_issue=3;citation_doi=10.1137/0732037"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev E;citation_author=S. Heidenreich;citation_author=J. Dunkel;citation_author=SHL. Klapp;citation_author=M. Bär;citation_title=Hydrodynamic length-scale selection in microswimmer suspensions;citation_pages=020601R;citation_volume=94;citation_year=2016"/> <meta name="citation_reference" content="citation_journal_title=Am J Phys;citation_author=EM. Purcell;citation_title=Life at low Reynolds number;citation_pages=3-11;citation_volume=45;citation_year=1977;citation_issue=1;citation_doi=10.1119/1.10903"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=A. Sokolov;citation_author=IS. Aranson;citation_title=Reduction of viscosity in suspension of swimming bacteria.;citation_pages=148101-148101;citation_volume=103;citation_year=2009;citation_issue=14;citation_pmid=19905604;citation_doi=10.1103/PhysRevLett.103.148101"/> <meta name="citation_reference" content="citation_journal_title=Phys Rev Lett;citation_author=HM. López;citation_author=J. Gachelin;citation_author=C. Douarche;citation_author=H. Auradou;citation_author=E. Clément;citation_title=Turning bacteria suspensions into superfluids;citation_pages=028301;citation_volume=115;citation_year=2015;citation_pmid=26207507;citation_doi=10.1103/PhysRevLett.115.028301"/> <meta name="citation_reference" content="citation_journal_title=Annu Rev Cond Mat Phys;citation_author=S. Ramaswamy;citation_title=The mechanics and statistics of active matter;citation_pages=323-345;citation_volume=1;citation_year=2010"/> <meta name="citation_reference" content="citation_journal_title=Physical Review Letters;citation_journal_abbrev=Physical Review Letters;citation_author=K. Drescher;citation_author=RE. Goldstein;citation_author=N. Michel;citation_author=M. Polin;citation_author=I. Tuval;citation_title=Direct measurement of the flow field around swimming microorganisms.;citation_pages=168101-168101;citation_volume=105;citation_year=2010;citation_issue=16;citation_pmid=21231017;citation_doi=10.1103/PhysRevLett.105.168101"/> <meta name="citation_reference" content="citation_journal_title=Proc Natl Acad Sci USA;citation_author=K. Drescher;citation_author=J. Dunkel;citation_author=LH. Cisneros;citation_author=S. Ganguly;citation_author=RE. Goldstein;citation_title=Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering;citation_volume=108;citation_year=2011;citation_issue=27;citation_pmid=21690349;citation_doi=10.1073/pnas.1019079108"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="format-detection" content="telephone=no"/> <link rel="canonical" href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/114/9/2119"/> <meta name="Generator" content="Drupal 7 (http://drupal.org)"/> <link rel="alternate" type="application/pdf" title="Full Text (PDF)" href="/web/20180714115531/http://www.pnas.org/content/114/9/2119.full.pdf"/> <link rel="alternate" type="text/plain" title="Full Text (Plain)" href="/web/20180714115531/http://www.pnas.org/content/114/9/2119.full.txt"/> <link rel="alternate" type="application/rdf+xml" title="RDF Concepts" href="/web/20180714115531/http://www.pnas.org/content/114/9/2119.concepts.rdf"/> <link rel="alternate" type="application/vnd.ms-powerpoint" title="Powerpoint" href="/web/20180714115531/http://www.pnas.org/content/114/9/2119.ppt"/> <link rel="alternate" type="image/jpeg" title="Featured Figure" href="/web/20180714115531/http://www.pnas.org/content/114/9/2119.featured-figure.jpg"/> <title>Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids | PNAS</title> <link type="text/css" rel="stylesheet" href="//web.archive.org/web/20180714115531cs_/http://www.pnas.org/sites/default/files/advagg_css/css__zUOsaJT2-txr78Pro2jqp5HkKYs7CY9FbkfBemQXYlw__kiQOVz2drquY4Y9F8gINaFiOXWD3R3YCpizYXeeITSI__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.css" media="all"/> <link type="text/css" rel="stylesheet" href="//web.archive.org/web/20180714115531cs_/http://www.pnas.org/sites/all/modules/highwire/highwire/highwire.style.highwire.css?pbttte" media="all"/> <link type="text/css" rel="stylesheet" href="//web.archive.org/web/20180714115531cs_/http://www.pnas.org/sites/default/files/advagg_css/css__IBZ9mHpn46TRp2BimuZ9LV8gzg5ve38Vt8Ur3OYiiIE__wmM3gmvNzotx6HiqdRMF6M93_A7RhsBfzdg2QXC7uuE__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.css" media="all"/> <link type="text/css" rel="stylesheet" href="//web.archive.org/web/20180714115531cs_/http://cdn.jsdelivr.net/qtip2/2.2.1/jquery.qtip.min.css" media="all"/> <link type="text/css" rel="stylesheet" href="//web.archive.org/web/20180714115531cs_/http://www.pnas.org/sites/default/files/advagg_css/css__Q7pWPvWO5R2zsCdaOh9NVQCCNgK_kPPo_AvnZsexrq4__w3K0UDR7-UpIKKBew7sTuZnbOy3Ow4NZoQvbHAldqKc__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.css" media="all"/> <style type="text/css" media="all"> /* <![CDATA[ */ #sliding-popup.sliding-popup-bottom{background:#000}#sliding-popup .popup-content #popup-text h2,#sliding-popup .popup-content #popup-text p{color:#fff !important} /* ]]> */ </style> <link type="text/css" rel="stylesheet" href="//web.archive.org/web/20180714115531cs_/http://www.pnas.org/sites/default/files/advagg_css/css__AZ1EDZGvRD4ta0l8X40pQkE9P55-OhVHeDys3DHN0Og__xD9HrKnJIcatQ9sDNYQApetReczKsWZRkKBz-SLMk3s__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.css" media="all"/> <link type="text/css" rel="stylesheet" href="//web.archive.org/web/20180714115531cs_/http://pnas-movie.glencoesoftware.com/static/video-js.min.css" media="all"/> <link type="text/css" rel="stylesheet" href="//web.archive.org/web/20180714115531cs_/http://www.pnas.org/sites/default/files/advagg_css/css__G5oz4JzpQcWN6yObNQT54tzF8XhtOJY0Afuw5bOitk8__vDGB-elYJiVrvJy1hBoZUqEF8LyIkHaN_OFwxTBY_C0__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.css" media="all"/> <script type="text/javascript"> <!--//--><![CDATA[//><!-- /*! * yepnope1.5.4 * (c) WTFPL, GPLv2 */ (function(a,b,c){function d(a){return"[object Function]"==o.call(a)}function e(a){return"string"==typeof a}function f(){}function g(a){return!a||"loaded"==a||"complete"==a||"uninitialized"==a}function h(){var a=p.shift();q=1,a?a.t?m(function(){("c"==a.t?B.injectCss:B.injectJs)(a.s,0,a.a,a.x,a.e,1)},0):(a(),h()):q=0}function i(a,c,d,e,f,i,j){function k(b){if(!o&&g(l.readyState)&&(u.r=o=1,!q&&h(),l.onload=l.onreadystatechange=null,b)){"img"!=a&&m(function(){t.removeChild(l)},50);for(var d in y[c])y[c].hasOwnProperty(d)&&y[c][d].onload()}}var j=j||B.errorTimeout,l=b.createElement(a),o=0,r=0,u={t:d,s:c,e:f,a:i,x:j};1===y[c]&&(r=1,y[c]=[]),"object"==a?l.data=c:(l.src=c,l.type=a),l.width=l.height="0",l.onerror=l.onload=l.onreadystatechange=function(){k.call(this,r)},p.splice(e,0,u),"img"!=a&&(r||2===y[c]?(t.insertBefore(l,s?null:n),m(k,j)):y[c].push(l))}function j(a,b,c,d,f){return q=0,b=b||"j",e(a)?i("c"==b?v:u,a,b,this.i++,c,d,f):(p.splice(this.i++,0,a),1==p.length&&h()),this}function k(){var a=B;return a.loader={load:j,i:0},a}var l=b.documentElement,m=a.setTimeout,n=b.getElementsByTagName("script")[0],o={}.toString,p=[],q=0,r="MozAppearance"in l.style,s=r&&!!b.createRange().compareNode,t=s?l:n.parentNode,l=a.opera&&"[object Opera]"==o.call(a.opera),l=!!b.attachEvent&&!l,u=r?"object":l?"script":"img",v=l?"script":u,w=Array.isArray||function(a){return"[object Array]"==o.call(a)},x=[],y={},z={timeout:function(a,b){return b.length&&(a.timeout=b[0]),a}},A,B;B=function(a){function b(a){var a=a.split("!"),b=x.length,c=a.pop(),d=a.length,c={url:c,origUrl:c,prefixes:a},e,f,g;for(f=0;f<d;f++)g=a[f].split("="),(e=z[g.shift()])&&(c=e(c,g));for(f=0;f<b;f++)c=x[f](c);return c}function g(a,e,f,g,h){var i=b(a),j=i.autoCallback;i.url.split(".").pop().split("?").shift(),i.bypass||(e&&(e=d(e)?e:e[a]||e[g]||e[a.split("/").pop().split("?")[0]]),i.instead?i.instead(a,e,f,g,h):(y[i.url]?i.noexec=!0:y[i.url]=1,f.load(i.url,i.forceCSS||!i.forceJS&&"css"==i.url.split(".").pop().split("?").shift()?"c":c,i.noexec,i.attrs,i.timeout),(d(e)||d(j))&&f.load(function(){k(),e&&e(i.origUrl,h,g),j&&j(i.origUrl,h,g),y[i.url]=2})))}function h(a,b){function c(a,c){if(a){if(e(a))c||(j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}),g(a,j,b,0,h);else if(Object(a)===a)for(n in m=function(){var b=0,c;for(c in a)a.hasOwnProperty(c)&&b++;return b}(),a)a.hasOwnProperty(n)&&(!c&&!--m&&(d(j)?j=function(){var a=[].slice.call(arguments);k.apply(this,a),l()}:j[n]=function(a){return function(){var b=[].slice.call(arguments);a&&a.apply(this,b),l()}}(k[n])),g(a[n],j,b,n,h))}else!c&&l()}var h=!!a.test,i=a.load||a.both,j=a.callback||f,k=j,l=a.complete||f,m,n;c(h?a.yep:a.nope,!!i),i&&c(i)}var i,j,l=this.yepnope.loader;if(e(a))g(a,0,l,0);else if(w(a))for(i=0;i<a.length;i++)j=a[i],e(j)?g(j,0,l,0):w(j)?B(j):Object(j)===j&&h(j,l);else Object(a)===a&&h(a,l)},B.addPrefix=function(a,b){z[a]=b},B.addFilter=function(a){x.push(a)},B.errorTimeout=1e4,null==b.readyState&&b.addEventListener&&(b.readyState="loading",b.addEventListener("DOMContentLoaded",A=function(){b.removeEventListener("DOMContentLoaded",A,0),b.readyState="complete"},0)),a.yepnope=k(),a.yepnope.executeStack=h,a.yepnope.injectJs=function(a,c,d,e,i,j){var k=b.createElement("script"),l,o,e=e||B.errorTimeout;k.src=a;for(o in d)k.setAttribute(o,d[o]);c=j?h:c||f,k.onreadystatechange=k.onload=function(){!l&&g(k.readyState)&&(l=1,c(),k.onload=k.onreadystatechange=null)},m(function(){l||(l=1,c(1))},e),i?k.onload():n.parentNode.insertBefore(k,n)},a.yepnope.injectCss=function(a,c,d,e,g,i){var e=b.createElement("link"),j,c=i?h:c||f;e.href=a,e.rel="stylesheet",e.type="text/css";for(j in d)e.setAttribute(j,d[j]);g||(n.parentNode.insertBefore(e,n),m(c,0))}})(this,document); //--><!]]> </script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/all/libraries/modernizr/modernizr.min.js?pbttte"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- yepnope({ test: Modernizr.matchmedia, nope: '/sites/all/libraries/media-match/media.match.min.js' }); //--><!]]> </script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__shmQbAKKNC3e1IJzJBMQnF4s6KQ5km4DhBUnI9qO7WY__VyUkfN7Xmllpk8B7Y09OpbXZiBfaGtChIxg3S6TLHfk__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- document.createElement( "picture" ); //--><!]]> </script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__blbFI0nPUbOCDUQ2dS5ynIzRi3TRYb7q43GQNkurrsc__ZYpfQVsqwoxblUr8TXoIRPE9qRgXVmeAyG24wbs9L4c__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript" defer="defer" async="async" src="//web.archive.org/web/20180714115531js_/http://cdn.foxycart.com/pnas.ecommerce.highwire.org/loader.js"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__IBM5LrU6V_9IHDow9uvaTZj6hSk8OauPIL06zKFXP9E__sSVK9Wk1leVNQSDhpslSC7eHBDkvUkwvqpqFBoR55fE__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript" async="async" src="https://web.archive.org/web/20180714115531js_/https://scholar.google.com/scholar_js/casa.js"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__OaHnYyci68QTwctdRYR30kEfu0eYWBrLyMqy8THv5Ik__IyfJQYM1q1QEPwYsK_Eslh2RQkxpy6yo-nR0p4DWPQQ__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.MathJax = { menuSettings: { zoom: "Click" } }; //--><!]]> </script> <script type="text/javascript" src="https://web.archive.org/web/20180714115531js_/https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__QPneh_81abIIg5czxtPAanD2ZIlOW1IGu6HZ3ECL21o__jlklzMxSgaB0PCPZnqSzJxxGo9Aa0olmnOdA_R0h84A__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://cdn.jsdelivr.net/qtip2/2.2.1/jquery.qtip.min.js"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__cGmcZ3Zwv9k6WcGb1qHBArtbcoyiHHhH56JDqnoxAjk__PT56cCXYZCYFqCHhA7xJ5egHt1RVYb6dQwv1egz7BEw__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- (function(i,s,o,g,r,a,m){i["GoogleAnalyticsObject"]=r;i[r]=i[r]||function(){(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)})(window,document,"script","//web.archive.org/web/20180714115531/http://www.google-analytics.com/analytics.js","ga");ga("create", "UA-677185-1", {"cookieDomain":"auto"});ga("set", "anonymizeIp", true);ga("send", "pageview");ga('create', 'UA-189672-21', 'auto', {'name': 'hwTracker'}); ga('set', 'anonymizeIp', true); ga('hwTracker.send', 'pageview'); if (window.location.pathname == '/page/media/podcasts') { ga('create', 'UA-15732457-2', 'auto', {'name': 'podcastsTracker'}); ga('podcastsTracker.send', 'pageview'); } //--><!]]> </script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__XbWQs20pAqm7qyhz0JN9mvqCMgJ_97ytwI0VbmV0lRw__2pBlh_Ca6jt9ogcgLmD-uOVAqEbmt3wJh5TM-ikEyvs__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- jQuery.extend(Drupal.settings,{"basePath":"\/","pathPrefix":"","ajaxPageState":{"theme":"pnas","theme_token":"gg0G5Hdk658a5maKL0HmzU4mTfk2sEt3GEsyyaHAR0U","jquery_version":"1.8","css":{"modules\/system\/system.base.css":1,"modules\/system\/system.menus.css":1,"modules\/system\/system.messages.css":1,"modules\/system\/system.theme.css":1,"misc\/ui\/jquery.ui.core.css":1,"misc\/ui\/jquery.ui.theme.css":1,"misc\/ui\/jquery.ui.button.css":1,"misc\/ui\/jquery.ui.resizable.css":1,"misc\/ui\/jquery.ui.dialog.css":1,"misc\/ui\/jquery.ui.tooltip.css":1,"misc\/ui\/jquery.ui.accordion.css":1,"sites\/all\/modules\/contrib\/date\/date_api\/date.css":1,"sites\/all\/modules\/contrib\/date\/date_popup\/themes\/datepicker.1.7.css":1,"modules\/field\/theme\/field.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire_draw\/css\/highwire-draw.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire_folders\/highwire_folders.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire_foxycart\/highwire_foxycart.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire_responsive\/css\/highwire-responsive.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire_saved_searches\/highwire_saved_searches.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire_user\/highwire_user.css":1,"modules\/node\/node.css":1,"sites\/all\/modules\/contrib\/picture\/picture_wysiwyg.css":1,"modules\/search\/search.css":1,"modules\/user\/user.css":1,"sites\/all\/modules\/contrib\/views\/css\/views.css":1,"sites\/all\/modules\/contrib\/ckeditor\/css\/ckeditor.css":1,"sites\/all\/modules\/contrib\/colorbox\/styles\/default\/colorbox_style.css":1,"sites\/all\/modules\/contrib\/ctools\/css\/ctools.css":1,"sites\/all\/modules\/contrib\/foxycart\/foxycart.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire.style.highwire.css":1,"sites\/all\/modules\/highwire\/highwire\/css\/nlm-elements.css":1,"sites\/all\/modules\/contrib\/panels\/css\/panels.css":1,"public:\/\/ctools\/css\/263bfdb18936424f0ade19d6bd885f37.css":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/css\/highwire_article_crossmark.css":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/css\/highwire_corrections.css":1,"sites\/all\/modules\/contrib\/panels_ajax_tab\/css\/panels_ajax_tab.css":1,"\/\/web.archive.org\/web\/20180714115531\/http:\/\/cdn.jsdelivr.net\/qtip2\/2.2.1\/jquery.qtip.min.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire.style.markup.css":1,"sites\/all\/modules\/contrib\/forward\/forward.css":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/css\/highwire_share_link.css":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/css\/highwire_copy_permalink.css":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/css\/highwire_reports_feed.css":1,"sites\/all\/modules\/highwire\/highwire\/css\/highwire-article-citation-list.css":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/css\/highwire_citing_links.css":1,"sites\/all\/modules\/contrib\/nice_menus\/css\/nice_menus.css":1,"sites\/all\/modules\/contrib\/nice_menus\/css\/nice_menus_default.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire_responsive\/plugins\/styles\/highwire_responsive_toggle\/highwire_responsive_toggle.css.less":1,"sites\/all\/modules\/contrib\/panels\/plugins\/layouts\/onecol\/onecol.css":1,"0":1,"sites\/all\/modules\/contrib\/eu_cookie_compliance\/css\/eu_cookie_compliance.css":1,"https:\/\/web.archive.org\/web\/20180714115531\/http:\/\/pnas-movie.glencoesoftware.com\/static\/video-js.min.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire_theme_tools\/css\/font-hwicons.css":1,"sites\/all\/modules\/highwire\/highwire\/highwire_theme_tools\/css\/font-hwicons-glyphs.css":1,"sites\/all\/themes\/shared\/pnas\/system.messages.css":1,"sites\/all\/themes\/shared\/pnas\/system.menus.css":1,"sites\/all\/themes\/shared\/pnas\/css\/base\/normalize.css":1,"sites\/all\/themes\/shared\/pnas\/css\/base\/print.css":1,"sites\/all\/themes\/shared\/pnas\/css\/base\/icons\/font-awesome.css":1,"sites\/all\/themes\/shared\/pnas\/css\/base\/icons\/jcore-icons.css":1,"sites\/all\/themes\/shared\/pnas\/css\/base\/typography.css":1,"sites\/all\/themes\/shared\/pnas\/css\/layout\/responsive-visibility.css.less":1,"sites\/all\/themes\/shared\/pnas\/css\/layout\/grid\/grid.css.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/forms.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/buttons.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/lists.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/images.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/tables.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/code.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/highwire\/highwire.style.markup.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/highwire\/highwire.style.jumpto.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/jquery.ui\/jquery.ui.theme.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/jquery.ui\/qtip.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/jquery.ui\/accordion.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/jquery.ui\/dialog.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/tabs.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/messages.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/breadcrumb.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/pager.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/blocks.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/search.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/citations.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/nice-menus.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/chosen.less":1,"sites\/all\/themes\/shared\/pnas\/css\/components\/carousel.less":1,"sites\/all\/themes\/shared\/pnas\/css\/theme\/theme.css.less":1,"sites\/all\/themes\/shared\/pnas\/css\/theme\/colors.css.less":1,"sites\/all\/themes\/shared\/pnas\/css\/theme\/breakpoints.css.less":1,"sites\/all\/modules\/highwire\/highwire\/css\/highwire-forms.css":1},"js":{"sites\/all\/libraries\/enquire.js\/enquire.min.js":1,"sites\/all\/modules\/contrib\/picture\/picturefill2\/picturefill.min.js":1,"sites\/all\/modules\/contrib\/picture\/picture.min.js":1,"\/\/web.archive.org\/web\/20180714115531\/http:\/\/crossmark-cdn.crossref.org\/widget\/v2.0\/widget.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/js\/highwire_panels_ajax_tab.js":1,"sites\/all\/libraries\/lazysizes\/lazysizes.min.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/highwire_markup_process\/js\/highwire_figures.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/highwire_markup_process\/js\/highwire_openurl.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/highwire_markup_process\/js\/highwire_google_scholar_sprinkle.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/js\/highwire_article_trendmd.js":1,"sites\/all\/modules\/highwire\/highwire\/highwire_user\/plugins\/content_types\/js\/highwire_user_salutation.js":1,"sites\/all\/modules\/contrib\/eu_cookie_compliance\/js\/eu_cookie_compliance.js":1,"https:\/\/web.archive.org\/web\/20180714115531\/http:\/\/pnas-movie.glencoesoftware.com\/static\/video_inline.min.js":1,"sites\/all\/themes\/shared\/pnas\/js\/theme-scripts.js":1,"sites\/all\/libraries\/modernizr\/modernizr.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/jquery\/1.8\/jquery.min.js":1,"misc\/jquery.once.js":1,"misc\/drupal.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.core.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.widget.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/external\/jquery.cookie.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/misc\/jquery.form.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.button.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.mouse.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.draggable.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.position.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.resizable.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.dialog.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.tooltip.min.js":1,"sites\/all\/modules\/contrib\/jquery_update\/replace\/ui\/ui\/minified\/jquery.ui.accordion.min.js":1,"sites\/all\/libraries\/jquery.bgiframe\/jquery.bgiframe.js":1,"sites\/all\/libraries\/jquery.hoverIntent\/jquery.hoverIntent.js":1,"sites\/all\/libraries\/superfish\/superfish.js":1,"sites\/all\/modules\/contrib\/nice_menus\/js\/nice_menus.js":1,"misc\/ajax.js":1,"sites\/all\/modules\/contrib\/jquery_update\/js\/jquery_update.js":1,"sites\/all\/modules\/highwire\/highwire\/js\/highwire.equal-heights.js":1,"sites\/all\/modules\/highwire\/highwire\/js\/highwire.panels-ajax-tab.js":1,"sites\/all\/libraries\/colorbox\/jquery.colorbox-min.js":1,"sites\/all\/modules\/contrib\/colorbox\/js\/colorbox.js":1,"sites\/all\/modules\/contrib\/colorbox\/styles\/default\/colorbox_style.js":1,"\/\/web.archive.org\/web\/20180714115531\/http:\/\/cdn.foxycart.com\/pnas.ecommerce.highwire.org\/loader.js":1,"sites\/all\/modules\/contrib\/foxycart\/foxycart.js":1,"https:\/\/web.archive.org\/web\/20180714115531\/https:\/\/scholar.google.com\/scholar_js\/casa.js":1,"sites\/all\/modules\/highwire\/highwire\/highwire_log\/highwire_log.js":1,"sites\/all\/modules\/highwire\/highwire\/highwire_user\/js\/highwire_user_meta.js":1,"sites\/all\/modules\/contrib\/panels\/js\/panels.js":1,"sites\/all\/modules\/contrib\/panels_ajax_tab\/js\/panels_ajax_tab.js":1,"https:\/\/web.archive.org\/web\/20180714115531\/https:\/\/cdnjs.cloudflare.com\/ajax\/libs\/mathjax\/2.7.0\/MathJax.js?config=TeX-AMS-MML_HTMLorMML":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/highwire_markup_process\/js\/highwire_math.js":1,"\/\/web.archive.org\/web\/20180714115531\/http:\/\/cdn.jsdelivr.net\/qtip2\/2.2.1\/jquery.qtip.min.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/highwire_markup_process\/js\/highwire_article_reference_popup.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/highwire_markup_process\/js\/highwire_at_symbol.js":1,"misc\/progress.js":1,"sites\/all\/modules\/highwire\/highwire\/js\/highwire.article-citation-author-tooltip.js":1,"misc\/textarea.js":1,"sites\/all\/modules\/highwire\/highwire\/highwire_citation\/plugins\/content_types\/js\/highwire_citation_export.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/js\/minipanel_dialog_link.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/js\/highwire_share_dialog.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/js\/clipboard.min.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/js\/highwire_clipboard.js":1,"sites\/all\/modules\/contrib\/service_links\/js\/twitter_button.js":1,"sites\/all\/modules\/contrib\/service_links\/js\/facebook_like.js":1,"sites\/all\/modules\/highwire\/highwire\/highwire_search\/plugins\/content_types\/js\/highwire_search_similar_articles.js":1,"sites\/all\/modules\/contrib\/panels_accordion\/js\/panels_accordion.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/js\/highwire_article_nav.js":1,"sites\/all\/modules\/highwire\/highwire\/plugins\/content_types\/js\/highwire_nav_float.js":1,"sites\/all\/modules\/highwire\/highwire\/highwire_responsive\/plugins\/styles\/highwire_responsive_toggle\/highwire_responsive_toggle.js":1,"sites\/all\/modules\/contrib\/google_analytics\/googleanalytics.js":1,"sites\/all\/modules\/highwire\/highwire\/highwire_foxycart\/highwire_foxycart.js":1,"sites\/all\/modules\/highwire\/highwire\/highwire_responsive\/js\/highwire-mediaqueries.js":1}},"colorbox":{"opacity":"0.85","current":"{current} of {total}","previous":"\u00ab Prev","next":"Next \u00bb","close":"Close","maxWidth":"98%","maxHeight":"98%","fixed":true,"mobiledetect":true,"mobiledevicewidth":"480px"},"highwire":{"nid":"2011","apath":"\/pnas\/114\/9\/2119.atom","pisa":"pnas;114\/9\/2119","ac":{"\/pnas\/114\/9\/2119.atom":{"access":{"abstract":true,"full":true},"pisa_id":"","apath":"\/pnas\/114\/9\/2119.atom","jcode":"pnas"}},"markup":[{"requested":"abstract","variant":"abstract","view":"abstract","pisa":"pnas;114\/9\/2119"},{"requested":"long","variant":"full-text","view":"full","pisa":"pnas;114\/9\/2119"},{"requested":"full-text","variant":"full-text","view":"full","pisa":"pnas;114\/9\/2119"}],"processed":["highwire_math"],"trendmd":{"trendmd-suggestions":"{\u0022element\u0022:\u0022#trendmd-suggestions\u0022,\u0022track_id\u0022:\u0022null\u0022}"},"modal_window_width":"560","share_modal_width":"560","share_modal_title":"Share this Article"},"user_uid":0,"foxycart_subdomain":"pnas.ecommerce.highwire.org","foxycart_always_show_cart_link":true,"hw_fc_cookie_domain":".pnas.org","HighWireFoxycart":{"link_text":"Add to Cart (%short-price)","link_icon":""},"instances":"{\u0022highwire_abstract_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:20,\u0022height\u0022:20,\u0022border\u0022:1,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-abstract-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-abstract-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022right center\u0022,\u0022my\u0022:\u0022left center\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022shift\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter click \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}},\u0022highwire_author_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:15,\u0022height\u0022:15,\u0022border\u0022:1,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-author-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-author-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022top center\u0022,\u0022my\u0022:\u0022bottom center\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}},\u0022highwire_reflinks_tooltip\u0022:{\u0022content\u0022:{\u0022text\u0022:\u0022\u0022},\u0022style\u0022:{\u0022tip\u0022:{\u0022width\u0022:15,\u0022height\u0022:15,\u0022border\u0022:1,\u0022mimic\u0022:\u0022top center\u0022,\u0022offset\u0022:0,\u0022corner\u0022:true},\u0022classes\u0022:\u0022qtip-custom hw-tooltip hw-ref-link-tooltip qtip-shadow qtip-rounded\u0022,\u0022classes_custom\u0022:\u0022hw-tooltip hw-ref-link-tooltip\u0022},\u0022position\u0022:{\u0022at\u0022:\u0022bottom left\u0022,\u0022my\u0022:\u0022top left\u0022,\u0022viewport\u0022:true,\u0022adjust\u0022:{\u0022method\u0022:\u0022flip\u0022}},\u0022show\u0022:{\u0022event\u0022:\u0022mouseenter \u0022,\u0022solo\u0022:true},\u0022hide\u0022:{\u0022event\u0022:\u0022mouseleave \u0022,\u0022fixed\u0022:1,\u0022delay\u0022:\u0022100\u0022}}}","qtipDebug":"{\u0022leaveElement\u0022:0}","highwire_panel_tabs":[{"panel_name":"jnl_pnas_tab_pdf","panel_ajax_tab":"jnl_pnas_tab_pdf"}],"panel_ajax_tab":{"path":"sites\/all\/modules\/contrib\/panels_ajax_tab"},"ajax":{"edit-submit--3":{"callback":"highwire_alerts_login_form_submit","wrapper":"alerts-form-wrapper","event":"click","url":"\/system\/ajax","submit":{"_triggering_element_name":"op","_triggering_element_value":"Submit"}}},"urlIsAjaxTrusted":{"\/system\/ajax":true,"\/content\/114\/9\/2119":true},"ws_fl":{"width":100,"height":21},"highwire_search_similar_articles":{"highwire-search-similar-articles-list-1":{"conf":{"context":"requiredcontext_entity:node_1","override_title":1,"override_title_text":"\u003Ci class=\u0022icon-caret-right\u0022\u003E\u003C\/i\u003E Similar Articles","number_per_page":"5","show_pager":0,"more_link_path":"similar\/articles","more_link":1,"empty_message":"No similar articles are available.","citation_style":"jcore_standard","title_type":"prefer_short","title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","display_original_link":0,"display_access_indicator":0,"display_cme_link":0,"display_access_indicator_text":0,"display_highlight_image":"0","display_variants":0,"display_supplements":0,"display_abstract_tooltip":0,"display_author_tooltip":0,"override_title_heading":"h2","citation_settings_source":"citation_manager","citation_manager_wrapper":{"citation_manager_citation":"jcore_list_title_only"},"corpus_config_wrapper":{"corpus_config_citation_context":[]},"cache_enabled":1,"cache_time":"600","short_title_options":{"char_count":"50","add_ellipsis":0},"access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":1,"show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"highlight_image_style":"","featured_image_variant":"large","featured_image_click_image":"colorbox","display_google_scholar_tooltip":1,"display_pubmed_tooltip":1,"display_advanced_search_tooltip":1,"display_author_landing_page_tooltip":1,"display_orcid_tooltip":0,"display_ads_search_tooltip":0,"display_agricola_tooltip":0,"author_site_search_path":"","display_translations":0,"display_translations_text":"","display_translations_text_icon":"","bundle_overrides_checkboxes":{"highwire_book_fragment":{"selector":0},"highwire_news_story":{"selector":0},"highwire_book_edition":{"selector":0},"highwire_article":{"selector":0},"highwire_issue":{"selector":0},"highwire_comment":{"selector":0},"highwire_fragment":{"selector":0},"highwire_book_section":{"selector":0},"highwire_journal":{"selector":0}},"bundle_overrides":{"highwire_book_fragment":{"selector":0,"citation_style":"jcore_title_and_author","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":"0","access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":1,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":0,"highlight_image_style":"thumbnail","display_fragment_caption":1,"display_parent_citation":1,"parent_citation_type":"highwire_book_section","parent_citation_settings":{"citation_style":"folio_book_sections_standard","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":0,"access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":1,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":0,"highlight_image_style":"","display_abstract_tooltip":0,"display_author_tooltip":0,"display_google_scholar_tooltip":1,"display_pubmed_tooltip":1,"display_advanced_search_tooltip":1,"display_author_landing_page_tooltip":0,"author_site_search_path":"search\/"}},"highwire_news_story":{"selector":0,"citation_style":"mla","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":0,"access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":1,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":"0","highlight_image_style":"","featured_image_click_image":"nothing","display_author_tooltip":0,"display_google_scholar_tooltip":0,"display_pubmed_tooltip":0,"display_advanced_search_tooltip":0},"highwire_book_edition":{"selector":0,"citation_style":"folio_books_standard","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":0,"access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":1,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":0,"highlight_image_style":"","display_author_tooltip":0,"display_google_scholar_tooltip":1,"display_pubmed_tooltip":1,"display_advanced_search_tooltip":1,"display_author_landing_page_tooltip":1,"display_orcid_tooltip":1,"author_site_search_path":"search\/"},"highwire_article":{"selector":0,"citation_style":"mla","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":0,"access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":0,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":"0","highlight_image_style":"","featured_image_variant":"large","featured_image_click_image":"nothing","display_cme_link":0,"display_abstract_tooltip":0,"display_author_tooltip":0,"display_google_scholar_tooltip":1,"display_pubmed_tooltip":1,"display_advanced_search_tooltip":1,"display_author_landing_page_tooltip":1,"display_orcid_tooltip":1,"display_ads_search_tooltip":0,"display_agricola_tooltip":0,"author_site_search_path":"search\/","display_translations":0,"display_translations_text":"Translations Available","display_translations_text_icon":"icon-globe"},"highwire_issue":{"selector":0,"citation_style":"mla","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":0,"access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":1,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":0,"highlight_image_style":"","featured_image_click_image":"nothing","display_author_tooltip":0,"display_google_scholar_tooltip":1,"display_pubmed_tooltip":1,"display_advanced_search_tooltip":1,"display_author_landing_page_tooltip":0,"display_orcid_tooltip":1,"author_site_search_path":"search\/"},"highwire_comment":{"selector":0,"citation_style":"highwire_comment","show_title":0,"title_as_link":0,"title_as_link_type":"tab_view","author_format_type":"fullname","author_format_custom":"","author_list_separator":", ","date_format":"(j F Y)","display_comment_body":1,"display_attachment":1,"display_conflict_of_interest":1},"highwire_fragment":{"selector":0,"citation_style":"jcore_title_and_author","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":"0","access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":1,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":0,"highlight_image_style":"","display_fragment_caption":1,"fragment_image_settings":{"fragment_image_variant":"medium","fragment_click_image":"colorbox","show_download_links":1},"display_parent_citation":1,"parent_citation_type":"highwire_article","parent_citation_settings":{"citation_style":"mla","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":0,"access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":0,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":"0","highlight_image_style":"","featured_image_variant":"large","featured_image_click_image":"nothing","display_cme_link":0,"display_abstract_tooltip":0,"display_author_tooltip":0,"display_google_scholar_tooltip":1,"display_pubmed_tooltip":1,"display_advanced_search_tooltip":1,"display_author_landing_page_tooltip":1,"display_orcid_tooltip":1,"display_ads_search_tooltip":0,"display_agricola_tooltip":0,"author_site_search_path":"search\/","display_translations":0,"display_translations_text":"Translations Available","display_translations_text_icon":"icon-globe"}},"highwire_book_section":{"selector":0,"citation_style":"folio_book_sections_standard","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":0,"access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":1,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":0,"highlight_image_style":"","display_abstract_tooltip":0,"display_author_tooltip":0,"display_google_scholar_tooltip":1,"display_pubmed_tooltip":1,"display_advanced_search_tooltip":1,"display_author_landing_page_tooltip":0,"author_site_search_path":"search\/"},"highwire_journal":{"selector":0,"citation_style":"mla","cache_enabled":1,"cache_time":"600","title_type":"full","short_title_options":{"char_count":"50","add_ellipsis":0},"title_as_link":0,"display_subtitle":0,"choose_pubdate":"ppubdate","display_markup_snippet":"","highlight_image_toggle":0,"display_original_link":0,"display_access_indicator":0,"access_indicator_settings":{"open_access":{"icon":"icon-unlock","title":"Open Access"},"user_access":{"icon":"icon-ok-sign","title":"You have access"},"no_access":{"icon":"icon-lock","title":"Restricted access"}},"display_variants":0,"display_supplements":0,"pdf_download":{"display_pdf_download":0,"pdf_download_icon":"icon-cloud-download","pdf_download_text":"PDF"},"include_on_behalf":1,"cpath_prefix":"\/content","show_mark_citation":0,"display_infotrieve_link":0,"infotrieve_link_settings":{"icon":"icon-usd","link_caption":"Order full text via Infotrieve"},"display_highlight_image":0,"highlight_image_style":"","display_author_tooltip":0,"display_google_scholar_tooltip":1,"display_pubmed_tooltip":1,"display_advanced_search_tooltip":1,"display_author_landing_page_tooltip":0,"display_orcid_tooltip":1,"author_site_search_path":"search\/"}},"cpath_prefix":"\/content","ajax_loading_icon_classes":"icon-spinner icon-spin icon-2x","ajax_loading_text":"","highlight_image_toggle":0,"more_link_label":"See more","url_parameters":{"q":"node\/2011"}},"nid":"2011"}},"panels_accordion":{"highwire_article_accordion_container":{"heightStyle":"content","autoHeight":false,"collapsible":0,"region_accordion_id":"highwire_article_accordion_container","active":0,"animated":"slide"}},"nice_menus_options":{"delay":800,"speed":"fast"},"eu_cookie_compliance":{"popup_enabled":1,"popup_agreed_enabled":0,"popup_hide_agreed":false,"popup_clicking_confirmation":true,"popup_html_info":"\u003Cdiv\u003E\n \u003Cdiv class =\u0022popup-content info\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Cp\u003EWe use cookies on this site to enhance your user experience. By clicking any link on this page you are giving your consent for us to set cookies.\u003C\/p\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022agree-button\u0022\u003EContinue\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022find-more-button\u0022\u003EFind out more\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E\n","popup_html_agreed":"\u003Cdiv\u003E\n \u003Cdiv class =\u0022popup-content agreed\u0022\u003E\n \u003Cdiv id=\u0022popup-text\u0022\u003E\n \u003Cp\u003EThank you for accepting cookies. You can now hide this message or find out more about cookies.\u003C\/p\u003E\n \u003C\/div\u003E\n \u003Cdiv id=\u0022popup-buttons\u0022\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022hide-popup-button\u0022\u003E\u003C\/button\u003E\n \u003Cbutton type=\u0022button\u0022 class=\u0022find-more-button\u0022 \u003EFind out more\u003C\/button\u003E\n \u003C\/div\u003E\n \u003C\/div\u003E\n\u003C\/div\u003E","popup_height":"auto","popup_width":"100%","popup_delay":1000,"popup_link":"\/help\/cookie-policy","popup_link_new_window":1,"popup_position":null,"popup_language":"en","domain":"","cookie_lifetime":365},"highwireResponsive":{"enquire_enabled":1,"breakpoints_configured":1,"breakpoints":{"narrow":"all and (min-width: 768px) and (min-device-width: 768px), all and (max-width: 1024px) and (max-device-width: 1024px) and (orientation:landscape)","normal":"all and (min-width: 1024px) and (min-device-width: 1024px), all (max-width: 1220px) and (max-device-width: 1220px) and (orientation:landscape)","wide":"all and (min-width: 1220px)"}},"googleanalytics":{"trackOutbound":1,"trackMailto":1,"trackDownload":1,"trackDownloadExtensions":"7z|aac|arc|arj|asf|asx|avi|bin|csv|doc(x|m)?|dot(x|m)?|exe|flv|gif|gz|gzip|hqx|jar|jpe?g|js|mp(2|3|4|e?g)|mov(ie)?|msi|msp|pdf|phps|png|ppt(x|m)?|pot(x|m)?|pps(x|m)?|ppam|sld(x|m)?|thmx|qtm?|ra(m|r)?|sea|sit|tar|tgz|torrent|txt|wav|wma|wmv|wpd|xls(x|m|b)?|xlt(x|m)|xlam|xml|z|zip","trackColorbox":1}}); //--><!]]> </script> <!--[if lt IE 9]><script src="http://html5shiv.googlecode.com/svn/trunk/html5.js"></script><![endif]--> <!--[if lt IE 10]><script src="http://www.pnas.org/sites/all/themes/shared/pnas/js/media.match.min.js" type="text/javascript"></script><![endif]--> </head> <body> <div id="skip-link"> <a href="#main-content" class="element-invisible element-focusable">Skip to main content</a> </div> <div class="page" id="page"> <header role="banner" class="section section-header" id="section-header"> <div class="container-fluid zone-wrapper zone-superheader-first-wrapper mobile-hidden"> <div class="zone zone-superheader-first row row--superheader"> <div class="region region-superheader-first col-narrow-22 col-narrow-offset-1"> <div id="block-nice-menus-2" class="block block-nice-menus col-narrow-12"> <div class="content"> <ul class="nice-menu nice-menu-down nice-menu-umbrella-menu" id="nice-menu-2"><li class="menu-724 menu-path-spnascentralorg-cgi-bin-mainplex first odd "><a href="https://web.archive.org/web/20180714115531/https://www.pnascentral.org/cgi-bin/main.plex" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Submit</a></li> <li class="menu-1236 menuparent menu-path-node-792661 even "><a href="/web/20180714115531/http://www.pnas.org/page/about" data-hide-link-title="0" class="" data-icon-position="">About</a><ul><li class="menu-1237 menu-path-node-792662 first odd "><a href="/web/20180714115531/http://www.pnas.org/page/about/editorial-board" data-hide-link-title="0" class="" data-icon-position="">Editorial Board</a></li> <li class="menu-1238 menu-path-node-792663 even "><a href="/web/20180714115531/http://www.pnas.org/page/about/staff-directory" data-hide-link-title="0" class="" data-icon-position="">PNAS Staff</a></li> <li class="menu-1239 menu-path-node-792664 odd "><a href="/web/20180714115531/http://www.pnas.org/page/about/faq" data-hide-link-title="0" class="" data-icon-position="">FAQ</a></li> <li class="menu-1240 menu-path-node-792665 even "><a href="/web/20180714115531/http://www.pnas.org/page/about/rights-permissions" data-hide-link-title="0" class="" data-icon-position="">Rights and Permissions</a></li> <li class="menu-1298 menu-path-node-812715 odd last"><a href="/web/20180714115531/http://www.pnas.org/content/site-map" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Site Map</a></li> </ul></li> <li class="menu-1241 menu-path-node-792663 odd "><a href="/web/20180714115531/http://www.pnas.org/page/about/staff-directory" data-hide-link-title="0" class="" data-icon-position="">Contact</a></li> <li class="menu-837 menu-path-blogpnasorg- even "><a href="https://web.archive.org/web/20180714115531/http://blog.pnas.org/" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Journal Club</a></li> <li class="menu-1251 menuparent menu-path-node-795779 odd last"><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/subscribers" data-hide-link-title="0" class="" data-icon-position="">Subscribe</a><ul><li class="menu-1243 menu-path-node-792668 first odd "><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/rates" data-hide-link-title="0" class="" data-icon-position="">Subscription Rates</a></li> <li class="menu-1246 menu-path-node-792671 even "><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/subs-faq" data-hide-link-title="0" class="" data-icon-position="">Subscriptions FAQ</a></li> <li class="menu-1244 menu-path-node-792669 odd "><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/open-access" data-hide-link-title="0" class="" data-icon-position="">Open Access</a></li> <li class="menu-1245 menu-path-node-792670 even last"><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/recommend-form" data-hide-link-title="0" class="" data-icon-position="">Recommend PNAS to Your Librarian</a></li> </ul></li> </ul> </div> </div> <div id="block-panels-mini-jnl-pnas-uid-strng" class="block block-panels-mini col-narrow-12"> <div class="content"> <div class="panel-display panel-1col clearfix" id="mini-panel-jnl_pnas_uid_strng"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-user-identities"> <div class="pane-content"> <div class="highwire-user-message" data-separator=" | "><span class="highwire-user-institution" data-id-type="institution" data-identity="a%3A2%3A%7Bs%3A4%3A%22show%22%3Bi%3A1%3Bs%3A7%3A%22message%22%3Bs%3A85%3A%22%3Cspan%20class%3D%22narrow-hidden%22%3EInstitution%3A%20%3C%2Fspan%3E%5Bidentity%3Ainstitutional_display_name%5D%22%3B%7D"></span></div> </div> </div> <div class="panel-pane pane-block pane-system-user-menu links inline pane-system"> <div class="pane-content"> <ul class="menu"><li class="first leaf"><a href="/web/20180714115531/http://www.pnas.org/user/login?destination=/content/114/9/2119" class="" data-icon-position="" data-hide-link-title="0">Log in</a></li> <li class="last leaf"><a href="/web/20180714115531/http://www.pnas.org/cart" class="link-icon-only link-icon"><i class="icon-shopping-cart"></i> <span class="title element-invisible">My Cart</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </div> </div> </div><!-- /.zone-superheader-first --> </div><!-- /.zone-superheader-first-wrapper --> <div class="container-fluid zone-wrapper zone-superheader-second-wrapper mobile-only"> <div class="zone zone-superheader-second row row--superheader-second"> <div class="region region-superheader-second col-mobile-24"> <div id="block-panels-mini-responsive-menu" class="block block-panels-mini"> <div class="content"> <div class="panel-display panel-1col clearfix" id="mini-panel-responsive_menu"> <div class="panel-panel panel-col"> <div><div id="unique-id3" class="highwire-responsive-toggle-group"><div class="panel-pane pane-panels-mini pane-responsive-menu-main-menu"> <h2 class="pane-title"><span class="pane-title-text"><i class="icon-reorder"></i><span class="element-invisible">Main menu</span></span></h2> <div class="pane-content"> <div class="panel-display panel-1col clearfix" id="mini-panel-responsive_menu_main_menu"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-menu-tree pane-main-menu"> <div class="pane-content"> <div class="menu-block-wrapper menu-block-ctools-main-menu-1 menu-name-main-menu parent-mlid-main-menu:0 menu-level-1"> <ul class="menu"><li class="first leaf menu-mlid-730"><a href="/web/20180714115531/http://www.pnas.org/" class="" data-icon-position="" data-hide-link-title="0">Home</a></li> <li class="expanded active-trail menu-mlid-731"><a href="/web/20180714115531/http://www.pnas.org/content/current" data-hide-link-title="0" class="active active-trail" data-icon-position="">Articles</a><ul class="menu"><li class="first expanded menu-mlid-732"><a href="/web/20180714115531/http://www.pnas.org/content/current" class="" data-icon-position="" data-hide-link-title="0">Current</a></li> <li class="leaf menu-mlid-733"><a href="/web/20180714115531/http://www.pnas.org/content/early/recent" data-hide-link-title="0" class="" data-icon-position="">Latest Articles</a></li> <li class="leaf menu-mlid-1249"><a href="/web/20180714115531/http://www.pnas.org/page/about/special-features" data-hide-link-title="0" class="" data-icon-position="">Special Features</a></li> <li class="leaf menu-mlid-1250"><a href="/web/20180714115531/http://www.pnas.org/page/about/colloquia" data-hide-link-title="0" class="" data-icon-position="">Colloquia</a></li> <li class="leaf menu-mlid-1248"><a href="/web/20180714115531/http://www.pnas.org/page/about/collected-papers" data-hide-link-title="0" class="" data-icon-position="">Collected Articles</a></li> <li class="leaf menu-mlid-1091"><a href="https://web.archive.org/web/20180714115531/http://classics.pnas.org/" data-hide-link-title="0" target="_blank" class="" data-icon-position="">PNAS Classics</a></li> <li class="last leaf menu-mlid-734"><a href="/web/20180714115531/http://www.pnas.org/content/by/year" data-hide-link-title="0" class="" data-icon-position="">Archive</a></li> </ul></li> <li class="leaf menu-mlid-917"><a href="https://web.archive.org/web/20180714115531/http://frontmatter.pnas.org/" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Front Matter</a></li> <li class="expanded menu-mlid-1225"><a href="/web/20180714115531/http://www.pnas.org/page/about/press" data-hide-link-title="0" class="" data-icon-position="">News</a><ul class="menu"><li class="first leaf menu-mlid-1226"><a href="/web/20180714115531/http://www.pnas.org/page/about/press" data-hide-link-title="0" class="" data-icon-position="">For the Press</a></li> <li class="leaf menu-mlid-1227"><a href="/web/20180714115531/http://www.pnas.org/page/media/highlights" data-hide-link-title="0" class="" data-icon-position="">Highlights from Latest Articles</a></li> <li class="last leaf menu-mlid-1228"><a href="/web/20180714115531/http://www.pnas.org/page/media/news" data-hide-link-title="0" class="" data-icon-position="">PNAS in the News</a></li> </ul></li> <li class="leaf menu-mlid-1229"><a href="/web/20180714115531/http://www.pnas.org/page/media/podcasts" data-hide-link-title="0" class="" data-icon-position="">Podcasts</a></li> <li class="last expanded menu-mlid-1230"><a href="/web/20180714115531/http://www.pnas.org/page/authors/authors" data-hide-link-title="0" class="" data-icon-position="">Authors</a><ul class="menu"><li class="first leaf menu-mlid-1231"><a href="/web/20180714115531/http://www.pnas.org/page/authors/purpose-scope" data-hide-link-title="0" class="" data-icon-position="">Purpose and Scope</a></li> <li class="leaf menu-mlid-1232"><a href="/web/20180714115531/http://www.pnas.org/page/authors/journal-policies" data-hide-link-title="0" class="" data-icon-position="">Editorial and Journal Policies</a></li> <li class="leaf menu-mlid-1233"><a href="/web/20180714115531/http://www.pnas.org/page/authors/submission" data-hide-link-title="0" class="" data-icon-position="">Submission Procedures</a></li> <li class="leaf menu-mlid-1234"><a href="/web/20180714115531/http://www.pnas.org/page/authors/reviewers" data-hide-link-title="0" class="" data-icon-position="">For Reviewers</a></li> <li class="last leaf menu-mlid-1235"><a href="/web/20180714115531/http://www.pnas.org/page/authors/author-faq" data-hide-link-title="0" class="" data-icon-position="">Author FAQ</a></li> </ul></li> </ul></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-menu-tree pane-umbrella-menu"> <div class="pane-content"> <div class="menu-block-wrapper menu-block-ctools-umbrella-menu-1 menu-name-umbrella-menu parent-mlid-umbrella-menu:0 menu-level-1"> <ul class="menu"><li class="first leaf menu-mlid-724"><a href="https://web.archive.org/web/20180714115531/https://www.pnascentral.org/cgi-bin/main.plex" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Submit</a></li> <li class="expanded menu-mlid-1236"><a href="/web/20180714115531/http://www.pnas.org/page/about" data-hide-link-title="0" class="" data-icon-position="">About</a><ul class="menu"><li class="first leaf menu-mlid-1237"><a href="/web/20180714115531/http://www.pnas.org/page/about/editorial-board" data-hide-link-title="0" class="" data-icon-position="">Editorial Board</a></li> <li class="leaf menu-mlid-1238"><a href="/web/20180714115531/http://www.pnas.org/page/about/staff-directory" data-hide-link-title="0" class="" data-icon-position="">PNAS Staff</a></li> <li class="leaf menu-mlid-1239"><a href="/web/20180714115531/http://www.pnas.org/page/about/faq" data-hide-link-title="0" class="" data-icon-position="">FAQ</a></li> <li class="leaf menu-mlid-1240"><a href="/web/20180714115531/http://www.pnas.org/page/about/rights-permissions" data-hide-link-title="0" class="" data-icon-position="">Rights and Permissions</a></li> <li class="last leaf menu-mlid-1298"><a href="/web/20180714115531/http://www.pnas.org/content/site-map" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Site Map</a></li> </ul></li> <li class="leaf menu-mlid-1241"><a href="/web/20180714115531/http://www.pnas.org/page/about/staff-directory" data-hide-link-title="0" class="" data-icon-position="">Contact</a></li> <li class="leaf menu-mlid-837"><a href="https://web.archive.org/web/20180714115531/http://blog.pnas.org/" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Journal Club</a></li> <li class="last expanded menu-mlid-1251"><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/subscribers" data-hide-link-title="0" class="" data-icon-position="">Subscribe</a><ul class="menu"><li class="first leaf menu-mlid-1243"><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/rates" data-hide-link-title="0" class="" data-icon-position="">Subscription Rates</a></li> <li class="leaf menu-mlid-1246"><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/subs-faq" data-hide-link-title="0" class="" data-icon-position="">Subscriptions FAQ</a></li> <li class="leaf menu-mlid-1244"><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/open-access" data-hide-link-title="0" class="" data-icon-position="">Open Access</a></li> <li class="last leaf menu-mlid-1245"><a href="/web/20180714115531/http://www.pnas.org/page/subscriptions/recommend-form" data-hide-link-title="0" class="" data-icon-position="">Recommend PNAS to Your Librarian</a></li> </ul></li> </ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="panel-pane pane-panels-mini pane-responsive-menu-user-menu"> <h2 class="pane-title"><span class="pane-title-text"><i class="icon-gear"></i><span class="element-invisible">User menu</span></span></h2> <div class="pane-content"> <div class="panel-display panel-1col clearfix" id="mini-panel-responsive_menu_user_menu"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-menu-tree pane-user-menu"> <div class="pane-content"> <div class="menu-block-wrapper menu-block-ctools-user-menu-1 menu-name-user-menu parent-mlid-user-menu:0 menu-level-1"> <ul class="menu"><li class="first leaf menu-mlid-763"><a href="/web/20180714115531/http://www.pnas.org/user/login?destination=/content/114/9/2119" class="" data-icon-position="" data-hide-link-title="0">Log in</a></li> <li class="last leaf menu-mlid-1151"><a href="/web/20180714115531/http://www.pnas.org/cart" class="link-icon-only link-icon"><i class="icon-shopping-cart"></i> <span class="title element-invisible">My Cart</span></a></li> </ul></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-user-identities"> <div class="pane-content"> <div class="highwire-user-message" data-separator="|"><span class="highwire-user-institution" data-id-type="institution" data-identity="a%3A2%3A%7Bs%3A4%3A%22show%22%3Bi%3A1%3Bs%3A7%3A%22message%22%3Bs%3A50%3A%22Institution%3A%20%5Bidentity%3Ainstitutional_display_name%5D%22%3B%7D"></span></div> </div> </div> </div> </div> </div> </div> </div> <div class="panel-pane pane-panels-mini pane-responsive-menu-search"> <h2 class="pane-title"><span class="pane-title-text"><i class="icon-search"></i><span class="element-invisible">Search</span></span></h2> <div class="pane-content"> <div class="panel-display panel-1col clearfix" id="mini-panel-responsive_menu_search"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-seach-quicksearch"> <div class="pane-content"> <form class="highwire-quicksearch button-style-mini button-style-mini form--search-inline" action="/web/20180714115531/http://www.pnas.org/content/114/9/2119" method="post" id="highwire-search-quicksearch-form-0" accept-charset="UTF-8"><div><div class="form-item form-type-textfield form-item-keywords"> <label class="element-invisible" for="edit-keywords">Search for this keyword </label> <input placeholder="Search..." type="text" id="edit-keywords" name="keywords" value="" size="60" maxlength="1000" class="form-text"/> </div> <button data-icon-only="1" data-font-icon="icon-search" data-icon-position="after" class="button--clear form-submit button-i-only" type="submit" id="edit-submit--6" name="op" value="Search"><i class="icon-search"></i><span class="element-invisible"> Search</span></button><input type="hidden" name="form_build_id" value="form-bYJXkppW4BfMxNvHhNscE-LOh5LNIsItQVvWQ4DrIe4"/> <input type="hidden" name="form_id" value="highwire_search_quicksearch_form_0"/> </div></form> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-custom pane-2 highwire-responsive-advanced-search-link pane-menu-tree"> <div class="pane-content"> <ul class="menu"> <li><a href="/web/20180714115531/http://www.pnas.org/search" title="Advanced search">Advanced search</a></li> </ul> </div> </div> </div> </div> </div> </div> </div> </div></div> </div> </div> </div> </div> <div id="block-panels-mini-pnas-mobile-logo" class="block block-panels-mini pnas-mobile-logo"> <div class="content"> <div class="panel-display panel-1col clearfix" id="mini-panel-pnas_mobile_logo"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-page-logo"> <div class="pane-content"> <a href="/web/20180714115531/http://www.pnas.org/" rel="home" id="logo" title="Home" class="" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/logo-pnas-white-header2x.png" alt="Home"/></a> </div> </div> </div> </div> </div> </div> </div> </div> </div><!-- /.zone-superheader-second --> </div><!-- /.zone-superheader-second-wrapper --> <div class="container-fluid zone-wrapper zone-header-wrapper mobile-hidden"> <div class="zone zone-header row row--header"> <div class="region region-branding col-narrow-22 col-narrow-offset-1"> <div class="row"> <div class="site-info col-narrow-12"> <figure> <a href="/web/20180714115531/http://www.pnas.org/" title="Home" id="logo"> <img class="site-logo" src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/logo-pnas-white-header2x.png" alt="Home"/> </a> </figure> </div><!-- /.site-info --> <div class="region region-header col-narrow-12"> <div id="block-panels-mini-jnl-pnas-search-box" class="block block-panels-mini"> <div class="content"> <div class="panel-display panel-1col clearfix" id="mini-panel-jnl_pnas_search_box"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-seach-quicksearch no-margin-bottom"> <div class="pane-content"> <form class="highwire-quicksearch button-style-mini button-style-mini form--search-inline" action="/web/20180714115531/http://www.pnas.org/content/114/9/2119" method="post" id="highwire-search-quicksearch-form-1" accept-charset="UTF-8"><div><div class="form-item form-type-textfield form-item-keywords"> <label class="element-invisible" for="edit-keywords--2">Search for this keyword </label> <input placeholder="Keyword, Author, or DOI" type="text" id="edit-keywords--2" name="keywords" value="" size="60" maxlength="1000" class="form-text"/> </div> <button data-icon-only="1" data-font-icon="icon-search" data-icon-position="after" class="button--clear form-submit button-i-only" type="submit" id="edit-submit--7" name="op" value="Search"><i class="icon-search"></i><span class="element-invisible"> Search</span></button><input type="hidden" name="form_build_id" value="form-_wiOUvlgg3hd2wJ4BiFQesFiJlb9Iorwqg2PwC8qM9A"/> <input type="hidden" name="form_id" value="highwire_search_quicksearch_form_1"/> </div></form> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-custom pane-3 text-right"> <div class="pane-content"> <p><a href="/web/20180714115531/http://www.pnas.org/search">Advanced Search</a></p> </div> </div> </div> </div> </div> </div> </div> </div> </div><!-- /.row --> </div><!-- /.region-branding --> </div><!-- /.zone-header --> </div><!-- /.zone-header-wrapper --> <div class="container-fluid zone-wrapper zone-menu-wrapper mobile-hidden"> <div class="zone zone-menu row row--menu"> <div class="region region-menu col-narrow-22 col-narrow-offset-1"> <div id="block-nice-menus-1" class="block block-nice-menus"> <div class="content"> <ul class="nice-menu nice-menu-down nice-menu-main-menu" id="nice-menu-1"><li class="menu-730 menu-path-front first odd "><a href="/web/20180714115531/http://www.pnas.org/" class="" data-icon-position="" data-hide-link-title="0">Home</a></li> <li class="menu-731 menuparent menu-path-content-current active-trail even "><a href="/web/20180714115531/http://www.pnas.org/content/current" data-hide-link-title="0" class="active" data-icon-position="">Articles</a><ul><li class="menu-732 menu-path-content-current first odd "><a href="/web/20180714115531/http://www.pnas.org/content/current" class="" data-icon-position="" data-hide-link-title="0">Current</a></li> <li class="menu-733 menu-path-content-early-recent even "><a href="/web/20180714115531/http://www.pnas.org/content/early/recent" data-hide-link-title="0" class="" data-icon-position="">Latest Articles</a></li> <li class="menu-1249 menu-path-node-792687 odd "><a href="/web/20180714115531/http://www.pnas.org/page/about/special-features" data-hide-link-title="0" class="" data-icon-position="">Special Features</a></li> <li class="menu-1250 menu-path-node-792688 even "><a href="/web/20180714115531/http://www.pnas.org/page/about/colloquia" data-hide-link-title="0" class="" data-icon-position="">Colloquia</a></li> <li class="menu-1248 menu-path-node-792684 odd "><a href="/web/20180714115531/http://www.pnas.org/page/about/collected-papers" data-hide-link-title="0" class="" data-icon-position="">Collected Articles</a></li> <li class="menu-1091 menu-path-classicspnasorg- even "><a href="https://web.archive.org/web/20180714115531/http://classics.pnas.org/" data-hide-link-title="0" target="_blank" class="" data-icon-position="">PNAS Classics</a></li> <li class="menu-734 menu-path-content-by-year odd last"><a href="/web/20180714115531/http://www.pnas.org/content/by/year" data-hide-link-title="0" class="" data-icon-position="">Archive</a></li> </ul></li> <li class="menu-917 menu-path-frontmatterpnasorg- odd "><a href="https://web.archive.org/web/20180714115531/http://frontmatter.pnas.org/" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Front Matter</a></li> <li class="menu-1225 menuparent menu-path-node-792651 even "><a href="/web/20180714115531/http://www.pnas.org/page/about/press" data-hide-link-title="0" class="" data-icon-position="">News</a><ul><li class="menu-1226 menu-path-node-792651 first odd "><a href="/web/20180714115531/http://www.pnas.org/page/about/press" data-hide-link-title="0" class="" data-icon-position="">For the Press</a></li> <li class="menu-1227 menu-path-node-792652 even "><a href="/web/20180714115531/http://www.pnas.org/page/media/highlights" data-hide-link-title="0" class="" data-icon-position="">Highlights from Latest Articles</a></li> <li class="menu-1228 menu-path-node-792653 odd last"><a href="/web/20180714115531/http://www.pnas.org/page/media/news" data-hide-link-title="0" class="" data-icon-position="">PNAS in the News</a></li> </ul></li> <li class="menu-1229 menu-path-node-792654 odd "><a href="/web/20180714115531/http://www.pnas.org/page/media/podcasts" data-hide-link-title="0" class="" data-icon-position="">Podcasts</a></li> <li class="menu-1230 menuparent menu-path-node-792655 even last"><a href="/web/20180714115531/http://www.pnas.org/page/authors/authors" data-hide-link-title="0" class="" data-icon-position="">Authors</a><ul><li class="menu-1231 menu-path-node-792656 first odd "><a href="/web/20180714115531/http://www.pnas.org/page/authors/purpose-scope" data-hide-link-title="0" class="" data-icon-position="">Purpose and Scope</a></li> <li class="menu-1232 menu-path-node-792657 even "><a href="/web/20180714115531/http://www.pnas.org/page/authors/journal-policies" data-hide-link-title="0" class="" data-icon-position="">Editorial and Journal Policies</a></li> <li class="menu-1233 menu-path-node-792658 odd "><a href="/web/20180714115531/http://www.pnas.org/page/authors/submission" data-hide-link-title="0" class="" data-icon-position="">Submission Procedures</a></li> <li class="menu-1234 menu-path-node-792659 even "><a href="/web/20180714115531/http://www.pnas.org/page/authors/reviewers" data-hide-link-title="0" class="" data-icon-position="">For Reviewers</a></li> <li class="menu-1235 menu-path-node-792660 odd last"><a href="/web/20180714115531/http://www.pnas.org/page/authors/author-faq" data-hide-link-title="0" class="" data-icon-position="">Author FAQ</a></li> </ul></li> </ul> </div> </div> </div> </div> </div> </header> <!-- /.section-header --> <section role="main" class="section section-content" id="section-content"> <div class="container-fluid zone-wrapper zone-content-wrapper"> <div class="zone zone-content row"> <div class="region region-content col-narrow-22 col-narrow-offset-1"> <div id="block-panels-mini-whats-new-in" class="block block-panels-mini"> <div class="content"> <div class="panel-display panel-1col clearfix" id="mini-panel-whats_new_in"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-custom pane-4 whats-new-in-title"> <div class="pane-content"> <h2>New Research In</h2> </div> </div> <div class="panel-pane pane-snippet pane-pnas-physical-sciences wni-dropdown"> <h3 class="pane-title"><span class="pane-title-text">Physical Sciences</span></h3> <div class="pane-content"> <div class="pnas-physical-sciences" id="pnas-physical-sciences"> <div class="snippet-content"> <h4>Featured Portals</h4> <ul class="menu"> <li><a href="https://web.archive.org/web/20180714115531/http://physics.pnas.org/">Physics</a></li> <li><a href="https://web.archive.org/web/20180714115531/http://chemistry.pnas.org/">Chemistry</a></li> <li><a href="https://web.archive.org/web/20180714115531/http://sustainability.pnas.org/">Sustainability Science</a></li> </ul> <h4>Articles by Topic</h4> <ul class="menu"> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Applied%20Mathematics">Applied Mathematics</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Applied%20Physical%20Sciences">Applied Physical Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Astronomy">Astronomy</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Computer%20Sciences">Computer Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Earth,%20Atmospheric,%20and%20Planetary%20Sciences">Earth, Atmospheric, and Planetary Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Engineering">Engineering</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Environmental%20Sciences">Environmental Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Mathematics">Mathematics</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Statistics">Statistics</a></li> </ul> </div> </div> </div> </div> <div class="panel-pane pane-snippet pane-pnas-social-sciences wni-dropdown"> <h3 class="pane-title"><span class="pane-title-text">Social Sciences</span></h3> <div class="pane-content"> <div class="pnas-social-sciences" id="pnas-social-sciences"> <div class="snippet-content"> <h4>Featured Portals</h4> <ul class="menu"> <li><a href="https://web.archive.org/web/20180714115531/http://anthropology.pnas.org/">Anthropology</a></li> <li><a href="https://web.archive.org/web/20180714115531/http://sustainability.pnas.org/">Sustainability Science</a></li> </ul> <h4>Articles by Topic</h4> <ul class="menu"> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Economic%20Sciences">Economic Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Environmental%20Sciences">Environmental Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Political%20Sciences">Political Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Psychological%20and%20Cognitive%20Sciences">Psychological and Cognitive Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Social%20Sciences">Social Sciences</a></li> </ul> </div> </div> </div> </div> <div class="panel-pane pane-snippet pane-pnas-biological-sciences wni-dropdown"> <h3 class="pane-title"><span class="pane-title-text">Biological Sciences</span></h3> <div class="pane-content"> <div class="pnas-biological-sciences" id="pnas-biological-sciences"> <div class="snippet-content"> <h4>Featured Portals</h4> <ul class="menu"> <li><a href="https://web.archive.org/web/20180714115531/http://sustainability.pnas.org/">Sustainability Science</a></li> </ul> <h4>Articles by Topic</h4> <ul class="menu"> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Agricultural%20Sciences">Agricultural Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/cc/anthropology">Anthropology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Applied%20Biological%20Sciences">Applied Biological Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Biochemistry">Biochemistry</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Biophysics%20and%20Computational%20Biology">Biophysics and Computational Biology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Cell%20Biology">Cell Biology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Developmental%20Biology">Developmental Biology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Ecology">Ecology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Environmental%20Sciences">Environmental Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Evolution">Evolution</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Genetics">Genetics</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Immunology%20and%20Inflammation">Immunology and Inflammation</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Medical%20Sciences">Medical Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Microbiology">Microbiology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Neuroscience">Neuroscience</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Pharmacology">Pharmacology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Physiology">Physiology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Plant%20Biology">Plant Biology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Population%20Biology">Population Biology</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Psychological%20and%20Cognitive%20Sciences">Psychological and Cognitive Sciences</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Sustainability%20Science">Sustainability Science</a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Systems%20Biology">Systems Biology</a></li> </ul> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div id="block-system-main" class="block block-system"> <div class="content"> <div class="panel-display content-sidebar-layout "> <div class="panel-row-wrapper row"> <div class="main-content-wrapper col-narrow-15"> <div class="panel-panel panel-region-content"> <div class="inside"><div class="panel-pane pane-highwire-article-crossmark"> <div class="pane-content"> <!-- Start CrossMark Snippet v2.0 --> <a data-target="crossmark" class="crossmark-square"><img src="https://web.archive.org/web/20180714115531im_/https://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_Color_square.svg" alt=""></a> <div id="crossmark-dialog" style="display: none;" title=""> <!-- the external CrossMark data is loaded inside this iframe --> <iframe id="crossmark-dialog-frame"></iframe> </div> <!-- End CrossMark Snippet --> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-article-citation"> <div class="pane-content"> <div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="2011" id="node2011" data-pisa="pnas;114/9/2119" data-pisa-master="pnas;1614721114" data-apath="/pnas/114/9/2119.atom" data-hw-author-tooltip-instance="highwire_author_tooltip"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-pnas-article-title-complete clearfix has-author-tooltip highwire-citation-highwire-article-top-a"> <h1 class="highwire-cite-title" id="page-title">Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids</h1> <div class="highwire-cite-authors"><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0">Jonasz Słomka</span> and <span class="highwire-citation-author" data-delta="1">Jörn Dunkel</span></span></div> <div class="highwire-cite-metadata"><span class="highwire-cite-metadata-journal highwire-cite-metadata">PNAS </span><span class="highwire-cite-metadata-date highwire-cite-metadata">February 28, 2017. </span><span class="highwire-cite-metadata-volume highwire-cite-metadata">114 </span><span class="highwire-cite-metadata-issue highwire-cite-metadata">(9) </span><span class="highwire-cite-metadata-pages highwire-cite-metadata">2119-2124; </span><span class="highwire-cite-metadata-papdate highwire-cite-metadata">published ahead of print February 13, 2017. </span><span class="highwire-cite-metadata-doi highwire-cite-metadata"><a href="https://web.archive.org/web/20180714115531/https://doi.org/10.1073/pnas.1614721114">https://doi.org/10.1073/pnas.1614721114</a> </span></div> <div class="highwire-cite-extras"><span class="highwire-foxycart-add-to-cart-ahah highwire-foxycart-add-to-cart-ahah" data-text="Add to Cart (%short-price)" data-apath="/pnas/114/9/2119.atom" data-type="link" data-font-icon="" data-parent-id="1458"></span></div> </div> <div id="hw-article-author-popups-node2011" style="display: none;"><div class="author-tooltip-0"><div class="author-tooltip-name">Jonasz Słomka</div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><span class="nlm-aff"><span class="nlm-sup">a</span>Department of Mathematics, <span class="nlm-institution" data-hwp-id="institution-1">Massachusetts Institute of Technology</span>, Cambridge, <span class="nlm-addr-line">MA</span> 02139-4307</span></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/web/20180714115531/http://www.pnas.org/lookup/google-scholar?link_type=googlescholar&gs_type=author&author%5B0%5D=J.%2BS%C5%82omka" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li> <li class="author-tooltip-pubmed-link"><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=S%C5%82omka%20J&link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li> <li class="author-site-search-link last"><a href="/web/20180714115531/http://www.pnas.org/search/author1%3AJonasz%2BS%25C5%2582omka" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li> </ul></div><div class="author-tooltip-1"><div class="author-tooltip-name">Jörn Dunkel</div><div class="author-tooltip-affiliation"><span class="author-tooltip-text"><span class="nlm-aff"><span class="nlm-sup">a</span>Department of Mathematics, <span class="nlm-institution" data-hwp-id="institution-1">Massachusetts Institute of Technology</span>, Cambridge, <span class="nlm-addr-line">MA</span> 02139-4307</span></span></div><ul class="author-tooltip-find-more"><li class="author-tooltip-gs-link first"><a href="/web/20180714115531/http://www.pnas.org/lookup/google-scholar?link_type=googlescholar&gs_type=author&author%5B0%5D=J.%2BDunkel" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on Google Scholar</a></li> <li class="author-tooltip-pubmed-link"><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=Dunkel%20J&link_type=AUTHORSEARCH" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Find this author on PubMed</a></li> <li class="author-site-search-link"><a href="/web/20180714115531/http://www.pnas.org/search/author1%3AJ%25C3%25B6rn%2BDunkel" rel="nofollow" class="" data-icon-position="" data-hide-link-title="0">Search for this author on this site</a></li> <li class="author-corresp-email-link last"><span>For correspondence: <a href="https://web.archive.org/web/20180714115531/mailto:dunkel@math.mit.edu" class="" data-icon-position="" data-hide-link-title="0">dunkel@math.mit.edu</a></span></li> </ul></div></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-markup article-citation-contributors"> <div class="pane-content"> <div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" id="content-block-markup" xmlns:xhtml="http://www.w3.org/1999/xhtml"><ol xmlns:xhtml="http://www.w3.org/1999/xhtml" class="fn-track"><li class="fn-edited-by" id="fn-1"><p id="p-1">Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved January 4, 2017 (received for review September 2, 2016)</p></li></ol></div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-corrections"> <div class="pane-content"> <div class="messages highwire-corrections highwire-correction-type-correction highwire-correction-type-correction"><h3 class="highwire-corrections-title">This article has a correction. Please see:</h3><ul class="highwire-corrections-list"><li class="relation-2496 first last"><a href="/web/20180714115531/http://www.pnas.org/content/114/15/E3159" class="" data-icon-position="" data-hide-link-title="0">Correction for Słomka and Dunkel, Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids</a></li> </ul></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-panel-tabs pane-panels-ajax-tab-tabs"> <div class="pane-content"> <div class="item-list"><ul class="tabs inline panels-ajax-tab"><li class="first"><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2119" class="panels-ajax-tab-tab" data-panel-name="jnl_pnas_tab_art" data-target-id="highwire_article_tabs" data-entity-context="node:2011" data-trigger="" data-url-enabled="1">Article</a><a href="/web/20180714115531/http://www.pnas.org/panels_ajax_tab/jnl_pnas_tab_art/node:2011/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2119/tab-figures-data" class="panels-ajax-tab-tab" data-panel-name="jnl_pnas_tab_data" data-target-id="highwire_article_tabs" data-entity-context="node:2011" data-trigger="tab-figures-data" data-url-enabled="1">Figures & SI</a><a href="/web/20180714115531/http://www.pnas.org/panels_ajax_tab/jnl_pnas_tab_data/node:2011/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li> <li><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2119/tab-article-info" class="panels-ajax-tab-tab" data-panel-name="jnl_pnas_tab_info" data-target-id="highwire_article_tabs" data-entity-context="node:2011" data-trigger="tab-article-info" data-url-enabled="1">Authors & Info</a><a href="/web/20180714115531/http://www.pnas.org/panels_ajax_tab/jnl_pnas_tab_info/node:2011/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li> <li class="last"><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2119.full.pdf" class="panels-ajax-tab-tab" data-panel-name="jnl_pnas_tab_pdf" data-target-id="highwire_article_tabs" data-entity-context="node:2011" data-trigger="tab-pdf" data-url-enabled="1"><i class="icon-file-alt"></i> PDF</a><a href="/web/20180714115531/http://www.pnas.org/panels_ajax_tab/jnl_pnas_tab_pdf/node:2011/1" rel="nofollow" style="display:none" class="js-crawler-link"></a></li> </ul></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-panel-tabs-container"> <div class="pane-content"> <div data-panels-ajax-tab-preloaded="jnl_pnas_tab_art" id="panels-ajax-tab-container-highwire_article_tabs" class="panels-ajax-tab-container"><div class="panels-ajax-tab-loading" style="display:none"><img class="loading" src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/contrib/panels_ajax_tab/images/loading.gif" alt="Loading" title="Loading"/></div><div class="panels-ajax-tab-wrap-jnl_pnas_tab_art"><div class="panel-display panel-1col clearfix"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-markup"> <div class="pane-content"> <div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" id="content-block-markup" data-highwire-cite-ref-tooltip-instance="highwire_reflinks_tooltip" xmlns:xhtml="http://www.w3.org/1999/xhtml"><div class="article fulltext-view "><span class="highwire-journal-article-marker-start"></span><div class="executive-summary"><h2 class="">Significance</h2><p id="p-5">Turbulence provides an important mechanism for energy redistribution and mixing in interstellar gases, planetary atmospheres, and the oceans. Classical turbulence theory suggests for ordinary 3D fluids or gases, such as water or air, that larger vortices can transform into smaller ones but not vice versa, thus limiting energy transfer from smaller to larger scales. Our calculations predict that bacterial suspensions and other pattern-forming active fluids can deviate from this paradigm by creating turbulent flow structures that spontaneously break mirror symmetry. These results imply that the collective dynamics of swimming microorganisms can enhance fluid mixing more strongly than previously thought.</p></div><div class="section abstract" id="abstract-2"><h2>Abstract</h2><p id="p-6">Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade.</p></div><ul class="kwd-group"><li class="kwd"><a href="/web/20180714115531/http://www.pnas.org/keyword/active-turbulence" class="hw-term hw-article-keyword hw-article-keyword-active-turbulence" rel="nofollow">active turbulence</a></li><li class="kwd"><a href="/web/20180714115531/http://www.pnas.org/keyword/inverse-cascade" class="hw-term hw-article-keyword hw-article-keyword-inverse-cascade" rel="nofollow">inverse cascade</a></li><li class="kwd"><a href="/web/20180714115531/http://www.pnas.org/keyword/beltrami-flows" class="hw-term hw-article-keyword hw-article-keyword-beltrami-flows" rel="nofollow">Beltrami flows</a></li><li class="kwd"><a href="/web/20180714115531/http://www.pnas.org/keyword/pattern-formation" class="hw-term hw-article-keyword hw-article-keyword-pattern-formation" rel="nofollow">pattern formation</a></li></ul><p id="p-7" class="flushleft">Turbulence, the chaotic motion of liquids and gases, remains one of the most widely studied phenomena in classical physics (<a id="xref-ref-1-1" class="xref-bibr" href="#ref-1">1</a>, <a id="xref-ref-2-1" class="xref-bibr" href="#ref-2">2</a>). Turbulent flows determine energy transfer and material mixing over a vast range of scales, from the interstellar medium (<a id="xref-ref-3-1" class="xref-bibr" href="#ref-3">3</a>, <a id="xref-ref-4-1" class="xref-bibr" href="#ref-4">4</a>) and solar winds (<a id="xref-ref-5-1" class="xref-bibr" href="#ref-5">5</a>) to the Earth’s atmosphere (<a id="xref-ref-6-1" class="xref-bibr" href="#ref-6">6</a>, <a id="xref-ref-7-1" class="xref-bibr" href="#ref-7">7</a>), ocean currents (<a id="xref-ref-8-1" class="xref-bibr" href="#ref-8">8</a>), and our morning cup of coffee. Of particular recent interest is the interplay of turbulence and active biological matter (<a id="xref-ref-9-1" class="xref-bibr" href="#ref-9">9</a>), owing to its relevance for carbon fixation and nutrient transport in marine ecosystems (<a id="xref-ref-10-1" class="xref-bibr" href="#ref-10">10</a>). Although much has been learned about the statistical and spectral properties of turbulent flows both experimentally (<a id="xref-ref-11-1" class="xref-bibr" href="#ref-11">11</a><a id="xref-ref-12-1" class="xref-down-link" href="#ref-12"><span>⇓</span></a>–<a id="xref-ref-13-1" class="xref-bibr" href="#ref-13">13</a>) and theoretically (<a id="xref-ref-14-1" class="xref-bibr" href="#ref-14">14</a><a id="xref-ref-15-1" class="xref-down-link" href="#ref-15"><span>⇓</span></a><a id="xref-ref-16-1" class="xref-down-link" href="#ref-16"><span>⇓</span></a><a id="xref-ref-17-1" class="xref-down-link" href="#ref-17"><span>⇓</span></a><a id="xref-ref-18-1" class="xref-down-link" href="#ref-18"><span>⇓</span></a><a id="xref-ref-19-1" class="xref-down-link" href="#ref-19"><span>⇓</span></a><a id="xref-ref-20-1" class="xref-down-link" href="#ref-20"><span>⇓</span></a>–<a id="xref-ref-21-1" class="xref-bibr" href="#ref-21">21</a>) over the last 75 years, several fundamental physical and mathematical (<a id="xref-ref-22-1" class="xref-bibr" href="#ref-22">22</a>) questions still await their answer. One of the most important among them, with profound implications for the limits of hydrodynamic mixing, concerns whether 3D turbulent flows can develop an inverse cascade that transports energy from smaller to larger scales (<a id="xref-ref-19-2" class="xref-bibr" href="#ref-19">19</a>, <a id="xref-ref-23-1" class="xref-bibr" href="#ref-23">23</a>, <a id="xref-ref-24-1" class="xref-bibr" href="#ref-24">24</a>).</p><p id="p-8">Kolmogorov’s 1941 theory of turbulence (<a id="xref-ref-14-2" class="xref-bibr" href="#ref-14">14</a>) assumes that turbulent energy transport in 3D proceeds primarily from larger to smaller scales through the decay of vortices. This forward (Richardson) cascade is a consequence of the fact that the 3D inviscid Euler equations conserve energy (<a id="xref-ref-1-2" class="xref-bibr" href="#ref-1">1</a>). In 1967, Kraichnan (<a id="xref-ref-17-2" class="xref-bibr" href="#ref-17">17</a>) realized that the presence of a second conserved quantity, enstrophy, in 2D turbulent flows implies the existence of two dual cascades (<a id="xref-ref-25-1" class="xref-bibr" href="#ref-25">25</a>): a vorticity-induced cascade to smaller scales and an inverse energy cascade to larger scales (<a id="xref-ref-20-2" class="xref-bibr" href="#ref-20">20</a>, <a id="xref-ref-26-1" class="xref-bibr" href="#ref-26">26</a>). Two years later, Moffatt (<a id="xref-ref-27-1" class="xref-bibr" href="#ref-27">27</a>) discovered a new invariant of the 3D Euler equations, which he termed helicity. Could helicity conservation generate an inverse turbulent cascade in 3D? Building on thermodynamic considerations, Kraichnan (<a id="xref-ref-23-2" class="xref-bibr" href="#ref-23">23</a>) argued in 1973 that this should not be possible, but he also conceded that turbulent flows do not necessarily follow equilibrium statistics. Since then, insightful theoretical studies (<a id="xref-ref-19-3" class="xref-bibr" href="#ref-19">19</a>, <a id="xref-ref-24-2" class="xref-bibr" href="#ref-24">24</a>) have elucidated other important conditions for the emergence of helicity-driven inverse cascades in 3D fluids, in particular identifying mirror-symmetry breaking as a key mechanism (<a id="xref-ref-24-3" class="xref-bibr" href="#ref-24">24</a>). However, no natural or artificially engineered fluid system exhibiting this phenomenon has been identified to date.</p><p id="p-9">Here, we predict that fluid flows in active nonequilibrium liquids, such as bacterial suspensions, can spontaneously break mirror symmetry, resulting in a 3D inverse cascade. Broken mirror symmetry plays an important role in nature, exemplified by the parity-violating weak interactions (<a id="xref-ref-28-1" class="xref-bibr" href="#ref-28">28</a>) in the standard model of particle physics, by the helical structure of DNA (<a id="xref-ref-29-1" class="xref-bibr" href="#ref-29">29</a>) or, at the macroscale, by chiral seed pods (<a id="xref-ref-30-1" class="xref-bibr" href="#ref-30">30</a>). Another, fluid-based realization (<a id="xref-ref-31-1" class="xref-bibr" href="#ref-31">31</a>) of a spontaneously broken chiral symmetry was recently observed in confined bacterial suspensions (<a id="xref-ref-32-1" class="xref-bibr" href="#ref-32">32</a>, <a id="xref-ref-33-1" class="xref-bibr" href="#ref-33">33</a>), which form stable vortices of well-defined circulation when the container dimensions match the correlation scale <span class="inline-formula" id="inline-formula-1"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>∼</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn>70</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m of the collective cell motion in bulk (<a id="xref-ref-34-1" class="xref-bibr" href="#ref-34">34</a>, <a id="xref-ref-35-1" class="xref-bibr" href="#ref-35">35</a>). Motivated by these observations, we investigate a generalized Navier–Stokes model (<a id="xref-ref-36-1" class="xref-bibr" href="#ref-36">36</a>, <a id="xref-ref-37-1" class="xref-bibr" href="#ref-37">37</a>) for pattern-forming nonequilibrium fluids that are driven by an active component, which could be swimming bacteria (<a id="xref-ref-34-2" class="xref-bibr" href="#ref-34">34</a>, <a id="xref-ref-35-2" class="xref-bibr" href="#ref-35">35</a>) or ATP-driven microtubules (<a id="xref-ref-38-1" class="xref-bibr" href="#ref-38">38</a>, <a id="xref-ref-39-1" class="xref-bibr" href="#ref-39">39</a>) or artificial microswimmers (<a id="xref-ref-40-1" class="xref-bibr" href="#ref-40">40</a><a id="xref-ref-41-1" class="xref-down-link" href="#ref-41"><span>⇓</span></a>–<a id="xref-ref-42-1" class="xref-bibr" href="#ref-42">42</a>). The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors and captures the experimentally observed bulk vortex dynamics in 3D bacterial suspensions (<a id="xref-ref-34-3" class="xref-bibr" href="#ref-34">34</a>, <a id="xref-ref-35-3" class="xref-bibr" href="#ref-35">35</a>) and in flows driven by isotropic active microtubule networks (<a id="xref-ref-38-2" class="xref-bibr" href="#ref-38">38</a>) (<a id="xref-fig-1-1" class="xref-fig" href="#F1">Fig. S1</a>).</p><div id="F1" class="fig pos-float type-supplementary-material odd"><div class="highwire-figure"><div class="fig-inline-img-wrapper"><div class="fig-inline-img"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F1.large.jpg?width=800&height=600&carousel=1" title="Fit results for the generalized Navier–Stokes model defined in Eq. 1 of the main text compared with recent experimental data for (A–C) bacterial suspensions and (D) microtubule networks. (A) PDFs of the Cartesian in-plane velocity components, normalized by their mean values and standard deviations. The black curve labeled “theory” represents a five-parameter continuum model for the bacterial dynamics described in ref. 35. The blue curve is obtained for the generalized three-parameter Navier–Stokes model of the solvent flow defined in Eq. 1 of the main text, using the fit parameters listed in the description of C. Note that only the Navier–Stokes model correctly captures the tails of the velocity distribution. (B) The equal-time VCFs indicate the characteristic pattern formation scale. The black curve labeled “theory” again represents the continuum model for the bacterial dynamics described in ref. 35. The blue curve is obtained for the Navier–Stokes model for the solvent flow defined in Eq. 1 of the main text, using the fit parameters listed in the description of C. (C) VACFs obtained for three different values of the fit parameters corresponding to three different activity levels of the bacteria: Γ0= 4.77μm2/s, Γ2/Γ0=−1.15×103μm2, Γ4/Γ0= 9.80×104μm4 (magenta line), Γ0= 6.82μm2/s, Γ2/Γ0=−1.15×103μm2, Γ4/Γ0= 9.80×104μm4 (blue lines), Γ0= 1.59×101μm2/s, Γ2/Γ0=−1.15×103μm2, and Γ4/Γ0= 9.80×104μm4 (green line). In terms of the characteristic vortex size Λ, growth time τ, speed U, and bandwidth κ, these parameters correspond to Λ= 41μm, τ= 15s, U= 17.2μm/s, and κ= 73mm−1 (magenta); Λ= 41μm, τ= 10.5s, U= 24.5μm/s, and κ= 73mm−1 (blue); and Λ= 41μm, τ= 4.5s, U= 57.2μm/s, and κ= 73mm−1 (green). (D) Equal-time VCF for an active fluid driven by a microtubule network. The black line is obtained for the Navier–Stokes model for the solvent flow defined in Eq. 1 of the main text, using fit parameters Γ0= 9.05×μm2/s, Γ2/Γ0=−8.61×103μm2, Γ4/Γ0= 7.37×106μm4 corresponding to Λ= 130μm, τ= 125s, U= 6.5μm/s, and κ= 21mm−1. All simulations were performed on a large 3D domain of size L= 32Λ to exclude finite size effects. A–C were reprinted with permission from ref. 35. D was reprinted from ref. 38 by permission from Macmillan Publishers Ltd: Nature, copyright (2012)." class="highwire-fragment fragment-images colorbox-load" rel="gallery-fragment-images-92291554" data-figure-caption="<div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML">Fit results for the generalized Navier–Stokes model defined in Eq. <strong>1</strong> of the main text compared with recent experimental data for (<em>A–C</em>) bacterial suspensions and (<em>D</em>) microtubule networks. (<em>A</em>) PDFs of the Cartesian in-plane velocity components, normalized by their mean values and standard deviations. The black curve labeled “theory” represents a five-parameter continuum model for the bacterial dynamics described in ref. 35. The blue curve is obtained for the generalized three-parameter Navier–Stokes model of the solvent flow defined in Eq. <strong>1</strong> of the main text, using the fit parameters listed in the description of <em>C</em>. Note that only the Navier–Stokes model correctly captures the tails of the velocity distribution. (<em>B</em>) The equal-time VCFs indicate the characteristic pattern formation scale. The black curve labeled “theory” again represents the continuum model for the bacterial dynamics described in ref. 35. The blue curve is obtained for the Navier–Stokes model for the solvent flow defined in Eq. <strong>1</strong> of the main text, using the fit parameters listed in the description of <em>C</em>. (<em>C</em>) VACFs obtained for three different values of the fit parameters corresponding to three different activity levels of the bacteria: <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 4.77</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mrow><mml:mn>1.15</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 9.80</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:math></span> (magenta line), <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 6.82</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mrow><mml:mn>1.15</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 9.80</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:math></span> (blue lines), <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mn> 1.59</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>1</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mrow><mml:mn>1.15</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span>, and <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 9.80</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:math></span> (green line). In terms of the characteristic vortex size <span class="mathjax mml-math"><mml:math><mml:mi mathvariant="normal">Λ</mml:mi></mml:math></span>, growth time <span class="mathjax mml-math"><mml:math><mml:mi>τ</mml:mi></mml:math></span>, speed <span class="mathjax mml-math"><mml:math><mml:mi>U</mml:mi></mml:math></span>, and bandwidth <span class="mathjax mml-math"><mml:math><mml:mi>κ</mml:mi></mml:math></span>, these parameters correspond to <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 41</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>τ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 15</mml:mn></mml:mpadded><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 17.2</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, and <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 73</mml:mn></mml:mpadded><mml:msup><mml:mi>mm</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math></span> (magenta); <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 41</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>τ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 10.5</mml:mn></mml:mpadded><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 24.5</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, and <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 73</mml:mn></mml:mpadded><mml:msup><mml:mi>mm</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math></span> (blue); and <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 41</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>τ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 4.5</mml:mn></mml:mpadded><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 57.2</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, and <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 73</mml:mn></mml:mpadded><mml:msup><mml:mi>mm</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math></span> (green). (<em>D</em>) Equal-time VCF for an active fluid driven by a microtubule network. The black line is obtained for the Navier–Stokes model for the solvent flow defined in Eq. <strong>1</strong> of the main text, using fit parameters <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mn> 9.05</mml:mn><mml:mo>×</mml:mo><mml:mi>μ</mml:mi></mml:mrow><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mrow><mml:mn>8.61</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 7.37</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>6</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:math></span> corresponding to <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 130</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>τ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 125</mml:mn></mml:mpadded><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 6.5</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span>, and <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 21</mml:mn></mml:mpadded><mml:msup><mml:mi>mm</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math></span>. All simulations were performed on a large 3D domain of size <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 32</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span> to exclude finite size effects. <em>A–C</em> were reprinted with permission from ref. 35. <em>D</em> was reprinted from ref. 38 by permission from Macmillan Publishers Ltd: Nature, copyright (2012).</div></div>" data-icon-position="" data-hide-link-title="0"><span class="hw-responsive-img"><img class="highwire-fragment fragment-image lazyload" alt="Fig. S1." src="" data-src="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F1.medium.gif" width="440" height="95"/><noscript><img class="highwire-fragment fragment-image" alt="Fig. S1." src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/content/pnas/114/9/2119/F1.medium.gif" width="440" height="95"/></noscript></span></a></div></div><ul class="highwire-figure-links inline"><li class="download-fig first"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F1.large.jpg?download=true" class="highwire-figure-link highwire-figure-link-download" title="Download Fig. S1." data-icon-position="" data-hide-link-title="0">Download figure</a></li> <li class="new-tab"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F1.large.jpg" class="highwire-figure-link highwire-figure-link-newtab" target="_blank" data-icon-position="" data-hide-link-title="0">Open in new tab</a></li> <li class="download-ppt last"><a href="/web/20180714115531/http://www.pnas.org/highwire/powerpoint/9855" class="highwire-figure-link highwire-figure-link-ppt" data-icon-position="" data-hide-link-title="0">Download powerpoint</a></li> </ul></div><div class="fig-caption" xmlns:xhtml="http://www.w3.org/1999/xhtml"><span class="fig-label">Fig. S1.</span> <p id="p-10" class="first-child">Fit results for the generalized Navier–Stokes model defined in <a id="xref-disp-formula-1-1" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text compared with recent experimental data for (<em>A–C</em>) bacterial suspensions and (<em>D</em>) microtubule networks. (<em>A</em>) PDFs of the Cartesian in-plane velocity components, normalized by their mean values and standard deviations. The black curve labeled “theory” represents a five-parameter continuum model for the bacterial dynamics described in ref. <a id="xref-ref-35-4" class="xref-bibr" href="#ref-35">35</a>. The blue curve is obtained for the generalized three-parameter Navier–Stokes model of the solvent flow defined in <a id="xref-disp-formula-1-2" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text, using the fit parameters listed in the description of <em>C</em>. Note that only the Navier–Stokes model correctly captures the tails of the velocity distribution. (<em>B</em>) The equal-time VCFs indicate the characteristic pattern formation scale. The black curve labeled “theory” again represents the continuum model for the bacterial dynamics described in ref. <a id="xref-ref-35-5" class="xref-bibr" href="#ref-35">35</a>. The blue curve is obtained for the Navier–Stokes model for the solvent flow defined in <a id="xref-disp-formula-1-3" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text, using the fit parameters listed in the description of <em>C</em>. (<em>C</em>) VACFs obtained for three different values of the fit parameters corresponding to three different activity levels of the bacteria: <span class="inline-formula" id="inline-formula-2"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 4.77</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-3"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mrow><mml:mn>1.15</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-4"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 9.80</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:math></span></span> (magenta line), <span class="inline-formula" id="inline-formula-5"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 6.82</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-6"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mrow><mml:mn>1.15</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-7"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 9.80</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:math></span></span> (blue lines), <span class="inline-formula" id="inline-formula-8"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mn> 1.59</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>1</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-9"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mrow><mml:mn>1.15</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, and <span class="inline-formula" id="inline-formula-10"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 9.80</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>4</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:math></span></span> (green line). In terms of the characteristic vortex size <span class="inline-formula" id="inline-formula-11"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Λ</mml:mi></mml:math></span></span>, growth time <span class="inline-formula" id="inline-formula-12"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>τ</mml:mi></mml:math></span></span>, speed <span class="inline-formula" id="inline-formula-13"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math></span></span>, and bandwidth <span class="inline-formula" id="inline-formula-14"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>κ</mml:mi></mml:math></span></span>, these parameters correspond to <span class="inline-formula" id="inline-formula-15"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 41</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-16"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>τ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 15</mml:mn></mml:mpadded><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-17"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 17.2</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, and <span class="inline-formula" id="inline-formula-18"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 73</mml:mn></mml:mpadded><mml:msup><mml:mi>mm</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math></span></span> (magenta); <span class="inline-formula" id="inline-formula-19"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 41</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-20"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>τ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 10.5</mml:mn></mml:mpadded><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-21"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 24.5</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, and <span class="inline-formula" id="inline-formula-22"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 73</mml:mn></mml:mpadded><mml:msup><mml:mi>mm</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math></span></span> (blue); and <span class="inline-formula" id="inline-formula-23"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 41</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-24"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>τ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 4.5</mml:mn></mml:mpadded><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-25"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 57.2</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, and <span class="inline-formula" id="inline-formula-26"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 73</mml:mn></mml:mpadded><mml:msup><mml:mi>mm</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math></span></span> (green). (<em>D</em>) Equal-time VCF for an active fluid driven by a microtubule network. The black line is obtained for the Navier–Stokes model for the solvent flow defined in <a id="xref-disp-formula-1-4" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text, using fit parameters <span class="inline-formula" id="inline-formula-27"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mn> 9.05</mml:mn><mml:mo>×</mml:mo><mml:mi>μ</mml:mi></mml:mrow><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-28"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mrow><mml:mn>8.61</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-29"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 7.37</mml:mn><mml:mo>×</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mn>10</mml:mn><mml:mn>6</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mi>μ</mml:mi><mml:msup><mml:mi mathvariant="normal">m</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:math></span></span> corresponding to <span class="inline-formula" id="inline-formula-30"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 130</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-31"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>τ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 125</mml:mn></mml:mpadded><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-32"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 6.5</mml:mn></mml:mpadded><mml:mi>μ</mml:mi><mml:mi mathvariant="normal">m</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi mathvariant="normal">s</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, and <span class="inline-formula" id="inline-formula-33"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 21</mml:mn></mml:mpadded><mml:msup><mml:mi>mm</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:math></span></span>. All simulations were performed on a large 3D domain of size <span class="inline-formula" id="inline-formula-34"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 32</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> to exclude finite size effects. <em>A–C</em> were reprinted with permission from ref. <a id="xref-ref-35-6" class="xref-bibr" href="#ref-35">35</a>. <em>D</em> was reprinted from ref. <a id="xref-ref-38-3" class="xref-bibr" href="#ref-38">38</a> by permission from Macmillan Publishers Ltd: Nature, copyright (2012).</p><div class="sb-div caption-clear"></div></div></div><p id="p-11">To demonstrate the existence of a helicity-driven inverse cascade in 3D active bulk fluids, we first verify analytically the existence of exact parity-violating Beltrami-flow (<a id="xref-ref-43-1" class="xref-bibr" href="#ref-43">43</a><a id="xref-ref-44-1" class="xref-down-link" href="#ref-44"><span>⇓</span></a>–<a id="xref-ref-45-1" class="xref-bibr" href="#ref-45">45</a>) solutions. We then confirm numerically that active bulk flows starting from random initial conditions approach attractors that spontaneously break mirror symmetry and are statistically close to Beltrami-vector fields. Finally, we demonstrate that the broken mirror symmetry leads to an inverse cascade with triad interactions as predicted by Waleffe (<a id="xref-ref-19-4" class="xref-bibr" href="#ref-19">19</a>) about 25 years ago.</p><div class="section results" id="sec-1"><h2 class="">Results</h2><div id="sec-2" class="subsection"><h3>Theory.</h3><p id="p-12">We consider pattern-forming nonequilibrium fluids consisting of a passive solvent component, such as water, and a stress-generating active component, which could be bacteria (<a id="xref-ref-34-4" class="xref-bibr" href="#ref-34">34</a>), ATP-driven microtubules (<a id="xref-ref-38-4" class="xref-bibr" href="#ref-38">38</a>), or Janus particles (<a id="xref-ref-46-1" class="xref-bibr" href="#ref-46">46</a>, <a id="xref-ref-47-1" class="xref-bibr" href="#ref-47">47</a>). In contrast to earlier studies, which analyzed the velocity field of the active matter component (<a id="xref-ref-35-7" class="xref-bibr" href="#ref-35">35</a>, <a id="xref-ref-48-1" class="xref-bibr" href="#ref-48">48</a>, <a id="xref-ref-49-1" class="xref-bibr" href="#ref-49">49</a>), we focus here on the incompressible solvent velocity field <span class="inline-formula" id="inline-formula-35"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> described by<span class="disp-formula" id="disp-formula-1"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mo>∇</mml:mo><mml:mo>⋅</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[1a]</span></span><span class="disp-formula" id="disp-formula-2"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>⋅</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mi>p</mml:mi></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>⋅</mml:mo><mml:mi>𝝈</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[1b]</span></span>where <span class="inline-formula" id="inline-formula-36"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> is the local pressure. The effective stress tensor <span class="inline-formula" id="inline-formula-37"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>σ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> comprises passive contributions from the intrinsic solvent fluid viscosity and active contributions representing the stresses exerted by the microswimmers on the fluid (<a id="xref-ref-50-1" class="xref-bibr" href="#ref-50">50</a><a id="xref-ref-51-1" class="xref-down-link" href="#ref-51"><span>⇓</span></a><a id="xref-ref-52-1" class="xref-down-link" href="#ref-52"><span>⇓</span></a>–<a id="xref-ref-53-1" class="xref-bibr" href="#ref-53">53</a>). Experiments (<a id="xref-ref-32-2" class="xref-bibr" href="#ref-32">32</a>, <a id="xref-ref-34-5" class="xref-bibr" href="#ref-34">34</a>, <a id="xref-ref-35-8" class="xref-bibr" href="#ref-35">35</a>, <a id="xref-ref-38-5" class="xref-bibr" href="#ref-38">38</a>, <a id="xref-ref-54-1" class="xref-bibr" href="#ref-54">54</a>, <a id="xref-ref-55-1" class="xref-bibr" href="#ref-55">55</a>) show that active stresses typically lead to vortex scale selection in the ambient solvent fluid. This mesoscale pattern formation stands in contrast to the scale-free vortex structures in externally driven classical turbulence and can be described phenomenologically through the stress tensor (<a id="xref-ref-36-2" class="xref-bibr" href="#ref-36">36</a>, <a id="xref-ref-37-2" class="xref-bibr" href="#ref-37">37</a>)<span class="disp-formula" id="disp-formula-3"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi>𝝈</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msup><mml:mo>∇</mml:mo><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:mrow><mml:mo>∇</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>⊤</mml:mo></mml:msup></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[1c]</span></span>where the higher-order derivatives <span class="inline-formula" id="inline-formula-38"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msup><mml:mo>∇</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:mpadded><mml:mo>≡</mml:mo><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mi>n</mml:mi></mml:msup></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-39"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>n</mml:mi></mml:mpadded><mml:mo>≥</mml:mo><mml:mn> 2</mml:mn></mml:mrow></mml:math></span></span> account for non-Newtonian effects (<a id="xref-ref-56-1" class="xref-bibr" href="#ref-56">56</a>) (<a id="xref-sec-16-1" class="xref-sec" href="#sec-16"><em>Model Justification</em></a>). Such higher-order stresses arise naturally from diagrammatic expansions (<a id="xref-ref-57-1" class="xref-bibr" href="#ref-57">57</a>). Similar 1D and 2D models have been studied in the context of soft-mode turbulence and seismic waves (<a id="xref-ref-58-1" class="xref-bibr" href="#ref-58">58</a><a id="xref-ref-59-1" class="xref-down-link" href="#ref-59"><span>⇓</span></a>–<a id="xref-ref-60-1" class="xref-bibr" href="#ref-60">60</a>).</p><p id="p-13">The parameters <span class="inline-formula" id="inline-formula-40"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></span></span> encode microscopic interactions, thermal and athermal fluctuations, and other nonequilibrium processes. For <span class="inline-formula" id="inline-formula-41"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span>, <a id="xref-disp-formula-1-5" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> reduce to the standard Navier–Stokes equations with kinematic viscosity <span class="inline-formula" id="inline-formula-42"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>></mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span>. For <span class="inline-formula" id="inline-formula-43"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>></mml:mo><mml:mn> 0</mml:mn></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mpadded><mml:mo>></mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-44"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mpadded><mml:mo><</mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span>, <a id="xref-disp-formula-3-1" class="xref-disp-formula" href="#disp-formula-3">Eq. <strong>1c</strong></a> defines the simplest ansatz for an active stress tensor that is isotropic, selects flow patterns of a characteristic scale (<a id="xref-fig-2-1" class="xref-fig" href="#F2">Fig. 1</a>), and yields a stable theory at small and large wavenumbers (<a id="xref-ref-36-3" class="xref-bibr" href="#ref-36">36</a>, <a id="xref-ref-37-3" class="xref-bibr" href="#ref-37">37</a>). The active-to-passive phase transition corresponds to a sign change from <span class="inline-formula" id="inline-formula-45"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo><</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math></span></span> to <span class="inline-formula" id="inline-formula-46"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>></mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math></span></span>, which can be realized experimentally through ATP or nutrient depletion. The nonnegativity of <span class="inline-formula" id="inline-formula-47"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math></span></span> and <span class="inline-formula" id="inline-formula-48"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math></span></span> follows from stability considerations. <span class="inline-formula" id="inline-formula-49"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math></span></span> describes the damping of long-wavelength perturbations on scales much larger than the correlation length of the coherent flow structures, whereas <span class="inline-formula" id="inline-formula-50"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math></span></span> and <span class="inline-formula" id="inline-formula-51"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math></span></span> account for the growth and damping of modes at intermediate and small scales (<a id="xref-fig-2-2" class="xref-fig" href="#F2">Fig. 1<em>A</em></a>). The resulting nonequilibrium flow structures can be characterized in terms of the typical vortex size <span class="inline-formula" id="inline-formula-52"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mi>π</mml:mi><mml:msqrt><mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:msqrt></mml:mrow></mml:mrow></mml:math></span></span>, growth time scale (<a id="xref-ref-37-4" class="xref-bibr" href="#ref-37">37</a>)<span class="disp-formula" id="disp-formula-4"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi>τ</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mfrac><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:mn>2</mml:mn><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:mfrac><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:mfrac><mml:msubsup><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn><mml:mn>2</mml:mn></mml:msubsup><mml:mrow><mml:mn>4</mml:mn><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:mfrac></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mo>]</mml:mo></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span></span>circulation speed <span class="inline-formula" id="inline-formula-53"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>U</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>π</mml:mi><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, and spectral bandwidth (<a id="xref-fig-2-3" class="xref-fig" href="#F2">Fig. 1<em>A</em></a>)<span class="disp-formula" id="disp-formula-5"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi>κ</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mo maxsize="210%" minsize="210%">(</mml:mo><mml:mrow><mml:mfrac><mml:mrow><mml:mo>−</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mfrac><mml:mo>−</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:msqrt><mml:mfrac><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mfrac></mml:msqrt></mml:mrow></mml:mrow><mml:mo maxsize="210%" minsize="210%">)</mml:mo></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span></span></p><div id="F2" class="fig pos-float type-featured odd"><div class="highwire-figure"><div class="fig-inline-img-wrapper"><div class="fig-inline-img"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F2.large.jpg?width=800&height=600&carousel=1" title="Exact Beltrami-flow solutions and spontaneous mirror-symmetry breaking in 3D simulations. (A) Linear stability analysis of Eq. 1 distinguishes three different regions in Fourier space: Domains I and III are dissipative, whereas domain II represents active modes. The radius of the active shell II corresponds approximately to the inverse of characteristic pattern formation scale Λ. The bandwidth κ measures the ability of the active fluid component to concentrate power input in Fourier space. (B) Two examples of exact stationary bulk solutions of Eq. 1 realizing Beltrami vector fields of opposite helicity, obtained from Eq. 5 by combining modes of the same helicity located on one of the marginally stable gray surfaces in A. (C) Simulations with random initial condition spontaneously select one of two helicity branches. The histogram represents an average over 150 runs with random initial conditions, sampled over the statistically stationary state starting at time t=20τ (dashed line). Simulation parameters: Λ=75μm, U=72μm/s, κI=0.9/Λ, L=8Λ (see also Fig. 2 and Supporting Information for larger simulations)." class="highwire-fragment fragment-images colorbox-load" rel="gallery-fragment-images-92291554" data-figure-caption="<div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML">Exact Beltrami-flow solutions and spontaneous mirror-symmetry breaking in 3D simulations. (<em>A</em>) Linear stability analysis of Eq. <strong>1</strong> distinguishes three different regions in Fourier space: Domains I and III are dissipative, whereas domain II represents active modes. The radius of the active shell II corresponds approximately to the inverse of characteristic pattern formation scale <span class="mathjax mml-math"><mml:math><mml:mi mathvariant="normal">Λ</mml:mi></mml:math></span>. The bandwidth <span class="mathjax mml-math"><mml:math><mml:mi>κ</mml:mi></mml:math></span> measures the ability of the active fluid component to concentrate power input in Fourier space. (<em>B</em>) Two examples of exact stationary bulk solutions of Eq. <strong>1</strong> realizing Beltrami vector fields of opposite helicity, obtained from Eq. <strong>5</strong> by combining modes of the same helicity located on one of the marginally stable gray surfaces in <em>A</em>. (<em>C</em>) Simulations with random initial condition spontaneously select one of two helicity branches. The histogram represents an average over <span class="mathjax mml-math"><mml:math><mml:mn>150</mml:mn></mml:math></span> runs with random initial conditions, sampled over the statistically stationary state starting at time <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi>t</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mn>20</mml:mn><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span> (dashed line). Simulation parameters: <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn>75</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span>m, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi>U</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn>72</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span>m/s, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mn>0.9</mml:mn><mml:mo>/</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span>, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mn>8</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span> (see also Fig. 2 and <em>Supporting Information</em> for larger simulations).</div></div>" data-icon-position="" data-hide-link-title="0"><span class="hw-responsive-img"><img class="highwire-fragment fragment-image lazyload" alt="Fig. 1." src="" data-src="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F2.medium.gif" width="440" height="117"/><noscript><img class="highwire-fragment fragment-image" alt="Fig. 1." src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/content/pnas/114/9/2119/F2.medium.gif" width="440" height="117"/></noscript></span></a></div></div><ul class="highwire-figure-links inline"><li class="download-fig first"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F2.large.jpg?download=true" class="highwire-figure-link highwire-figure-link-download" title="Download Fig. 1." data-icon-position="" data-hide-link-title="0">Download figure</a></li> <li class="new-tab"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F2.large.jpg" class="highwire-figure-link highwire-figure-link-newtab" target="_blank" data-icon-position="" data-hide-link-title="0">Open in new tab</a></li> <li class="download-ppt last"><a href="/web/20180714115531/http://www.pnas.org/highwire/powerpoint/9858" class="highwire-figure-link highwire-figure-link-ppt" data-icon-position="" data-hide-link-title="0">Download powerpoint</a></li> </ul></div><div class="fig-caption"><span class="fig-label">Fig. 1.</span> <p id="p-14" class="first-child">Exact Beltrami-flow solutions and spontaneous mirror-symmetry breaking in 3D simulations. (<em>A</em>) Linear stability analysis of <a id="xref-disp-formula-1-6" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> distinguishes three different regions in Fourier space: Domains I and III are dissipative, whereas domain II represents active modes. The radius of the active shell II corresponds approximately to the inverse of characteristic pattern formation scale <span class="inline-formula" id="inline-formula-54"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Λ</mml:mi></mml:math></span></span>. The bandwidth <span class="inline-formula" id="inline-formula-55"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>κ</mml:mi></mml:math></span></span> measures the ability of the active fluid component to concentrate power input in Fourier space. (<em>B</em>) Two examples of exact stationary bulk solutions of <a id="xref-disp-formula-1-7" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> realizing Beltrami vector fields of opposite helicity, obtained from Eq. <a id="xref-disp-formula-9-1" class="xref-disp-formula" href="#disp-formula-9"><strong>5</strong></a> by combining modes of the same helicity located on one of the marginally stable gray surfaces in <em>A</em>. (<em>C</em>) Simulations with random initial condition spontaneously select one of two helicity branches. The histogram represents an average over <span class="inline-formula" id="inline-formula-56"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>150</mml:mn></mml:math></span></span> runs with random initial conditions, sampled over the statistically stationary state starting at time <span class="inline-formula" id="inline-formula-57"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mn>20</mml:mn><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> (dashed line). Simulation parameters: <span class="inline-formula" id="inline-formula-58"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn>75</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m, <span class="inline-formula" id="inline-formula-59"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>U</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn>72</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m/s, <span class="inline-formula" id="inline-formula-60"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mn>0.9</mml:mn><mml:mo>/</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-61"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mn>8</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> (see also <a id="xref-fig-3-1" class="xref-fig" href="#F3">Fig. 2</a> and <a id="xref-sec-13-1" class="xref-sec" href="#sec-13"><em>Supporting Information</em></a> for larger simulations).</p><div class="sb-div caption-clear"></div></div></div><p id="p-15">Specifically, we find <span class="inline-formula" id="inline-formula-62"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 41</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m, <span class="inline-formula" id="inline-formula-63"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 57</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m/s, and <span class="inline-formula" id="inline-formula-64"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn>73</mml:mn></mml:mrow></mml:math></span></span> mm<sup>−1</sup> for flows measured in <em>Bacillus subtilis</em> suspensions (<a id="xref-ref-34-6" class="xref-bibr" href="#ref-34">34</a>, <a id="xref-ref-35-9" class="xref-bibr" href="#ref-35">35</a>) and <span class="inline-formula" id="inline-formula-65"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 130</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m, <span class="inline-formula" id="inline-formula-66"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 6.5</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m/s, and <span class="inline-formula" id="inline-formula-67"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 21</mml:mn></mml:mrow></mml:math></span></span> mm<sup>−1</sup> for ATP-driven microtubule–network suspensions (<a id="xref-ref-38-6" class="xref-bibr" href="#ref-38">38</a>) (<a id="xref-sec-13-2" class="xref-sec" href="#sec-13"><em>Comparison with Experiments</em></a>). We emphasize, however, that truncated polynomial stress tensors of the form <a id="xref-disp-formula-3-2" class="xref-disp-formula" href="#disp-formula-3"><strong>1c</strong></a> can provide useful long-wavelength approximations for a broad class of pattern-forming liquids, including magnetically (<a id="xref-ref-61-1" class="xref-bibr" href="#ref-61">61</a>), electrically (<a id="xref-ref-62-1" class="xref-bibr" href="#ref-62">62</a>), thermally (<a id="xref-ref-46-2" class="xref-bibr" href="#ref-46">46</a>, <a id="xref-ref-63-1" class="xref-bibr" href="#ref-63">63</a>, <a id="xref-ref-64-1" class="xref-bibr" href="#ref-64">64</a>), or chemically (<a id="xref-ref-47-2" class="xref-bibr" href="#ref-47">47</a>, <a id="xref-ref-65-1" class="xref-bibr" href="#ref-65">65</a>) driven flows.</p></div><div id="sec-3" class="subsection"><h3>Exact Beltrami-Flow Solutions and Broken-Mirror Symmetry.</h3><p id="p-16">The higher-order Navier–Stokes equations defined by <a id="xref-disp-formula-1-8" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> are invariant under the parity transformation <span class="inline-formula" id="inline-formula-68"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝒙</mml:mi><mml:mo>→</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>𝒙</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>. Their solutions, however, can spontaneously break this mirror symmetry. To demonstrate this explicitly, we construct a family of exact nontrivial stationary solutions in free space by decomposing the Fourier series <span class="inline-formula" id="inline-formula-69"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> of the divergence-free velocity field <span class="inline-formula" id="inline-formula-70"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> into helical modes (<a id="xref-ref-19-5" class="xref-bibr" href="#ref-19">19</a>, <a id="xref-ref-24-4" class="xref-bibr" href="#ref-24">24</a>)<span class="disp-formula" id="disp-formula-6"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:msup><mml:mi>u</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msup><mml:mi>𝒉</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msup><mml:mi>u</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msup><mml:mi>𝒉</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[2]</span></span>where <span class="inline-formula" id="inline-formula-71"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>𝒉</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:math></span></span> are the eigenvectors of the curl operator, <span class="inline-formula" id="inline-formula-72"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mi>𝒌</mml:mi></mml:mrow><mml:mo>∧</mml:mo><mml:msup><mml:mi>𝒉</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>±</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:msup><mml:mi>𝒉</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> with <span class="inline-formula" id="inline-formula-73"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>k</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow></mml:mrow></mml:math></span></span>. Projecting <a id="xref-disp-formula-2-1" class="xref-disp-formula" href="#disp-formula-2">Eq. <strong>1b</strong></a> onto helicity eigenstates (<a id="xref-ref-19-6" class="xref-bibr" href="#ref-19">19</a>) yields the evolution equation for the mode amplitudes <span class="inline-formula" id="inline-formula-74"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>u</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:math></span></span>,<span class="disp-formula" id="disp-formula-7"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:msup><mml:mi>u</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒑</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒒</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>:</mml:mo><mml:mrow><mml:mrow><mml:mi>𝒌</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒑</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒒</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:msup><mml:mi>f</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒑</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒒</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[3]</span></span>where <span class="inline-formula" id="inline-formula-75"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>6</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> is the active stress contribution, and the nonlinear advection is represented by all triadic interactions (<a id="xref-ref-19-7" class="xref-bibr" href="#ref-19">19</a>, <a id="xref-ref-24-5" class="xref-bibr" href="#ref-24">24</a>)<span class="disp-formula" id="disp-formula-8"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msup><mml:mi>f</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒑</mml:mi><mml:mo>,</mml:mo><mml:mtext>𝒒</mml:mtext><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mn>4</mml:mn></mml:mfrac><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>s</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mi>p</mml:mi></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>q</mml:mi></mml:msub><mml:mi>q</mml:mi></mml:mrow></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mstyle displaystyle="true"><mml:mover accent="true"><mml:mi>𝒉</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:mstyle></mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:msup><mml:mo>∧</mml:mo><mml:msup><mml:mrow><mml:mstyle displaystyle="true"><mml:mover accent="true"><mml:mi>𝒉</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:mstyle></mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:msup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>⋅</mml:mo><mml:msup><mml:mrow><mml:mstyle displaystyle="true"><mml:mover accent="true"><mml:mi>𝒉</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:mstyle></mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>k</mml:mi></mml:msub></mml:msup></mml:mrow><mml:mo>]</mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mstyle displaystyle="true"><mml:mover accent="true"><mml:mi>u</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:mstyle></mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:msup><mml:msup><mml:mrow><mml:mstyle displaystyle="true"><mml:mover accent="true"><mml:mi>u</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:mstyle></mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span><span class="disp-formula-label">[4]</span></span>between helical <strong><em>k</em></strong> modes and <span class="inline-formula" id="inline-formula-76"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝒑</mml:mi><mml:mo>,</mml:mo><mml:mtext>𝒒</mml:mtext></mml:mrow></mml:math></span></span> modes, where <span class="inline-formula" id="inline-formula-77"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>k</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>s</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>s</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:mrow><mml:mo>∈</mml:mo><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mo>±</mml:mo><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> are the corresponding helicity indexes [overbars denote complex conjugates of <span class="inline-formula" id="inline-formula-78"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msup><mml:mi>𝒉</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:msup></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:msup><mml:mi>𝒉</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒑</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, etc. (<a id="xref-ref-19-8" class="xref-bibr" href="#ref-19">19</a>)]. There are 2 degrees of freedom per wavevector and hence eight types of interactions for every triple <span class="inline-formula" id="inline-formula-79"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒑</mml:mi><mml:mo>,</mml:mo><mml:mtext>𝒒</mml:mtext><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></span></span>. As evident from <a id="xref-disp-formula-8-1" class="xref-disp-formula" href="#disp-formula-8">Eq. <strong>4</strong></a>, arbitrary superpositions of modes with identical wavenumber <span class="inline-formula" id="inline-formula-80"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>p</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mpadded width="+1.7pt"><mml:mi>q</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:msub><mml:mi>k</mml:mi><mml:mo>∗</mml:mo></mml:msub></mml:mrow></mml:math></span></span> and same helicity index annihilate the advection term, because <span class="inline-formula" id="inline-formula-81"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mi>p</mml:mi></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>q</mml:mi></mml:msub><mml:mpadded width="+1.7pt"><mml:mi>q</mml:mi></mml:mpadded></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span> in this case. Therefore, by choosing <span class="inline-formula" id="inline-formula-82"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>k</mml:mi><mml:mo>∗</mml:mo></mml:msub></mml:math></span></span> to be a root of the polynomial <span class="inline-formula" id="inline-formula-83"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span>, corresponding to the gray surfaces in <a id="xref-fig-2-4" class="xref-fig" href="#F2">Fig. 1<em>A</em></a>, we obtain exact stationary solutions<span class="disp-formula" id="disp-formula-9"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mi>𝒗</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mi>𝒌</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:msub><mml:mi>k</mml:mi><mml:mo>∗</mml:mo></mml:msub></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:msup><mml:mi>u</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msup><mml:mi>𝒉</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mi>𝒌</mml:mi></mml:mrow><mml:mo>⋅</mml:mo><mml:mi>𝒙</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[5]</span></span>where <span class="inline-formula" id="inline-formula-84"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msup><mml:mi>u</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>𝒌</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mover accent="true"><mml:mi>u</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:mrow><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> ensures real-valued flow fields. In particular, these solutions (<a id="xref-disp-formula-9-2" class="xref-disp-formula" href="#disp-formula-9">Eq. <strong>5</strong></a>) correspond to Beltrami flows (<a id="xref-ref-43-2" class="xref-bibr" href="#ref-43">43</a><a id="xref-ref-44-2" class="xref-down-link" href="#ref-44"><span>⇓</span></a>–<a id="xref-ref-45-2" class="xref-bibr" href="#ref-45">45</a>), obeying <span class="inline-formula" id="inline-formula-85"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo>∇</mml:mo><mml:mo>∧</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mi>𝒗</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>±</mml:mo><mml:mrow><mml:msub><mml:mi>k</mml:mi><mml:mo>∗</mml:mo></mml:msub><mml:msup><mml:mi>𝒗</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>. Applying the parity operator to any right-handed solution <span class="inline-formula" id="inline-formula-86"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>𝒗</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> generates the corresponding left-handed solution <span class="inline-formula" id="inline-formula-87"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>𝒗</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> and vice versa (<a id="xref-fig-2-5" class="xref-fig" href="#F2">Fig. 1<em>B</em></a>).</p><p id="p-17">Although the exact solutions <span class="inline-formula" id="inline-formula-88"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>𝒗</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> describe stationary Beltrami fields (<a id="xref-ref-43-3" class="xref-bibr" href="#ref-43">43</a><a id="xref-ref-44-3" class="xref-down-link" href="#ref-44"><span>⇓</span></a>–<a id="xref-ref-45-3" class="xref-bibr" href="#ref-45">45</a>) of fixed total helicity <span class="inline-formula" id="inline-formula-89"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msup><mml:mi mathvariant="script">H</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mo largeop="true" symmetric="true">∫</mml:mo><mml:mrow><mml:mrow><mml:msup><mml:mi>d</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mpadded width="+1.7pt"><mml:mi>x</mml:mi></mml:mpadded><mml:msup><mml:mi>𝒗</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:mrow><mml:mo>⋅</mml:mo><mml:msup><mml:mi>𝝎</mml:mi><mml:mo>±</mml:mo></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, where <span class="inline-formula" id="inline-formula-90"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝝎</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>∧</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> is the vorticity, it is not yet clear whether parity violation is a generic feature of arbitrary time-dependent solutions of <a id="xref-disp-formula-1-9" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a>. As we demonstrate next, simulations with random initial conditions do indeed converge to statistically stationary flow states that spontaneously break mirror symmetry and are close to Beltrami flows.</p></div><div id="sec-4" class="subsection"><h3>Spontaneous Mirror-Symmetry Breaking in Time-Dependent Solutions.</h3><p id="p-18">We simulate the full nonlinear <a id="xref-disp-formula-1-10" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> on a periodic cubic domain (size <span class="inline-formula" id="inline-formula-91"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math></span></span>) using a spectral algorithm (<a id="xref-sec-20-1" class="xref-sec" href="#sec-20"><em>Numerical Methods</em></a>). Simulations are performed for typical bacterial parameters <span class="inline-formula" id="inline-formula-92"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></span></span>, keeping the vortex scale <span class="inline-formula" id="inline-formula-93"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 75</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m and circulation speed <span class="inline-formula" id="inline-formula-94"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 72</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m/s fixed (<a id="xref-ref-34-7" class="xref-bibr" href="#ref-34">34</a>, <a id="xref-ref-35-10" class="xref-bibr" href="#ref-35">35</a>) and comparing three spectral bandwidths <span class="inline-formula" id="inline-formula-95"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 0.63</mml:mn><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mn>8.4</mml:mn></mml:mrow></mml:math></span></span> mm<sup>−1</sup>, <span class="inline-formula" id="inline-formula-96"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 0.90</mml:mn><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mpadded width="+1.7pt"><mml:mn> 12</mml:mn></mml:mpadded></mml:mrow></mml:math></span></span> mm<sup>−1</sup>, and <span class="inline-formula" id="inline-formula-97"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 2.11</mml:mn><mml:mo>/</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mn>28.1</mml:mn></mml:mrow></mml:math></span></span> mm<sup>−1</sup>, corresponding to active fluids with a small (S), an intermediate (I), and a wide (W) range of energy injection scales. A small bandwidth means that the active stresses inject energy into a narrow shell in Fourier space, whereas a wide bandwidth means energy is pumped into a wide range of Fourier modes (<a id="xref-fig-2-6" class="xref-fig" href="#F2">Fig. 1<em>A</em></a>). All simulations are initiated with weak incompressible random flow fields. For all three values of <span class="inline-formula" id="inline-formula-98"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>κ</mml:mi></mml:math></span></span>, we observe spontaneous mirror-symmetry breaking indicated by the time evolution of the mean helicity <span class="inline-formula" id="inline-formula-99"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>H</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:msup><mml:mi>L</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo largeop="true" symmetric="true">∫</mml:mo><mml:mrow><mml:msup><mml:mi>d</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mpadded width="+1.7pt"><mml:mi>x</mml:mi></mml:mpadded><mml:mi>h</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, where <span class="inline-formula" id="inline-formula-100"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>h</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>⋅</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> is the local helicity. During the initial relaxation phase, the flow dynamics are attracted to states of well-defined total helicity and remain in such a statistically stationary configuration for the rest of the simulation. As an illustration, <a id="xref-fig-2-7" class="xref-fig" href="#F2">Fig. 1<em>C</em></a> shows results from 150 runs for <span class="inline-formula" id="inline-formula-101"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-102"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 8</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, with flow settling into a positive (negative) mean helicity state 72 (78) times. This spontaneous mirror-symmetry breaking is robust against variations of the bandwidth and simulation box size, as evident from the local vorticity and helicity fields for <span class="inline-formula" id="inline-formula-103"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>κ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-104"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mn>32</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> in <a id="xref-fig-3-2" class="xref-fig" href="#F3">Fig. 2 <em>A</em> and <em>B</em></a>.</p><div id="F3" class="fig pos-float type-figure odd"><div class="highwire-figure"><div class="fig-inline-img-wrapper"><div class="fig-inline-img"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F3.large.jpg?width=800&height=600&carousel=1" title="Active fluids spontaneously break mirror symmetry by realizing Beltrami-type flows. (A) Snapshot of a representative vorticity component field ωx (Movie S1) for an active fluid with small bandwidth κS=0.63/Λ, as defined in Fig. 1A. (B) The corresponding helicity field signals parity-symmetry breaking, leading to a positive-helicity flow in this example. (C) Histograms of the angles between velocity v and vorticity 𝝎 quantify the alignment between the two fields for different active bandwidths κS" class="highwire-fragment fragment-images colorbox-load" rel="gallery-fragment-images-92291554" data-figure-caption="<div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML">Active fluids spontaneously break mirror symmetry by realizing Beltrami-type flows. (<em>A</em>) Snapshot of a representative vorticity component field <span class="mathjax mml-math"><mml:math><mml:msub><mml:mi>ω</mml:mi><mml:mi>x</mml:mi></mml:msub></mml:math></span> (Movie S1) for an active fluid with small bandwidth <span class="mathjax mml-math"><mml:math><mml:mrow><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mn>0.63</mml:mn><mml:mo>/</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span>, as defined in Fig. 1<em>A</em>. (<em>B</em>) The corresponding helicity field signals parity-symmetry breaking, leading to a positive-helicity flow in this example. (<em>C</em>) Histograms of the angles between velocity <strong><em>v</em></strong> and vorticity <span class="mathjax mml-math"><mml:math><mml:mi>𝝎</mml:mi></mml:math></span> quantify the alignment between the two fields for different active bandwidths <span class="mathjax mml-math"><mml:math><mml:mrow><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub><mml:mo><</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub><mml:mo><</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:mrow></mml:math></span>: The smaller the bandwidth is, the stronger the alignment between <strong><em>v</em></strong> and <span class="mathjax mml-math"><mml:math><mml:mi>𝝎</mml:mi></mml:math></span>. (<em>D</em>) Numerically estimated distributions of the Beltrami measure, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>β</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>⋅</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>λ</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒗</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span>, shown on a log scale. An ideal Beltrami flow with <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mi>λ</mml:mi><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:math></span> produces a delta peak centered at <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>β</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 1</mml:mn></mml:mrow></mml:math></span>. Identifying <span class="mathjax mml-math"><mml:math><mml:mi>λ</mml:mi></mml:math></span> with the midpoint of the active shell (<span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi>λ</mml:mi><mml:mo>≈</mml:mo><mml:mrow><mml:mi>π</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span>), which approximately corresponds to the most unstable wavenumber and the characteristic pattern formation scale, we observe that a smaller active bandwidth leads to a sharper peak and hence more Beltrami-like flows. Data were taken at a single representative time point long after the characteristic relaxation time. Simulation parameters: <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 75</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span>m, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 72</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span>m/s, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mn>32</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span>.</div></div>" data-icon-position="" data-hide-link-title="0"><span class="hw-responsive-img"><img class="highwire-fragment fragment-image lazyload" alt="Fig. 2." src="" data-src="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F3.medium.gif" width="440" height="106"/><noscript><img class="highwire-fragment fragment-image" alt="Fig. 2." src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/content/pnas/114/9/2119/F3.medium.gif" width="440" height="106"/></noscript></span></a></div></div><ul class="highwire-figure-links inline"><li class="download-fig first"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F3.large.jpg?download=true" class="highwire-figure-link highwire-figure-link-download" title="Download Fig. 2." data-icon-position="" data-hide-link-title="0">Download figure</a></li> <li class="new-tab"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F3.large.jpg" class="highwire-figure-link highwire-figure-link-newtab" target="_blank" data-icon-position="" data-hide-link-title="0">Open in new tab</a></li> <li class="download-ppt last"><a href="/web/20180714115531/http://www.pnas.org/highwire/powerpoint/790814" class="highwire-figure-link highwire-figure-link-ppt" data-icon-position="" data-hide-link-title="0">Download powerpoint</a></li> </ul></div><div class="fig-caption"><span class="fig-label">Fig. 2.</span> <p id="p-19" class="first-child">Active fluids spontaneously break mirror symmetry by realizing Beltrami-type flows. (<em>A</em>) Snapshot of a representative vorticity component field <span class="inline-formula" id="inline-formula-105"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ω</mml:mi><mml:mi>x</mml:mi></mml:msub></mml:math></span></span> (<a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614721114/-/DCSupplemental/pnas.1614721114.sm01.mov" class="in-nw">Movie S1</a>) for an active fluid with small bandwidth <span class="inline-formula" id="inline-formula-106"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mn>0.63</mml:mn><mml:mo>/</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>, as defined in <a id="xref-fig-2-8" class="xref-fig" href="#F2">Fig. 1<em>A</em></a>. (<em>B</em>) The corresponding helicity field signals parity-symmetry breaking, leading to a positive-helicity flow in this example. (<em>C</em>) Histograms of the angles between velocity <strong><em>v</em></strong> and vorticity <span class="inline-formula" id="inline-formula-107"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝎</mml:mi></mml:math></span></span> quantify the alignment between the two fields for different active bandwidths <span class="inline-formula" id="inline-formula-108"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub><mml:mo><</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub><mml:mo><</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:mrow></mml:math></span></span>: The smaller the bandwidth is, the stronger the alignment between <strong><em>v</em></strong> and <span class="inline-formula" id="inline-formula-109"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝎</mml:mi></mml:math></span></span>. (<em>D</em>) Numerically estimated distributions of the Beltrami measure, <span class="inline-formula" id="inline-formula-110"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>β</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>⋅</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>λ</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒗</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, shown on a log scale. An ideal Beltrami flow with <span class="inline-formula" id="inline-formula-111"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mi>λ</mml:mi><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> produces a delta peak centered at <span class="inline-formula" id="inline-formula-112"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>β</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 1</mml:mn></mml:mrow></mml:math></span></span>. Identifying <span class="inline-formula" id="inline-formula-113"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>λ</mml:mi></mml:math></span></span> with the midpoint of the active shell (<span class="inline-formula" id="inline-formula-114"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>λ</mml:mi><mml:mo>≈</mml:mo><mml:mrow><mml:mi>π</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>), which approximately corresponds to the most unstable wavenumber and the characteristic pattern formation scale, we observe that a smaller active bandwidth leads to a sharper peak and hence more Beltrami-like flows. Data were taken at a single representative time point long after the characteristic relaxation time. Simulation parameters: <span class="inline-formula" id="inline-formula-115"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="normal">Λ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 75</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m, <span class="inline-formula" id="inline-formula-116"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mn> 72</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m/s, <span class="inline-formula" id="inline-formula-117"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mn>32</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>.</p><div class="sb-div caption-clear"></div></div></div></div><div id="sec-5" class="subsection"><h3>Beltrami-Flow Attractors.</h3><p id="p-20">Having confirmed spontaneous parity violation for the time-dependent solutions of <a id="xref-disp-formula-1-11" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a>, we next characterize the chaotic flow attractors. To this end, we measure and compare the histograms of the angles between the local velocity field <span class="inline-formula" id="inline-formula-118"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> and vorticity field <span class="inline-formula" id="inline-formula-119"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝝎</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> for the three bandwidths <span class="inline-formula" id="inline-formula-120"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub><mml:mo><</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub><mml:mo><</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:mrow></mml:math></span></span>. Our numerical results reveal that a smaller active bandwidth, corresponding to a more sharply defined scale selection, causes a stronger alignment of the two fields (<a id="xref-fig-3-3" class="xref-fig" href="#F3">Fig. 2<em>C</em></a>). Recalling that perfect alignment, described by <span class="inline-formula" id="inline-formula-121"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝝎</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mi>λ</mml:mi><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> with eigenvalue <span class="inline-formula" id="inline-formula-122"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>λ</mml:mi></mml:math></span></span>, is the defining feature of Beltrami flows (<a id="xref-ref-43-4" class="xref-bibr" href="#ref-43">43</a><a id="xref-ref-44-4" class="xref-down-link" href="#ref-44"><span>⇓</span></a>–<a id="xref-ref-45-4" class="xref-bibr" href="#ref-45">45</a>), we introduce the Beltrami measure <span class="inline-formula" id="inline-formula-123"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>β</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>⋅</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>λ</mml:mi><mml:msup><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒗</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>. For ideal Beltrami fields, the distribution of <span class="inline-formula" id="inline-formula-124"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi></mml:math></span></span> becomes a delta peak centered at <span class="inline-formula" id="inline-formula-125"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>β</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 1</mml:mn></mml:mrow></mml:math></span></span>. Identifying <span class="inline-formula" id="inline-formula-126"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>λ</mml:mi></mml:math></span></span> with the midpoint of the active shell (<span class="inline-formula" id="inline-formula-127"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>λ</mml:mi></mml:mpadded><mml:mo>≈</mml:mo><mml:mrow><mml:mi>π</mml:mi><mml:mo>/</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>), which approximately corresponds to the most dominant pattern formation scale in <a id="xref-disp-formula-1-12" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a>, we indeed find that the numerically computed flow fields exhibit <span class="inline-formula" id="inline-formula-128"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>β</mml:mi></mml:math></span></span> distributions that are sharply peaked at <span class="inline-formula" id="inline-formula-129"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>β</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 1</mml:mn></mml:mrow></mml:math></span></span> (<a id="xref-fig-3-4" class="xref-fig" href="#F3">Fig. 2<em>D</em></a>). Keeping <span class="inline-formula" id="inline-formula-130"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Λ</mml:mi></mml:math></span></span> and <span class="inline-formula" id="inline-formula-131"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math></span></span> constant, the sharpness of the peak increases with decreasing active bandwidth <span class="inline-formula" id="inline-formula-132"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>κ</mml:mi></mml:math></span></span>. These results imply that active fluids with well-defined intrinsic scale selection realize flow structures that are statistically close to Beltrami fields, as suggested by the particular analytical solutions derived earlier.</p></div></div><div class="section discussion" id="sec-6"><h2 class="">Discussion</h2><div id="sec-7" class="subsection"><h3>Spontaneous Parity Breaking vs. Surgical Mode Removal.</h3><p id="p-21">Important previous studies identified bifurcation mechanisms (<a id="xref-ref-66-1" class="xref-bibr" href="#ref-66">66</a><a id="xref-ref-67-1" class="xref-down-link" href="#ref-67"><span>⇓</span></a>–<a id="xref-ref-68-1" class="xref-bibr" href="#ref-68">68</a>) leading to parity violation in 1D and 2D (<a id="xref-ref-69-1" class="xref-bibr" href="#ref-69">69</a>) continuum models of pattern-forming nonequilibrium systems (<a id="xref-ref-70-1" class="xref-bibr" href="#ref-70">70</a>, <a id="xref-ref-71-1" class="xref-bibr" href="#ref-71">71</a>). The above analytical and numerical results generalize these ideas to 3D fluid flows, by showing that an active scale selection mechanism can induce spontaneous helical mirror-symmetry breaking. Such self-organized parity violation can profoundly affect energy transport and mixing in 3D active fluids, which do not satisfy the premises of Kraichnan’s thermodynamic no-go argument (<a id="xref-ref-23-3" class="xref-bibr" href="#ref-23">23</a>). An insightful recent study (<a id="xref-ref-24-6" class="xref-bibr" href="#ref-24">24</a>), based on the classical Navier–Stokes equation, found that an ad hoc projection of solutions to positive or negative helicity subspaces can result in an inverse cascade but it has remained an open question whether such a surgical mode removal can be realized experimentally in passive fluids. By contrast, active fluids spontaneously achieve helical parity breaking (<a id="xref-fig-2-9" class="xref-fig" href="#F2">Fig. 1<em>C</em></a>) by approaching Beltrami-flow states (<a id="xref-fig-3-5" class="xref-fig" href="#F3">Fig. 2 <em>C</em> and <em>D</em></a>), suggesting the possibility of a self-organized inverse energy cascade even in 3D. Before testing this hypothesis we recall that the model defined by <a id="xref-disp-formula-1-13" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> merely assumes the existence of linear active stresses to account for pattern scale selection as observed in a wide range of microbial suspensions (<a id="xref-ref-35-11" class="xref-bibr" href="#ref-35">35</a>, <a id="xref-ref-38-7" class="xref-bibr" href="#ref-38">38</a>, <a id="xref-ref-54-2" class="xref-bibr" href="#ref-54">54</a>, <a id="xref-ref-72-1" class="xref-bibr" href="#ref-72">72</a>), but does not introduce nonlinearities beyond those already present in the classical Navier–Stokes equations. That is, energy redistribution in the solvent fluid is governed by the advective nonlinearities as in conventional passive liquids.</p></div><div id="sec-8" class="subsection"><h3>Inverse Cascade in 3D Active Fluids.</h3><p id="p-22">To quantify how pattern scale selection controls parity breaking and energy transport in active fluids, we analyzed large-scale simulations (<span class="inline-formula" id="inline-formula-133"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 32</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>; <a id="xref-fig-3-6" class="xref-fig" href="#F3">Fig. 2 <em>A</em> and <em>B</em></a>) for different values of the activity bandwidth <span class="inline-formula" id="inline-formula-134"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>κ</mml:mi></mml:math></span></span> (<a id="xref-fig-2-10" class="xref-fig" href="#F2">Fig. 1<em>A</em></a>) while keeping the pattern scale <span class="inline-formula" id="inline-formula-135"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Λ</mml:mi></mml:math></span></span> and the circulation speed <span class="inline-formula" id="inline-formula-136"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math></span></span> fixed. The active shell (red domain II in <a id="xref-fig-2-11" class="xref-fig" href="#F2">Fig. 1<em>A</em></a>) corresponds to the energy injection range in Fourier space and provides a natural separation between large flow scales (blue domain I) and small flow scales (blue domain III). Consequently, the forward cascade corresponds to a net energy flux from domain II to domain III, whereas an inverse cascade transports energy from domain II to I. We calculate energy spectra <span class="inline-formula" id="inline-formula-137"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>e</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> and energy fluxes <span class="inline-formula" id="inline-formula-138"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">Π</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:msup><mml:mi mathvariant="normal">Π</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msup><mml:mi mathvariant="normal">Π</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> directly from our simulation data, by decomposing the velocity field into helical modes as in <a id="xref-disp-formula-6-1" class="xref-disp-formula" href="#disp-formula-6">Eq. <strong>2</strong></a>, which yields a natural splitting into cumulative energy and flux contributions <span class="inline-formula" id="inline-formula-139"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-140"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi mathvariant="normal">Π</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> from helical modes <span class="inline-formula" id="inline-formula-141"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>u</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> lying on the wavenumber shell <span class="inline-formula" id="inline-formula-142"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:math></span></span> (<a id="xref-sec-20-2" class="xref-sec" href="#sec-20"><em>Numerical Methods</em></a>). Time-averaged spectra and fluxes are computed for each simulation run after the system has relaxed to a statistically stationary state (<a id="xref-fig-5-1" class="xref-fig" href="#F5">Fig. S2</a>). For a small injection bandwidth <span class="inline-formula" id="inline-formula-143"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span></span>, the energy spectra <span class="inline-formula" id="inline-formula-144"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> reflect the broken mirror symmetry, with most of the energy being stored in either the positive-helicity or the negative-helicity modes (<a id="xref-fig-4-1" class="xref-fig" href="#F4">Fig. 3<em>A</em></a>), depending on the initial conditions. Moreover, in addition to the expected 3D forward transfer, the simulation data for <span class="inline-formula" id="inline-formula-145"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span></span> also show a significant inverse transfer, signaled by the negative values of the total flux <span class="inline-formula" id="inline-formula-146"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Π</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> (yellow curve in <a id="xref-fig-4-2" class="xref-fig" href="#F4">Fig. 3<em>B</em></a>) in domain I. As evident from the blue curves in <a id="xref-fig-4-3" class="xref-fig" href="#F4">Fig. 3 <em>A</em> and <em>B</em></a>, this inverse cascade is facilitated by the helical modes that carry most of the energy. For a large injection bandwidth <span class="inline-formula" id="inline-formula-147"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:mpadded><mml:mo>≫</mml:mo><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:mrow></mml:math></span></span>, the energy spectra continue to show signatures of helical symmetry breaking (<a id="xref-fig-4-4" class="xref-fig" href="#F4">Fig. 3<em>E</em></a>), but the energy transported to larger scales becomes negligible relative to the forward cascade, as contributions from opposite-helicity modes approximately cancel in the long-wavelength domain I (<a id="xref-fig-4-5" class="xref-fig" href="#F4">Fig. 3<em>F</em></a>). Results for the intermediate case <span class="inline-formula" id="inline-formula-148"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">M</mml:mi></mml:msub></mml:math></span></span> still show a significant inverse transfer (<a id="xref-fig-6-1" class="xref-fig" href="#F6">Figs. S3</a> and <a id="xref-fig-7-1" class="xref-fig" href="#F7">S4<em>E</em></a>), demonstrating how the activity bandwidth—or, equivalently, the pattern selection range—controls both parity violation and inverse cascade formation in an active fluid. The upward transfer is noninertial at intermediate scales, as indicated by the wavenumber dependence of the energy flux (<a id="xref-fig-4-6" class="xref-fig" href="#F4">Fig. 3<em>B</em></a>). At very large scales <span class="inline-formula" id="inline-formula-149"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>≫</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:math></span></span>, however, the flux approaches an inertial plateau (<a id="xref-sec-27-1" class="xref-sec" href="#sec-27"><em>Cascade Characteristics</em></a>). In contrast to the energy-mediated 2D inverse cascade in passive fluids, the helicity-driven 3D inverse cascade in active fluids is linked to the formation of extended vortex chain complexes that move collectively through the fluid (<a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614721114/-/DCSupplemental/pnas.1614721114.sm01.mov" class="in-nw">Movie S1</a> and <a id="xref-sec-27-2" class="xref-sec" href="#sec-27"><em>Cascade Characteristics</em></a>).</p><div id="F4" class="fig pos-float type-figure odd"><div class="highwire-figure"><div class="fig-inline-img-wrapper"><div class="fig-inline-img"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F4.large.jpg?width=800&height=600&carousel=1" title="Scale selection controls mirror-symmetry breaking and induces an inverse energy cascade. We demonstrate these effects for active fluids with (A–D) a small active bandwidth κS and (E–H) a wide bandwidth κW (Fig. 1A). The intermediate case κI is presented in Fig. S3. (A) Energy spectra e±(k) of the helical velocity-field modes show strong symmetry breaking for small bandwidth parameter κS. In this example, the system spontaneously selects positive helicity modes, such that e+(k)>e−(k) at all dominant wavenumbers. Dashed vertical lines indicate the boundaries of the energy injection domain II. (B) The resulting energy fluxes Π±(k) combine into the total flux Π(k), which is negative in region I and positive in region III, signaling inverse and forward energy transfers, respectively. (C) Contributions to the energy flow ⟨TKPQsKsPsQ⟩ between the three spectral domains I, II, and III (18 possibilities, columns) from the eight types of triad interactions (rows). In reflection-invariant turbulence, this table remains unchanged under upside-down flipping (+↔−). Instead, we observe a strong asymmetry, with two cumulative triads (D) dominating the energy transfer. Red and blue arrows represent transfer toward large and small scales, respectively, and thickness represents magnitude of energy flow. Green arrows (H) represent transfer within the same spectral domain. The direction of the energy flow is in agreement with the instability assumption of Waleffe (19). In this case, 18.2% of the injected energy is transferred from region II to region I and 81.8% is transferred from region II to III. (E–H) The same plots for an active fluid with wide active bandwidth κW. (E and F) Energy spectra show weaker parity breaking (E) and suppression of the inverse energy cascade (F). (G) The energy flow table partially recovers the upside-down (+↔−) symmetry. (H) The most active triads now favor the forward cascade, so that only 1.1% of the injected energy flows into region I, whereas 98.9% is transferred into region III. Data represent averages over single runs (Fig. S2). Simulation parameters are identical to those in Fig. 2." class="highwire-fragment fragment-images colorbox-load" rel="gallery-fragment-images-92291554" data-figure-caption="<div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML">Scale selection controls mirror-symmetry breaking and induces an inverse energy cascade. We demonstrate these effects for active fluids with (<em>A–D</em>) a small active bandwidth <span class="mathjax mml-math"><mml:math><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span> and (<em>E–H</em>) a wide bandwidth <span class="mathjax mml-math"><mml:math><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:math></span> (Fig. 1<em>A</em>). The intermediate case <span class="mathjax mml-math"><mml:math><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub></mml:math></span> is presented in Fig. S3. (<em>A</em>) Energy spectra <span class="mathjax mml-math"><mml:math><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span> of the helical velocity-field modes show strong symmetry breaking for small bandwidth parameter <span class="mathjax mml-math"><mml:math><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span>. In this example, the system spontaneously selects positive helicity modes, such that <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>></mml:mo><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span> at all dominant wavenumbers. Dashed vertical lines indicate the boundaries of the energy injection domain II. (<em>B</em>) The resulting energy fluxes <span class="mathjax mml-math"><mml:math><mml:mrow><mml:msup><mml:mi mathvariant="normal">Π</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span> combine into the total flux <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi mathvariant="normal">Π</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span>, which is negative in region I and positive in region III, signaling inverse and forward energy transfers, respectively. (<em>C</em>) Contributions to the energy flow <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:msubsup><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:math></span> between the three spectral domains I, II, and III (18 possibilities, columns) from the eight types of triad interactions (rows). In reflection-invariant turbulence, this table remains unchanged under upside-down flipping (<span class="mathjax mml-math"><mml:math><mml:mrow><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>↔</mml:mo><mml:mo></mml:mo><mml:mo>−</mml:mo></mml:mrow></mml:math></span>). Instead, we observe a strong asymmetry, with two cumulative triads (<em>D</em>) dominating the energy transfer. Red and blue arrows represent transfer toward large and small scales, respectively, and thickness represents magnitude of energy flow. Green arrows (<em>H</em>) represent transfer within the same spectral domain. The direction of the energy flow is in agreement with the instability assumption of Waleffe (19). In this case, 18.2% of the injected energy is transferred from region II to region I and 81.8% is transferred from region II to III. (<em>E–H</em>) The same plots for an active fluid with wide active bandwidth <span class="mathjax mml-math"><mml:math><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:math></span>. (<em>E</em> and <em>F</em>) Energy spectra show weaker parity breaking (<em>E</em>) and suppression of the inverse energy cascade (<em>F</em>). (<em>G</em>) The energy flow table partially recovers the upside-down (<span class="mathjax mml-math"><mml:math><mml:mrow><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>↔</mml:mo><mml:mo></mml:mo><mml:mo>−</mml:mo></mml:mrow></mml:math></span>) symmetry. (<em>H</em>) The most active triads now favor the forward cascade, so that only 1.1% of the injected energy flows into region I, whereas 98.9% is transferred into region III. Data represent averages over single runs (Fig. S2). Simulation parameters are identical to those in Fig. 2.</div></div>" data-icon-position="" data-hide-link-title="0"><span class="hw-responsive-img"><img class="highwire-fragment fragment-image lazyload" alt="Fig. 3." src="" data-src="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F4.medium.gif" width="440" height="278"/><noscript><img class="highwire-fragment fragment-image" alt="Fig. 3." src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/content/pnas/114/9/2119/F4.medium.gif" width="440" height="278"/></noscript></span></a></div></div><ul class="highwire-figure-links inline"><li class="download-fig first"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F4.large.jpg?download=true" class="highwire-figure-link highwire-figure-link-download" title="Download Fig. 3." data-icon-position="" data-hide-link-title="0">Download figure</a></li> <li class="new-tab"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F4.large.jpg" class="highwire-figure-link highwire-figure-link-newtab" target="_blank" data-icon-position="" data-hide-link-title="0">Open in new tab</a></li> <li class="download-ppt last"><a href="/web/20180714115531/http://www.pnas.org/highwire/powerpoint/9861" class="highwire-figure-link highwire-figure-link-ppt" data-icon-position="" data-hide-link-title="0">Download powerpoint</a></li> </ul></div><div class="fig-caption"><span class="fig-label">Fig. 3.</span> <p id="p-23" class="first-child">Scale selection controls mirror-symmetry breaking and induces an inverse energy cascade. We demonstrate these effects for active fluids with (<em>A–D</em>) a small active bandwidth <span class="inline-formula" id="inline-formula-150"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span></span> and (<em>E–H</em>) a wide bandwidth <span class="inline-formula" id="inline-formula-151"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:math></span></span> (<a id="xref-fig-2-12" class="xref-fig" href="#F2">Fig. 1<em>A</em></a>). The intermediate case <span class="inline-formula" id="inline-formula-152"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub></mml:math></span></span> is presented in <a id="xref-fig-6-2" class="xref-fig" href="#F6">Fig. S3</a>. (<em>A</em>) Energy spectra <span class="inline-formula" id="inline-formula-153"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> of the helical velocity-field modes show strong symmetry breaking for small bandwidth parameter <span class="inline-formula" id="inline-formula-154"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span></span>. In this example, the system spontaneously selects positive helicity modes, such that <span class="inline-formula" id="inline-formula-155"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>></mml:mo><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> at all dominant wavenumbers. Dashed vertical lines indicate the boundaries of the energy injection domain II. (<em>B</em>) The resulting energy fluxes <span class="inline-formula" id="inline-formula-156"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi mathvariant="normal">Π</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> combine into the total flux <span class="inline-formula" id="inline-formula-157"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Π</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span>, which is negative in region I and positive in region III, signaling inverse and forward energy transfers, respectively. (<em>C</em>) Contributions to the energy flow <span class="inline-formula" id="inline-formula-158"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:msubsup><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:math></span></span> between the three spectral domains I, II, and III (18 possibilities, columns) from the eight types of triad interactions (rows). In reflection-invariant turbulence, this table remains unchanged under upside-down flipping (<span class="inline-formula" id="inline-formula-159"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>↔</mml:mo><mml:mo></mml:mo><mml:mo>−</mml:mo></mml:mrow></mml:math></span></span>). Instead, we observe a strong asymmetry, with two cumulative triads (<em>D</em>) dominating the energy transfer. Red and blue arrows represent transfer toward large and small scales, respectively, and thickness represents magnitude of energy flow. Green arrows (<em>H</em>) represent transfer within the same spectral domain. The direction of the energy flow is in agreement with the instability assumption of Waleffe (<a id="xref-ref-19-9" class="xref-bibr" href="#ref-19">19</a>). In this case, 18.2% of the injected energy is transferred from region II to region I and 81.8% is transferred from region II to III. (<em>E–H</em>) The same plots for an active fluid with wide active bandwidth <span class="inline-formula" id="inline-formula-160"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:math></span></span>. (<em>E</em> and <em>F</em>) Energy spectra show weaker parity breaking (<em>E</em>) and suppression of the inverse energy cascade (<em>F</em>). (<em>G</em>) The energy flow table partially recovers the upside-down (<span class="inline-formula" id="inline-formula-161"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>↔</mml:mo><mml:mo></mml:mo><mml:mo>−</mml:mo></mml:mrow></mml:math></span></span>) symmetry. (<em>H</em>) The most active triads now favor the forward cascade, so that only 1.1% of the injected energy flows into region I, whereas 98.9% is transferred into region III. Data represent averages over single runs (<a id="xref-fig-5-2" class="xref-fig" href="#F5">Fig. S2</a>). Simulation parameters are identical to those in <a id="xref-fig-3-7" class="xref-fig" href="#F3">Fig. 2</a>.</p><div class="sb-div caption-clear"></div></div></div><div id="F5" class="fig pos-float type-supplementary-material odd"><div class="highwire-figure"><div class="fig-inline-img-wrapper"><div class="fig-inline-img"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F5.large.jpg?width=800&height=600&carousel=1" title="Numerical estimation of the stationary energy spectra for the narrow bandwidth in Fig. 3A of the main text. (A and B) Kinetic energy (A) and helicity time series (B) are used to determine the relaxation time R to stationary state (vertical dashed line, R= 31.7τ in this case). (C) Convergence of the energy spectra estimates using |⟨ϵ±⟩R,Δ−⟨ϵ±⟩R,Δmax|2/|⟨ϵ±⟩R,Δmax|2 (Eq. S35), as a function of the averaging interval Δ. (D) Relative difference (l2 norm) between the momentary energy spectra and their (stationary) mean as a function of time." class="highwire-fragment fragment-images colorbox-load" rel="gallery-fragment-images-92291554" data-figure-caption="<div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML">Numerical estimation of the stationary energy spectra for the narrow bandwidth in Fig. 3<em>A</em> of the main text. (<em>A</em> and <em>B</em>) Kinetic energy (<em>A</em>) and helicity time series (<em>B</em>) are used to determine the relaxation time <span class="mathjax mml-math"><mml:math><mml:mi mathvariant="script">R</mml:mi></mml:math></span> to stationary state (vertical dashed line, <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="script">R</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 31.7</mml:mn><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span> in this case). (<em>C</em>) Convergence of the energy spectra estimates using <span class="mathjax mml-math"><mml:math><mml:mrow><mml:msub><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow></mml:msub></mml:mpadded><mml:mo>−</mml:mo><mml:msub><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="normal">Δ</mml:mi><mml:mtext>max</mml:mtext></mml:msub></mml:mrow></mml:msub></mml:mrow><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:msub><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="normal">Δ</mml:mi><mml:mtext>max</mml:mtext></mml:msub></mml:mrow></mml:msub><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math></span> (Eq. <strong>S35</strong>), as a function of the averaging interval <span class="mathjax mml-math"><mml:math><mml:mi mathvariant="normal">Δ</mml:mi></mml:math></span>. (<em>D</em>) Relative difference (<span class="mathjax mml-math"><mml:math><mml:msup><mml:mi>l</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math></span> norm) between the momentary energy spectra and their (stationary) mean as a function of time.</div></div>" data-icon-position="" data-hide-link-title="0"><span class="hw-responsive-img"><img class="highwire-fragment fragment-image lazyload" alt="Fig. S2." src="" data-src="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F5.medium.gif" width="437" height="440"/><noscript><img class="highwire-fragment fragment-image" alt="Fig. S2." src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/content/pnas/114/9/2119/F5.medium.gif" width="437" height="440"/></noscript></span></a></div></div><ul class="highwire-figure-links inline"><li class="download-fig first"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F5.large.jpg?download=true" class="highwire-figure-link highwire-figure-link-download" title="Download Fig. S2." data-icon-position="" data-hide-link-title="0">Download figure</a></li> <li class="new-tab"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F5.large.jpg" class="highwire-figure-link highwire-figure-link-newtab" target="_blank" data-icon-position="" data-hide-link-title="0">Open in new tab</a></li> <li class="download-ppt last"><a href="/web/20180714115531/http://www.pnas.org/highwire/powerpoint/9863" class="highwire-figure-link highwire-figure-link-ppt" data-icon-position="" data-hide-link-title="0">Download powerpoint</a></li> </ul></div><div class="fig-caption"><span class="fig-label">Fig. S2.</span> <p id="p-24" class="first-child">Numerical estimation of the stationary energy spectra for the narrow bandwidth in <a id="xref-fig-4-7" class="xref-fig" href="#F4">Fig. 3<em>A</em></a> of the main text. (<em>A</em> and <em>B</em>) Kinetic energy (<em>A</em>) and helicity time series (<em>B</em>) are used to determine the relaxation time <span class="inline-formula" id="inline-formula-162"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">R</mml:mi></mml:math></span></span> to stationary state (vertical dashed line, <span class="inline-formula" id="inline-formula-163"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="script">R</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 31.7</mml:mn><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> in this case). (<em>C</em>) Convergence of the energy spectra estimates using <span class="inline-formula" id="inline-formula-164"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow></mml:msub></mml:mpadded><mml:mo>−</mml:mo><mml:msub><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="normal">Δ</mml:mi><mml:mtext>max</mml:mtext></mml:msub></mml:mrow></mml:msub></mml:mrow><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:msub><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:msub><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mi mathvariant="normal">Δ</mml:mi><mml:mtext>max</mml:mtext></mml:msub></mml:mrow></mml:msub><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math></span></span> (<a id="xref-disp-formula-62-1" class="xref-disp-formula" href="#disp-formula-62">Eq. <strong>S35</strong></a>), as a function of the averaging interval <span class="inline-formula" id="inline-formula-165"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Δ</mml:mi></mml:math></span></span>. (<em>D</em>) Relative difference (<span class="inline-formula" id="inline-formula-166"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>l</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math></span></span> norm) between the momentary energy spectra and their (stationary) mean as a function of time.</p><div class="sb-div caption-clear"></div></div></div><div id="F6" class="fig pos-float type-supplementary-material odd"><div class="highwire-figure"><div class="fig-inline-img-wrapper"><div class="fig-inline-img"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F6.large.jpg?width=800&height=600&carousel=1" title="Mirror-symmetry breaking and inverse energy cascade for an active fluid with the intermediate bandwidth κI, showing the same quantities as in Fig. 3 of the main text. Overall, 15.4% of the injected energy flows into region I, whereas 84.6% flows into region III." class="highwire-fragment fragment-images colorbox-load" rel="gallery-fragment-images-92291554" data-figure-caption="<div class="highwire-markup">Mirror-symmetry breaking and inverse energy cascade for an active fluid with the intermediate bandwidth <span xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML" class="mathjax mml-math"><mml:math><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub></mml:math></span>, showing the same quantities as in Fig. 3 of the main text. Overall, 15.4% of the injected energy flows into region I, whereas 84.6% flows into region III.</div>" data-icon-position="" data-hide-link-title="0"><span class="hw-responsive-img"><img class="highwire-fragment fragment-image lazyload" alt="Fig. S3." src="" data-src="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F6.medium.gif" width="339" height="440"/><noscript><img class="highwire-fragment fragment-image" alt="Fig. S3." src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/content/pnas/114/9/2119/F6.medium.gif" width="339" height="440"/></noscript></span></a></div></div><ul class="highwire-figure-links inline"><li class="download-fig first"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F6.large.jpg?download=true" class="highwire-figure-link highwire-figure-link-download" title="Download Fig. S3." data-icon-position="" data-hide-link-title="0">Download figure</a></li> <li class="new-tab"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F6.large.jpg" class="highwire-figure-link highwire-figure-link-newtab" target="_blank" data-icon-position="" data-hide-link-title="0">Open in new tab</a></li> <li class="download-ppt last"><a href="/web/20180714115531/http://www.pnas.org/highwire/powerpoint/9865" class="highwire-figure-link highwire-figure-link-ppt" data-icon-position="" data-hide-link-title="0">Download powerpoint</a></li> </ul></div><div class="fig-caption"><span class="fig-label">Fig. S3.</span> <p id="p-25" class="first-child">Mirror-symmetry breaking and inverse energy cascade for an active fluid with the intermediate bandwidth <span class="inline-formula" id="inline-formula-167"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">I</mml:mi></mml:msub></mml:math></span></span>, showing the same quantities as in <a id="xref-fig-4-8" class="xref-fig" href="#F4">Fig. 3</a> of the main text. Overall, 15.4% of the injected energy flows into region I, whereas 84.6% flows into region III.</p><div class="sb-div caption-clear"></div></div></div><div id="F7" class="fig pos-float type-supplementary-material odd"><div class="highwire-figure"><div class="fig-inline-img-wrapper"><div class="fig-inline-img"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F7.large.jpg?width=800&height=600&carousel=1" title="Characterization of the inverse energy cascade. (A and B) Two horizontal cuts through the 3D simulation domain for a small bandwidth κ𝐒, showing that the inverse cascade is not characterized by vortex mergers, but rather by chain-like complexes, visible as “dark” structures in Movie S1, Left. (C and D) Same flow-field snapshots as in A and B but now represented through the local helicity field. The chain-like large-scale structures carry most of the helicity. They do not merge, but rather form extended filaments and clusters that move throughout the simulation domain (Movie S1). Domain size L= 32Λ. (E) The proportion of the energy injected by the active component that is transported to region I (corresponding to large scales, compare with Fig. 1A of the main text) as a function of the active bandwidth κ. (F) Absolute value of the energy flux for an active fluid with small bandwidth κ𝐒 for different simulation domain sizes. In region I, corresponding to large scales, the upward transfer is noninertial at intermediate wavenumbers with the flux exhibiting k3 scaling. For k→0, however, the flux approaches a constant plateau value, indicating that inertial effects start dominate at very large scales ≫Λ." class="highwire-fragment fragment-images colorbox-load" rel="gallery-fragment-images-92291554" data-figure-caption="<div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML">Characterization of the inverse energy cascade. (<em>A</em> and <em>B</em>) Two horizontal cuts through the 3D simulation domain for a small bandwidth <span class="mathjax mml-math"><mml:math><mml:msub><mml:mi>κ</mml:mi><mml:mi>𝐒</mml:mi></mml:msub></mml:math></span>, showing that the inverse cascade is not characterized by vortex mergers, but rather by chain-like complexes, visible as “dark” structures in Movie S1, <em>Left</em>. (<em>C</em> and <em>D</em>) Same flow-field snapshots as in <em>A</em> and <em>B</em> but now represented through the local helicity field. The chain-like large-scale structures carry most of the helicity. They do not merge, but rather form extended filaments and clusters that move throughout the simulation domain (Movie S1). Domain size <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 32</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span>. (<em>E</em>) The proportion of the energy injected by the active component that is transported to region I (corresponding to large scales, compare with Fig. 1<em>A</em> of the main text) as a function of the active bandwidth <span class="mathjax mml-math"><mml:math><mml:mi>κ</mml:mi></mml:math></span>. (<em>F</em>) Absolute value of the energy flux for an active fluid with small bandwidth <span class="mathjax mml-math"><mml:math><mml:msub><mml:mi>κ</mml:mi><mml:mi>𝐒</mml:mi></mml:msub></mml:math></span> for different simulation domain sizes. In region I, corresponding to large scales, the upward transfer is noninertial at intermediate wavenumbers with the flux exhibiting <span class="mathjax mml-math"><mml:math><mml:msup><mml:mi>k</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math></span> scaling. For <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi>k</mml:mi><mml:mo>→</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math></span>, however, the flux approaches a constant plateau value, indicating that inertial effects start dominate at very large scales <span class="mathjax mml-math"><mml:math><mml:mrow><mml:mo>≫</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:math></span>.</div></div>" data-icon-position="" data-hide-link-title="0"><span class="hw-responsive-img"><img class="highwire-fragment fragment-image lazyload" alt="Fig. S4." src="" data-src="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F7.medium.gif" width="440" height="300"/><noscript><img class="highwire-fragment fragment-image" alt="Fig. S4." src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/content/pnas/114/9/2119/F7.medium.gif" width="440" height="300"/></noscript></span></a></div></div><ul class="highwire-figure-links inline"><li class="download-fig first"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F7.large.jpg?download=true" class="highwire-figure-link highwire-figure-link-download" title="Download Fig. S4." data-icon-position="" data-hide-link-title="0">Download figure</a></li> <li class="new-tab"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F7.large.jpg" class="highwire-figure-link highwire-figure-link-newtab" target="_blank" data-icon-position="" data-hide-link-title="0">Open in new tab</a></li> <li class="download-ppt last"><a href="/web/20180714115531/http://www.pnas.org/highwire/powerpoint/790815" class="highwire-figure-link highwire-figure-link-ppt" data-icon-position="" data-hide-link-title="0">Download powerpoint</a></li> </ul></div><div class="fig-caption"><span class="fig-label">Fig. S4.</span> <p id="p-26" class="first-child">Characterization of the inverse energy cascade. (<em>A</em> and <em>B</em>) Two horizontal cuts through the 3D simulation domain for a small bandwidth <span class="inline-formula" id="inline-formula-168"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi>𝐒</mml:mi></mml:msub></mml:math></span></span>, showing that the inverse cascade is not characterized by vortex mergers, but rather by chain-like complexes, visible as “dark” structures in <a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614721114/-/DCSupplemental/pnas.1614721114.sm01.mov" class="in-nw">Movie S1</a>, <em>Left</em>. (<em>C</em> and <em>D</em>) Same flow-field snapshots as in <em>A</em> and <em>B</em> but now represented through the local helicity field. The chain-like large-scale structures carry most of the helicity. They do not merge, but rather form extended filaments and clusters that move throughout the simulation domain (<a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614721114/-/DCSupplemental/pnas.1614721114.sm01.mov" class="in-nw">Movie S1</a>). Domain size <span class="inline-formula" id="inline-formula-169"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 32</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>. (<em>E</em>) The proportion of the energy injected by the active component that is transported to region I (corresponding to large scales, compare with <a id="xref-fig-2-13" class="xref-fig" href="#F2">Fig. 1<em>A</em></a> of the main text) as a function of the active bandwidth <span class="inline-formula" id="inline-formula-170"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>κ</mml:mi></mml:math></span></span>. (<em>F</em>) Absolute value of the energy flux for an active fluid with small bandwidth <span class="inline-formula" id="inline-formula-171"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi>𝐒</mml:mi></mml:msub></mml:math></span></span> for different simulation domain sizes. In region I, corresponding to large scales, the upward transfer is noninertial at intermediate wavenumbers with the flux exhibiting <span class="inline-formula" id="inline-formula-172"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>k</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math></span></span> scaling. For <span class="inline-formula" id="inline-formula-173"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>k</mml:mi><mml:mo>→</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math></span></span>, however, the flux approaches a constant plateau value, indicating that inertial effects start dominate at very large scales <span class="inline-formula" id="inline-formula-174"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>≫</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:math></span></span>.</p><div class="sb-div caption-clear"></div></div></div></div><div id="sec-9" class="subsection"><h3>Triad Interactions.</h3><p id="p-27">Our numerical flux measurements confirm directly the existence of a self-sustained 3D inverse cascade induced by spontaneous parity violation, consistent with earlier projection-based arguments for the classical Navier–Stokes equations (<a id="xref-ref-24-7" class="xref-bibr" href="#ref-24">24</a>). An inverse energy cascade can exist in 3D active fluids because mirror-symmetry breaking favors only a subclass of all possible triad interactions, which describe advective energy transfer in Fourier space between velocity modes <span class="inline-formula" id="inline-formula-175"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒑</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mtext>𝒒</mml:mtext><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math></span></span> with <span class="inline-formula" id="inline-formula-176"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>𝒌</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒑</mml:mi><mml:mo>+</mml:mo><mml:mpadded width="+1.7pt"><mml:mtext>𝒒</mml:mtext></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span> (compare with <a id="xref-disp-formula-8-2" class="xref-disp-formula" href="#disp-formula-8">Eq. <strong>4</strong></a>). To analyze in detail which triads are spontaneously activated in a pattern-forming nonequilibrium fluid, we consider combinations <span class="inline-formula" id="inline-formula-177"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mo>,</mml:mo><mml:mi>P</mml:mi><mml:mo>,</mml:mo><mml:mi>Q</mml:mi></mml:mrow><mml:mo>∈</mml:mo><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mi mathvariant="normal">I</mml:mi><mml:mo>,</mml:mo><mml:mi>II</mml:mi><mml:mo>,</mml:mo><mml:mi>III</mml:mi><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> of the spectral domains in <a id="xref-fig-2-14" class="xref-fig" href="#F2">Fig. 1<em>A</em></a> and distinguish modes by their helicity index <span class="inline-formula" id="inline-formula-178"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow><mml:mo>∈</mml:mo><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mo>±</mml:mo><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:mrow></mml:math></span></span>. The helicity-resolved integrated energy flow into the region <span class="inline-formula" id="inline-formula-179"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>K</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></span></span> due to interaction with regions <span class="inline-formula" id="inline-formula-180"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>P</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-181"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>Q</mml:mi><mml:mo>,</mml:mo><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></span></span> is given by (<a id="xref-sec-20-3" class="xref-sec" href="#sec-20"><em>Numerical Methods</em></a>)<span class="disp-formula" id="disp-formula-10"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msubsup><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mo>+</mml:mo><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>Q</mml:mi><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub></mml:mrow></mml:msubsup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[6]</span></span>where the unsymmetrized flows are defined by<span class="disp-formula" id="disp-formula-11"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mo largeop="true" symmetric="true">∫</mml:mo><mml:mrow><mml:mrow><mml:msup><mml:mi>d</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mi>x</mml:mi><mml:msubsup><mml:mi>𝒗</mml:mi><mml:mi>K</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:msubsup></mml:mrow><mml:mo>⋅</mml:mo><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msubsup><mml:mi>𝒗</mml:mi><mml:mi>P</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub></mml:msubsup><mml:mo>⋅</mml:mo><mml:mo>∇</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msubsup><mml:mi>𝒗</mml:mi><mml:mi>Q</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:msubsup></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[7]</span></span>with <span class="inline-formula" id="inline-formula-182"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msubsup><mml:mi>𝒗</mml:mi><mml:mi>K</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:msubsup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> denoting the helical Littlewood–Paley velocity components, obtained by projecting on modes of a given helicity index <span class="inline-formula" id="inline-formula-183"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:mo>∈</mml:mo><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mo>±</mml:mo><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> restricted to the Fourier domain <span class="inline-formula" id="inline-formula-184"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math></span></span>. Entries of <span class="inline-formula" id="inline-formula-185"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">T</mml:mi></mml:math></span></span> are large when the corresponding triads are dominant.</p><p id="p-28">For active fluids, Fourier space is naturally partitioned into three regions (<a id="xref-fig-2-15" class="xref-fig" href="#F2">Fig. 1<em>A</em></a>) and there are <span class="inline-formula" id="inline-formula-186"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mn>2</mml:mn><mml:mn>3</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:mn>8</mml:mn></mml:mrow></mml:math></span></span> helicity index combinations. The triad tensor <span class="inline-formula" id="inline-formula-187"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">T</mml:mi></mml:math></span></span> is symmetric in the last two indexes, so that <span class="inline-formula" id="inline-formula-188"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">T</mml:mi></mml:math></span></span> has <span class="inline-formula" id="inline-formula-189"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>8</mml:mn><mml:mo>×</mml:mo><mml:mn>18</mml:mn></mml:mrow></mml:math></span></span> independent components encoding the fine structure of the advective energy transport. Stationary time averages for <span class="inline-formula" id="inline-formula-190"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:math></span></span>, measured from our simulations (<a id="xref-sec-20-4" class="xref-sec" href="#sec-20"><em>Numerical Methods</em></a>) for small (<span class="inline-formula" id="inline-formula-191"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span></span>) and wide (<span class="inline-formula" id="inline-formula-192"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:math></span></span>) energy injection bandwidths, are shown in <a id="xref-fig-4-9" class="xref-fig" href="#F4">Fig. 3 <em>C</em> and <em>G</em></a>. For reflection-symmetric turbulent flows, these two tables would remain unchanged under an upside-down flip (<span class="inline-formula" id="inline-formula-193"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>↔</mml:mo><mml:mo></mml:mo><mml:mo>−</mml:mo></mml:mrow></mml:math></span></span>). By contrast, we find a strong asymmetry for a narrow bandwidth <span class="inline-formula" id="inline-formula-194"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span></span> (<a id="xref-fig-4-10" class="xref-fig" href="#F4">Fig. 3<em>C</em></a>), which persists in weakened form for <span class="inline-formula" id="inline-formula-195"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:math></span></span> (<a id="xref-fig-4-11" class="xref-fig" href="#F4">Fig. 3<em>G</em></a>). Specifically, we observe for <span class="inline-formula" id="inline-formula-196"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span></span> two dominant cumulative triads with energy flowing out of the active spectral range II into the two passive domains I and III (<a id="xref-fig-4-12" class="xref-fig" href="#F4">Fig. 3<em>D</em></a>). These cumulative triads visualize dominant entries of the tables in <a id="xref-fig-4-13" class="xref-fig" href="#F4">Fig. 3 <em>C</em> and <em>G</em></a> and represent the total contributions from all triadic interactions between modes with given helicity indexes and with “legs” lying in the specified spectral domain. The observed energy transfer directions, with energy flowing out of the intermediate domain II when the small-scale modes carry the same helicity index, are in agreement with a turbulent instability mechanism proposed by Waleffe (<a id="xref-ref-19-10" class="xref-bibr" href="#ref-19">19</a>). Interestingly, however, our numerical results show that both “R”-interaction channels <span class="inline-formula" id="inline-formula-197"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>+</mml:mo></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-198"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>−</mml:mo><mml:mo></mml:mo><mml:mo>+</mml:mo></mml:mrow></mml:math></span></span> contribute substantially even in the case of strong parity breaking (<span class="inline-formula" id="inline-formula-199"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span></span>; <a id="xref-fig-4-14" class="xref-fig" href="#F4">Fig. 3<em>D</em></a>); when one surgically projects the full dynamics onto states with fixed parity, only the +++ channel remains (<a id="xref-ref-24-8" class="xref-bibr" href="#ref-24">24</a>). By contrast, for a wide bandwidth <span class="inline-formula" id="inline-formula-200"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">W</mml:mi></mml:msub></mml:math></span></span>, the dominating triad interactions (<a id="xref-fig-4-15" class="xref-fig" href="#F4">Fig. 3<em>H</em></a>) favor the forward cascade. Hence, the inverse energy cascade in 3D active fluids is possible because only a subset of triadic interactions is active in the presence of strong mirror-symmetry breaking. This phenomenon is controlled by the spectral bandwidth of the scale selection mechanism.</p></div><div id="sec-10" class="subsection"><h3>Enhanced Mixing.</h3><p id="p-29"><a id="xref-disp-formula-1-14" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> describe a 3D isotropic fluid capable of transporting energy from smaller to larger scales. Previously, self-organized inverse cascades were demonstrated only in effectively 2D flows (<a id="xref-ref-6-2" class="xref-bibr" href="#ref-6">6</a>, <a id="xref-ref-18-2" class="xref-bibr" href="#ref-18">18</a>, <a id="xref-ref-20-3" class="xref-bibr" href="#ref-20">20</a>, <a id="xref-ref-25-2" class="xref-bibr" href="#ref-25">25</a>, <a id="xref-ref-73-1" class="xref-bibr" href="#ref-73">73</a><a id="xref-ref-74-1" class="xref-down-link" href="#ref-74"><span>⇓</span></a><a id="xref-ref-75-1" class="xref-down-link" href="#ref-75"><span>⇓</span></a><a id="xref-ref-76-1" class="xref-down-link" href="#ref-76"><span>⇓</span></a><a id="xref-ref-77-1" class="xref-down-link" href="#ref-77"><span>⇓</span></a><a id="xref-ref-78-1" class="xref-down-link" href="#ref-78"><span>⇓</span></a>–<a id="xref-ref-79-1" class="xref-bibr" href="#ref-79">79</a>). The 2D inverse cascade has been intensely studied in meteorology (<a id="xref-ref-6-3" class="xref-bibr" href="#ref-6">6</a>, <a id="xref-ref-7-2" class="xref-bibr" href="#ref-7">7</a>), a prominent example being Jovian atmospheric dynamics (<a id="xref-ref-80-1" class="xref-bibr" href="#ref-80">80</a>), because of its importance for the mixing of thin fluid layers (<a id="xref-ref-81-1" class="xref-bibr" href="#ref-81">81</a><a id="xref-ref-82-1" class="xref-down-link" href="#ref-82"><span>⇓</span></a>–<a id="xref-ref-83-1" class="xref-bibr" href="#ref-83">83</a>). Analogously, the 3D inverse cascade and the underlying Beltrami-flow structure are expected to enhance mixing and transport in active fluids. Arnold (<a id="xref-ref-43-5" class="xref-bibr" href="#ref-43">43</a>) showed that steady solutions of the incompressible Euler equations include Beltrami-type ABC flows (<a id="xref-ref-44-5" class="xref-bibr" href="#ref-44">44</a>) characterized by chaotic streamlines. Similarly, the Beltrami structure of the active-flow attractors of <a id="xref-disp-formula-1-15" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> implies enhanced local mixing. Combined with the presence of an inverse cascade, which facilitates additional large-scale mixing through the excitation of long-wavelength modes, these results suggest that active biological fluids, such as microbial suspensions (<a id="xref-ref-35-12" class="xref-bibr" href="#ref-35">35</a>, <a id="xref-ref-54-3" class="xref-bibr" href="#ref-54">54</a>, <a id="xref-ref-72-2" class="xref-bibr" href="#ref-72">72</a>), can be more efficient at stirring fluids and transporting nutrients than previously thought.</p></div></div><div class="section conclusions" id="sec-11"><h2 class="">Conclusions</h2><p id="p-30" class="flushleft">To detect Beltrami flows in biological or engineered active fluids, one has to construct histograms and spectra as shown in <a id="xref-fig-3-8" class="xref-fig" href="#F3">Figs. 2 <em>C</em> and <em>D</em></a> and <a id="xref-fig-4-16" class="xref-fig" href="#F4">3 <em>A</em> and <em>E</em></a> from experimental fluid velocity and helicity data, which is possible with current fluorescence imaging techniques (<a id="xref-ref-13-2" class="xref-bibr" href="#ref-13">13</a>, <a id="xref-ref-35-13" class="xref-bibr" href="#ref-35">35</a>). Moreover, helical tracer particles (<a id="xref-ref-84-1" class="xref-bibr" href="#ref-84">84</a>) can help distinguish left-handed and right-handed flows. The above analysis predicts that Beltrami-flow structures, mirror-symmetry breaking, and the inverse 3D cascade appear more pronounced when the pattern selection is focused in a narrow spectral range. Our simulations further suggest that the relaxation time required for completion of the mirror-symmetry breaking process depends on the domain size (<a id="xref-fig-8-1" class="xref-fig" href="#F8">Fig. S5</a>). For small systems, the relaxation is exponentially fast, whereas for large domains relaxation proceeds in two stages, first exponentially and then linearly. In practice, it may therefore be advisable to accelerate relaxation by starting experiments from rotating initial conditions.</p><div id="F8" class="fig pos-float type-supplementary-material odd"><div class="highwire-figure"><div class="fig-inline-img-wrapper"><div class="fig-inline-img"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F8.large.jpg?width=800&height=600&carousel=1" title="(A) Relaxation time for spontaneous symmetry breaking depends on the domain size. (B and C) Kinetic energy (B) and helicity (C) as a function of time for a very large domain (L= 48Λ). The relaxation proceeds in two stages, the initial stage characterized by a rapid exponential growth rate (t" class="highwire-fragment fragment-images colorbox-load" rel="gallery-fragment-images-92291554" data-figure-caption="<div class="highwire-markup"><div xmlns="http://www.w3.org/1999/xhtml" xmlns:mml="http://www.w3.org/1998/Math/MathML">(<em>A</em>) Relaxation time for spontaneous symmetry breaking depends on the domain size. (<em>B</em> and <em>C</em>) Kinetic energy (<em>B</em>) and helicity (<em>C</em>) as a function of time for a very large domain (<span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 48</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span>). The relaxation proceeds in two stages, the initial stage characterized by a rapid exponential growth rate (<span class="mathjax mml-math"><mml:math><mml:mrow><mml:mi>t</mml:mi><mml:mo><</mml:mo><mml:mrow><mml:mn>20</mml:mn><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span>), followed by a slower linear growth until full relaxation (<span class="mathjax mml-math"><mml:math><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>t</mml:mi></mml:mpadded><mml:mo>≈</mml:mo><mml:mrow><mml:mn> 100</mml:mn><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span>). (<em>D–F</em>) Energy spectra at various stages of the relaxation process (compare with dashed lines in <em>B</em> and <em>C</em>) show how the system realizes a state with broken mirror symmetry.</div></div>" data-icon-position="" data-hide-link-title="0"><span class="hw-responsive-img"><img class="highwire-fragment fragment-image lazyload" alt="Fig. S5." src="" data-src="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F8.medium.gif" width="440" height="274"/><noscript><img class="highwire-fragment fragment-image" alt="Fig. S5." src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/content/pnas/114/9/2119/F8.medium.gif" width="440" height="274"/></noscript></span></a></div></div><ul class="highwire-figure-links inline"><li class="download-fig first"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F8.large.jpg?download=true" class="highwire-figure-link highwire-figure-link-download" title="Download Fig. S5." data-icon-position="" data-hide-link-title="0">Download figure</a></li> <li class="new-tab"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/pnas/114/9/2119/F8.large.jpg" class="highwire-figure-link highwire-figure-link-newtab" target="_blank" data-icon-position="" data-hide-link-title="0">Open in new tab</a></li> <li class="download-ppt last"><a href="/web/20180714115531/http://www.pnas.org/highwire/powerpoint/9869" class="highwire-figure-link highwire-figure-link-ppt" data-icon-position="" data-hide-link-title="0">Download powerpoint</a></li> </ul></div><div class="fig-caption"><span class="fig-label">Fig. S5.</span> <p id="p-31" class="first-child">(<em>A</em>) Relaxation time for spontaneous symmetry breaking depends on the domain size. (<em>B</em> and <em>C</em>) Kinetic energy (<em>B</em>) and helicity (<em>C</em>) as a function of time for a very large domain (<span class="inline-formula" id="inline-formula-201"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 48</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>). The relaxation proceeds in two stages, the initial stage characterized by a rapid exponential growth rate (<span class="inline-formula" id="inline-formula-202"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mo><</mml:mo><mml:mrow><mml:mn>20</mml:mn><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>), followed by a slower linear growth until full relaxation (<span class="inline-formula" id="inline-formula-203"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>t</mml:mi></mml:mpadded><mml:mo>≈</mml:mo><mml:mrow><mml:mn> 100</mml:mn><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>). (<em>D–F</em>) Energy spectra at various stages of the relaxation process (compare with dashed lines in <em>B</em> and <em>C</em>) show how the system realizes a state with broken mirror symmetry.</p><div class="sb-div caption-clear"></div></div></div></div><div class="section methods" id="sec-12"><h2 class="">Methods</h2><p id="p-32" class="flushleft"><a id="xref-disp-formula-1-16" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> was solved numerically in the vorticity-vector potential form with periodic boundary conditions using a spectral code with 3/2 anti-aliasing (<a id="xref-sec-20-5" class="xref-sec" href="#sec-20"><em>Numerical Methods</em></a>). Tables in <a id="xref-fig-4-17" class="xref-fig" href="#F4">Fig. 3</a> were calculated using the Littlewood–Paley decomposition and collocation.</p></div><div class="section supplementary-material" id="sec-13"><h2 class="">Comparison with Experiments</h2><p id="p-33" class="flushleft">The generalized Navier–Stokes equations defined in <a id="xref-disp-formula-1-17" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text aim to provide an effective three-parameter description of solvent flows driven by an active component. Although the flow structures seen in the simulations look visually similar to those observed in experiments on bacterial and other active suspensions, a quantitative comparison with experimental data is needed to evaluate the practical applicability of the theory.<a id="xref-fn-5-1" class="xref-fn" href="#fn-5"><sup>*</sup></a> To contribute toward closing the gap between theory and experiments, we performed systematic parameter scans, comparing fluid flow statistics measured in our simulations with recently reported experimental data for two different classes of active fluids: (<em>i</em>) concentrated quasi-3D suspensions of swimming <em>B. subtilis</em> bacteria (<a id="xref-ref-35-14" class="xref-bibr" href="#ref-35">35</a>) and (<em>ii</em>) ATP-driven microtubule networks (<a id="xref-ref-38-8" class="xref-bibr" href="#ref-38">38</a>). This analysis identified specific parameter values <span class="inline-formula" id="inline-formula-204"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>,</mml:mo></mml:mrow></mml:math></span></span> <span class="inline-formula" id="inline-formula-205"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math></span></span>, and <span class="inline-formula" id="inline-formula-206"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math></span></span> for these two paradigmatic experimental systems, demonstrating in both cases good agreement between theory and available experimental data for velocity distributions and correlation functions (<a id="xref-fig-1-2" class="xref-fig" href="#F1">Fig. S1</a>).</p><div id="sec-14" class="subsection"><h3>Bacterial Suspensions.</h3><p id="p-34">The experiments reported in ref. <a id="xref-ref-35-15" class="xref-bibr" href="#ref-35">35</a> studied dense suspensions of rod-like <em>B. subtilis</em> bacteria swimming in a quasi-3D microfluidic channel (height <span class="inline-formula" id="inline-formula-207"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>∼</mml:mo><mml:mrow><mml:mpadded width="+3.3pt"><mml:mn>80</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m, radius <span class="inline-formula" id="inline-formula-208"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>∼</mml:mo><mml:mrow><mml:mpadded width="+3.3pt"><mml:mn>750</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m). The bacterial velocity field was reconstructed from bright-field micoscopy videos using particle imaging velocimetry (PIV), and the solvent flow dynamics were measured by particle tracking velocimetry (PTV) using micrometer-sized fluorescent tracer beads. The experimental setup allowed the observation of 2D slices through the 3D velocity field, yielding data for the in-plane velocity components. From these 2D data, velocity distributions and correlation functions for bacteria and passive tracer particles were reconstructed, showing close correlations between bacterial dynamics and solvent flows. To compare the experimental measurements in ref. <a id="xref-ref-35-16" class="xref-bibr" href="#ref-35">35</a> with our 3D simulations, we mimicked the experimental setup by selecting arbitrary 2D planes in our 3D simulation volume. We then measured the in-plane velocity components and compared the numerically calculated velocity statistics with the corresponding experimental data (<a id="xref-fig-1-3" class="xref-fig" href="#F1">Fig. S1 <em>A–C</em></a>).</p><p id="p-35"><a id="xref-fig-1-4" class="xref-fig" href="#F1">Fig. S1<em>A</em></a> compares the experimentally measured velocity distribution for bacteria (open circles) and solvent tracer particles (solid circles) with the statistics of the five-parameter model for the bacterial velocity field considered in ref. <a id="xref-ref-35-17" class="xref-bibr" href="#ref-35">35</a> (black line labeled “theory”) and our generalized Navier–Stokes model (blue line). As discussed by the authors of ref. <a id="xref-ref-35-18" class="xref-bibr" href="#ref-35">35</a>, their model for the bacterial dynamics fails to capture the tails of the velocity distributions as it includes an effective fourth-order velocity potential (representing steric alignment interactions) that dominates the tails of velocity distributions in their simulations. By contrast, our generalized Navier–Stokes model accurately captures the experimentally measured Gaussian velocity probability distribution functions (PDFs) over the whole range of the available experimental data (see <a id="xref-fig-1-5" class="xref-fig" href="#F1">Fig. S1<em>C</em></a> legend for a summary of fit parameters).</p><p id="p-36"><a id="xref-fig-1-6" class="xref-fig" href="#F1">Fig. S1 <em>B</em></a> compares the equal-time (in-plane) velocity correlation functions (VCFs) for the bacteria, tracer particles, and the theories. As mentioned in ref. <a id="xref-ref-35-19" class="xref-bibr" href="#ref-35">35</a>, the VCFs for tracer particles become unreliable at large distances <span class="inline-formula" id="inline-formula-209"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>r</mml:mi><mml:mo>></mml:mo><mml:mrow><mml:mn>50</mml:mn><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>m, due to the deliberately low seeding densities of the tracer particles in these experiments. Low tracer densities were required to minimize feedback from passive tracers on the active suspension dynamics. This meant, however, that tracer particle pairs with large spatial separation <span class="inline-formula" id="inline-formula-210"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>r</mml:mi></mml:math></span></span> are significantly less frequently observed. Notwithstanding such experimental limitations, we find that the two complementary continuum models for bacterial and solvent flow yield qualitatively and quantitatively similar VCFs, correctly reflecting the typical vortex size <span class="inline-formula" id="inline-formula-211"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>∼</mml:mo><mml:mrow><mml:mn>50</mml:mn><mml:mo>−</mml:mo><mml:mrow><mml:mpadded width="+3.3pt"><mml:mn>70</mml:mn></mml:mpadded><mml:mi mathvariant="normal">μ</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>m in the negative part of the VCFs.</p><p id="p-37"><a id="xref-fig-1-7" class="xref-fig" href="#F1">Fig. S1 <em>C</em></a> compares the simulation results for the velocity autocorrelation functions (VACFs) with the corresponding experimental results at different bacterial activities (<a id="xref-ref-35-20" class="xref-bibr" href="#ref-35">35</a>) due to oxygen depletion. PTV-based VACFs were not given in ref. <a id="xref-ref-35-21" class="xref-bibr" href="#ref-35">35</a> as a specific tracer particle typically spends only a short time in the 2D field of view of the microscope before diffusing out of view. As evident from <a id="xref-fig-1-8" class="xref-fig" href="#F1">Fig. S1 <em>C</em></a>, our generalized Navier–Stokes model can correctly reproduce the functional form of the PIV-based VACFs at high (green), intermediate (blue), and low (magenta) activities. With regard to a future quantitative characterization and classification of active fluids, we find it encouraging that a three-parameter model can account for the key velocity statistics reported in ref. <a id="xref-ref-35-22" class="xref-bibr" href="#ref-35">35</a>.</p><p id="p-38">Another interesting experimental observation reported but not rationalized in ref. <a id="xref-ref-35-23" class="xref-bibr" href="#ref-35">35</a> is the linear scaling of kinetic energy and enstrophy (figure 2d in ref. <a id="xref-ref-35-24" class="xref-bibr" href="#ref-35">35</a>). We note that such a linear scaling is consistent with the Beltrami-like flows found in our simulations, which satisfy <span class="inline-formula" id="inline-formula-212"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>∝</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:math></span></span> (<a id="xref-fig-3-9" class="xref-fig" href="#F3">Fig. 2 <em>C</em> and <em>D</em></a> of the main text). Generally, we hope that the good agreement between the generalized Navier–Stokes model defined in <a id="xref-disp-formula-1-18" class="xref-disp-formula" href="#disp-formula-1">Eqs. <strong>1</strong></a> of the main text and the experimental data for <em>B. subtilis</em> will stimulate additional 3D measurements on bacterial suspension in the near future, to test the Beltrami flow prediction directly and to explore the possibility of spontaneous mirror-symmetry breaking in detail.</p></div><div id="sec-15" class="subsection"><h3>ATP-Driven Microtubule Networks.</h3><p id="p-39">The generalized Navier–Stokes equations defined in <a id="xref-disp-formula-1-19" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text merely assume that active stresses in an otherwise passive fluid lead to scale selection. They should therefore also apply to other types of active fluids, including ATP-driven microtubule suspensions. To test this hypothesis, we performed additional simulations to compare our model with experimental data published recently in ref. <a id="xref-ref-38-9" class="xref-bibr" href="#ref-38">38</a>. The authors of this study report VCF data for tracer particles diffusing in fluid flows driven by predominantly extensile microtubule–kinesin bundles that form complex, approximately isotropic networks. The flows created by these active networks exhibit turbulent vortices on scales larger than the typical bundle-bending radii, suggesting that these flows are generated by the collective extensile dynamics of the bundles. <a id="xref-fig-1-9" class="xref-fig" href="#F1">Fig. S1 <em>D</em></a> shows the experimental VCF data reported in ref. <a id="xref-ref-38-10" class="xref-bibr" href="#ref-38">38</a> (colored circles and lines) and a fit (black solid line) obtained from simulations of our generalized Navier–Stokes model, using the parameters specified in the legend.<a id="xref-fn-6-1" class="xref-fn" href="#fn-6"><sup>†</sup></a> Different ATP-controlled activity levels can be reproduced in our model through a trivial adjustment of the velocity scale <span class="inline-formula" id="inline-formula-213"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math></span></span> . Strikingly, changing the activity does not significantly alter the shape of the VCF after rescaling by kinetic energy for both bacterial and active microtubule suspensions (<a id="xref-fig-1-10" class="xref-fig" href="#F1">Fig. S1 <em>B</em> and <em>D</em></a>), corroborating the idea that active suspensions can be robustly described by the leading-order terms of stress tensor expansions. More generally, the good agreement between the generalized Navier–Stokes model and two microscopically distinct active fluids supports the view that the main results and predictions of our study apply to a broad range of pattern-forming nonequilibrium fluids.</p></div></div><div class="section supplementary-material" id="sec-16"><h2 class="">Model Justification</h2><p id="p-40" class="flushleft">The generalized Navier–Stokes model defined in <a id="xref-disp-formula-1-20" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text describes the solvent flows in active suspensions through effective higher-order stresses that account phenomenologically for the experimentally observed flow-pattern scale selection (<a id="xref-ref-35-25" class="xref-bibr" href="#ref-35">35</a>, <a id="xref-ref-38-11" class="xref-bibr" href="#ref-38">38</a>). By contrast, derivations of effective higher-order continuum models (88) often focus on the complementary problem of obtaining a higher-order equation for the orientational order-parameter fields of the active component by ignoring nonlinear inertial effects in the fluid. The generalized Navier–Stokes <a id="xref-disp-formula-1-21" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> in the main text avoid the latter oversimplification and assume a linear response between orientational order-parameter fields and ambient fluid (<a id="xref-ref-72-3" class="xref-bibr" href="#ref-72">72</a>).</p><div id="sec-17" class="subsection"><h3>Inertial Effects.</h3><p id="p-41">The standard argument for neglecting inertial terms in the Navier–Stokes equations for dilute microbial suspensions is based on the typical length scale and swimming speed of a single bacterium and the viscosity of water (<a id="xref-ref-89-1" class="xref-bibr" href="#ref-89">89</a>). This argument is certainly correct for very low bacterial volume fractions when collective dynamical effects are negligible. The argument becomes invalid, however, at sufficiently high concentrations when collective effects dominate the suspension dynamics. There are three reasons for this: First, collective locomotion speeds of bacteria at moderate-to-high concentrations ( <span class="inline-formula" id="inline-formula-214"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>></mml:mo><mml:mrow><mml:mn>5</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> volume fraction) can be more than an order of magnitude larger than the self-propulsion speed of an individual bacterium (<a id="xref-ref-72-4" class="xref-bibr" href="#ref-72">72</a>). Second, the typical scale of a vortex is one or two magnitudes larger than the length of an individual cell (<a id="xref-ref-34-8" class="xref-bibr" href="#ref-34">34</a>, <a id="xref-ref-35-26" class="xref-bibr" href="#ref-35">35</a>). Third, recent studies (<a id="xref-ref-90-1" class="xref-bibr" href="#ref-90">90</a>, <a id="xref-ref-91-1" class="xref-bibr" href="#ref-91">91</a>) show that the collective dynamics can reduce the effective viscosity of a bacterial suspension by an order of magnitude. The combination of these three effects means that, in the collective swimming regime, the effective Reynolds number can approach 1 and, hence, inertial terms cannot a priori be neglected.</p></div><div id="sec-18" class="subsection"><h3>Active Stresses.</h3><p id="p-42">At the fundamental continuum level, the fluid dynamics of a passive solvent are described by the Navier–Stokes equations. The effect of the active components on the fluid can be written as a collection of point forces entering on the right-hand side (rhs) of the Navier–Stokes equations. An important feature of intrinsically driven active suspensions (in contrast to externally forced colloidal suspensions) is given by the experimentally confirmed fact that bacteria and other microbes achieve locomotion through shape changes that require zero net force (<a id="xref-ref-89-2" class="xref-bibr" href="#ref-89">89</a>, <a id="xref-ref-92-1" class="xref-bibr" href="#ref-92">92</a><a id="xref-ref-93-1" class="xref-down-link" href="#ref-93"><span>⇓</span></a>–<a id="xref-ref-94-1" class="xref-bibr" href="#ref-94">94</a>). Considering, for instance, the simplest force dipole model, this means that forces can be paired, so that monopole contributions cancel and the leading-order contributions entering the Navier–Stokes equations take the form of divergences of stress tensors (<a id="xref-ref-92-2" class="xref-bibr" href="#ref-92">92</a>).</p></div><div id="sec-19" class="subsection"><h3>Slaving and Linear Response.</h3><p id="p-43">In sufficiently dense suspensions, the net effective stress tensor depends on the collective dynamics, which are typically characterized through orientational order-parameter fields. If the fluid flows generated by the collective action of the active constituents dominate over their individual swimming dynamics, then one can assume that tensorial order parameters become “slaved” to the solvent dynamics. In this case, assuming a linear and isotropic response, one arrives at closure conditions for polar and nematic order parameters <em><strong>p</strong></em> and <em><strong>Q</strong></em> of the form <span class="disp-formula" id="disp-formula-12"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mi>𝒑</mml:mi><mml:mo>=</mml:mo><mml:mstyle displaystyle="true"><mml:munderover><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mi mathvariant="normal">∞</mml:mi></mml:munderover></mml:mstyle><mml:msub><mml:mi>p</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:msup><mml:mo>∇</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:mi>𝒗</mml:mi><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:mi mathvariant="bold-italic">Q</mml:mi><mml:mo>=</mml:mo><mml:mstyle displaystyle="true"><mml:munderover><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mi mathvariant="normal">∞</mml:mi></mml:munderover></mml:mstyle><mml:msub><mml:mi>q</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:msup><mml:mo>∇</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mo mathvariant="bold">∇</mml:mo><mml:mi>𝒗</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>+</mml:mo></mml:msup></mml:mrow></mml:math></span><span class="disp-formula-label">[S1]</span></span> where the superscript “ <span class="inline-formula" id="inline-formula-215"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>+</mml:mo></mml:math></span></span> ” denotes the traceless symmetric tensor part. Further assuming that the conventional viscous stresses and the active stresses are additive, that the leading active stresses are linear in the order parameters <em><strong>p</strong></em> and <em><strong>Q</strong></em>, and by truncating at order <span class="inline-formula" id="inline-formula-216"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>n</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 3</mml:mn></mml:mrow></mml:math></span></span>, one is led to a sixth-order stress tensor as in <a id="xref-disp-formula-3-3" class="xref-disp-formula" href="#disp-formula-3">Eq. <strong>1c</strong></a> of the main text. This reasoning can be formalized systematically through diagrammatic expansion techniques (<a id="xref-ref-57-2" class="xref-bibr" href="#ref-57">57</a>).<a id="xref-fn-7-1" class="xref-fn" href="#fn-7"><sup>‡</sup></a> The successful comparison with the experiments above suggests that such truncated stress tensors can capture essential aspects of the collective dynamics.</p></div></div><div class="section supplementary-material" id="sec-20"><h2 class="">Numerical Methods</h2><p id="p-44" class="flushleft">Numerical simulations were performed using a Fourier spectral method with a 3/2 rule to avoid aliasing when calculating the advection term through collocation (<a id="xref-ref-85-1" class="xref-bibr" href="#ref-85">85</a>). We typically used grids of size <span class="inline-formula" id="inline-formula-217"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mn>243</mml:mn><mml:mn>3</mml:mn></mml:msup></mml:math></span></span> . Larger resolutions are not necessary, because the highest-order term in <a id="xref-disp-formula-1-22" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> provides strong damping <span class="inline-formula" id="inline-formula-218"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>∼</mml:mo><mml:msup><mml:mi>k</mml:mi><mml:mn>6</mml:mn></mml:msup></mml:mrow></mml:math></span></span> at large wavenumbers <span class="inline-formula" id="inline-formula-219"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math></span></span> . We find solutions to <a id="xref-disp-formula-1-23" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> by using the Hodge decomposition (<a id="xref-ref-86-1" class="xref-bibr" href="#ref-86">86</a>) and solving the corresponding vorticity-vector potential problem <span class="disp-formula" id="disp-formula-13"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo>+</mml:mo><mml:mo>∇</mml:mo></mml:mrow><mml:mo>∧</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>∧</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>4</mml:mn></mml:msup><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>6</mml:mn></mml:msup><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S2a]</span></span><span class="disp-formula" id="disp-formula-14"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mrow><mml:mi>𝝍</mml:mi></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S2b]</span></span> where <span class="inline-formula" id="inline-formula-220"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝝎</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>∧</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> is the vorticity and <span class="inline-formula" id="inline-formula-221"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝍</mml:mi></mml:math></span></span> is the divergence-free vector potential related to the velocity field through <span class="inline-formula" id="inline-formula-222"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝒗</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>∧</mml:mo><mml:mi>𝝍</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> . <a id="xref-disp-formula-13-1" class="xref-disp-formula" href="#disp-formula-13">Eq. <strong>S2</strong></a> are evolved in time, using a third-order semiimplicit backward differentiation time-stepping scheme (<a id="xref-ref-86-2" class="xref-bibr" href="#ref-86">86</a>), calculating the nonlinear advection term explicitly while inverting the linear part implicitly. The discretized <a id="xref-disp-formula-13-2" class="xref-disp-formula" href="#disp-formula-13">Eq. <strong>S2</strong></a> maintain <span class="inline-formula" id="inline-formula-223"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝎</mml:mi></mml:math></span></span> and <span class="inline-formula" id="inline-formula-224"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝍</mml:mi></mml:math></span></span> divergence-free in exact arithmetic. To avoid slow buildup of nonzero divergence when working in double-precision arithmetic, numerical solutions are projected onto the divergence-free manifold during the time stepping. To calculate the energy transfer tables in <a id="xref-fig-4-18" class="xref-fig" href="#F4">Fig. 3 <em>C</em> and <em>G</em></a> efficiently, we decompose the velocity field into Littlewood–Paley components and use collocation.</p><div id="sec-21" class="subsection"><h3>Vorticity-Vector Potential Formulation.</h3><p id="p-45">We find the vorticity-vector potential formulation of the system <a id="xref-disp-formula-1-24" class="xref-disp-formula" href="#disp-formula-1">1</a> of the main text on the three-torus, <span class="inline-formula" id="inline-formula-225"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msup><mml:mi>𝕋</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:msup><mml:mi>S</mml:mi><mml:mn>1</mml:mn></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mi>S</mml:mi><mml:mn>1</mml:mn></mml:msup><mml:mo>×</mml:mo><mml:msup><mml:mi>S</mml:mi><mml:mn>1</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:math></span></span> . This is a manifold without boundary, so the usual Hodge decomposition applies (<a id="xref-ref-86-3" class="xref-bibr" href="#ref-86">86</a>). For a vector field <em><strong>v</strong></em>, the decomposition takes the form <span class="disp-formula" id="disp-formula-15"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo>∇</mml:mo><mml:mi>ϕ</mml:mi></mml:mrow><mml:mo>+</mml:mo><mml:mo>∇</mml:mo></mml:mrow><mml:mo>∧</mml:mo><mml:mi>𝝍</mml:mi></mml:mrow><mml:mo>+</mml:mo><mml:mi mathvariant="bold-italic">H</mml:mi></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S3]</span></span>where <em><strong>H</strong></em> is an element of the 3D space of harmonic vector fields, which implies on a torus that <span class="inline-formula" id="inline-formula-226"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi mathvariant="bold-italic">H</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:msub><mml:mi>H</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mrow><mml:mover accent="true"><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi>H</mml:mi><mml:mi>y</mml:mi></mml:msub><mml:mrow><mml:mover accent="true"><mml:mi>𝒚</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi>H</mml:mi><mml:mi>z</mml:mi></mml:msub><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="normal">z</mml:mi><mml:mo stretchy="false">^</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> for some constants <span class="inline-formula" id="inline-formula-227"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>H</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>H</mml:mi><mml:mi>y</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>H</mml:mi><mml:mi>z</mml:mi></mml:msub></mml:mrow></mml:math></span></span> . For divergence-free flows, we have <span class="inline-formula" id="inline-formula-228"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mpadded width="+1.7pt"><mml:mi>ϕ</mml:mi></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span> and hence <span class="inline-formula" id="inline-formula-229"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>ϕ</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span> because <span class="inline-formula" id="inline-formula-230"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>𝕋</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math></span></span> is compact and without boundary. In this case, we interpret <em><strong>H</strong></em> as the fluid center of mass motion. By working in the center of mass frame, we are left with <span class="disp-formula" id="disp-formula-16"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>∧</mml:mo><mml:mi>𝝍</mml:mi></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S4]</span></span> Taking the curl of <a id="xref-disp-formula-1-25" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text gives <span class="disp-formula" id="disp-formula-17"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>⋅</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>⋅</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mi mathvariant="script">L</mml:mi><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S5]</span></span> where <span class="inline-formula" id="inline-formula-231"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝝎</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>∧</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> and <span class="disp-formula" id="disp-formula-18"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi mathvariant="script">L</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msup><mml:mo>∇</mml:mo><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msup><mml:mo>∇</mml:mo><mml:mn>6</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S6]</span></span></p><p id="p-46">We can simplify the advection term by using the following standard identity <span class="disp-formula" id="disp-formula-19"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mo>∇</mml:mo><mml:mo>∧</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>∧</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>𝝎</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>⋅</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>⋅</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mo>⋅</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>⋅</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo>⋅</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>⋅</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S7]</span></span> because both fields are divergence-free. This identity speeds up the computational cost of evaluating the advection term, as it requires fewer applications of the fast Fourier transform. Because the divergence of <span class="inline-formula" id="inline-formula-232"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝍</mml:mi></mml:math></span></span> does not affect the decomposition S3, we fix the gauge and work with a divergence-free vector potential. In this case, taking the curl of <a id="xref-disp-formula-16-1" class="xref-disp-formula" href="#disp-formula-16">Eq. <strong>S4</strong></a> gives <span class="inline-formula" id="inline-formula-233"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mpadded width="+1.7pt"><mml:mi>𝝍</mml:mi></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> . In summary, in the vorticity-vector potential formulation, the equations of motion read <span class="disp-formula" id="disp-formula-20"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo>+</mml:mo><mml:mo>∇</mml:mo></mml:mrow><mml:mo>∧</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>∧</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mi mathvariant="script">L</mml:mi><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S8a]</span></span><span class="disp-formula" id="disp-formula-21"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mrow><mml:mi>𝝍</mml:mi></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S8b]</span></span></p></div><div id="sec-22" class="subsection"><h3>Characteristic Scales.</h3><p id="p-47">The linear growth rate associated with the operator <span class="inline-formula" id="inline-formula-234"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">L</mml:mi></mml:math></span></span> is <span class="inline-formula" id="inline-formula-235"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>σ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:msup><mml:mi>k</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> . For <span class="inline-formula" id="inline-formula-236"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mpadded><mml:mo><</mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span>, the most unstable mode <span class="inline-formula" id="inline-formula-237"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>k</mml:mi><mml:mi>m</mml:mi></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mi>argmax</mml:mi><mml:mi>σ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> is well approximated by the maximum <span class="inline-formula" id="inline-formula-238"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>k</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math></span></span> of the function <span class="inline-formula" id="inline-formula-239"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mi>σ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>/</mml:mo><mml:mpadded width="+1.7pt"><mml:msup><mml:mi>k</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, yielding <span class="disp-formula" id="disp-formula-22"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msubsup><mml:mi>k</mml:mi><mml:mi>p</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:mo>−</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:mfrac></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S9]</span></span> We prefer to express characteristic scales in terms of <span class="inline-formula" id="inline-formula-240"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>k</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math></span></span> (instead of <span class="inline-formula" id="inline-formula-241"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>k</mml:mi><mml:mi>m</mml:mi></mml:msub></mml:math></span></span>) as this simplifies subsequent formulas, and <span class="inline-formula" id="inline-formula-242"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>k</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math></span></span> is generally close to <span class="inline-formula" id="inline-formula-243"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>k</mml:mi><mml:mi>m</mml:mi></mml:msub></mml:math></span></span> for sufficiently small injection bandwidths. The associated wavelength is <span class="inline-formula" id="inline-formula-244"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>λ</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 2</mml:mn><mml:mi>π</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:msub><mml:mi>k</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:mrow></mml:mrow></mml:math></span></span> . This wavelength represents two vortices, one with positive and one with negative vorticity, each of characteristic diameter <span class="disp-formula" id="disp-formula-23"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">Λ</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:msub><mml:mi>λ</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mn>2</mml:mn></mml:mfrac><mml:mo>=</mml:mo><mml:mrow><mml:mi>π</mml:mi><mml:msqrt><mml:mfrac><mml:mrow><mml:mn>2</mml:mn><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:mfrac></mml:msqrt></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S10]</span></span> The corresponding growth rate is <span class="disp-formula" id="disp-formula-24"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mi>σ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>k</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:mn>2</mml:mn><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:mfrac><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo>−</mml:mo><mml:mfrac><mml:msubsup><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn><mml:mn>2</mml:mn></mml:msubsup><mml:mrow><mml:mn>4</mml:mn><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mrow></mml:mfrac></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span></span> which defines the time scale <span class="disp-formula" id="disp-formula-25"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi>τ</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mrow><mml:mi>σ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>k</mml:mi><mml:mi>p</mml:mi></mml:msub><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mfrac></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S11]</span></span> <span class="inline-formula" id="inline-formula-245"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Λ</mml:mi></mml:math></span></span> and <span class="inline-formula" id="inline-formula-246"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>τ</mml:mi></mml:math></span></span> can be used to define a characteristic circulation speed <span class="inline-formula" id="inline-formula-247"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>U</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 2</mml:mn><mml:mi>π</mml:mi><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mi>τ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> .</p></div><div id="sec-23" class="subsection"><h3>Nondimensionalization in Numerical Simulations.</h3><p id="p-48">For simulation purposes, we rescale time and space as <span class="inline-formula" id="inline-formula-248"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>t</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-249"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝒙</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mi>L</mml:mi><mml:mrow><mml:mover accent="true"><mml:mi>𝒙</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, where <span class="inline-formula" id="inline-formula-250"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math></span></span> is the domain size. We further introduce <span class="inline-formula" id="inline-formula-251"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝝍</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:msub><mml:mi>ψ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mrow><mml:mover accent="true"><mml:mi>𝝍</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-252"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝝎</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:msub><mml:mi>ω</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mrow><mml:mover accent="true"><mml:mi>𝝎</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> . <a id="xref-disp-formula-20-1" class="xref-disp-formula" href="#disp-formula-20">Eqs. <strong>S8</strong></a> then become (after dropping the tildes) <span class="disp-formula" id="disp-formula-26"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mi>T</mml:mi></mml:mfrac><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mfrac><mml:msub><mml:mi>ψ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mfrac><mml:mo>∇</mml:mo></mml:mrow></mml:mrow><mml:mo>∧</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>∧</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mfrac><mml:mrow><mml:mo>[</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mfrac><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mfrac><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>4</mml:mn></mml:msup><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mfrac><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mi>L</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mfrac><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>6</mml:mn></mml:msup><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S12a]</span></span><span class="disp-formula" id="disp-formula-27"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mfrac><mml:msub><mml:mi>ψ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mfrac><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mrow><mml:mi>𝝍</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:msub><mml:mi>ω</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S12b]</span></span></p><p id="p-49">Setting <span class="inline-formula" id="inline-formula-253"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>ω</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mi>T</mml:mi></mml:mfrac></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-254"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>ψ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mfrac><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mi>T</mml:mi></mml:mfrac></mml:mrow></mml:math></span></span>, and <span class="inline-formula" id="inline-formula-255"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>T</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mfrac><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mfrac></mml:mrow></mml:math></span></span>, and defining <span class="inline-formula" id="inline-formula-256"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>γ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mfrac><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mi>L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mfrac></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-257"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>γ</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mfrac><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mi>L</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mfrac></mml:mrow></mml:math></span></span>, we obtain the nondimensionalized equations <span class="disp-formula" id="disp-formula-28"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo>+</mml:mo><mml:mo>∇</mml:mo></mml:mrow><mml:mo>∧</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>∧</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:msub><mml:mi>γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>4</mml:mn></mml:msup><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi>γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>6</mml:mn></mml:msup><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S13a]</span></span><span class="disp-formula" id="disp-formula-29"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mrow><mml:mi>𝝍</mml:mi></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S13b]</span></span></p></div><div id="sec-24" class="subsection"><h3>Time Discretization.</h3><p id="p-50">For the time stepping, we use the third-order semiimplicit backward differentiation scheme introduced by Ascher et al. (<a id="xref-ref-87-1" class="xref-bibr" href="#ref-87">87</a>), <span class="disp-formula" id="disp-formula-30"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mfrac><mml:mn>11</mml:mn><mml:mn>6</mml:mn></mml:mfrac><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>t</mml:mi><mml:mi mathvariant="script">L</mml:mi></mml:mrow></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:msup><mml:mi>𝝎</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:msup><mml:mi>𝝎</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mfrac><mml:mn>3</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:msup><mml:mi>𝝎</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mn>3</mml:mn></mml:mfrac><mml:msup><mml:mi>𝝎</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>t</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:msup><mml:mi>N</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mn>3</mml:mn><mml:msup><mml:mi>N</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:msup><mml:mi>N</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S14a]</span></span> where <span class="disp-formula" id="disp-formula-31"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mi mathvariant="script">L</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:msub><mml:mi>γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msup><mml:mo>∇</mml:mo><mml:mn>4</mml:mn></mml:msup></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi>γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msup><mml:mo>∇</mml:mo><mml:mn>6</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S14b]</span></span><span class="disp-formula" id="disp-formula-32"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mi>N</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝝍</mml:mi><mml:mo>,</mml:mo><mml:mi>𝝎</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mo>∇</mml:mo></mml:mrow><mml:mo>∧</mml:mo><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>∧</mml:mo><mml:mi>𝒗</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S14c]</span></span> recalling that <span class="inline-formula" id="inline-formula-258"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝒗</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>∧</mml:mo><mml:mi>𝝍</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> . We then solve for the vector potential <span class="disp-formula" id="disp-formula-33"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:msup><mml:mi>𝝍</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:msup><mml:mi>𝝎</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S15]</span></span></p></div><div id="sec-25" class="subsection"><h3>Space Discretization.</h3><p id="p-51">We work with a Fourier spectral method. If we denote the rhs of <a id="xref-disp-formula-30-1" class="xref-disp-formula" href="#disp-formula-30">Eq. <strong>S14a</strong></a> by <span class="inline-formula" id="inline-formula-259"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="normal">b</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math></span></span>, then the update formula for the Fourier coefficients reads <span class="disp-formula" id="disp-formula-34"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mi>𝝎</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mfrac><mml:msup><mml:mi mathvariant="normal">b</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S16a]</span></span><span class="disp-formula" id="disp-formula-35"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mi>𝝍</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:msup><mml:mi>k</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mfrac><mml:msup><mml:mi>𝝎</mml:mi><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S16b]</span></span> where <span class="inline-formula" id="inline-formula-260"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mn> 11</mml:mn><mml:mo>/</mml:mo><mml:mn>6</mml:mn></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>t</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msup><mml:mi>k</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi>γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi>γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>6</mml:mn></mml:msup></mml:mrow></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> . In addition, we always have <span class="inline-formula" id="inline-formula-261"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝝎</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mpadded width="+1.7pt"><mml:mi>𝒌</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 0</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span>, because the vorticity is defined by taking the curl of <em><strong>v</strong></em>, and we can set <span class="inline-formula" id="inline-formula-262"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>𝝍</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mpadded width="+1.7pt"><mml:mi>𝒌</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 0</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn> 0</mml:mn></mml:mrow></mml:math></span></span> by gauge freedom. Because both <span class="inline-formula" id="inline-formula-263"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝎</mml:mi></mml:math></span></span> and <span class="inline-formula" id="inline-formula-264"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝍</mml:mi></mml:math></span></span> are divergence-free, we have to impose <span class="disp-formula" id="disp-formula-36"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mi>𝒌</mml:mi><mml:mo>⋅</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mrow><mml:mi>𝒌</mml:mi><mml:mo>⋅</mml:mo><mml:mi>𝝍</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mn>0.</mml:mn></mml:mrow></mml:mrow></mml:math></span><span class="disp-formula-label">[S17]</span></span></p><p id="p-52">If we initiate the simulations with divergence-free fields, then the update rule S16 preserves this property in exact arithmetic. Nevertheless, numerical errors will always build up after several iterations in double-precision arithmetic. We project back onto the divergence-free manifold every several steps by mimicking gauge transformation. Suppose <span class="inline-formula" id="inline-formula-265"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝎</mml:mi></mml:math></span></span> has small divergence that we want to remove. We set <span class="inline-formula" id="inline-formula-266"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>f</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mo>⋅</mml:mo><mml:mi>𝝎</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> . We then solve the Poisson equation, <span class="disp-formula" id="disp-formula-37"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mo>∇</mml:mo><mml:mn>2</mml:mn></mml:msup><mml:mi>λ</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mi>f</mml:mi></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S18]</span></span> and subsequently remove the divergence from <span class="inline-formula" id="inline-formula-267"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝝎</mml:mi></mml:math></span></span> according to <span class="disp-formula" id="disp-formula-38"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>→</mml:mo><mml:mrow><mml:mi>𝝎</mml:mi><mml:mo>−</mml:mo><mml:mrow><mml:mo>∇</mml:mo><mml:mi>λ</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S19]</span></span></p></div><div id="sec-26" class="subsection"><h3>Calculation of Shell Interactions.</h3><p id="p-53">We next explain how the energy spectra, fluxes, and energy flow tables are calculated numerically (<a id="xref-fig-4-19" class="xref-fig" href="#F4">Fig. 3</a> of the main text and <a id="xref-fig-6-3" class="xref-fig" href="#F6">Fig. S3</a>). To establish notation, we first recall the derivation of the energy balance equation as given in Waleffe (<a id="xref-ref-19-11" class="xref-bibr" href="#ref-19">19</a>). Expanding the velocity and pressure fields in Fourier series, <a id="xref-disp-formula-1-26" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text give <span class="disp-formula" id="disp-formula-39"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>k</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>⋅</mml:mo><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mn>0</mml:mn></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span></span><span class="disp-formula" id="disp-formula-40"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:msub><mml:mi>k</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mi>p</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mi>𝒒</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒑</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mi>𝒌</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="bold-italic">p</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>q</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒒</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span></span> where <span class="inline-formula" id="inline-formula-268"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>4</mml:mn></mml:msup></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msub><mml:mi mathvariant="normal">Γ</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:msup><mml:mi>k</mml:mi><mml:mn>6</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> . By projecting on helical modes one finds <a id="xref-disp-formula-7-1" class="xref-disp-formula" href="#disp-formula-7">Eq. <strong>3</strong></a> of the main text. To find the equation for the energy in mode <em><strong>k</strong></em> we relabel <span class="inline-formula" id="inline-formula-269"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>𝒌</mml:mi></mml:mpadded><mml:mo>→</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>𝒌</mml:mi></mml:mrow></mml:mrow></mml:math></span></span> in the second equation, multiply by <span class="inline-formula" id="inline-formula-270"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span>, sum over <span class="inline-formula" id="inline-formula-271"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i</mml:mi></mml:math></span></span>, and use the incompressibility condition to get <span class="disp-formula" id="disp-formula-41"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>𝒌</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mi>𝒌</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒑</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒒</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="bold-italic">p</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>q</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒒</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span></span> where we dropped the explicit time dependence for ease of notation. We now add the above equation to its complex conjugate and use <span class="inline-formula" id="inline-formula-272"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mi>𝒌</mml:mi></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mover accent="true"><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mo>¯</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span>, <span class="disp-formula" id="disp-formula-42"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:msup><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mi>𝒌</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒑</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒒</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="bold-italic">p</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>q</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒒</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mtext mathvariant="normal">c.c.</mml:mtext></mml:mrow></mml:mrow></mml:math></span></span></p><p id="p-54">The energy in shell <span class="inline-formula" id="inline-formula-273"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:math></span></span> is defined as <span class="disp-formula" id="disp-formula-43"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:msup><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mrow><mml:mi>𝒗</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S20]</span></span></p><p id="p-55">The corresponding evolution equation is <span class="disp-formula" id="disp-formula-44"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mi>p</mml:mi></mml:munder></mml:mstyle><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mi>q</mml:mi></mml:munder></mml:mstyle><mml:mrow><mml:mrow><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span></span>where <span class="disp-formula" id="disp-formula-45"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mfrac><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:mfrac><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mstyle scriptlevel="+1"><mml:mtable columnspacing="0.4em" rowspacing="0.2ex"><mml:mtr><mml:mtd><mml:mtext mathvariant="normal">shells</mml:mtext></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:mtd></mml:mtr></mml:mtable></mml:mstyle></mml:munder></mml:mstyle><mml:mrow><mml:msub><mml:mi>δ</mml:mi><mml:mrow><mml:mrow><mml:mi>𝒌</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒉</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒒</mml:mi></mml:mrow><mml:mo>,</mml:mo><mml:mn>𝟎</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>v</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="bold-italic">p</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>q</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒒</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mtext mathvariant="normal">c.c.</mml:mtext></mml:mrow></mml:mrow></mml:math></span></span><span class="disp-formula" id="disp-formula-46"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mstyle scriptlevel="+1"><mml:mtable columnspacing="0.4em" rowspacing="0.2ex"><mml:mtr><mml:mtd><mml:mtext mathvariant="normal">shells</mml:mtext></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:mtd></mml:mtr></mml:mtable></mml:mstyle></mml:munder></mml:mstyle><mml:mrow><mml:msub><mml:mi>δ</mml:mi><mml:mrow><mml:mrow><mml:mi>𝒌</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒉</mml:mi><mml:mo>+</mml:mo><mml:mi>𝒒</mml:mi></mml:mrow><mml:mo>,</mml:mo><mml:mn>𝟎</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>v</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="bold-italic">p</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>q</mml:mi><mml:mi>j</mml:mi></mml:msub><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒒</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>v</mml:mi><mml:mi>i</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S21]</span></span></p><p id="p-56">We used the fact that the sum over all modes can be split into radial and shell parts <span class="inline-formula" id="inline-formula-274"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msub><mml:mo largeop="true" symmetric="true">∑</mml:mo><mml:mi>𝒌</mml:mi></mml:msub><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:msub><mml:mo largeop="true" symmetric="true">∑</mml:mo><mml:mi>k</mml:mi></mml:msub><mml:mrow><mml:msub><mml:mo largeop="true" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:msub><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> and we defined <span class="disp-formula" id="disp-formula-47"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mstyle scriptlevel="+1"><mml:mtable columnspacing="0.4em" rowspacing="0.2ex"><mml:mtr><mml:mtd><mml:mtext mathvariant="normal">shells</mml:mtext></mml:mtd></mml:mtr><mml:mtr><mml:mtd><mml:mrow><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:mtd></mml:mtr></mml:mtable></mml:mstyle></mml:munder></mml:mstyle><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒒</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒉</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>≡</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒉</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>p</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒒</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>q</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo>,</mml:mo><mml:mi>𝒒</mml:mi><mml:mo>′</mml:mo><mml:mo>,</mml:mo><mml:mi mathvariant="bold-italic">p</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span></span></p><p id="p-57">Symmetrizing as <span class="inline-formula" id="inline-formula-275"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>t</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mrow><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> gives the usual energy balance equation (<a id="xref-ref-1-3" class="xref-bibr" href="#ref-1">1</a>, <a id="xref-ref-19-12" class="xref-bibr" href="#ref-19">19</a>) <span class="disp-formula" id="disp-formula-48"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S22a]</span></span> where <span class="disp-formula" id="disp-formula-49"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mi>p</mml:mi></mml:munder></mml:mstyle><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mi>q</mml:mi></mml:munder></mml:mstyle><mml:mrow><mml:mi>t</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S22b]</span></span></p><p id="p-58">The quantity <span class="inline-formula" id="inline-formula-276"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> is the energy transfer into the shell <span class="inline-formula" id="inline-formula-277"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math></span></span> due to all triad interactions with shells <span class="inline-formula" id="inline-formula-278"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math></span></span> and <span class="inline-formula" id="inline-formula-279"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>q</mml:mi></mml:math></span></span> at time <span class="inline-formula" id="inline-formula-280"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>t</mml:mi></mml:math></span></span>, and <span class="inline-formula" id="inline-formula-281"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> is the energy transfer into the shell <span class="inline-formula" id="inline-formula-282"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math></span></span> due to all triad interactions. The energy flux across <span class="inline-formula" id="inline-formula-283"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math></span></span> is defined as <span class="disp-formula" id="disp-formula-50"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">Π</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo>></mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span><span class="disp-formula-label">[S23]</span></span> and represents energy flow from wavenumbers below <span class="inline-formula" id="inline-formula-284"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math></span></span> to those above it at time <span class="inline-formula" id="inline-formula-285"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>t</mml:mi></mml:math></span></span> .</p><p id="p-59">Projecting the velocity field onto the helical modes reveals additional substructure (<a id="xref-ref-19-13" class="xref-bibr" href="#ref-19">19</a>). The energy spectrum splits into two helical components <span class="disp-formula" id="disp-formula-51"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mrow><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:msup><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mrow><mml:msup><mml:mi>u</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S24]</span></span></p><p id="p-60">The energy flow and energy flux split into eight components, one for each possible assignment of the helicity index over the triads <span class="disp-formula" id="disp-formula-52"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>t</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:munderover><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mn>8</mml:mn></mml:munderover><mml:mrow><mml:msup><mml:mi>t</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>i</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:munderover><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mn>8</mml:mn></mml:munderover><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>i</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mrow><mml:mi mathvariant="normal">Π</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:munderover><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mn>8</mml:mn></mml:munderover><mml:mrow><mml:msup><mml:mi mathvariant="normal">Π</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>i</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S25]</span></span> where we follow the binary ordering as in ref. <a id="xref-ref-19-14" class="xref-bibr" href="#ref-19">19</a> ( <span class="inline-formula" id="inline-formula-286"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>i</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 1</mml:mn></mml:mrow></mml:math></span></span> corresponds to <span class="inline-formula" id="inline-formula-287"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>+</mml:mo></mml:mrow></mml:math></span></span>, <span class="inline-formula" id="inline-formula-288"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>i</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mn> 2</mml:mn></mml:mrow></mml:math></span></span> to <span class="inline-formula" id="inline-formula-289"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>+</mml:mo><mml:mo></mml:mo><mml:mo>−</mml:mo></mml:mrow></mml:math></span></span>, etc.). The energy conservation for helical shells becomes <span class="disp-formula" id="disp-formula-53"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mo>+</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S26]</span></span> where <span class="inline-formula" id="inline-formula-290"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:msubsup><mml:mo largeop="true" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mn>4</mml:mn></mml:msubsup><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>i</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-291"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:msubsup><mml:mo largeop="true" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>5</mml:mn></mml:mrow><mml:mn>8</mml:mn></mml:msubsup><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>i</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> .</p><p id="p-61">We now consider time averages. For a quantity <span class="inline-formula" id="inline-formula-292"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">O</mml:mi></mml:math></span></span> we define <span class="disp-formula" id="disp-formula-54"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mi mathvariant="script">O</mml:mi><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo movablelimits="false">lim</mml:mo><mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow><mml:mo>→</mml:mo><mml:mi mathvariant="normal">∞</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mi mathvariant="normal">Δ</mml:mi></mml:mfrac><mml:mrow><mml:msubsup><mml:mo largeop="true" symmetric="true">∫</mml:mo><mml:mi mathvariant="script">R</mml:mi><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow></mml:msubsup><mml:mrow><mml:mi>d</mml:mi><mml:mpadded width="+1.7pt"><mml:mi>t</mml:mi></mml:mpadded><mml:mi mathvariant="script">O</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S27]</span></span> In practice, <span class="inline-formula" id="inline-formula-293"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">R</mml:mi></mml:math></span></span> is the relaxation time for the system, and <span class="inline-formula" id="inline-formula-294"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Δ</mml:mi></mml:math></span></span> is the length of the averaging interval. In the stationary regime, the averages become time independent, which we denote by <span class="disp-formula" id="disp-formula-55"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mo> </mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi>t</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>;</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi>t</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span><span class="disp-formula-label">[S28]</span></span> and <span class="disp-formula" id="disp-formula-56"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mi>ϵ</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>t</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mn>0.</mml:mn></mml:mrow></mml:math></span><span class="disp-formula-label">[S29]</span></span> Taking averages reduces <a id="xref-disp-formula-48-1" class="xref-disp-formula" href="#disp-formula-48">Eq. <strong>S22a</strong></a> to <span class="disp-formula" id="disp-formula-57"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi>T</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S30]</span></span> Thus, in the stationary regime, the energy flux can be derived from the spectrum according to <span class="disp-formula" id="disp-formula-58"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi mathvariant="normal">Π</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo>></mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mn>2</mml:mn><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S31]</span></span> Similarly, for the helical projections we get <span class="disp-formula" id="disp-formula-59"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:msup><mml:mi>T</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S32]</span></span> and <span class="disp-formula" id="disp-formula-60"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:msup><mml:mi mathvariant="normal">Π</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo>></mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mn>2</mml:mn><mml:mi>ξ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S33]</span></span></p><p id="p-62">We numerically estimate the discrete stationary spectra <span class="inline-formula" id="inline-formula-295"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:math></span></span> as follows. At each time step <span class="inline-formula" id="inline-formula-296"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math></span></span>, we calculate <span class="disp-formula" id="disp-formula-61"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msubsup><mml:mi>ϵ</mml:mi><mml:mi>n</mml:mi><mml:mo>±</mml:mo></mml:msubsup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:msup><mml:mrow><mml:mo stretchy="false">|</mml:mo><mml:mrow><mml:msubsup><mml:mi>u</mml:mi><mml:mi>n</mml:mi><mml:mo>±</mml:mo></mml:msubsup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>𝒌</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S34]</span></span> We then apply the discrete version of the formula S27, <span class="disp-formula" id="disp-formula-62"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mi mathvariant="normal">Δ</mml:mi></mml:mfrac><mml:mrow><mml:munderover><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>n</mml:mi><mml:mo>=</mml:mo><mml:mi mathvariant="script">R</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow></mml:munderover><mml:mrow><mml:msubsup><mml:mi>ϵ</mml:mi><mml:mi>n</mml:mi><mml:mo>±</mml:mo></mml:msubsup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S35]</span></span> where we choose <span class="inline-formula" id="inline-formula-297"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">R</mml:mi></mml:math></span></span> to be the relaxation time of the energy and helicity time series and the averaging interval <span class="inline-formula" id="inline-formula-298"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Δ</mml:mi></mml:math></span></span> is taken long enough to ensure convergence of statistical observables (<a id="xref-fig-5-3" class="xref-fig" href="#F5">Fig. S2</a>). We recover the helical flux contributions using formula <a id="xref-disp-formula-59-1" class="xref-disp-formula" href="#disp-formula-59"><strong>S32</strong></a> and the total flux from <span class="inline-formula" id="inline-formula-299"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:mi mathvariant="normal">Π</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:msup><mml:mi mathvariant="normal">Π</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:msup><mml:mi mathvariant="normal">Π</mml:mi><mml:mo>−</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> .</p><p id="p-63">For plotting purposes, we connect the discrete energy spectra to their continuous definitions. The mean kinetic energy in the system of size <span class="inline-formula" id="inline-formula-300"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math></span></span> is <span class="disp-formula" id="disp-formula-63"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mi>E</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mi>k</mml:mi></mml:munder></mml:mstyle><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mfrac><mml:mrow><mml:msub><mml:mo largeop="true" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo>∈</mml:mo><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>k</mml:mi></mml:mrow></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:msub><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>k</mml:mi></mml:mrow></mml:mfrac><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>k</mml:mi></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S36]</span></span> where <span class="inline-formula" id="inline-formula-301"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mpadded width="+1.7pt"><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mi>n</mml:mi><mml:mfrac><mml:mrow><mml:mn>2</mml:mn><mml:mi>π</mml:mi></mml:mrow><mml:mi>L</mml:mi></mml:mfrac></mml:mrow></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>n</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 1</mml:mn><mml:mo>,</mml:mo><mml:mn>2,3</mml:mn><mml:mo>,</mml:mo><mml:mo>⋯</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:math></span></span> and <span class="inline-formula" id="inline-formula-302"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mpadded width="+1.7pt"><mml:mi>k</mml:mi></mml:mpadded></mml:mrow><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:mn>2</mml:mn><mml:mi>π</mml:mi></mml:mrow><mml:mi>L</mml:mi></mml:mfrac></mml:mrow></mml:math></span></span> . In the limit <span class="inline-formula" id="inline-formula-303"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>→</mml:mo><mml:mi mathvariant="normal">∞</mml:mi></mml:mrow></mml:math></span></span>, we recover the continuous definition of the energy spectrum <span class="disp-formula" id="disp-formula-64"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:msubsup><mml:mo largeop="true" symmetric="true">∫</mml:mo><mml:mn>0</mml:mn><mml:mi mathvariant="normal">∞</mml:mi></mml:msubsup><mml:mrow><mml:mi>e</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:mi>d</mml:mi><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S37]</span></span><span class="disp-formula" id="disp-formula-65"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:mi>e</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo movablelimits="false">lim</mml:mo><mml:mrow><mml:mi>L</mml:mi><mml:mo>→</mml:mo><mml:mi mathvariant="normal">∞</mml:mi></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo>∈</mml:mo><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>k</mml:mi></mml:mrow></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:munder></mml:mstyle><mml:mfrac><mml:mrow><mml:mi>ϵ</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>k</mml:mi></mml:mrow></mml:mfrac></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S38]</span></span> When plotting energy spectra, we thus use the discrete (finite box size) approximation of the continuous definition <span class="disp-formula" id="disp-formula-66"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mfrac><mml:mrow><mml:msub><mml:mo largeop="true" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo>∈</mml:mo><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mo>,</mml:mo><mml:mrow><mml:mrow><mml:mover accent="true"><mml:mi>k</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mo>+</mml:mo><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>k</mml:mi></mml:mrow></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:mrow><mml:msup><mml:mi>ϵ</mml:mi><mml:mo>±</mml:mo></mml:msup><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>′</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow><mml:mo stretchy="false">⟩</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant="script">R</mml:mi><mml:mo>,</mml:mo><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi><mml:mi>k</mml:mi></mml:mrow></mml:mfrac></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S39]</span></span></p><p id="p-64">The spectral domains I, II, and III in <a id="xref-fig-2-16" class="xref-fig" href="#F2">Fig. 1 <em>A</em></a> of the main text have finite thickness. To calculate the energy flow between the regions, we have to sum over shells contained in a given region. For example, <span class="disp-formula" id="disp-formula-67"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi mathvariant="normal">I</mml:mi><mml:mo>,</mml:mo><mml:mi>II</mml:mi><mml:mo>,</mml:mo><mml:mi>III</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>∈</mml:mo><mml:mtext mathvariant="normal">region I</mml:mtext></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>p</mml:mi><mml:mo>∈</mml:mo><mml:mtext mathvariant="normal">region II</mml:mtext></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>q</mml:mi><mml:mo>∈</mml:mo><mml:mtext mathvariant="normal">region III</mml:mtext></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mi>t</mml:mi><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math></span><span class="disp-formula-label">[S40]</span></span> is the energy flow into region I due to all triad interactions with modes supported on regions II and III. To calculate <span class="inline-formula" id="inline-formula-304"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow></mml:msub></mml:math></span></span>, where <span class="inline-formula" id="inline-formula-305"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mo>,</mml:mo><mml:mi>P</mml:mi><mml:mo>,</mml:mo><mml:mi>Q</mml:mi></mml:mrow><mml:mo>∈</mml:mo><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mi mathvariant="normal">I</mml:mi><mml:mo>,</mml:mo><mml:mtext mathvariant="normal">II</mml:mtext><mml:mo>,</mml:mo><mml:mtext mathvariant="normal">III</mml:mtext><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:mrow></mml:math></span></span>, consider the following integral, <span class="disp-formula" id="disp-formula-68"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mo largeop="true" symmetric="true">∫</mml:mo><mml:mrow><mml:mrow><mml:msup><mml:mi>d</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mpadded width="+1.7pt"><mml:mi>x</mml:mi></mml:mpadded><mml:msub><mml:mi>𝒗</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:mrow><mml:mo>⋅</mml:mo><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msub><mml:mi>𝒗</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:mo>⋅</mml:mo><mml:mo>∇</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msub><mml:mi>𝒗</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S41]</span></span> where <span class="inline-formula" id="inline-formula-306"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>𝒗</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:math></span></span> is the Littlewood–Paley component corresponding to region <span class="inline-formula" id="inline-formula-307"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math></span></span> and similarly for <span class="inline-formula" id="inline-formula-308"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>𝒗</mml:mi><mml:mi>P</mml:mi></mml:msub></mml:math></span></span> and <span class="inline-formula" id="inline-formula-309"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>𝒗</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:math></span></span> . Specifically, <span class="inline-formula" id="inline-formula-310"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>𝒗</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:math></span></span> is obtained from <em><strong>v</strong></em> by keeping only the Fourier amplitudes supported on the region <span class="inline-formula" id="inline-formula-311"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math></span></span>, etc. In terms of Fourier series, we find that <span class="disp-formula" id="disp-formula-69"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>k</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mtext mathvariant="normal">region</mml:mtext><mml:mi>K</mml:mi></mml:mrow></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>p</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mtext mathvariant="normal">region</mml:mtext><mml:mi>P</mml:mi></mml:mrow></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mstyle displaystyle="true"><mml:munder><mml:mo largeop="true" movablelimits="false" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>q</mml:mi><mml:mo>∈</mml:mo><mml:mrow><mml:mtext mathvariant="normal">region</mml:mtext><mml:mi>Q</mml:mi></mml:mrow></mml:mrow></mml:munder></mml:mstyle><mml:mrow><mml:mrow><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S42]</span></span> where <span class="inline-formula" id="inline-formula-312"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>k</mml:mi><mml:mo>,</mml:mo><mml:mi>p</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:math></span></span> is given by <a id="xref-disp-formula-46-1" class="xref-disp-formula" href="#disp-formula-46">Eq. <strong>S21</strong></a>. We symmetrize in the last to indexes, by defining <span class="disp-formula" id="disp-formula-70"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msub><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>Q</mml:mi><mml:mi>P</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>.</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S43]</span></span></p><p id="p-65">To split <span class="inline-formula" id="inline-formula-313"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow></mml:msub></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:msubsup><mml:mo largeop="true" symmetric="true">∑</mml:mo><mml:mrow><mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow><mml:mn>8</mml:mn></mml:msubsup><mml:msubsup><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>i</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:mrow></mml:math></span></span> into the contributions from the eight types of helical triad interactions, it is convenient to consider equivalent integral representations of the form <span class="disp-formula" id="disp-formula-71"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:mrow><mml:mo>−</mml:mo><mml:mrow><mml:mo largeop="true" symmetric="true">∫</mml:mo><mml:mrow><mml:mrow><mml:msup><mml:mi>d</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mpadded width="+1.7pt"><mml:mi>x</mml:mi></mml:mpadded><mml:msubsup><mml:mi>𝒗</mml:mi><mml:mi>K</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:msubsup></mml:mrow><mml:mo>⋅</mml:mo><mml:mrow><mml:mo stretchy="false">[</mml:mo><mml:mrow><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msubsup><mml:mi>𝒗</mml:mi><mml:mi>P</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub></mml:msubsup><mml:mo>⋅</mml:mo><mml:mo>∇</mml:mo></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:msubsup><mml:mi>𝒗</mml:mi><mml:mi>Q</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:msubsup></mml:mrow><mml:mo stretchy="false">]</mml:mo></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S44]</span></span> where <span class="inline-formula" id="inline-formula-314"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mi>𝒗</mml:mi><mml:mi>K</mml:mi><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:msubsup></mml:math></span></span> is constructed from <span class="inline-formula" id="inline-formula-315"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>𝒗</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:math></span></span> by projection onto modes with helicity index <span class="inline-formula" id="inline-formula-316"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:mpadded><mml:mo>∈</mml:mo><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:mo>±</mml:mo><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:mrow></mml:math></span></span>, etc. The symmetrization <span class="disp-formula" id="disp-formula-72"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block"><mml:mrow><mml:mrow><mml:msubsup><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mo>=</mml:mo><mml:mrow><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mrow><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mo>+</mml:mo><mml:msubsup><mml:mrow><mml:mover accent="true"><mml:mi mathvariant="script">T</mml:mi><mml:mo stretchy="false">∼</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>K</mml:mi><mml:mi>Q</mml:mi><mml:mi>P</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub></mml:mrow></mml:msubsup></mml:mrow><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:mrow></mml:mrow><mml:mo>,</mml:mo></mml:mrow></mml:math></span><span class="disp-formula-label">[S45]</span></span> represents the energy flow into modes with helicity index <span class="inline-formula" id="inline-formula-317"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub></mml:math></span></span> lying in region <span class="inline-formula" id="inline-formula-318"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math></span></span>, due to interactions with modes with helicity indexes <span class="inline-formula" id="inline-formula-319"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub></mml:math></span></span> and <span class="inline-formula" id="inline-formula-320"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:math></span></span> in regions <span class="inline-formula" id="inline-formula-321"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi></mml:math></span></span> and <span class="inline-formula" id="inline-formula-322"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Q</mml:mi></mml:math></span></span>, respectively. Expressions of the form S44 are calculated, at a given time step, by collocation: Evaluate the three projections in the physical domain on an equally spaced grid, perform the point-wise multiplication, go back to Fourier space, and integrate by reading off the value of the zeroth Fourier mode. All these operations are done efficiently using the fast Fourier transform. To calculate the stationary energy flows <span class="inline-formula" id="inline-formula-323"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">⟨</mml:mo><mml:msubsup><mml:mi mathvariant="script">T</mml:mi><mml:mrow><mml:mi>K</mml:mi><mml:mi>P</mml:mi><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:msub><mml:mi>s</mml:mi><mml:mi>K</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>P</mml:mi></mml:msub><mml:msub><mml:mi>s</mml:mi><mml:mi>Q</mml:mi></mml:msub></mml:mrow></mml:msubsup><mml:mo stretchy="false">⟩</mml:mo></mml:mrow></mml:math></span></span> shown in the energy flow tables (<a id="xref-fig-4-20" class="xref-fig" href="#F4">Fig. 3 <em>C</em> and <em>G</em></a> in the main text and <a id="xref-fig-6-4" class="xref-fig" href="#F6">Fig. S3 <em>C</em></a>), we adopt a procedure analogous to that used to estimate the energy spectra.</p></div></div><div class="section supplementary-material" id="sec-27"><h2 class="">Cascade Characteristics</h2><p id="p-66" class="flushleft">The phenomenology of the inverse cascade in passive 2D turbulent flows is often characterized in terms of vortex mergers. By contrast, in active fluids with a well-defined vortex scale <span class="inline-formula" id="inline-formula-324"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Λ</mml:mi></mml:math></span></span> and a small injection bandwidth <span class="inline-formula" id="inline-formula-325"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mi mathvariant="normal">S</mml:mi></mml:msub></mml:math></span></span>, vortex mergers are suppressed by the dominant pattern-scale selection processes. This raises the question how the inverse cascade, which can transport a considerable fraction of energy to larger scales (<a id="xref-fig-7-2" class="xref-fig" href="#F7">Fig. S4 <em>E</em></a>), manifests itself in the flow-field structure of a 3D active fluid. Our simulations demonstrate that pattern-forming nonequilibrium fluids can achieve energy transport to larger scales by forming chain-like vortex complexes that propagate through the fluid (<a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614721114/-/DCSupplemental/pnas.1614721114.sm01.mov" class="in-nw">Movie S1</a>). To illustrate this phenomenon in more detail, <a id="xref-fig-7-3" class="xref-fig" href="#F7">Fig. S4 <em>A–D</em></a> shows two horizontal 2D <span class="inline-formula" id="inline-formula-326"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow></mml:math></span></span> slices of a large 3D simulation domain (size <span class="inline-formula" id="inline-formula-327"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mpadded width="+1.7pt"><mml:mi>L</mml:mi></mml:mpadded><mml:mo>=</mml:mo><mml:mrow><mml:mn> 32</mml:mn><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:mrow></mml:math></span></span>) at a fixed representative time for an active fluid with small active bandwidth <span class="inline-formula" id="inline-formula-328"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mtext>𝐒</mml:mtext></mml:msub></mml:math></span></span> (using the same parameters as in the main text). In <a id="xref-fig-7-4" class="xref-fig" href="#F7">Fig. S4 <em>A</em> and <em>B</em></a>, the flow field is visualized through the perpendicular <span class="inline-formula" id="inline-formula-329"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>z</mml:mi></mml:math></span></span> component of the vorticity, <span class="inline-formula" id="inline-formula-330"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ω</mml:mi><mml:mi>z</mml:mi></mml:msub></mml:math></span></span>, and in <a id="xref-fig-7-5" class="xref-fig" href="#F7">Fig. S4 <em>C</em> and <em>D</em></a> through the local helicity <span class="inline-formula" id="inline-formula-331"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi></mml:math></span></span> . The thin black lines in <a id="xref-fig-7-6" class="xref-fig" href="#F7">Fig. S4 <em>A</em> and <em>B</em></a> indicate in-plane portions of filaments consisting of alternating vortices that correspond to 3D filamentous clusters of high helicity in <a id="xref-fig-7-7" class="xref-fig" href="#F7">Fig. S4 <em>C</em> and <em>D</em></a>. The kinetic energy transported to large scales manifests itself as the formation and motion of such vortex chains (<a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614721114/-/DCSupplemental/pnas.1614721114.sm01.mov" class="in-nw">Movie S1</a>). These results illustrate that the helicity-driven 3D inverse cascade in active fluids is distinctly different from the energy-driven 2D inverse cascade in passive fluids.</p><p id="p-67">A detailed spectral characterization of this helicity-driven 3D active turbulence can be obtained by analyzing the upward energy transfer into region I in Fourier space (defined in <a id="xref-fig-2-17" class="xref-fig" href="#F2">Fig. 1 <em>A</em></a> of the main text). <a id="xref-fig-7-8" class="xref-fig" href="#F7">Fig. S4 <em>E</em></a> shows the absolute value of the energy flux for an active fluid with small bandwidth <span class="inline-formula" id="inline-formula-332"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>κ</mml:mi><mml:mtext>𝐒</mml:mtext></mml:msub></mml:math></span></span> for three different simulation domain sizes. In the case of an inertial energy cascade, one expects the flux to be independent of the wavenumber <span class="inline-formula" id="inline-formula-333"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math></span></span>, at least over some range. In such inertial ranges there is no dissipation of energy, just purely nonlinear redistribution. In our simulations, we see that the energy flux, upon entering the spectral region I from above (i.e., coming from region II), is at first noninertial with an approximate <span class="inline-formula" id="inline-formula-334"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi>k</mml:mi><mml:mn>3</mml:mn></mml:msup></mml:math></span></span> scaling, implying that the transfer is assisted by strong dissipation effects. At very large scales <span class="inline-formula" id="inline-formula-335"><span class="mathjax mml-math"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>≫</mml:mo><mml:mi mathvariant="normal">Λ</mml:mi></mml:mrow></mml:math></span></span>, however, the flux develops a plateau, indicating that the transfer becomes mostly inertial. Increasing the simulation domain size broadens the plateau and increases the magnitude of the flux that reaches the plateau. Interestingly, at these very large scales, the model defined in <a id="xref-disp-formula-1-27" class="xref-disp-formula" href="#disp-formula-1">Eq. <strong>1</strong></a> of the main text effectively reduces to the classical Navier–Stokes equations.</p></div><div class="section ack" id="ack-1"><h2>Acknowledgments</h2><p id="p-68">We thank Aden Forrow, Francis Woodhouse, Luca Biferale, Moritz Linkmann, and Michael Tribelsky for helpful discussions.</p></div><div class="section fn-group" id="fn-group-1"><h2>Footnotes</h2><ul class="pnas-footnotes"><li class="corresp" id="corresp-1"><a class="rev-xref" href="#xref-corresp-1-1">↵</a><sup>1</sup>To whom correspondence should be addressed. Email: <span class="em-link"><span class="em-addr">dunkel{at}math.mit.edu</span></span>.</li></ul><ul><li class="fn-other" id="fn-2"><p id="p-2">Author contributions: J.S. and J.D. designed research; J.S. performed research; and J.S. and J.D. wrote the paper.</p></li><li class="fn-conflict" id="fn-3"><p id="p-69">The authors declare no conflict of interest.</p></li><li class="fn-other" id="fn-4"><p id="p-70">This article is a PNAS Direct Submission.</p></li><li class="fn-other" id="fn-5"><p id="p-71"><a class="rev-xref" href="#xref-fn-5-1">↵</a>*We thank an anonymous reviewer for insisting on a detailed comparison with experiments. The comparison presented here benefited from the fact that one of us (J.D.) was involved in the original analysis of the experimental data in ref. <a id="xref-ref-35-27" class="xref-bibr" href="#ref-35">35</a>.</p></li><li class="fn-other" id="fn-6"><p id="p-72"><a class="rev-xref" href="#xref-fn-6-1">↵</a><sup>†</sup>These parameters agree well with the typical velocity, length, and time scales expected from microbial suspensions.</p></li><li class="fn-other" id="fn-7"><p id="p-73"><a class="rev-xref" href="#xref-fn-7-1">↵</a><sup>‡</sup>Structurally similar sixth-order hydrodynamic equations are obtained by systematically reducing magneto-hydrodynamic models in the vicinity of flow bifurcations (Geoffrey Vasil, personal communication).</p></li><li class="fn-supplementary-material" id="fn-8"><p id="p-74">This article contains supporting information online at <a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614721114/-/DCSupplemental" class="in-nw">www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614721114/-/DCSupplemental</a>.</p></li></ul></div><div class="license" id="license-1"><p id="p-3">Freely available online through the PNAS open access option.</p><p id="p-4"></p></div><div class="section ref-list" id="ref-list-1"><h2>References</h2><ol class="cit-list"><li><a class="rev-xref-ref" href="#xref-ref-1-1" title="View reference 1 in text" id="ref-1">↵</a><div class="cit ref-cit ref-book" id="cit-114.9.2119.1"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Frisch</span> <span class="cit-name-given-names">U</span></span></li></ol><cite> (<span class="cit-pub-date">2004</span>) <span class="cit-source">Turbulence</span> (<span class="cit-publ-name">Cambridge Univ Press</span>, <span class="cit-publ-loc">Cambridge, UK</span>).</cite></div>.<div class="cit-extra"></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-2-1" title="View reference 2 in text" id="ref-2">↵</a><div class="cit ref-cit ref-book" id="cit-114.9.2119.2"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">McComb</span> <span class="cit-name-given-names">WD</span></span></li></ol><cite> (<span class="cit-pub-date">1990</span>) <span class="cit-source">The Physics of Fluid Turbulence</span> (<span class="cit-publ-name">Oxford Science Publications</span>, <span class="cit-publ-loc">New York</span>).</cite></div>.<div class="cit-extra"></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-3-1" title="View reference 3 in text" id="ref-3">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.3"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Higdon</span> <span class="cit-name-given-names">JC</span></span></li></ol><cite> (<span class="cit-pub-date">1984</span>) <span class="cit-article-title">Density fluctuations in the interstellar medium: Evidence for anisotropic magnetogasdynamic turbulence. I - Model and astrophysical sites</span>. <abbr class="cit-jnl-abbrev">Astrophys J</abbr> <span class="cit-vol">285</span>:<span class="cit-fpage">109</span>–<span class="cit-lpage">123</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DAstrophys%2BJ%26rft.volume%253D285%26rft.spage%253D109%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-4-1" title="View reference 4 in text" id="ref-4">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.4" data-doi="10.1051/0004-6361/200912437"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Federrath</span> <span class="cit-name-given-names">C</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Roman-Duval</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Klessen</span> <span class="cit-name-given-names">RS</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Schmidt</span> <span class="cit-name-given-names">W</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Mac Low</span> <span class="cit-name-given-names">M-M</span></span></li></ol><cite> (<span class="cit-pub-date">2010</span>) <span class="cit-article-title">Comparing the statistics of interstellar turbulence in simulations and observations-Solenoidal versus compressive turbulence forcing</span>. <abbr class="cit-jnl-abbrev">Astron Astrophys</abbr> <span class="cit-vol">512</span>:<span class="cit-fpage">A81</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DAstron%2BAstrophys%26rft.volume%253D512%26rft.spage%253DA81%26rft_id%253Dinfo%253Adoi%252F10.1051%252F0004-6361%252F200912437%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1051/0004-6361/200912437&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-5-1" title="View reference 5 in text" id="ref-5">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.5"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Bruno</span> <span class="cit-name-given-names">R</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Carbone</span> <span class="cit-name-given-names">V</span></span></li></ol><cite> (<span class="cit-pub-date">2013</span>) <span class="cit-article-title">The solar wind as a turbulence laboratory</span>. <abbr class="cit-jnl-abbrev">Living Rev Solar Phys</abbr> <span class="cit-vol">10</span>:<span class="cit-fpage">2</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DLiving%2BRev%2BSolar%2BPhys%26rft.volume%253D10%26rft.spage%253D2%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-6-1" title="View reference 6 in text" id="ref-6">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.6"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Nastrom</span> <span class="cit-name-given-names">GD</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Gage</span> <span class="cit-name-given-names">KS</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Jasperson</span> <span class="cit-name-given-names">WH</span></span></li></ol><cite> (<span class="cit-pub-date">1984</span>) <span class="cit-article-title">Kinetic energy spectrum of large-and mesoscale atmospheric processes</span>. <abbr class="cit-jnl-abbrev">Nature</abbr> <span class="cit-vol">310</span>:<span class="cit-fpage">36</span>–<span class="cit-lpage">38</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DNature%26rft.volume%253D310%26rft.spage%253D36%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-7-1" title="View reference 7 in text" id="ref-7">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.7" data-doi="10.1017/S0022112099004851"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Lindborg</span> <span class="cit-name-given-names">E</span></span></li></ol><cite> (<span class="cit-pub-date">1999</span>) <span class="cit-article-title">Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?</span> <abbr class="cit-jnl-abbrev">J Fluid Mech</abbr> <span class="cit-vol">388</span>:<span class="cit-fpage">259</span>–<span class="cit-lpage">288</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DJ%2BFluid%2BMech%26rft.volume%253D388%26rft.spage%253D259%26rft_id%253Dinfo%253Adoi%252F10.1017%252FS0022112099004851%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1017/S0022112099004851&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-8-1" title="View reference 8 in text" id="ref-8">↵</a><div class="cit ref-cit ref-book" id="cit-114.9.2119.8"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Thorpe</span> <span class="cit-name-given-names">S</span></span></li></ol><cite> (<span class="cit-pub-date">2005</span>) <span class="cit-source">The Turbulent Ocean</span> (<span class="cit-publ-name">Cambridge Univ Press</span>, <span class="cit-publ-loc">Cambridge, UK</span>).</cite></div>.<div class="cit-extra"></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-9-1" title="View reference 9 in text" id="ref-9">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.9" data-doi="10.1093/icesjms/fsv071"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Enriquez</span> <span class="cit-name-given-names">RM</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Taylor</span> <span class="cit-name-given-names">JR</span></span></li></ol><cite> (<span class="cit-pub-date">2015</span>) <span class="cit-article-title">Numerical simulations of the competition between wind-driven mixing and surface heating in triggering spring phytoplankton blooms</span>. <abbr class="cit-jnl-abbrev">ICES J Mar Sci</abbr> <span class="cit-vol">72</span>(<span class="cit-issue">6</span>):<span class="cit-fpage">1926</span>–<span class="cit-lpage">1941</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DICES%2BJ%2BMar%2BSci%26rft_id%253Dinfo%253Adoi%252F10.1093%252Ficesjms%252Ffsv071%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiaWNlc2ptcyI7czo1OiJyZXNpZCI7czo5OiI3Mi82LzE5MjYiO3M6NDoiYXRvbSI7czoyMToiL3BuYXMvMTE0LzkvMjExOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=" class="cit-ref-sprinkles cit-ref-sprinkles-ijlink"><span><span class="cit-reflinks-abstract">Abstract</span><span class="cit-sep cit-reflinks-variant-name-sep">/</span><span class="cit-reflinks-full-text"><span class="free-full-text">FREE </span>Full Text</span></span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-10-1" title="View reference 10 in text" id="ref-10">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.10" data-doi="10.1126/science.1219417"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Taylor</span> <span class="cit-name-given-names">JR</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Stocker</span> <span class="cit-name-given-names">R</span></span></li></ol><cite> (<span class="cit-pub-date">2012</span>) <span class="cit-article-title">Trade-offs of chemotactic foraging in turbulent water</span>. <abbr class="cit-jnl-abbrev">Science</abbr> <span class="cit-vol">338</span>(<span class="cit-issue">6107</span>):<span class="cit-fpage">675</span>–<span class="cit-lpage">679</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DTaylor%26rft.auinit1%253DJ.%2BR.%26rft.volume%253D338%26rft.issue%253D6107%26rft.spage%253D675%26rft.epage%253D679%26rft.atitle%253DTrade-Offs%2Bof%2BChemotactic%2BForaging%2Bin%2BTurbulent%2BWater%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1219417%26rft_id%253Dinfo%253Apmid%252F23118190%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzMzgvNjEwNy82NzUiO3M6NDoiYXRvbSI7czoyMToiL3BuYXMvMTE0LzkvMjExOS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=" class="cit-ref-sprinkles cit-ref-sprinkles-ijlink"><span><span class="cit-reflinks-abstract">Abstract</span><span class="cit-sep cit-reflinks-variant-name-sep">/</span><span class="cit-reflinks-full-text"><span class="free-full-text">FREE </span>Full Text</span></span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-11-1" title="View reference 11 in text" id="ref-11">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.11" data-doi="10.1017/S0022112097005338"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Noullez</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Wallace</span> <span class="cit-name-given-names">G</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Lempert</span> <span class="cit-name-given-names">W</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Miles</span> <span class="cit-name-given-names">RB</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Frisch</span> <span class="cit-name-given-names">U</span></span></li></ol><cite> (<span class="cit-pub-date">1997</span>) <span class="cit-article-title">Transverse velocity increments in turbulent flow using the RELIEF technique</span>. <abbr class="cit-jnl-abbrev">J Fluid Mech</abbr> <span class="cit-vol">339</span>:<span class="cit-fpage">287</span>–<span class="cit-lpage">307</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DJ%2BFluid%2BMech%26rft.volume%253D339%26rft.spage%253D287%26rft_id%253Dinfo%253Adoi%252F10.1017%252FS0022112097005338%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1017/S0022112097005338&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-12-1" title="View reference 12 in text" id="ref-12">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.12"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Lewis</span> <span class="cit-name-given-names">GS</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Swinney</span> <span class="cit-name-given-names">HL</span></span></li></ol><cite> (<span class="cit-pub-date">1999</span>) <span class="cit-article-title">Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow</span>. <abbr class="cit-jnl-abbrev">Phys Rev E</abbr> <span class="cit-vol">59</span>(<span class="cit-issue">5</span>):<span class="cit-fpage">5457</span>–<span class="cit-lpage">5467</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BE%26rft.volume%253D59%26rft.spage%253D5457%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-13-1" title="View reference 13 in text" id="ref-13">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.13"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Xu</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Bourgoin</span> <span class="cit-name-given-names">M</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Ouellette</span> <span class="cit-name-given-names">NT</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Bodenschatz</span> <span class="cit-name-given-names">E</span></span></li></ol><cite> (<span class="cit-pub-date">2006</span>) <span class="cit-article-title">High order Lagrangian velocity statistics in turbulence</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">96</span>:<span class="cit-fpage">024503</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DXu%26rft.auinit1%253DH.%26rft.volume%253D96%26rft.issue%253D2%26rft.spage%253D024503%26rft.epage%253D024503%26rft.atitle%253DHigh%2Border%2BLagrangian%2Bvelocity%2Bstatistics%2Bin%2Bturbulence.%26rft_id%253Dinfo%253Apmid%252F16486587%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=16486587&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-14-1" title="View reference 14 in text" id="ref-14">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.14"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Kolmogorov</span> <span class="cit-name-given-names">AN</span></span></li></ol><cite> (<span class="cit-pub-date">1941</span>) <span class="cit-article-title">The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers</span>. <abbr class="cit-jnl-abbrev">Dokl Akad Nauk SSSR</abbr> <span class="cit-vol">30</span>:<span class="cit-fpage">301</span>–<span class="cit-lpage">305</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DDokl%2BAkad%2BNauk%2BSSSR%26rft.volume%253D30%26rft.spage%253D301%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-15-1" title="View reference 15 in text" id="ref-15">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.15"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Kolmogorov</span> <span class="cit-name-given-names">AN</span></span></li></ol><cite> (<span class="cit-pub-date">1941</span>) <span class="cit-article-title">On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid</span>. <abbr class="cit-jnl-abbrev">)</abbr> <abbr class="cit-jnl-abbrev">Dokl Akad Nauk SSSR</abbr> <span class="cit-vol">31</span>:<span class="cit-fpage">538</span>–<span class="cit-lpage">540</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253D%2529%26rft.volume%253D31%26rft.spage%253D538%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-16-1" title="View reference 16 in text" id="ref-16">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.16"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Kolmogorov</span> <span class="cit-name-given-names">AN</span></span></li></ol><cite> (<span class="cit-pub-date">1941</span>) <span class="cit-article-title">Dissipation of energy in locally isotropic turbulence</span>. <abbr class="cit-jnl-abbrev">Dokl Akad Nauk SSSR</abbr> <span class="cit-vol">32</span>:<span class="cit-fpage">16</span>–<span class="cit-lpage">18</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DDokl%2BAkad%2BNauk%2BSSSR%26rft.volume%253D32%26rft.spage%253D16%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-17-1" title="View reference 17 in text" id="ref-17">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.17" data-doi="10.1063/1.1762301"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Kraichnan</span> <span class="cit-name-given-names">RH</span></span></li></ol><cite> (<span class="cit-pub-date">1967</span>) <span class="cit-article-title">Inertial ranges in two-dimensional turbulence</span>. <abbr class="cit-jnl-abbrev">Phys Fluids</abbr> <span class="cit-vol">10</span>(<span class="cit-issue">7</span>):<span class="cit-fpage">1417</span>–<span class="cit-lpage">1423</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BFluids%26rft.volume%253D10%26rft.spage%253D1417%26rft_id%253Dinfo%253Adoi%252F10.1063%252F1.1762301%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1063/1.1762301&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-18-1" title="View reference 18 in text" id="ref-18">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.18" data-doi="10.1088/0034-4885/43/5/001"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Kraichnan</span> <span class="cit-name-given-names">RH</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Montogomery</span> <span class="cit-name-given-names">D</span></span></li></ol><cite> (<span class="cit-pub-date">1980</span>) <span class="cit-article-title">Two-dimensional turbulence</span>. <abbr class="cit-jnl-abbrev">Rep Prog Phys</abbr> <span class="cit-vol">43</span>:<span class="cit-fpage">547</span>–<span class="cit-lpage">619</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DRep%2BProg%2BPhys%26rft.volume%253D43%26rft.spage%253D547%26rft_id%253Dinfo%253Adoi%252F10.1088%252F0034-4885%252F43%252F5%252F001%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1088/0034-4885/43/5/001&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-19-1" title="View reference 19 in text" id="ref-19">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.19"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Waleffe</span> <span class="cit-name-given-names">F</span></span></li></ol><cite> (<span class="cit-pub-date">1992</span>) <span class="cit-article-title">The nature of triad interactions in homogeneous turbulence</span>. <abbr class="cit-jnl-abbrev">Phys Fluids A</abbr> <span class="cit-vol">4</span>(<span class="cit-issue">2</span>):<span class="cit-fpage">350</span>–<span class="cit-lpage">363</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BFluids%2BA%26rft.volume%253D4%26rft.spage%253D350%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-20-1" title="View reference 20 in text" id="ref-20">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.20" data-doi="10.1088/0034-4885/65/5/204"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Kellay</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldburg</span> <span class="cit-name-given-names">WI</span></span></li></ol><cite> (<span class="cit-pub-date">2002</span>) <span class="cit-article-title">Two-dimensional turbulence: A review of some recent experiments</span>. <abbr class="cit-jnl-abbrev">Rep Prog Phys</abbr> <span class="cit-vol">65</span>:<span class="cit-fpage">845</span>–<span class="cit-lpage">894</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DRep%2BProg%2BPhys%26rft.volume%253D65%26rft.spage%253D845%26rft_id%253Dinfo%253Adoi%252F10.1088%252F0034-4885%252F65%252F5%252F204%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1088/0034-4885/65/5/204&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-21-1" title="View reference 21 in text" id="ref-21">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.21"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Pumir</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Xu</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Bodenschatz</span> <span class="cit-name-given-names">E</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Grauer</span> <span class="cit-name-given-names">R</span></span></li></ol><cite> (<span class="cit-pub-date">2016</span>) <span class="cit-article-title">Single-particle motion and vortex stretching in three-dimensional turbulent flows</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">116</span>:<span class="cit-fpage">124502</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D116%26rft.spage%253D124502%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-22-1" title="View reference 22 in text" id="ref-22">↵</a><div class="cit ref-cit ref-web" id="cit-114.9.2119.22"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Fefferman</span> <span class="cit-name-given-names">CL</span></span></li></ol><cite> (<span class="cit-pub-date">2012</span>) <span class="cit-comment">Existence and smoothness of Navier-Stokes equations. AvailableAt <a href="https://web.archive.org/web/20180714115531/http://www.claymath.org/millennium-problems/navier--stokes-equation" class="in-nw">www.claymath.org/millennium-problems/navier–stokes-equation</a>. Accessed January 24, 2017</span>.</cite></div>.<div class="cit-extra"></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-23-1" title="View reference 23 in text" id="ref-23">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.23" data-doi="10.1017/S0022112073001837"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Kraichnan</span> <span class="cit-name-given-names">RH</span></span></li></ol><cite> (<span class="cit-pub-date">1973</span>) <span class="cit-article-title">Helical turbulence and absolute equilibrium</span>. <abbr class="cit-jnl-abbrev">J Fluid Mech</abbr> <span class="cit-vol">59</span>(<span class="cit-issue">4</span>):<span class="cit-fpage">745</span>–<span class="cit-lpage">752</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DJ%2BFluid%2BMech%26rft.volume%253D59%26rft.spage%253D745%26rft_id%253Dinfo%253Adoi%252F10.1017%252FS0022112073001837%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1017/S0022112073001837&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-24-1" title="View reference 24 in text" id="ref-24">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.24" data-doi="10.1103/PhysRevLett.108.164501"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Biferale</span> <span class="cit-name-given-names">L</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Musacchio</span> <span class="cit-name-given-names">S</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Toschi</span> <span class="cit-name-given-names">F</span></span></li></ol><cite> (<span class="cit-pub-date">2012</span>) <span class="cit-article-title">Inverse energy cascade in three-dimensional isotropic turbulence</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">108</span>(<span class="cit-issue">16</span>):<span class="cit-fpage">164501</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DBiferale%26rft.auinit1%253DL.%26rft.volume%253D108%26rft.issue%253D16%26rft.spage%253D164501%26rft.epage%253D164501%26rft.atitle%253DInverse%2Benergy%2Bcascade%2Bin%2Bthree-dimensional%2Bisotropic%2Bturbulence.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.108.164501%26rft_id%253Dinfo%253Apmid%252F22680722%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.108.164501&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=22680722&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-25-1" title="View reference 25 in text" id="ref-25">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.25" data-doi="10.1146/annurev-fluid-120710-101240"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Boffetta</span> <span class="cit-name-given-names">G</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Ecke</span> <span class="cit-name-given-names">RE</span></span></li></ol><cite> (<span class="cit-pub-date">2012</span>) <span class="cit-article-title">Two-dimensional turbulence</span>. <abbr class="cit-jnl-abbrev">Annu Rev Fluid Mech</abbr> <span class="cit-vol">44</span>(<span class="cit-issue">1</span>):<span class="cit-fpage">427</span>–<span class="cit-lpage">451</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DAnnu%2BRev%2BFluid%2BMech%26rft.volume%253D44%26rft.spage%253D427%26rft_id%253Dinfo%253Adoi%252F10.1146%252Fannurev-fluid-120710-101240%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1146/annurev-fluid-120710-101240&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-26-1" title="View reference 26 in text" id="ref-26">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.26"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Danilov</span> <span class="cit-name-given-names">SD</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Gurarie</span> <span class="cit-name-given-names">D</span></span></li></ol><cite> (<span class="cit-pub-date">2000</span>) <span class="cit-article-title">Quasi-two-dimensional turbulence</span>. <abbr class="cit-jnl-abbrev">Phys Usp</abbr> <span class="cit-vol">170</span>:<span class="cit-fpage">921</span>–<span class="cit-lpage">968</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BUsp%26rft.volume%253D170%26rft.spage%253D921%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-27-1" title="View reference 27 in text" id="ref-27">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.27" data-doi="10.1017/S0022112069000991"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Moffatt</span> <span class="cit-name-given-names">HK</span></span></li></ol><cite> (<span class="cit-pub-date">1969</span>) <span class="cit-article-title">The degree of knottedness of tangled vortex lines</span>. <abbr class="cit-jnl-abbrev">J Fluid Mech</abbr> <span class="cit-vol">35</span>(<span class="cit-issue">1</span>):<span class="cit-fpage">117</span>–<span class="cit-lpage">129</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DJ%2BFluid%2BMech%26rft.volume%253D35%26rft.spage%253D117%26rft_id%253Dinfo%253Adoi%252F10.1017%252FS0022112069000991%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1017/S0022112069000991&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-28-1" title="View reference 28 in text" id="ref-28">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.28" data-doi="10.1103/PhysRev.105.1413"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Wu</span> <span class="cit-name-given-names">CS</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Ambler</span> <span class="cit-name-given-names">E</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Hayward</span> <span class="cit-name-given-names">RW</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Hoppes</span> <span class="cit-name-given-names">DD</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Hudson</span> <span class="cit-name-given-names">RP</span></span></li></ol><cite> (<span class="cit-pub-date">1957</span>) <span class="cit-article-title">Experimental test of parity conservation in beta decay</span>. <abbr class="cit-jnl-abbrev">Phys Rev</abbr> <span class="cit-vol">105</span>:<span class="cit-fpage">1413</span>–<span class="cit-lpage">1415</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%26rft.volume%253D105%26rft.spage%253D1413%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRev.105.1413%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRev.105.1413&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-29-1" title="View reference 29 in text" id="ref-29">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.29" data-doi="10.1038/171737a0"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Watson</span> <span class="cit-name-given-names">JD</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Crick</span> <span class="cit-name-given-names">FHC</span></span></li></ol><cite> (<span class="cit-pub-date">1953</span>) <span class="cit-article-title">Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid</span>. <abbr class="cit-jnl-abbrev">Nature</abbr> <span class="cit-vol">171</span>:<span class="cit-fpage">737</span>–<span class="cit-lpage">738</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DWatson%26rft.auinit1%253DJ.%2BD.%26rft.volume%253D171%26rft.issue%253D4356%26rft.spage%253D737%26rft.epage%253D738%26rft.atitle%253DMolecular%2Bstructure%2Bof%2Bnucleic%2Bacids%253B%2Ba%2Bstructure%2Bfor%2Bdeoxyribose%2Bnucleic%2Bacid.%26rft_id%253Dinfo%253Adoi%252F10.1038%252F171737a0%26rft_id%253Dinfo%253Apmid%252F13054692%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1038/171737a0&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=13054692&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-30-1" title="View reference 30 in text" id="ref-30">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.30" data-doi="10.1126/science.1203874"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Armon</span> <span class="cit-name-given-names">S</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Efrati</span> <span class="cit-name-given-names">E</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Kupferman</span> <span class="cit-name-given-names">R</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Sharon</span> <span class="cit-name-given-names">E</span></span></li></ol><cite> (<span class="cit-pub-date">2011</span>) <span class="cit-article-title">Geometry and mechanics in the opening of chiral seed pods</span>. <abbr class="cit-jnl-abbrev">Science</abbr> <span class="cit-vol">333</span>(<span class="cit-issue">6050</span>):<span class="cit-fpage">1726</span>–<span class="cit-lpage">1730</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DArmon%26rft.auinit1%253DS.%26rft.volume%253D333%26rft.issue%253D6050%26rft.spage%253D1726%26rft.epage%253D1730%26rft.atitle%253DGeometry%2Band%2BMechanics%2Bin%2Bthe%2BOpening%2Bof%2BChiral%2BSeed%2BPods%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1203874%26rft_id%253Dinfo%253Apmid%252F21940888%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzMzMvNjA1MC8xNzI2IjtzOjQ6ImF0b20iO3M6MjE6Ii9wbmFzLzExNC85LzIxMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9" class="cit-ref-sprinkles cit-ref-sprinkles-ijlink"><span><span class="cit-reflinks-abstract">Abstract</span><span class="cit-sep cit-reflinks-variant-name-sep">/</span><span class="cit-reflinks-full-text"><span class="free-full-text">FREE </span>Full Text</span></span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-31-1" title="View reference 31 in text" id="ref-31">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.31" data-doi="10.1103/PhysRevLett.109.168105"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Woodhouse</span> <span class="cit-name-given-names">FG</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span></li></ol><cite> (<span class="cit-pub-date">2012</span>) <span class="cit-article-title">Spontaneous circulation of confined active suspensions</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">109</span>(<span class="cit-issue">16</span>):<span class="cit-fpage">168105</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D109%26rft.spage%253D168105%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.109.168105%26rft_id%253Dinfo%253Apmid%252F23215137%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.109.168105&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=23215137&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-32-1" title="View reference 32 in text" id="ref-32">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.32" data-doi="10.1103/PhysRevLett.110.268102"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Wioland</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Woodhouse</span> <span class="cit-name-given-names">FG</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dunkel</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Kessler</span> <span class="cit-name-given-names">JO</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span></li></ol><cite> (<span class="cit-pub-date">2013</span>) <span class="cit-article-title">Confinement stabilizes a bacterial suspension into a spiral vortex</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">110</span>(<span class="cit-issue">26</span>):<span class="cit-fpage">268102</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D110%26rft.spage%253D268102%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.110.268102%26rft_id%253Dinfo%253Apmid%252F23848925%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.110.268102&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=23848925&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-33-1" title="View reference 33 in text" id="ref-33">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.33" data-doi="10.1038/nphys3607"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Wioland</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Woodhouse</span> <span class="cit-name-given-names">FG</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dunkel</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span></li></ol><cite> (<span class="cit-pub-date">2016</span>) <span class="cit-article-title">Ferromagnetic and antiferromagnetic order in bacterial vortex lattices</span>. <abbr class="cit-jnl-abbrev">Nat Phys</abbr> <span class="cit-vol">12</span>(<span class="cit-issue">4</span>):<span class="cit-fpage">341</span>–<span class="cit-lpage">345</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DNat%2BPhys%26rft.volume%253D12%26rft.spage%253D341%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnphys3607%26rft_id%253Dinfo%253Apmid%252F27213004%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1038/nphys3607&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=27213004&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-34-1" title="View reference 34 in text" id="ref-34">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.34" data-doi="10.1103/PhysRevLett.109.248109"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Sokolov</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Aranson</span> <span class="cit-name-given-names">IS</span></span></li></ol><cite> (<span class="cit-pub-date">2012</span>) <span class="cit-article-title">Physical properties of collective motion in suspensions of bacteria</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">109</span>:<span class="cit-fpage">248109</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D109%26rft.spage%253D248109%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.109.248109%26rft_id%253Dinfo%253Apmid%252F23368392%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.109.248109&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=23368392&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-35-1" title="View reference 35 in text" id="ref-35">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.35" data-doi="10.1103/PhysRevLett.110.228102"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Dunkel</span> <span class="cit-name-given-names">J</span></span>, <span class="cit-etal">et al.</span></li></ol><cite> (<span class="cit-pub-date">2013</span>) <span class="cit-article-title">Fluid dynamics of bacterial turbulence</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">110</span>(<span class="cit-issue">22</span>):<span class="cit-fpage">228102</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D110%26rft.spage%253D228102%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.110.228102%26rft_id%253Dinfo%253Apmid%252F23767750%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.110.228102&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=23767750&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-36-1" title="View reference 36 in text" id="ref-36">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.36"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Słomka</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dunkel</span> <span class="cit-name-given-names">J</span></span></li></ol><cite> (<span class="cit-pub-date">2015</span>) <span class="cit-article-title">Generalized Navier-Stokes equations for active suspensions</span>. <abbr class="cit-jnl-abbrev">EPJ ST</abbr> <span class="cit-vol">224</span>:<span class="cit-fpage">1349</span>–<span class="cit-lpage">1358</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DEPJ%2BST%26rft.volume%253D224%26rft.spage%253D1349%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-37-1" title="View reference 37 in text" id="ref-37">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.37"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Słomka</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dunkel</span> <span class="cit-name-given-names">J</span></span></li></ol><cite> (<span class="cit-pub-date">2016</span>) <span class="cit-comment">Geometry-dependent viscosity reduction in sheared active fluids. arXiv:1608.01757</span>.</cite></div>.<div class="cit-extra"></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-38-1" title="View reference 38 in text" id="ref-38">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.38" data-doi="10.1038/nature11591"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Sanchez</span> <span class="cit-name-given-names">T</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Chen</span> <span class="cit-name-given-names">DTN</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">DeCamp</span> <span class="cit-name-given-names">SJ</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Heymann</span> <span class="cit-name-given-names">M</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dogic</span> <span class="cit-name-given-names">Z</span></span></li></ol><cite> (<span class="cit-pub-date">2012</span>) <span class="cit-article-title">Spontaneous motion in hierarchically assembled active matter</span>. <abbr class="cit-jnl-abbrev">Nature</abbr> <span class="cit-vol">491</span>:<span class="cit-fpage">431</span>–<span class="cit-lpage">434</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DSanchez%26rft.auinit1%253DT.%26rft.volume%253D491%26rft.issue%253D7424%26rft.spage%253D431%26rft.epage%253D434%26rft.atitle%253DSpontaneous%2Bmotion%2Bin%2Bhierarchically%2Bassembled%2Bactive%2Bmatter.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature11591%26rft_id%253Dinfo%253Apmid%252F23135402%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1038/nature11591&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=23135402&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-39-1" title="View reference 39 in text" id="ref-39">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.39"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Giomi</span> <span class="cit-name-given-names">L</span></span></li></ol><cite> (<span class="cit-pub-date">2015</span>) <span class="cit-article-title">Geometry and topology of turbulence in active nematics</span>. <abbr class="cit-jnl-abbrev">Phys Rev X</abbr> <span class="cit-vol">5</span>:<span class="cit-fpage">031003</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BX%26rft.volume%253D5%26rft.spage%253D031003%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-40-1" title="View reference 40 in text" id="ref-40">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.40" data-doi="10.1038/nature12673"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Bricard</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Caussin</span> <span class="cit-name-given-names">J-B</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Desreumaux</span> <span class="cit-name-given-names">N</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dauchot</span> <span class="cit-name-given-names">O</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Bartolo</span> <span class="cit-name-given-names">D</span></span></li></ol><cite> (<span class="cit-pub-date">2013</span>) <span class="cit-article-title">Emergence of macroscopic directed motion in populations of motile colloids</span>. <abbr class="cit-jnl-abbrev">Nature</abbr> <span class="cit-vol">503</span>:<span class="cit-fpage">95</span>–<span class="cit-lpage">98</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DNature%26rft.volume%253D503%26rft.spage%253D95%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature12673%26rft_id%253Dinfo%253Apmid%252F24201282%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1038/nature12673&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=24201282&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-41-1" title="View reference 41 in text" id="ref-41">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.41" data-doi="10.1039/b718131k"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Walther</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Muller</span> <span class="cit-name-given-names">AHE</span></span></li></ol><cite> (<span class="cit-pub-date">2008</span>) <span class="cit-article-title">Janus particles</span>. <abbr class="cit-jnl-abbrev">Soft Matter</abbr> <span class="cit-vol">4</span>:<span class="cit-fpage">663</span>–<span class="cit-lpage">668</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DSoft%2BMatter%26rft.volume%253D4%26rft.spage%253D663%26rft_id%253Dinfo%253Adoi%252F10.1039%252Fb718131k%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1039/b718131k&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-42-1" title="View reference 42 in text" id="ref-42">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.42" data-doi="10.1088/1367-2630/13/7/073021"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Thutupalli</span> <span class="cit-name-given-names">S</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Seemann</span> <span class="cit-name-given-names">R</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Herminghaus</span> <span class="cit-name-given-names">S</span></span></li></ol><cite> (<span class="cit-pub-date">2011</span>) <span class="cit-article-title">Swarming behavior of simple model squirmers</span>. <abbr class="cit-jnl-abbrev">New J Phys</abbr> <span class="cit-vol">13</span>(<span class="cit-issue">7</span>):<span class="cit-fpage">073021</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DNew%2BJ%2BPhys%26rft.volume%253D13%26rft.spage%253D073021%26rft_id%253Dinfo%253Adoi%252F10.1088%252F1367-2630%252F13%252F7%252F073021%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1088/1367-2630/13/7/073021&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-43-1" title="View reference 43 in text" id="ref-43">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.43"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Arnold</span> <span class="cit-name-given-names">VI</span></span></li></ol><cite> (<span class="cit-pub-date">1965</span>) <span class="cit-article-title">Sur la topologie des écoulements stationnaires des fluides parfaits</span>. <abbr class="cit-jnl-abbrev">C R Acad Sci Paris</abbr> <span class="cit-vol">261</span>:<span class="cit-fpage">17</span>–<span class="cit-lpage">20</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DC%2BR%2BAcad%2BSci%2BParis%26rft.volume%253D261%26rft.spage%253D17%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-44-1" title="View reference 44 in text" id="ref-44">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.44"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Dombre</span> <span class="cit-name-given-names">T</span></span>, <span class="cit-etal">et al.</span></li></ol><cite> (<span class="cit-pub-date">1986</span>) <span class="cit-article-title">Chaotic streamlines in the ABC flows</span>. <abbr class="cit-jnl-abbrev">J Fluid Mech</abbr> <span class="cit-vol">167</span>:<span class="cit-fpage">353</span>–<span class="cit-lpage">391</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DJ%2BFluid%2BMech%26rft.volume%253D167%26rft.spage%253D353%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-45-1" title="View reference 45 in text" id="ref-45">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.45"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Etnyre</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Ghrist</span> <span class="cit-name-given-names">R</span></span></li></ol><cite> (<span class="cit-pub-date">2000</span>) <span class="cit-article-title">Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture</span>. <abbr class="cit-jnl-abbrev">Nonlinearity</abbr> <span class="cit-vol">13</span>(<span class="cit-issue">2</span>):<span class="cit-fpage">441</span>–<span class="cit-lpage">458</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DNonlinearity%26rft.volume%253D13%26rft.spage%253D441%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-46-1" title="View reference 46 in text" id="ref-46">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.46" data-doi="10.1103/PhysRevLett.105.268302"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Jiang</span> <span class="cit-name-given-names">H-R</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Yoshinaga</span> <span class="cit-name-given-names">N</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Sano</span> <span class="cit-name-given-names">M</span></span></li></ol><cite> (<span class="cit-pub-date">2010</span>) <span class="cit-article-title">Active motion of a Janus particle by self-thermophoresis in a defocused laser beam</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">105</span>:<span class="cit-fpage">268302</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DJiang%26rft.auinit1%253DH.%2BR.%26rft.volume%253D105%26rft.issue%253D26%26rft.spage%253D268302%26rft.epage%253D268302%26rft.atitle%253DActive%2Bmotion%2Bof%2Ba%2BJanus%2Bparticle%2Bby%2Bself-thermophoresis%2Bin%2Ba%2Bdefocused%2Blaser%2Bbeam.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.105.268302%26rft_id%253Dinfo%253Apmid%252F21231718%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.105.268302&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=21231718&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-47-1" title="View reference 47 in text" id="ref-47">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.47" data-doi="10.1103/PhysRevLett.110.238301"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Buttinoni</span> <span class="cit-name-given-names">I</span></span>, <span class="cit-etal">et al.</span></li></ol><cite> (<span class="cit-pub-date">2013</span>) <span class="cit-article-title">Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">110</span>:<span class="cit-fpage">238301</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D110%26rft.spage%253D238301%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.110.238301%26rft_id%253Dinfo%253Apmid%252F25167534%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.110.238301&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=25167534&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-48-1" title="View reference 48 in text" id="ref-48">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.48" data-doi="10.1073/pnas.1202032109"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Wensink</span> <span class="cit-name-given-names">HH</span></span>, <span class="cit-etal">et al.</span></li></ol><cite> (<span class="cit-pub-date">2012</span>) <span class="cit-article-title">Meso-scale turbulence in living fluids</span>. <abbr class="cit-jnl-abbrev">Proc Natl Acad Sci USA</abbr> <span class="cit-vol">109</span>(<span class="cit-issue">36</span>):<span class="cit-fpage">14308</span>–<span class="cit-lpage">14313</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DProc%2BNatl%2BAcad%2BSci%2BUSA%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.1202032109%26rft_id%253Dinfo%253Apmid%252F22908244%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTA5LzM2LzE0MzA4IjtzOjQ6ImF0b20iO3M6MjE6Ii9wbmFzLzExNC85LzIxMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9" class="cit-ref-sprinkles cit-ref-sprinkles-ijlink"><span><span class="cit-reflinks-abstract">Abstract</span><span class="cit-sep cit-reflinks-variant-name-sep">/</span><span class="cit-reflinks-full-text"><span class="free-full-text">FREE </span>Full Text</span></span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-49-1" title="View reference 49 in text" id="ref-49">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.49" data-doi="10.1073/pnas.1509304112"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Bratanov</span> <span class="cit-name-given-names">V</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Jenko</span> <span class="cit-name-given-names">F</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Frey</span> <span class="cit-name-given-names">E</span></span></li></ol><cite> (<span class="cit-pub-date">2015</span>) <span class="cit-article-title">New class of turbulence in active fluids</span>. <abbr class="cit-jnl-abbrev">Proc Natl Acad Sci USA</abbr> <span class="cit-vol">112</span>(<span class="cit-issue">49</span>):<span class="cit-fpage">15048</span>–<span class="cit-lpage">15053</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DProc%2BNatl%2BAcad%2BSci%2BUSA%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.1509304112%26rft_id%253Dinfo%253Apmid%252F26598708%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTEyLzQ5LzE1MDQ4IjtzOjQ6ImF0b20iO3M6MjE6Ii9wbmFzLzExNC85LzIxMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9" class="cit-ref-sprinkles cit-ref-sprinkles-ijlink"><span><span class="cit-reflinks-abstract">Abstract</span><span class="cit-sep cit-reflinks-variant-name-sep">/</span><span class="cit-reflinks-full-text"><span class="free-full-text">FREE </span>Full Text</span></span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-50-1" title="View reference 50 in text" id="ref-50">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.50" data-doi="10.1103/PhysRevLett.89.058101"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Simha</span> <span class="cit-name-given-names">RA</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Ramaswamy</span> <span class="cit-name-given-names">S</span></span></li></ol><cite> (<span class="cit-pub-date">2002</span>) <span class="cit-article-title">Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">89</span>(<span class="cit-issue">5</span>):<span class="cit-fpage">058101</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DAditi%2BSimha%26rft.auinit1%253DR.%26rft.volume%253D89%26rft.issue%253D5%26rft.spage%253D058101%26rft.epage%253D058101%26rft.atitle%253DHydrodynamic%2Bfluctuations%2Band%2Binstabilities%2Bin%2Bordered%2Bsuspensions%2Bof%2Bself-propelled%2Bparticles.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.89.058101%26rft_id%253Dinfo%253Apmid%252F12144468%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.89.058101&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=12144468&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-51-1" title="View reference 51 in text" id="ref-51">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.51" data-doi="10.1063/1.3041776"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Saintillan</span> <span class="cit-name-given-names">D</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Shelley</span> <span class="cit-name-given-names">M</span></span></li></ol><cite> (<span class="cit-pub-date">2008</span>) <span class="cit-article-title">Instabilities, pattern formation and mixing in active suspensions</span>. <abbr class="cit-jnl-abbrev">Phys Fluids</abbr> <span class="cit-vol">20</span>:<span class="cit-fpage">123304</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BFluids%26rft.volume%253D20%26rft.spage%253D123304%26rft_id%253Dinfo%253Adoi%252F10.1063%252F1.3041776%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1063/1.3041776&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-52-1" title="View reference 52 in text" id="ref-52">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.52" data-doi="10.1103/RevModPhys.85.1143"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Marchetti</span> <span class="cit-name-given-names">MC</span></span>, <span class="cit-etal">et al.</span></li></ol><cite> (<span class="cit-pub-date">2013</span>) <span class="cit-article-title">Hydrodynamics of soft active matter</span>. <abbr class="cit-jnl-abbrev">Rev Mod Phys</abbr> <span class="cit-vol">85</span>:<span class="cit-fpage">1143</span>–<span class="cit-lpage">1189</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DRev%2BMod%2BPhys%26rft.volume%253D85%26rft.spage%253D1143%26rft_id%253Dinfo%253Adoi%252F10.1103%252FRevModPhys.85.1143%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/RevModPhys.85.1143&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-53-1" title="View reference 53 in text" id="ref-53">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.53" data-doi="10.1103/PhysRevLett.110.026001"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Ravnik</span> <span class="cit-name-given-names">M</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Yeomans</span> <span class="cit-name-given-names">JM</span></span></li></ol><cite> (<span class="cit-pub-date">2013</span>) <span class="cit-article-title">Confined active nematic flow in cylindrical capillaries</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">110</span>:<span class="cit-fpage">026001</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D110%26rft.spage%253D026001%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.110.026001%26rft_id%253Dinfo%253Apmid%252F23383919%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.110.026001&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=23383919&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-54-1" title="View reference 54 in text" id="ref-54">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.54" data-doi="10.1103/PhysRevLett.93.098103"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Dombrowski</span> <span class="cit-name-given-names">C</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Cisneros</span> <span class="cit-name-given-names">L</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Chatkaew</span> <span class="cit-name-given-names">S</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Kessler</span> <span class="cit-name-given-names">JO</span></span></li></ol><cite> (<span class="cit-pub-date">2004</span>) <span class="cit-article-title">Self-concentration and large-scale coherence in bacterial dynamics</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">93</span>(<span class="cit-issue">9</span>):<span class="cit-fpage">098103</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DDombrowski%26rft.auinit1%253DC.%26rft.volume%253D93%26rft.issue%253D9%26rft.spage%253D098103%26rft.epage%253D098103%26rft.atitle%253DSelf-concentration%2Band%2Blarge-scale%2Bcoherence%2Bin%2Bbacterial%2Bdynamics.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.93.098103%26rft_id%253Dinfo%253Apmid%252F15447144%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.93.098103&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=15447144&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-55-1" title="View reference 55 in text" id="ref-55">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.55" data-doi="10.1007/s00348-007-0387-y"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Cisneros</span> <span class="cit-name-given-names">LH</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Cortez</span> <span class="cit-name-given-names">R</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dombrowski</span> <span class="cit-name-given-names">C</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Kessler</span> <span class="cit-name-given-names">JO</span></span></li></ol><cite> (<span class="cit-pub-date">2007</span>) <span class="cit-article-title">Fluid dynamics of self-propelled micro-organisms, from individuals to concentrated populations</span>. <abbr class="cit-jnl-abbrev">Exp Fluids</abbr> <span class="cit-vol">43</span>:<span class="cit-fpage">737</span>–<span class="cit-lpage">753</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DExp%2BFluids%26rft.volume%253D43%26rft.spage%253D737%26rft_id%253Dinfo%253Adoi%252F10.1007%252Fs00348-007-0387-y%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1007/s00348-007-0387-y&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-56-1" title="View reference 56 in text" id="ref-56">↵</a><div class="cit ref-cit ref-book" id="cit-114.9.2119.56"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Bellouta</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Bloom</span> <span class="cit-name-given-names">F</span></span></li></ol><cite> (<span class="cit-pub-date">2014</span>) <span class="cit-article-title">Incompressible bipolar and non-Newtonian viscous fluid flow</span>. <span class="cit-source">Advances in Mathematical Fluid Mechanics</span> (<span class="cit-publ-name">Springer</span>, <span class="cit-publ-loc">Basel</span>).</cite></div>.<div class="cit-extra"></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-57-1" title="View reference 57 in text" id="ref-57">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.57"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Ma</span> <span class="cit-name-given-names">Y-P</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Spiegel</span> <span class="cit-name-given-names">EA</span></span></li></ol><cite> (<span class="cit-pub-date">2011</span>) <span class="cit-article-title">A diagrammatic derivation of (convective) pattern equations</span>. <abbr class="cit-jnl-abbrev">Physica D</abbr> <span class="cit-vol">240</span>:<span class="cit-fpage">150</span>–<span class="cit-lpage">165</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysica%2BD%26rft.volume%253D240%26rft.spage%253D150%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-58-1" title="View reference 58 in text" id="ref-58">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.58"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Beresnev</span> <span class="cit-name-given-names">IA</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Nikolaevskiy</span> <span class="cit-name-given-names">VN</span></span></li></ol><cite> (<span class="cit-pub-date">1993</span>) <span class="cit-article-title">A model for nonlinear seismic waves in a medium with instability</span>. <abbr class="cit-jnl-abbrev">Physica D</abbr> <span class="cit-vol">66</span>:<span class="cit-fpage">1</span>–<span class="cit-lpage">6</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysica%2BD%26rft.volume%253D66%26rft.spage%253D1%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-59-1" title="View reference 59 in text" id="ref-59">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.59" data-doi="10.1103/PhysRevLett.76.1631"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Tribelsky</span> <span class="cit-name-given-names">MI</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Tsuboi</span> <span class="cit-name-given-names">K</span></span></li></ol><cite> (<span class="cit-pub-date">1996</span>) <span class="cit-article-title">New scenario for transition to turbulence?</span> <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">76</span>:<span class="cit-fpage">1631</span>–<span class="cit-lpage">1634</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DTribelsky%26rft.auinit1%253DM.%2BI.%26rft.volume%253D76%26rft.issue%253D10%26rft.spage%253D1631%26rft.epage%253D1634%26rft.atitle%253DNew%2Bscenario%2Bfor%2Btransition%2Bto%2Bturbulence%253F%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.76.1631%26rft_id%253Dinfo%253Apmid%252F10060478%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.76.1631&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10060478&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-60-1" title="View reference 60 in text" id="ref-60">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.60"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Tribelsky</span> <span class="cit-name-given-names">MI</span></span></li></ol><cite> (<span class="cit-pub-date">2008</span>) <span class="cit-article-title">Patterns in dissipative systems with weakly broken continuous symmetry</span>. <abbr class="cit-jnl-abbrev">Phys Rev E</abbr> <span class="cit-vol">77</span>:<span class="cit-fpage">035202</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BE%26rft.volume%253D77%26rft.spage%253D035202%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-61-1" title="View reference 61 in text" id="ref-61">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.61"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Ouellette</span> <span class="cit-name-given-names">NT</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Gollub</span> <span class="cit-name-given-names">JP</span></span></li></ol><cite> (<span class="cit-pub-date">2008</span>) <span class="cit-article-title">Dynamic topology in spatiotemporal chaos</span>. <abbr class="cit-jnl-abbrev">Phys Fluids</abbr> <span class="cit-vol">20</span>(<span class="cit-issue">6</span>):<span class="cit-fpage">064104</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BFluids%26rft.volume%253D20%26rft.spage%253D064104%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-62-1" title="View reference 62 in text" id="ref-62">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.62"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Varshney</span> <span class="cit-name-given-names">A</span></span>, <span class="cit-etal">et al.</span></li></ol><cite> (<span class="cit-pub-date">2016</span>) <span class="cit-article-title">Multi-scale flow in a microscale oil-in-oil emulsion</span>. <abbr class="cit-jnl-abbrev">Soft Matter</abbr> <span class="cit-vol">12</span>:<span class="cit-fpage">1759</span>–<span class="cit-lpage">1764</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DSoft%2BMatter%26rft.volume%253D12%26rft.spage%253D1759%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-63-1" title="View reference 63 in text" id="ref-63">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.63"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Bregulla</span> <span class="cit-name-given-names">AP</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Yang</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Cichos</span> <span class="cit-name-given-names">F</span></span></li></ol><cite> (<span class="cit-pub-date">2014</span>) <span class="cit-article-title">Stochastic localization of microswimmers by photon nudging</span>. <abbr class="cit-jnl-abbrev">ACS Nano</abbr> <span class="cit-vol">8</span>(<span class="cit-issue">7</span>):<span class="cit-fpage">6542</span>–<span class="cit-lpage">6550</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DACS%2BNano%26rft.volume%253D8%26rft.spage%253D6542%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-64-1" title="View reference 64 in text" id="ref-64">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.64" data-doi="10.1039/C5SM01364J"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Fedosov</span> <span class="cit-name-given-names">DA</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Sengupta</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Gompper</span> <span class="cit-name-given-names">G</span></span></li></ol><cite> (<span class="cit-pub-date">2015</span>) <span class="cit-article-title">Effect of fluid–colloid interactions on the mobility of a thermophoretic microswimmer in non-ideal fluids</span>. <abbr class="cit-jnl-abbrev">Soft Matter</abbr> <span class="cit-vol">11</span>:<span class="cit-fpage">6703</span>–<span class="cit-lpage">6715</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DSoft%2BMatter%26rft.volume%253D11%26rft.spage%253D6703%26rft_id%253Dinfo%253Adoi%252F10.1039%252FC5SM01364J%26rft_id%253Dinfo%253Apmid%252F26223678%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1039/C5SM01364J&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=26223678&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-65-1" title="View reference 65 in text" id="ref-65">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.65"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Kümmel</span> <span class="cit-name-given-names">F</span></span>, <span class="cit-etal">et al.</span></li></ol><cite> (<span class="cit-pub-date">2013</span>) <span class="cit-article-title">Circular motion of asymmetric self-propelling particles</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">110</span>(<span class="cit-issue">19</span>):<span class="cit-fpage">198302</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D110%26rft.spage%253D198302%26rft_id%253Dinfo%253Apmid%252F23705745%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=23705745&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-66-1" title="View reference 66 in text" id="ref-66">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.66"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Malomed</span> <span class="cit-name-given-names">BA</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Tribelsky</span> <span class="cit-name-given-names">MI</span></span></li></ol><cite> (<span class="cit-pub-date">1984</span>) <span class="cit-article-title">Bifurcations in distributed kinetic systems with aperiodic instability</span>. <abbr class="cit-jnl-abbrev">Physica D</abbr> <span class="cit-vol">14</span>(<span class="cit-issue">1</span>):<span class="cit-fpage">67</span>–<span class="cit-lpage">87</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysica%2BD%26rft.volume%253D14%26rft.spage%253D67%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-67-1" title="View reference 67 in text" id="ref-67">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.67" data-doi="10.1103/PhysRevLett.63.1954"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Coullet</span> <span class="cit-name-given-names">P</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Gunaratne</span> <span class="cit-name-given-names">GH</span></span></li></ol><cite> (<span class="cit-pub-date">1989</span>) <span class="cit-article-title">Parity-breaking transitions of modulated patterns in hydrodynamic systems</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">63</span>(<span class="cit-issue">18</span>):<span class="cit-fpage">1954</span>–<span class="cit-lpage">1957</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DCoullet%26rft.auinit1%253DP.%26rft.volume%253D63%26rft.issue%253D18%26rft.spage%253D1954%26rft.epage%253D1957%26rft.atitle%253DParity-breaking%2Btransitions%2Bof%2Bmodulated%2Bpatterns%2Bin%2Bhydrodynamic%2Bsystems.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.63.1954%26rft_id%253Dinfo%253Apmid%252F10040723%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.63.1954&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10040723&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-68-1" title="View reference 68 in text" id="ref-68">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.68" data-doi="10.1103/PhysRevLett.74.4839"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Knobloch</span> <span class="cit-name-given-names">E</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Hettel</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dangelmayr</span> <span class="cit-name-given-names">G</span></span></li></ol><cite> (<span class="cit-pub-date">1995</span>) <span class="cit-article-title">Parity breaking bifurcation in inhomogeneous systems</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">74</span>:<span class="cit-fpage">4839</span>–<span class="cit-lpage">4842</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DKnobloch%26rft.auinit1%253DE.%26rft.volume%253D74%26rft.issue%253D24%26rft.spage%253D4839%26rft.epage%253D4842%26rft.atitle%253DParity%2Bbreaking%2Bbifurcation%2Bin%2Binhomogeneous%2Bsystems.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.74.4839%26rft_id%253Dinfo%253Apmid%252F10058612%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.74.4839&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10058612&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-69-1" title="View reference 69 in text" id="ref-69">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.69" data-doi="10.1143/PTP.109.911"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Fujisaka</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Honkawa</span> <span class="cit-name-given-names">T</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Yamada</span> <span class="cit-name-given-names">T</span></span></li></ol><cite> (<span class="cit-pub-date">2003</span>) <span class="cit-article-title">Amplitude equation of higher-dimensional Nikolaevskii turbulence</span>. <abbr class="cit-jnl-abbrev">Prog Theor Phys</abbr> <span class="cit-vol">109</span>(<span class="cit-issue">6</span>):<span class="cit-fpage">911</span>–<span class="cit-lpage">918</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DProg%2BTheor%2BPhys%26rft_id%253Dinfo%253Adoi%252F10.1143%252FPTP.109.911%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoicHRwIjtzOjU6InJlc2lkIjtzOjk6IjEwOS82LzkxMSI7czo0OiJhdG9tIjtzOjIxOiIvcG5hcy8xMTQvOS8yMTE5LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==" class="cit-ref-sprinkles cit-ref-sprinkles-ijlink"><span><span class="cit-reflinks-abstract">Abstract</span><span class="cit-sep cit-reflinks-variant-name-sep">/</span><span class="cit-reflinks-full-text"><span class="free-full-text">FREE </span>Full Text</span></span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-70-1" title="View reference 70 in text" id="ref-70">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.70" data-doi="10.1103/PhysRevA.43.6700"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Gunaratne</span> <span class="cit-name-given-names">GH</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Gil</span> <span class="cit-name-given-names">L</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Coullet</span> <span class="cit-name-given-names">P</span></span></li></ol><cite> (<span class="cit-pub-date">1991</span>) <span class="cit-article-title">Hydrodynamic and interfacial patterns with broken space-time symmetry</span>. <abbr class="cit-jnl-abbrev">Phys Rev A</abbr> <span class="cit-vol">43</span>:<span class="cit-fpage">6700</span>–<span class="cit-lpage">6721</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.stitle%253DPHYSICAL%2BREVIEW.%2BA%26rft.aulast%253DGoldstein%26rft.auinit1%253DR.%2BE.%26rft.volume%253D43%26rft.issue%253D12%26rft.spage%253D6700%26rft.epage%253D6721%26rft.atitle%253DHydrodynamic%2Band%2Binterfacial%2Bpatterns%2Bwith%2Bbroken%2Bspace-time%2Bsymmetry.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevA.43.6700%26rft_id%253Dinfo%253Apmid%252F9905022%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevA.43.6700&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=9905022&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-71-1" title="View reference 71 in text" id="ref-71">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.71" data-doi="10.1070/PU1997v040n02ABEH000193"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Tribelsky</span> <span class="cit-name-given-names">MI</span></span></li></ol><cite> (<span class="cit-pub-date">1997</span>) <span class="cit-article-title">Short-wavelength instability and transition to chaos in distributed systems with additional symmetry</span>. <abbr class="cit-jnl-abbrev">Phys Usp</abbr> <span class="cit-vol">40</span>(<span class="cit-issue">2</span>):<span class="cit-fpage">159</span>–<span class="cit-lpage">180</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BUsp%26rft.volume%253D40%26rft.spage%253D159%26rft_id%253Dinfo%253Adoi%252F10.1070%252FPU1997v040n02ABEH000193%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1070/PU1997v040n02ABEH000193&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-72-1" title="View reference 72 in text" id="ref-72">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.72" data-doi="10.1103/PhysRevLett.98.158102"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Sokolov</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Aranson</span> <span class="cit-name-given-names">IS</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Kessler</span> <span class="cit-name-given-names">JO</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span></li></ol><cite> (<span class="cit-pub-date">2007</span>) <span class="cit-article-title">Concentration dependence of the collective dynamics of swimming bacteria</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">98</span>:<span class="cit-fpage">158102</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DSokolov%26rft.auinit1%253DA.%26rft.volume%253D98%26rft.issue%253D15%26rft.spage%253D158102%26rft.epage%253D158102%26rft.atitle%253DConcentration%2Bdependence%2Bof%2Bthe%2Bcollective%2Bdynamics%2Bof%2Bswimming%2Bbacteria.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.98.158102%26rft_id%253Dinfo%253Apmid%252F17501387%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.98.158102&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=17501387&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-73-1" title="View reference 73 in text" id="ref-73">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.73"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Smith</span> <span class="cit-name-given-names">LM</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Chasnov</span> <span class="cit-name-given-names">JR</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Waleffe</span> <span class="cit-name-given-names">F</span></span></li></ol><cite> (<span class="cit-pub-date">1996</span>) <span class="cit-article-title">Crossover from two-to three-dimensional turbulence</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">77</span>(<span class="cit-issue">12</span>):<span class="cit-fpage">2467</span>–<span class="cit-lpage">2470</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DSmith%26rft.auinit1%253DL.%2BM.%26rft.volume%253D77%26rft.issue%253D12%26rft.spage%253D2467%26rft.epage%253D2470%26rft.atitle%253DCrossover%2Bfrom%2BTwo-%2Bto%2BThree-Dimensional%2BTurbulence.%26rft_id%253Dinfo%253Apmid%252F10061961%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10061961&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-74-1" title="View reference 74 in text" id="ref-74">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.74" data-doi="10.1063/1.870022"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Smith</span> <span class="cit-name-given-names">LM</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Waleffe</span> <span class="cit-name-given-names">F</span></span></li></ol><cite> (<span class="cit-pub-date">1999</span>) <span class="cit-article-title">Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence</span>. <abbr class="cit-jnl-abbrev">Phys Fluids</abbr> <span class="cit-vol">11</span>:<span class="cit-fpage">1608</span>–<span class="cit-lpage">1622</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BFluids%26rft.volume%253D11%26rft.spage%253D1608%26rft_id%253Dinfo%253Adoi%252F10.1063%252F1.870022%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1063/1.870022&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-75-1" title="View reference 75 in text" id="ref-75">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.75" data-doi="10.1017/S0022112001006309"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Smith</span> <span class="cit-name-given-names">LM</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Waleffe</span> <span class="cit-name-given-names">F</span></span></li></ol><cite> (<span class="cit-pub-date">2002</span>) <span class="cit-article-title">Generation of slow large scales in forced rotating stratified turbulence</span>. <abbr class="cit-jnl-abbrev">J Fluid Mech</abbr> <span class="cit-vol">451</span>:<span class="cit-fpage">145</span>–<span class="cit-lpage">168</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DJ%2BFluid%2BMech%26rft.volume%253D451%26rft.spage%253D145%26rft_id%253Dinfo%253Adoi%252F10.1017%252FS0022112001006309%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1017/S0022112001006309&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-76-1" title="View reference 76 in text" id="ref-76">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.76" data-doi="10.1103/PhysRevLett.101.194504"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Xia</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Punzmann</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Falkovich</span> <span class="cit-name-given-names">G</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Shats</span> <span class="cit-name-given-names">MG</span></span></li></ol><cite> (<span class="cit-pub-date">2008</span>) <span class="cit-article-title">Turbulence-condensate interaction in two dimensions</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">101</span>(<span class="cit-issue">19</span>):<span class="cit-fpage">194504</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DXia%26rft.auinit1%253DH.%26rft.volume%253D101%26rft.issue%253D19%26rft.spage%253D194504%26rft.epage%253D194504%26rft.atitle%253DTurbulence-condensate%2Binteraction%2Bin%2Btwo%2Bdimensions.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.101.194504%26rft_id%253Dinfo%253Apmid%252F19113273%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.101.194504&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=19113273&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-77-1" title="View reference 77 in text" id="ref-77">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.77"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Mininni</span> <span class="cit-name-given-names">PD</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Alexakis</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Pouquet</span> <span class="cit-name-given-names">A</span></span></li></ol><cite> (<span class="cit-pub-date">2009</span>) <span class="cit-article-title">Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers</span>. <abbr class="cit-jnl-abbrev">Phys Fluids</abbr> <span class="cit-vol">21</span>(<span class="cit-issue">1</span>):<span class="cit-fpage">015108</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BFluids%26rft.volume%253D21%26rft.spage%253D015108%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-78-1" title="View reference 78 in text" id="ref-78">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.78"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Celani</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Musacchio</span> <span class="cit-name-given-names">S</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Vincenzi</span> <span class="cit-name-given-names">D</span></span></li></ol><cite> (<span class="cit-pub-date">2010</span>) <span class="cit-article-title">Turbulence in more than two and less than three dimensions</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">104</span>(<span class="cit-issue">18</span>):<span class="cit-fpage">184506</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DCelani%26rft.auinit1%253DA.%26rft.volume%253D104%26rft.issue%253D18%26rft.spage%253D184506%26rft.epage%253D184506%26rft.atitle%253DTurbulence%2Bin%2Bmore%2Bthan%2Btwo%2Band%2Bless%2Bthan%2Bthree%2Bdimensions.%26rft_id%253Dinfo%253Apmid%252F20482182%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=20482182&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-79-1" title="View reference 79 in text" id="ref-79">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.79" data-doi="10.1038/nphys1910"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Xia</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Byrne</span> <span class="cit-name-given-names">D</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Falkovich</span> <span class="cit-name-given-names">G</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Shats</span> <span class="cit-name-given-names">M</span></span></li></ol><cite> (<span class="cit-pub-date">2011</span>) <span class="cit-article-title">Upscale energy transfer in thick turbulent fluid layers</span>. <abbr class="cit-jnl-abbrev">Nat Phys</abbr> <span class="cit-vol">7</span>(<span class="cit-issue">4</span>):<span class="cit-fpage">321</span>–<span class="cit-lpage">324</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DNat%2BPhys%26rft.volume%253D7%26rft.spage%253D321%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnphys1910%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1038/nphys1910&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-80-1" title="View reference 80 in text" id="ref-80">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.80" data-doi="10.1088/0034-4885/68/8/R06"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Vasavada</span> <span class="cit-name-given-names">AR</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Showman</span> <span class="cit-name-given-names">AP</span></span></li></ol><cite> (<span class="cit-pub-date">2005</span>) <span class="cit-article-title">Jovian atmospheric dynamics: An update after Galileo and Cassini</span>. <abbr class="cit-jnl-abbrev">Rep Prog Phys</abbr> <span class="cit-vol">68</span>:<span class="cit-fpage">1935</span>–<span class="cit-lpage">1996</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DRep%2BProg%2BPhys%26rft.volume%253D68%26rft.spage%253D1935%26rft_id%253Dinfo%253Adoi%252F10.1088%252F0034-4885%252F68%252F8%252FR06%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1088/0034-4885/68/8/R06&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-81-1" title="View reference 81 in text" id="ref-81">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.81" data-doi="10.1103/PhysRevLett.81.2244"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Rutgers</span> <span class="cit-name-given-names">MA</span></span></li></ol><cite> (<span class="cit-pub-date">1998</span>) <span class="cit-article-title">Forced 2D turbulence: Experimental evidence of simultaneous inverse energy and forward enstrophy cascades</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">81</span>:<span class="cit-fpage">2244</span>–<span class="cit-lpage">2247</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D81%26rft.spage%253D2244%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.81.2244%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.81.2244&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-82-1" title="View reference 82 in text" id="ref-82">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.82"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Bernard</span> <span class="cit-name-given-names">D</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Boffetta</span> <span class="cit-name-given-names">G</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Celani</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Falkovich</span> <span class="cit-name-given-names">G</span></span></li></ol><cite> (<span class="cit-pub-date">2007</span>) <span class="cit-article-title">Inverse turbulent cascades and conformally invariant curves</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">98</span>:<span class="cit-fpage">024501</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DBernard%26rft.auinit1%253DD.%26rft.volume%253D98%26rft.issue%253D2%26rft.spage%253D024501%26rft.epage%253D024501%26rft.atitle%253DInverse%2Bturbulent%2Bcascades%2Band%2Bconformally%2Binvariant%2Bcurves.%26rft_id%253Dinfo%253Apmid%252F17358610%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=17358610&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-83-1" title="View reference 83 in text" id="ref-83">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.83" data-doi="10.1038/nphys217"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Bernard</span> <span class="cit-name-given-names">D</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Boffetta</span> <span class="cit-name-given-names">G</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Celani</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Falkovich</span> <span class="cit-name-given-names">G</span></span></li></ol><cite> (<span class="cit-pub-date">2006</span>) <span class="cit-article-title">Conformal invariance in two-dimensional turbulence</span>. <abbr class="cit-jnl-abbrev">Nat Phys</abbr> <span class="cit-vol">2</span>(<span class="cit-issue">2</span>):<span class="cit-fpage">124</span>–<span class="cit-lpage">128</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DNat%2BPhys%26rft.volume%253D2%26rft.spage%253D124%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnphys217%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1038/nphys217&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-84-1" title="View reference 84 in text" id="ref-84">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.84"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Gustavsson</span> <span class="cit-name-given-names">K</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Biferale</span> <span class="cit-name-given-names">L</span></span></li></ol><cite> (<span class="cit-pub-date">2016</span>) <span class="cit-article-title">Preferential sampling of helicity by isotropic helicoids</span>. <abbr class="cit-jnl-abbrev">Phys Rev Fluids</abbr> <span class="cit-vol">1</span>:<span class="cit-fpage">054201</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BFluids%26rft.volume%253D1%26rft.spage%253D054201%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-85-1" title="View reference 85 in text" id="ref-85">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.85"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Canuto</span> <span class="cit-name-given-names">C</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Hussaini</span> <span class="cit-name-given-names">MY</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Quarteroni</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Zang</span> <span class="cit-name-given-names">TA</span></span></li></ol><cite> (<span class="cit-pub-date">1988</span>) <abbr class="cit-jnl-abbrev">Spectral Methods in Fluid Dynamics</abbr> (<span class="cit-publ-name">Springer</span>, <span class="cit-publ-loc">Berlin</span>).</cite></div>.<div class="cit-extra"></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-86-1" title="View reference 86 in text" id="ref-86">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.86"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Schwarz</span> <span class="cit-name-given-names">G</span></span></li></ol><cite> (<span class="cit-pub-date">1995</span>) <span class="cit-comment"><em>Hodge Decomposition—A Method for Solving Boundary Value Problems</em>, Lecture Notes in Mathematics (Springer, Berlin), Vol 1607</span>.</cite></div>.<div class="cit-extra"></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-87-1" title="View reference 87 in text" id="ref-87">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.87" data-doi="10.1137/0732037"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Ascher</span> <span class="cit-name-given-names">UM</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Ruuth</span> <span class="cit-name-given-names">SJ</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Wetton</span> <span class="cit-name-given-names">BTR</span></span></li></ol><cite> (<span class="cit-pub-date">1995</span>) <span class="cit-article-title">Implicit-explicit methods for time-dependent partial differential equations</span>. <abbr class="cit-jnl-abbrev">SIAM J Numer Anal</abbr> <span class="cit-vol">32</span>(<span class="cit-issue">3</span>):<span class="cit-fpage">797</span>–<span class="cit-lpage">823</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DSIAM%2BJ%2BNumer%2BAnal%26rft.volume%253D32%26rft.spage%253D797%26rft_id%253Dinfo%253Adoi%252F10.1137%252F0732037%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1137/0732037&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><div class="cit ref-cit ref-journal no-rev-xref" id="cit-114.9.2119.88"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Heidenreich</span> <span class="cit-name-given-names">S</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dunkel</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Klapp</span> <span class="cit-name-given-names">SHL</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Bär</span> <span class="cit-name-given-names">M</span></span></li></ol><cite> (<span class="cit-pub-date">2016</span>) <span class="cit-article-title">Hydrodynamic length-scale selection in microswimmer suspensions</span>. <abbr class="cit-jnl-abbrev">Phys Rev E</abbr> <span class="cit-vol">94</span>:<span class="cit-fpage">020601(R)</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BE%26rft.volume%253D94%26rft.spage%253D020601R%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-89-1" title="View reference 89 in text" id="ref-89">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.89" data-doi="10.1119/1.10903"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Purcell</span> <span class="cit-name-given-names">EM</span></span></li></ol><cite> (<span class="cit-pub-date">1977</span>) <span class="cit-article-title">Life at low Reynolds number</span>. <abbr class="cit-jnl-abbrev">Am J Phys</abbr> <span class="cit-vol">45</span>(<span class="cit-issue">1</span>):<span class="cit-fpage">3</span>–<span class="cit-lpage">11</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DAm%2BJ%2BPhys%26rft.volume%253D45%26rft.spage%253D3%26rft_id%253Dinfo%253Adoi%252F10.1119%252F1.10903%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1119/1.10903&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-90-1" title="View reference 90 in text" id="ref-90">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.90" data-doi="10.1103/PhysRevLett.103.148101"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Sokolov</span> <span class="cit-name-given-names">A</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Aranson</span> <span class="cit-name-given-names">IS</span></span></li></ol><cite> (<span class="cit-pub-date">2009</span>) <span class="cit-article-title">Reduction of viscosity in suspension of swimming bacteria</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">103</span>:<span class="cit-fpage">148101</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DSokolov%26rft.auinit1%253DA.%26rft.volume%253D103%26rft.issue%253D14%26rft.spage%253D148101%26rft.epage%253D148101%26rft.atitle%253DReduction%2Bof%2Bviscosity%2Bin%2Bsuspension%2Bof%2Bswimming%2Bbacteria.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.103.148101%26rft_id%253Dinfo%253Apmid%252F19905604%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.103.148101&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=19905604&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-91-1" title="View reference 91 in text" id="ref-91">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.91" data-doi="10.1103/PhysRevLett.115.028301"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">López</span> <span class="cit-name-given-names">HM</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Gachelin</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Douarche</span> <span class="cit-name-given-names">C</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Auradou</span> <span class="cit-name-given-names">H</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Clément</span> <span class="cit-name-given-names">E</span></span></li></ol><cite> (<span class="cit-pub-date">2015</span>) <span class="cit-article-title">Turning bacteria suspensions into superfluids</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">115</span>:<span class="cit-fpage">028301</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhys%2BRev%2BLett%26rft.volume%253D115%26rft.spage%253D028301%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.115.028301%26rft_id%253Dinfo%253Apmid%252F26207507%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.115.028301&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=26207507&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-92-1" title="View reference 92 in text" id="ref-92">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.92"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Ramaswamy</span> <span class="cit-name-given-names">S</span></span></li></ol><cite> (<span class="cit-pub-date">2010</span>) <span class="cit-article-title">The mechanics and statistics of active matter</span>. <abbr class="cit-jnl-abbrev">Annu Rev Cond Mat Phys</abbr> <span class="cit-vol">1</span>:<span class="cit-fpage">323</span>–<span class="cit-lpage">345</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DAnnu%2BRev%2BCond%2BMat%2BPhys%26rft.volume%253D1%26rft.spage%253D323%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-93-1" title="View reference 93 in text" id="ref-93">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.93" data-doi="10.1103/PhysRevLett.105.168101"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Drescher</span> <span class="cit-name-given-names">K</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Michel</span> <span class="cit-name-given-names">N</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Polin</span> <span class="cit-name-given-names">M</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Tuval</span> <span class="cit-name-given-names">I</span></span></li></ol><cite> (<span class="cit-pub-date">2010</span>) <span class="cit-article-title">Direct measurement of the flow field around swimming microorganisms</span>. <abbr class="cit-jnl-abbrev">Phys Rev Lett</abbr> <span class="cit-vol">105</span>:<span class="cit-fpage">168101</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DDrescher%26rft.auinit1%253DK.%26rft.volume%253D105%26rft.issue%253D16%26rft.spage%253D168101%26rft.epage%253D168101%26rft.atitle%253DDirect%2Bmeasurement%2Bof%2Bthe%2Bflow%2Bfield%2Baround%2Bswimming%2Bmicroorganisms.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.105.168101%26rft_id%253Dinfo%253Apmid%252F21231017%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=10.1103/PhysRevLett.105.168101&link_type=DOI" class="cit-ref-sprinkles cit-ref-sprinkles-doi cit-ref-sprinkles-crossref"><span>CrossRef</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=21231017&link_type=MED&atom=%2Fpnas%2F114%2F9%2F2119.atom" class="cit-ref-sprinkles cit-ref-sprinkles-medline"><span>PubMed</span></a></div></div></li><li><a class="rev-xref-ref" href="#xref-ref-94-1" title="View reference 94 in text" id="ref-94">↵</a><div class="cit ref-cit ref-journal" id="cit-114.9.2119.94" data-doi="10.1073/pnas.1019079108"><div class="cit-metadata"><ol class="cit-auth-list"><li><span class="cit-auth"><span class="cit-name-surname">Drescher</span> <span class="cit-name-given-names">K</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Dunkel</span> <span class="cit-name-given-names">J</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Cisneros</span> <span class="cit-name-given-names">LH</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Ganguly</span> <span class="cit-name-given-names">S</span></span>, </li><li><span class="cit-auth"><span class="cit-name-surname">Goldstein</span> <span class="cit-name-given-names">RE</span></span></li></ol><cite> (<span class="cit-pub-date">2011</span>) <span class="cit-article-title">Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering</span>. <abbr class="cit-jnl-abbrev">Proc Natl Acad Sci USA</abbr> <span class="cit-vol">108</span>(<span class="cit-issue">27</span>):<span class="cit-fpage">10940</span>–<span class="cit-lpage">10945</span>.</cite></div>.<div class="cit-extra"><a href="{openurl}?query=rft.jtitle%253DProc%2BNatl%2BAcad%2BSci%2BUSA%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.1019079108%26rft_id%253Dinfo%253Apmid%252F21690349%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx" class="cit-ref-sprinkles cit-ref-sprinkles-openurl cit-ref-sprinkles-open-url"><span>OpenUrl</span></a><a href="/web/20180714115531/http://www.pnas.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTA4LzI3LzEwOTQwIjtzOjQ6ImF0b20iO3M6MjE6Ii9wbmFzLzExNC85LzIxMTkuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9" class="cit-ref-sprinkles cit-ref-sprinkles-ijlink"><span><span class="cit-reflinks-abstract">Abstract</span><span class="cit-sep cit-reflinks-variant-name-sep">/</span><span class="cit-reflinks-full-text"><span class="free-full-text">FREE </span>Full Text</span></span></a></div></div></li></ol></div><span class="highwire-journal-article-marker-end"></span></div><span id="related-urls"></span></div><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/114/9/2119.abstract" class="hw-link hw-link-article-abstract" data-icon-position="" data-hide-link-title="0">View Abstract</a></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-article-trendmd"> <div class="pane-content"> <div id="trendmd-suggestions"></div> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-node-pager"> <div class="pane-content"> <div class="pager highwire-pager pager-mini clearfix highwire-node-pager highwire-article-pager"><span class="pager-prev"><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2115" title="PNAS Plus Significance Statements" rel="prev" class="pager-link-prev link-icon"><i class="icon-circle-arrow-left"></i> <span class="title">Previous</span></a></span><span class="pager-next"><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2125" title="Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent" rel="next" class="pager-link-next link-icon-right link-icon"><span class="title">Next</span> <i class="icon-circle-arrow-right"></i></a></span></div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-back-to-top text-center"> <div class="pane-content"> <a href="#page" class="back-to-top" data-icon-position="" data-hide-link-title="0"><i class="icon-chevron-up"></i> Back to top</a> </div> </div> </div> </div> </div> <div class="sidebar-right-wrapper rhs col-narrow-offset-1 col-narrow-8"> <div class="panel-panel panel-region-sidebar-right"> <div class="inside"><div class="panel-pane pane-panels-mini pane-jnl-pnas-art-tools max-margin-bottom"> <div class="pane-content"> <div class="panel-display two-layout " id="mini-panel-jnl_pnas_art_tools"> <div class="panel-row-wrapper row"> <div class="left-wrapper col-narrow-12"> <div class="panel-panel panel-region-left"> <div class="inside"><div class="panel-pane pane-minipanel-dialog-link pane-jnl-pnas-art-alert"> <div class="pane-content"> <div class="minipanel-dialog-wrapper"><div class="minipanel-dialog-link-link"><a href="/web/20180714115531/http://www.pnas.org/" oncontextmenu="javascript: return false;" class="minipanel-dialog-link-trigger link-icon" title="Alerts for this Article"><i class="icon-bullhorn"></i> <span class="title">Article Alerts</span></a></div><div class="minipanel-dialog-link-mini" style="display:none"><div class="empty_placeholder ui-helper-hidden-accessible"><input autofocus="autofocus" type="hidden"/></div> <div class="panel-display panel-1col clearfix" id="mini-panel-jnl_pnas_art_alert"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-article-add-form"> <div class="pane-content"> <div id="alerts-form-wrapper"><form action="/web/20180714115531/http://www.pnas.org/content/114/9/2119" method="post" id="highwire-user-opportunity-login" accept-charset="UTF-8"><div><div class="form-item form-type-textfield form-item-name"> <label for="edit-name">User Name <span class="form-required" title="This field is required.">*</span></label> <input type="text" id="edit-name" name="name" value="" size="60" maxlength="128" class="form-text required"/> </div> <div class="form-item form-type-password form-item-pass"> <label for="edit-pass">Password <span class="form-required" title="This field is required.">*</span></label> <input type="password" id="edit-pass" name="pass" size="60" maxlength="128" class="form-text required"/> </div> <div class="form-item form-type-textfield form-item-highwire-alerts-email"> <input placeholder="Enter Email Address" type="text" id="edit-highwire-alerts-email" name="highwire_alerts_email" value="" size="60" maxlength="128" class="form-text required"/> </div> <button type="submit" id="edit-submit--3" name="op" value="Submit" class="form-submit">Submit</button><input type="hidden" name="form_build_id" value="form-JtuUjZo3Oge4VL-pSh4KB6a6LIyoIJD0tNryjai-Xhc"/> <input type="hidden" name="form_id" value="highwire_alerts_article_sign_up_form"/> <input type="hidden" name="current_path" value="content/114/9/2119"/> </div></form></div> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-pane pane-minipanel-dialog-link pane-jnl-pnas-art-email"> <div class="pane-content"> <div class="minipanel-dialog-wrapper"><div class="minipanel-dialog-link-link"><a href="/web/20180714115531/http://www.pnas.org/" oncontextmenu="javascript: return false;" class="minipanel-dialog-link-trigger link-icon" title="Email this Article"><i class="icon-envelope"></i> <span class="title">Email Article</span></a></div><div class="minipanel-dialog-link-mini" style="display:none"><div class="empty_placeholder ui-helper-hidden-accessible"><input autofocus="autofocus" type="hidden"/></div> <div class="panel-display panel-1col clearfix" id="mini-panel-jnl_pnas_art_email"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-block pane-forward-form pane-forward"> <div class="pane-content"> <form action="/web/20180714115531/http://www.pnas.org/content/114/9/2119" method="post" id="forward-form" accept-charset="UTF-8"><div><div id="edit-instructions" class="form-item form-type-item"> <p>Thank you for your interest in spreading the word on PNAS.</p><p>NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.</p> </div> <div class="form-item form-type-textfield form-item-email"> <label for="edit-email">Your Email <span class="form-required" title="This field is required.">*</span></label> <input type="text" id="edit-email" name="email" value="" size="58" maxlength="256" class="form-text required"/> </div> <div class="form-item form-type-textfield form-item-name"> <label for="edit-name--2">Your Name <span class="form-required" title="This field is required.">*</span></label> <input type="text" id="edit-name--2" name="name" value="" size="58" maxlength="256" class="form-text required"/> </div> <div class="form-item form-type-textarea form-item-recipients"> <label for="edit-recipients">Send To <span class="form-required" title="This field is required.">*</span></label> <div class="form-textarea-wrapper resizable"><textarea id="edit-recipients" name="recipients" cols="50" rows="5" class="form-textarea required"></textarea></div> <div class="description">Enter multiple addresses on separate lines or separate them with commas.</div> </div> <div id="edit-page" class="form-item form-type-item"> <label for="edit-page">You are going to email the following </label> <a href="/web/20180714115531/http://www.pnas.org/content/114/9/2119" class="active" data-icon-position="" data-hide-link-title="0">Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids</a> </div> <div id="edit-subject" class="form-item form-type-item"> <label for="edit-subject">Message Subject </label> (Your Name) has sent you a message from PNAS </div> <div id="edit-body" class="form-item form-type-item"> <label for="edit-body">Message Body </label> (Your Name) thought you would like to see the PNAS web site. </div> <div class="form-item form-type-textarea form-item-message"> <label for="edit-message--2">Your Personal Message </label> <div class="form-textarea-wrapper resizable"><textarea id="edit-message--2" name="message" cols="50" rows="10" class="form-textarea"></textarea></div> </div> <input type="hidden" name="path" value="node/2011"/> <input type="hidden" name="path_cid" value=""/> <input type="hidden" name="forward_footer" value=""/> <input type="hidden" name="form_build_id" value="form-idBmcjO8rP_5IFEJ6mP29EhRA-Ks7dZbHwEGO5gZJ7o"/> <input type="hidden" name="form_id" value="forward_form"/> <div class="form-actions form-wrapper" id="edit-actions"><button type="submit" id="edit-submit--4" name="op" value="Send Message" class="form-submit">Send Message</button></div></div></form> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-pane pane-minipanel-dialog-link pane-jnl-pnas-cite-tool"> <div class="pane-content"> <div class="minipanel-dialog-wrapper"><div class="minipanel-dialog-link-link"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/download" oncontextmenu="javascript: return false;" class="minipanel-dialog-link-trigger link-icon" title="Citation Tools"><i class="icon-globe"></i> <span class="title">Citation Tools</span></a></div><div class="minipanel-dialog-link-mini" style="display:none"><div class="empty_placeholder ui-helper-hidden-accessible"><input autofocus="autofocus" type="hidden"/></div> <div class="panel-display panel-1col clearfix" id="mini-panel-jnl_pnas_cite_tool"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-citation-export"> <div class="pane-content"> <div> <div class="highwire-citation-info"> <div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="2011" id="node2011--2" data-pisa="pnas;114/9/2119" data-pisa-master="pnas;1614721114" data-apath="/pnas/114/9/2119.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-jcore-standard clearfix"> <div class="highwire-cite-title">Symmetry breaking and turbulence in active fluids</div> <div class="highwire-cite-authors"><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Jonasz</span> <span class="nlm-surname">Słomka</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Jörn</span> <span class="nlm-surname">Dunkel</span></span></span></div> <div class="highwire-cite-metadata"><span class="highwire-cite-metadata-oa-ind highwire-cite-metadata"><i class="highwire-oa-indicator"></i> </span><span class="highwire-cite-metadata-journal highwire-cite-metadata">Proceedings of the National Academy of Sciences </span><span class="highwire-cite-metadata-date highwire-cite-metadata">Feb 2017, </span><span class="highwire-cite-metadata-volume highwire-cite-metadata">114 </span><span class="highwire-cite-metadata-issue highwire-cite-metadata">(9) </span><span class="highwire-cite-metadata-pages highwire-cite-metadata">2119-2124; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="label">DOI:</span> 10.1073/pnas.1614721114 </span></div> </div> </div> </div> <div class="highwire-citation-formats"> <h2>Citation Manager Formats</h2> <div class="highwire-citation-formats-links"> <span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.spage=2119&rft.epage=2124&rft.atitle=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids&rft.volume=114&rft.issue=9&rft.date=2017-02-28%2000%3A00%3A00&rft.stitle=PNAS&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences&rft.au=S%C5%82omka%2C+Jonasz&rft.au=Dunkel%2C+J%C3%B6rn"></span><ul class="hw-citation-links inline"><li class="bibtext first"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/bibtext" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">BibTeX</a></li> <li class="bookends"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/bookends" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Bookends</a></li> <li class="easybib"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/easybib" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EasyBib</a></li> <li class="endnote-tagged"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/endnote-tagged" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EndNote (tagged)</a></li> <li class="endnote-8-xml"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/endnote-8-xml" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">EndNote 8 (xml)</a></li> <li class="medlars"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/medlars" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Medlars</a></li> <li class="mendeley"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/mendeley" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Mendeley</a></li> <li class="papers"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/papers" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Papers</a></li> <li class="refworks-tagged"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/refworks-tagged" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">RefWorks Tagged</a></li> <li class="reference-manager"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/reference-manager" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Ref Manager</a></li> <li class="ris"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/ris" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">RIS</a></li> <li class="zotero last"><a href="/web/20180714115531/http://www.pnas.org/highwire/citation/2011/zotero" class="hw-download-citation-link" data-icon-position="" data-hide-link-title="0">Zotero</a></li> </ul> </div> </div> </div> </div> </div> </div> </div> </div> </div></div> </div> </div> <div class="panel-pane pane-custom pane-1 text-no-wrap"> <div class="pane-content"> <a href="/web/20180714115531/http://www.pnas.org/page/about/rights-permissions"> <i class="icon-copyright"></i> <span class="title"><span class="narrow-hidden">Request </span>Permissions</span> </a> </div> </div> </div> </div> </div> <div class="right-wrapper col-narrow-12"> <div class="panel-panel panel-region-right"> <div class="inside"><div class="panel-pane pane-highwire-share-link highwire_clipboard_link_ajax" id="shareit"> <div class="pane-content"> <a href="/web/20180714115531/http://www.pnas.org/" class="link-icon"><i class="icon-share-alt"></i> <span class="title">Share</span></a> </div> </div> <div class="panel-pane pane-panels-mini pane-jnl-pnas-share highwire_clipboard_form_ajax_shareit"> <div class="pane-content"> <div class="panel-display panel-1col clearfix" id="mini-panel-jnl_pnas_share"> <div class="panel-panel panel-col"> <div><div class="panel-pane pane-highwire-article-citation large-margin-bottom"> <div class="pane-content"> <div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="2011" id="node2011--2" data-pisa="pnas;114/9/2119" data-pisa-master="pnas;1614721114" data-apath="/pnas/114/9/2119.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-jcore-standard clearfix"> <div class="highwire-cite-title">Symmetry breaking and turbulence in active fluids</div> <div class="highwire-cite-authors"><span class="highwire-citation-authors"><span class="highwire-citation-author first" data-delta="0"><span class="nlm-given-names">Jonasz</span> <span class="nlm-surname">Słomka</span></span>, <span class="highwire-citation-author" data-delta="1"><span class="nlm-given-names">Jörn</span> <span class="nlm-surname">Dunkel</span></span></span></div> <div class="highwire-cite-metadata"><span class="highwire-cite-metadata-oa-ind highwire-cite-metadata"><i class="highwire-oa-indicator"></i> </span><span class="highwire-cite-metadata-journal highwire-cite-metadata">Proceedings of the National Academy of Sciences </span><span class="highwire-cite-metadata-date highwire-cite-metadata">Feb 2017, </span><span class="highwire-cite-metadata-volume highwire-cite-metadata">114 </span><span class="highwire-cite-metadata-issue highwire-cite-metadata">(9) </span><span class="highwire-cite-metadata-pages highwire-cite-metadata">2119-2124; </span><span class="highwire-cite-metadata-doi highwire-cite-metadata"><span class="label">DOI:</span> 10.1073/pnas.1614721114 </span></div> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-article-clipboard-copy large-margin-bottom"> <div class="pane-content"> <div class="clipboard-copy"> <span class="label-url"> <label for="dynamic">Share This Article:</label> </span> <span class="input-text-url"> <input type="text" id="dynamic" value="http://www.pnas.org/content/114/9/2119" size="50"/> </span> <span class="copy-button button"> <button id="copy-dynamic" class="clipboardjs-button" data-clipboard-target="#dynamic" data-clipboard-alert-style="tooltip" data-clipboard-alert-text="Copied!">Copy</button> </span> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-service-links"> <div class="pane-content"> <div class="service-links"><a href="https://web.archive.org/web/20180714115531/http://del.icio.us/post?url=http%3A//www.pnas.org/content/114/9/2119&title=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids" id="delicious" title="Bookmark this post on del.icio.us" class="service-links-delicious" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/images/delicious-32.png" alt="del.icio.us logo"/></a> <a href="https://web.archive.org/web/20180714115531/http://digg.com/submit?phase=2&url=http%3A//www.pnas.org/content/114/9/2119&title=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids" id="digg" title="Digg this post on digg.com" class="service-links-digg" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/images/digg.png" alt="Digg logo"/></a> <a href="https://web.archive.org/web/20180714115531/http://reddit.com/submit?url=http%3A//www.pnas.org/content/114/9/2119&title=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids" id="reddit" title="Submit this post on reddit.com" class="service-links-reddit" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/images/reddit.png" alt="Reddit logo"/></a> <a href="https://web.archive.org/web/20180714115531/http://twitter.com/share?url=http%3A//www.pnas.org/content/114/9/2119&text=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids" id="twitter" title="Share this on Twitter" class="service-links-twitter" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/images/twitter.png" alt="Twitter logo"/></a> <a href="https://web.archive.org/web/20180714115531/http://www.citeulike.org/posturl?url=http%3A//www.pnas.org/content/114/9/2119&title=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids" id="citeulike" title="Share on CiteULike" class="service-links-citeulike" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/images/citeyoulike.png" alt="CiteULike logo"/></a> <a href="https://web.archive.org/web/20180714115531/http://www.facebook.com/sharer.php?u=http%3A//www.pnas.org/content/114/9/2119&t=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids" id="facebook" title="Share on Facebook" class="service-links-facebook" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/images/fb-blue.png" alt="Facebook logo"/></a> <a href="https://web.archive.org/web/20180714115531/http://www.google.com/bookmarks/mark?op=add&bkmk=http%3A//www.pnas.org/content/114/9/2119&title=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids" id="google" title="Bookmark this post on Google" class="service-links-google" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/images/google-32.png" alt="Google logo"/></a> <a href="https://web.archive.org/web/20180714115531/http://www.mendeley.com/import/?url=http%3A//www.pnas.org/content/114/9/2119&title=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids" id="mendeley" title="Share on Mendeley" class="service-links-mendeley" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/images/mendeley.png" alt="Mendeley logo"/></a></div> </div> </div> </div> </div> </div> </div> </div> <div class="panel-pane pane-service-links"> <div class="pane-content"> <div class="service-links"><div class="item-list"><ul><li class="first"><a href="https://web.archive.org/web/20180714115531/http://twitter.com/share?url=http%3A//www.pnas.org/content/114/9/2119&count=horizontal&via=&text=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids&counturl=http%3A//www.pnas.org/content/114/9/2119" class="twitter-share-button service-links-twitter-widget" id="twitter_widget" title="Tweet This" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Tweet Widget</span></a></li> <li><a href="https://web.archive.org/web/20180714115531/http://www.facebook.com/plugins/like.php?href=http%3A//www.pnas.org/content/114/9/2119&layout=button_count&show_faces=false&action=like&colorscheme=light&width=100&height=21&font=&locale=" id="facebook_like" title="I Like it" class="service-links-facebook-like" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><span class="element-invisible">Facebook Like</span></a></li> <li class="last"><a href="https://web.archive.org/web/20180714115531/http://www.mendeley.com/import/?url=http%3A//www.pnas.org/content/114/9/2119&title=Spontaneous%20mirror-symmetry%20breaking%20induces%20inverse%20energy%20cascade%20in%203D%20active%20fluids" id="mendeley" title="Share on Mendeley" class="service-links-mendeley" rel="nofollow" target="_blank" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/images/mendeley.png" alt="Mendeley logo"/> Mendeley</a></li> </ul></div></div> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-jnl-pnas-accordion max-margin-bottom"> <div class="pane-content"> <div class="panel-display panel-1col clearfix" id="mini-panel-jnl_pnas_accordion"> <div class="panel-panel panel-col"> <div><div id="highwire_article_accordion_container"><h3><i class="icon-caret-right"></i> More Articles of This Classification</h3><div><div class="highwire-list"><div class="highwire-articles-in-toc physical-sciences"><h3 class="highwire-toc-heading">Physical Sciences</h3> <div class="highwire-list highwire-article-citation-list"><ul><li class="first odd"><div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="819330" id="node819330" data-pisa="pnas;1801551115v1" data-pisa-master="pnas;1801551115" data-apath="/pnas/early/2018/07/11/1801551115.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-jcore-standard-title-only clearfix"> <a href="/web/20180714115531/http://www.pnas.org/content/early/2018/07/11/1801551115" class="highwire-cite-linked-title" data-icon-position="" data-hide-link-title="0"><span class="highwire-cite-title">Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals</span></a> </div> </div></li><li class="even"><div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="818794" id="node818794" data-pisa="pnas;1800412115v1" data-pisa-master="pnas;1800412115" data-apath="/pnas/early/2018/07/11/1800412115.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-jcore-standard-title-only clearfix"> <a href="/web/20180714115531/http://www.pnas.org/content/early/2018/07/11/1800412115" class="highwire-cite-linked-title" data-icon-position="" data-hide-link-title="0"><span class="highwire-cite-title">Acceleration of hydrogen absorption by palladium through surface alloying with gold</span></a> </div> </div></li><li class="last odd"><div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="818260" id="node818260" data-pisa="pnas;1805912115v1" data-pisa-master="pnas;1805912115" data-apath="/pnas/early/2018/07/06/1805912115.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-jcore-standard-title-only clearfix"> <a href="/web/20180714115531/http://www.pnas.org/content/early/2018/07/06/1805912115" class="highwire-cite-linked-title" data-icon-position="" data-hide-link-title="0"><span class="highwire-cite-title">Giant and explosive plasmonic bubbles by delayed nucleation</span></a> </div> </div></li></ul></div><div class="highwire-list-footer"><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Physical%20Sciences" class="" data-icon-position="" data-hide-link-title="0">Show more</a></div></div><div class="highwire-articles-in-toc applied-mathematics"><h3 class="highwire-toc-heading">Applied Mathematics</h3> <div class="highwire-list highwire-article-citation-list"><ul><li class="first odd"><div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="817732" id="node817732" data-pisa="pnas;115/28/7200" data-pisa-master="pnas;1705490115" data-apath="/pnas/115/28/7200.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-jcore-standard-title-only clearfix"> <a href="/web/20180714115531/http://www.pnas.org/content/115/28/7200" class="highwire-cite-linked-title" data-icon-position="" data-hide-link-title="0"><span class="highwire-cite-title">Near-optimal matrix recovery from random linear measurements</span></a> </div> </div></li><li class="even"><div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="817001" id="node817001" data-pisa="pnas;115/27/6905" data-pisa-master="pnas;1720307115" data-apath="/pnas/115/27/6905.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-jcore-standard-title-only clearfix"> <a href="/web/20180714115531/http://www.pnas.org/content/115/27/6905" class="highwire-cite-linked-title" data-icon-position="" data-hide-link-title="0"><span class="highwire-cite-title">Polyhedra and packings from hyperbolic honeycombs</span></a> </div> </div></li><li class="last odd"><div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="815774" id="node815774" data-pisa="pnas;115/26/6548" data-pisa-master="pnas;1804484115" data-apath="/pnas/115/26/6548.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-jcore-standard-title-only clearfix"> <a href="/web/20180714115531/http://www.pnas.org/content/115/26/6548" class="highwire-cite-linked-title" data-icon-position="" data-hide-link-title="0"><span class="highwire-cite-title">River landscapes and optimal channel networks</span></a> </div> </div></li></ul></div><div class="highwire-list-footer"><a href="/web/20180714115531/http://www.pnas.org/content/by/section/Applied%20Mathematics" class="" data-icon-position="" data-hide-link-title="0">Show more</a></div></div></div></div><h3><i class="icon-caret-right"></i> Related Content</h3><div><div class="highwire-list highwire-related-articles highwire-article-citation-list"><ul class="highwire-related-articles-list"><li class="first last odd"><div class="highwire-article-citation highwire-citation-type-highwire-article" data-node-nid="2492" id="node2492" data-pisa="pnas;114/15/E3159" data-pisa-master="pnas;1703403114" data-apath="/pnas/114/15/E3159.atom"><div class="highwire-cite highwire-cite-highwire-article highwire-citation-jcore-standard-title-only clearfix"> <a href="/web/20180714115531/http://www.pnas.org/content/114/15/E3159" class="highwire-cite-linked-title" data-icon-position="" data-hide-link-title="0"><span class="highwire-cite-title">Correction for Słomka and Dunkel, Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids</span></a> </div> </div></li></ul></div><div class="highwire-list-footer"><div class="highwire-related-articles-footer"><ul class="links inline"><li class="related-scopus first"><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?access_num=pnas%3B114/9/2119&link_type=SCOPUS_CITING&external_url=http%3A//www.scopus.com/scopus/inward/citedby.url%3FpartnerID%3Dc9DrA512%26rel%3DR6.0.0%26eid%3D2-s2.0-85014107817%26md5%3D8cc249f102c1aae62603178c0c506470" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Scopus</a></li> <li class="related-pubmed"><a href="/web/20180714115531/http://www.pnas.org/lookup/external-ref?link_type=MED_NBRS&access_num=28193853" target="_blank" class="" data-icon-position="" data-hide-link-title="0">PubMed</a></li> <li class="related-google-scholar last"><a href="/web/20180714115531/http://www.pnas.org/lookup/google-scholar?link_type=googlescholar&gs_type=related&author%5B0%5D=Jonasz%2BS%C5%82omka&author%5B1%5D=J%C3%B6rn%2BDunkel&title=Spontaneous%2Bmirror-symmetry%2Bbreaking%2Binduces%2Binverse%2Benergy%2Bcascade%2Bin%2B3D%2Bactive%2Bfluids&publication_year=2017&path=content/114/9/2119" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Google Scholar</a></li> </ul></div></div></div><h3><i class="icon-caret-right"></i> Cited by...</h3><div><div class="highwire-list highwire-cited-by"><ul><li class="first last odd"><div class="no-results">No citing articles found.</div></li></ul></div><div class="highwire-list-footer"><ul class="links inline"><li class="citing-scopus first"><a href="https://web.archive.org/web/20180714115531/http://www.scopus.com/scopus/inward/citedby.url?partnerID=c9DrA512&rel=R6.0.0&eid=2-s2.0-85014107817&md5=8cc249f102c1aae62603178c0c506470" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Scopus <span class="counter">(4)</span></a></li> <li class="citing-google-scholar last"><a href="/web/20180714115531/http://www.pnas.org/lookup/google-scholar?link_type=googlescholar&gs_type=citedby&path=content/114/9/2119" target="_blank" class="" data-icon-position="" data-hide-link-title="0">Google Scholar</a></li> </ul></div></div><h3><i class="icon-caret-right"></i> Similar Articles</h3><div><div class="highwire-search-similar-ajax-wrapper" id="highwire-search-similar-articles-list-1"><div class="highwire-ajax-loading"><i class="icon-spinner icon-spin icon-2x"></i></div></div></div></div></div> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-views-panes pane-pnas-featured-items-article-rhs-nodequeue-panel-pane pane-style-alt-content max-margin-bottom"> <h2 class="pane-title"><span class="pane-title-text">You May Also be Interested in</span></h2> <div class="pane-content"> <div class="view view-pnas-featured-items-article-rhs-nodequeue view-id-pnas_featured_items_article_rhs_nodequeue view-display-id-panel_pane pnas-featured-item-list pnas-featured-item-list-rhs view-dom-id-2ad0ec2f7c11745ceb9331f13f61b0aa"> <div class="view-content"> <div class="views-row-odd views-row-first"> <article class="node-view-teaser node-featured-item"> <div class="node--image"> <a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/115/28/7162" class="" data-icon-position="" data-hide-link-title="0"><div class="field field-name-field-featured-item-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/styles/medium/public/additional-assets/featured-item/FrontMatter27.jpg?itok=EY9HLn86" width="220" height="220" alt="Demand in the US for local, fresh, and sustainably produced seafood is growing, and local supply can’t meet demand. It’s a lost opportunity for sustainability and economic growth. Aquaculture represents the only realistic option for expanding domestic production. Image courtesy of Rick Decker (photographer)."/></div></div></div></a> </div> <!-- End of image --> <div class="node--body"> <div class="node--featured-item__title"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/115/28/7162" class="" data-icon-position="" data-hide-link-title="0">Opinion: Offshore aquaculture in the United States: Untapped potential in need of smart policy</a></div> <div class="node--featured-item__description">Demand in the US for local, fresh, and sustainably produced seafood is growing, and local supply can’t meet demand. It’s a lost opportunity for sustainability and economic growth. Aquaculture represents the only realistic option for expanding domestic production.</div> <div class="node--featured-item__credits text-small"> Image courtesy of Rick Decker (photographer).</div> </div> <!-- End of body --> </article> </div> <div class="views-row-even"> <article class="node-view-teaser node-featured-item"> <div class="node--image"> <a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/early/2018/06/06/1808261115" class="" data-icon-position="" data-hide-link-title="0"><div class="field field-name-field-featured-item-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/styles/medium/public/additional-assets/featured-item/Dishoeck.220.jpg?itok=zkYedHxr" width="220" height="220" alt="Ewine F. van Dishoeck"/></div></div></div></a> </div> <!-- End of image --> <div class="node--body"> <div class="node--featured-item__title"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/early/2018/06/06/1808261115" class="" data-icon-position="" data-hide-link-title="0">PNAS QnAs</a></div> <div class="node--featured-item__description">PNAS QnAs with astrophysicist and NAS foreign associate Ewine F. van Dishoeck.</div> </div> <!-- End of body --> </article> </div> <div class="views-row-odd"> <article class="node-view-teaser node-featured-item"> <div class="node--image"> <a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/early/2018/06/12/1800285115" class="" data-icon-position="" data-hide-link-title="0"><div class="field field-name-field-featured-item-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/styles/medium/public/additional-assets/featured-item/18-00285.220.jpg?itok=XkzmB_Cz" width="220" height="220" alt="Pisaster ochraceus with new growth from mid-arm after trauma."/></div></div></div></a> </div> <!-- End of image --> <div class="node--body"> <div class="node--featured-item__title"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/early/2018/06/12/1800285115" class="" data-icon-position="" data-hide-link-title="0">Allele frequency and mass mortality in sea stars</a></div> <div class="node--featured-item__description">Researchers used field data from 2012 to 2015 to study mortality and allele frequency changes in the sea star Pisaster ochraceus during a mass mortality event in northcentral California, and found that surviving adult and juvenile sea stars experienced 81% mortality and allele shifts, according to the authors.</div> </div> <!-- End of body --> </article> </div> <div class="views-row-even"> <article class="node-view-teaser node-featured-item"> <div class="node--image"> <a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/early/2018/06/13/1722023115" class="" data-icon-position="" data-hide-link-title="0"><div class="field field-name-field-featured-item-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/styles/medium/public/additional-assets/featured-item/17-22023.220.jpg?itok=eXed2WI7" width="220" height="220" alt="Receipt. Image courtesy of Pixabay/jarmoluk."/></div></div></div></a> </div> <!-- End of image --> <div class="node--body"> <div class="node--featured-item__title"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/early/2018/06/13/1722023115" class="" data-icon-position="" data-hide-link-title="0">Increasing despair among poor Americans</a></div> <div class="node--featured-item__description">A survey of more than 4,600 American adults conducted in 1995-1996 and in 2011-2014 suggests that among individuals of low socioeconomic status, negative affect increased significantly between the two survey waves, whereas life satisfaction and psychological well-being decreased.</div> <div class="node--featured-item__credits text-small">Image courtesy of Pixabay/jarmoluk.</div> </div> <!-- End of body --> </article> </div> <div class="views-row-odd views-row-last"> <article class="node-view-teaser node-featured-item"> <div class="node--image"> <a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/early/2018/06/05/1718793115" class="" data-icon-position="" data-hide-link-title="0"><div class="field field-name-field-featured-item-image field-type-image field-label-hidden"><div class="field-items"><div class="field-item even"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/styles/medium/public/additional-assets/featured-item/17-18793.220.jpg?itok=uBbccx3K" width="220" height="220" alt="Brain. Image courtesy of Pixabay/TheDigitalArtist."/></div></div></div></a> </div> <!-- End of image --> <div class="node--body"> <div class="node--featured-item__title"><a href="https://web.archive.org/web/20180714115531/http://www.pnas.org/content/early/2018/06/05/1718793115" class="" data-icon-position="" data-hide-link-title="0">Factors tied to IQ score trends</a></div> <div class="node--featured-item__description">A study of cognitive ability in Norwegian males born from 1962 to 1991 suggests that environmental factors rather than changing genetic composition of families likely account for most of the change in Norwegian population IQ.</div> <div class="node--featured-item__credits text-small">Image courtesy of Pixabay/TheDigitalArtist.</div> </div> <!-- End of body --> </article> </div> </div> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-panels-mini pane-jnl-pnas-hme-issue max-margin-bottom"> <div class="pane-content"> <div class="panel-display two-layout " id="mini-panel-jnl_pnas_hme_issue"> <div class="panel-row-wrapper row"> <div class="left-wrapper col-narrow-12"> <div class="panel-panel panel-region-left"> <div class="inside"><div class="panel-pane pane-highwire-issue-cover sm-image-border"> <div class="pane-content"> <div class="cover-issue"><div class="cover-issue-image"><a href="/web/20180714115531/http://www.pnas.org/content/115/28" class="" data-icon-position="" data-hide-link-title="0"><img src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/styles/large/public/highwire/pnas/115/28.cover-source.jpg?itok=qGoA4DLY" alt="Proceedings of the National Academy of Sciences: 115 (28)"/></a></div></div> </div> </div> </div> </div> </div> <div class="right-wrapper col-narrow-12"> <div class="panel-panel panel-region-right"> <div class="inside"><div class="panel-pane pane-highwire-variant-link"> <div class="pane-content"> <a href="/web/20180714115531/http://www.pnas.org/content/115/28.toc" data-icon-position="before" target="_self" class="button" data-hide-link-title="0">Current Issue</a> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-custom pane-1"> <div class="pane-content"> <p><a class="button-alt" href="https://web.archive.org/web/20180714115531/https://www.pnascentral.org/cgi-bin/main.plex" target="_self">Submit</a></p> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> <div class="panel-row-wrapper panel-row-last row"> <div class="bottom-wrapper col-narrow-24"> <div class="panel-panel panel-region-bottom"> <div class="inside"><div class="panel-pane pane-alerts-login-form signup-for-alerts"> <h2 class="pane-title"><span class="pane-title-text"><i class="icon-envelope"></i> Sign up for Article Alerts</span></h2> <div class="pane-content"> <form action="/web/20180714115531/http://www.pnas.org/content/114/9/2119" method="post" id="highwire-alerts-email-login-form--2" accept-charset="UTF-8"><div><div class="form-item form-type-textfield form-item-highwire-alerts-email"> <input placeholder="Enter Email Address" type="text" id="edit-highwire-alerts-email--2" name="highwire_alerts_email" value="" size="60" maxlength="128" class="form-text required"/> </div> <button class="button-alt form-submit" type="submit" id="edit-submit--5" name="op" value="Sign up">Sign up</button><input type="hidden" name="form_build_id" value="form-0YHfx_PoENpNgVWw5404M2gqC6a2z_0jkZgwL_ZKuZ8"/> <input type="hidden" name="form_id" value="highwire_alerts_email_login_form"/> </div></form> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-article-nav mobile-hidden pane-style-alt-content"> <h2 class="pane-title"><span class="pane-title-text">Jump to section</span></h2> <div class="pane-content"> <div class="highwire-list-wrapper highwire-article-nav highwire-nav-float"><div class="highwire-list"><ul data-highwire-float="1" data-highwire-float-class="grid-10 alpha omega"><li class="parent first odd"><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2119" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-is-tab-link="true" data-icon-position="" data-hide-link-title="0">Article</a><div class="highwire-list"><ul><li class="first odd"><a href="#abstract-2" class="highwire-article-nav-jumplink first" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Abstract</a></li><li class="even"><a href="#sec-1" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Results</a></li><li class="odd"><a href="#sec-6" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Discussion</a></li><li class="even"><a href="#sec-11" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Conclusions</a></li><li class="odd"><a href="#sec-12" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Methods</a></li><li class="even"><a href="#sec-13" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Comparison with Experiments</a></li><li class="odd"><a href="#sec-16" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Model Justification</a></li><li class="even"><a href="#sec-20" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Numerical Methods</a></li><li class="odd"><a href="#sec-27" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Cascade Characteristics</a></li><li class="even"><a href="#ack-1" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Acknowledgments</a></li><li class="odd"><a href="#fn-group-1" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">Footnotes</a></li><li class="last even"><a href="#ref-list-1" class="highwire-article-nav-jumplink last" data-panel-ajax-tab="jnl_pnas_tab_art" data-icon-position="" data-hide-link-title="0">References</a></li></ul></div></li><li class="even"><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2119/tab-figures-data" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_data" data-is-tab-link="true" data-icon-position="" data-hide-link-title="0">Figures & SI</a></li><li class="odd"><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2119/tab-article-info" class="highwire-article-nav-jumplink" data-panel-ajax-tab="jnl_pnas_tab_info" data-is-tab-link="true" data-icon-position="" data-hide-link-title="0">Authors & Info</a></li><li class="last even"><a href="/web/20180714115531/http://www.pnas.org/content/114/9/2119.full.pdf" class="highwire-article-nav-jumplink" data-icon-position="" data-hide-link-title="0"><i class="icon-file-alt"></i> PDF</a></li></ul></div></div> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> </div> </div><!-- /.zone-content --> </div><!-- /.zone-content-wrapper --> </section> <!-- /.section-content --> <footer role="contentinfo" class="section section-footer" id="section-footer"> <div class="container-fluid zone-wrapper zone-footer-third-wrapper"> <div class="zone zone-footer-third row row--footer"> <div class="region region-footer-third col-narrow-22 col-narrow-offset-1"> <div id="block-panels-mini-jnl-pnas-footer" class="block block-panels-mini"> <div class="content"> <div class="panel-display four-layout " id="mini-panel-jnl_pnas_footer"> <div class="panel-row-wrapper row"> <div class="first-wrapper col-narrow-6"> <div class="panel-panel panel-region-first"> <div class="inside"><div class="panel-pane pane-panels-mini pane-jnl-pnas-foot-info"> <div class="pane-content"> <div class="panel-pane pane-pnas-footer-logo"> <div class="pane-content"> <a href="/web/20180714115531/http://www.pnas.org/" class="linked-footer-logo" data-icon-position="" data-hide-link-title="0"><img class="footer-logo" src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/default/files/pnas_2x.png" width="200" height="auto" alt="Site Logo"/></a> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-highwire-branding"> <div class="pane-content"> <a href="https://web.archive.org/web/20180714115531/http://home.highwire.org/" target="_blank" class="highwire-branding-link" data-icon-position="" data-hide-link-title="0"><img class="logo-highwire" src="https://web.archive.org/web/20180714115531im_/http://www.pnas.org/sites/all/modules/highwire/highwire/plugins/content_types/images/logo_small_hw_white.png" width="190" height="31" alt="Powered by HighWire"/></a> </div> </div> </div> </div> </div> </div> </div> <div class="second-wrapper col-narrow-6"> <div class="panel-panel panel-region-second"> <div class="inside"><div class="panel-pane pane-block pane-menu-menu-social-media pane-menu"> <div class="pane-content"> <ul class="menu"><li class="first leaf"><a href="https://web.archive.org/web/20180714115531/https://www.pnascentral.org/cgi-bin/main.plex" target="_blank" class="link-icon"><i class="icon-arrow-right icon-2x"></i> <span class="title">Submit Manuscript</span></a></li> <li class="leaf"><a href="https://web.archive.org/web/20180714115531/https://twitter.com/PNASNews" target="_blank" class="link-icon"><i class="icon-twitter icon-2x"></i> <span class="title">Twitter</span></a></li> <li class="leaf"><a href="https://web.archive.org/web/20180714115531/https://www.facebook.com/pages/PNAS/18262365099" target="_blank" class="link-icon"><i class="icon-facebook icon-2x"></i> <span class="title">Facebook</span></a></li> <li class="leaf"><a href="/web/20180714115531/http://www.pnas.org/page/about/rss" class="link-icon"><i class="icon-rss icon-2x"></i> <span class="title">RSS Feeds</span></a></li> <li class="last leaf"><a href="/web/20180714115531/http://www.pnas.org/alerts" class="link-icon"><i class="icon-envelope icon-2x"></i> <span class="title">Email Alerts</span></a></li> </ul> </div> </div> </div> </div> </div> <div class="third-wrapper col-narrow-6"> <div class="panel-panel panel-region-third"> <div class="inside"><div class="panel-pane pane-block pane-menu-navigate more-margin-bottom pane-menu"> <h2 class="pane-title"><span class="pane-title-text">Articles</span></h2> <div class="pane-content"> <ul class="menu"><li class="first leaf"><a href="/web/20180714115531/http://www.pnas.org/content/current" class="" data-icon-position="" data-hide-link-title="0">Current Issue</a></li> <li class="leaf"><a href="/web/20180714115531/http://www.pnas.org/content/early/recent" data-hide-link-title="0" class="" data-icon-position="">Latest Articles</a></li> <li class="last leaf"><a href="/web/20180714115531/http://www.pnas.org/content/by/year" data-hide-link-title="0" class="" data-icon-position="">Archive</a></li> </ul> </div> </div> <div class="panel-separator"></div><div class="panel-pane pane-block pane-menu-menu-pnas-portals pane-menu"> <h2 class="pane-title"><span class="pane-title-text">PNAS Portals</span></h2> <div class="pane-content"> <ul class="menu"><li class="first leaf"><a href="https://web.archive.org/web/20180714115531/http://pnas100th.org/" class="" data-icon-position="" data-hide-link-title="0">Classics</a></li> <li class="leaf"><a href="https://web.archive.org/web/20180714115531/http://frontmatter.pnas.org/" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Front Matter</a></li> <li class="leaf"><a href="https://web.archive.org/web/20180714115531/http://teachingresources.pnas.org/" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Teaching Resources</a></li> <li class="leaf"><a href="https://web.archive.org/web/20180714115531/http://anthropology.pnas.org/" class="" data-icon-position="" data-hide-link-title="0">Anthropology</a></li> <li class="leaf"><a href="https://web.archive.org/web/20180714115531/http://chemistry.pnas.org/" class="" data-icon-position="" data-hide-link-title="0">Chemistry</a></li> <li class="leaf"><a href="https://web.archive.org/web/20180714115531/http://physics.pnas.org/" class="" data-icon-position="" data-hide-link-title="0">Physics</a></li> <li class="last leaf"><a href="https://web.archive.org/web/20180714115531/http://sustainability.pnas.org/" class="" data-icon-position="" data-hide-link-title="0">Sustainability Science</a></li> </ul> </div> </div> </div> </div> </div> <div class="fourth-wrapper col-narrow-6"> <div class="panel-panel panel-region-sidebar-fourth"> <div class="inside"><div class="panel-pane pane-block pane-menu-more-information pane-menu"> <h2 class="pane-title"><span class="pane-title-text">Information </span></h2> <div class="pane-content"> <ul class="menu"><li class="first leaf"><a href="/web/20180714115531/http://www.pnas.org/page/authors/authors" data-hide-link-title="0" class="" data-icon-position="">Authors</a></li> <li class="leaf"><a href="/web/20180714115531/http://www.pnas.org/page/authors/reviewers" data-hide-link-title="0" class="" data-icon-position="">Reviewers</a></li> <li class="leaf"><a href="/web/20180714115531/http://www.pnas.org/page/about/press" data-hide-link-title="0" class="" data-icon-position="">Press</a></li> <li class="last leaf"><a href="/web/20180714115531/http://www.pnas.org/content/site-map" data-hide-link-title="0" target="_blank" class="" data-icon-position="">Site Map</a></li> </ul> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> <div class="panel-row-wrapper panel-row-last row"> <div class="bottom-wrapper col-narrow-24"> <div class="panel-panel panel-region-bottom"> <div class="inside"><div class="panel-pane pane-panels-mini pane-jnl-pnas-footer-bottom"> <div class="pane-content"> <div class="panel-pane pane-snippet pane-footer-copyright-text"> <div class="pane-content"> <div class="footer-copyright-text" id="footer-copyright-text"> <div class="snippet-content"> <p><img alt="" src="/web/20180714115531im_/http://www.pnas.org/sites/default/files/additional-assets/advanced-pages/logo-nas-white-footer1.png" style="width: 65px; height: 63px; float: left;"/></p> <p style="margin-bottom:5px;"><a href="/web/20180714115531/http://www.pnas.org/feedback" style="color:#FFF;">Feedback</a> <a href="/web/20180714115531/http://www.pnas.org/page/authors/terms" style="color:#FFF;">Privacy/Legal</a></p> <p>Copyright © 2018 National Academy of Sciences.</p> </div> </div> </div> </div> </div> </div> </div> </div> </div> </div> <!-- /.panel-row-wrapper --> </div> </div> </div> </div> </div><!-- /.zone-footer-third --> </div><!-- /.zone-footer-third-wrapper --> </footer><!-- /.section-footer --> </div> <!-- /.page --> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__bnwyEQSuZLC-kZnFqCi5iE02nOCzM7DjY7zYxcN9nsQ__VBiBT_qq_eHMMO2Q1rXK1u-hHff31XLUkmi9dgjuPeY__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__GM3GJPR36rRIz0TRkjC5OQwrioSyN9aoYRivDhCO_AM__qAl84FcCv2jyN22yFGS5Oc85cjd9zKX6p_cFNLGhe-M__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js" async="async"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://crossmark-cdn.crossref.org/widget/v2.0/widget.js"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__uW7NyUocxI-7E_sL-GP7L5FYvHrfi0D8UkwaFa_jFUQ__ITpTmydBN18ujP4Nq9igNKs2_uPvSa_MMIGZilNH7xo__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__2WRbxlwOW0MEUc_hSWU5MBepQg6Lch6O5SZwefpJ6IE__HCL0YQJqLkOhrLPZZYGqosGvtFsEHMGghHIkSx4y9vA__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js" defer="defer"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__sKIV8x--VpO9-IoRd6CCx_t5BOSMptBDRIbUQCHC9P4__kEn_P7XD4RDPo8lEZOV1H1VDatbxE9Tkk0PNno3XOsg__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://pnas-movie.glencoesoftware.com/static/video_inline.min.js"></script> <script type="text/javascript" src="//web.archive.org/web/20180714115531js_/http://www.pnas.org/sites/default/files/advagg_js/js__h_aqoQncHEWyIuodQMPVv1aDn89PsQwnS3PC7VR-a6k__mscOn3PjuLBPqsIi9WPeRONJAARp0R_PMRwtMrQaMQQ__rGwFu0F-6gvxLOyZt5RHrFJAuxJmz3i1SYzg_NyEp2A.js"></script> </body> </html> <!-- FILE ARCHIVED ON 11:55:31 Jul 14, 2018 AND RETRIEVED FROM THE INTERNET ARCHIVE ON 10:08:50 Dec 11, 2024. JAVASCRIPT APPENDED BY WAYBACK MACHINE, COPYRIGHT INTERNET ARCHIVE. ALL OTHER CONTENT MAY ALSO BE PROTECTED BY COPYRIGHT (17 U.S.C. SECTION 108(a)(3)). --> <!-- playback timings (ms): captures_list: 0.733 exclusion.robots: 0.039 exclusion.robots.policy: 0.026 esindex: 0.013 cdx.remote: 100.205 LoadShardBlock: 143.037 (3) PetaboxLoader3.datanode: 153.991 (4) PetaboxLoader3.resolve: 220.466 (2) load_resource: 257.739 -->