CINXE.COM

vector bundle in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> vector bundle in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } </style> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li &gt; p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*=&quot;http://arxiv.org/&quot;] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*=&quot;http://golem.ph.utexas.edu/category&quot;] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=&quot;.pdf&quot;] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=&quot;.pdf#&quot;] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^=&quot;http://&quot;] { border: 0px; color: #003399; } a[href^=&quot;http://&quot;]:visited { border: 0px; color: #330066; } a[href^=&quot;https://&quot;] { border: 0px; color: #003399; } a[href^=&quot;https://&quot;]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: &quot;A(Hover to reveal, click to &quot;hold&quot;)&quot;; font-size: 60%; } div.clickDown .clickToHide:after { content: &quot;A(Click to hide)&quot;; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- function updateSize(elt, w, h) { // adjust to the size of the user's browser area. // w and h are the original, unadjusted, width and height per row/column var parentheight = document.viewport.getHeight(); var parentwidth = $('Container').getWidth(); elt.writeAttribute({'cols': Math.floor(parentwidth/w) - 1, 'rows': Math.floor(parentheight/h) - 2 }); elt.setStyle({Width: parentwidth, Height: parentheight}); } function resizeableTextarea() { //make the textarea resize to fit available space $$('textarea#content').each( function(textarea) { var w = textarea.getWidth()/textarea.getAttribute('cols'); var h = textarea.getStyle('lineHeight').replace(/(\d*)px/, "$1"); Event.observe(window, 'resize', function(){ updateSize(textarea, w, h) }); updateSize(textarea, w, h); Form.Element.focus(textarea); }); } window.onload = function (){ resizeableTextarea(); } //--><!]]> </script> </head> <body> <div id="Container"> <textarea id='content' readonly=' readonly' rows='24' cols='60' > +-- {: .rightHandSide} +-- {: .toc .clickDown tabindex=&quot;0&quot;} ###Context### #### Bundles +-- {: .hide} [[!include bundles - contents]] =-- #### Linear algebra +-- {: .hide} [[!include homotopy - contents]] =-- =-- =-- # Vector bundles * table of contents {: toc} ## Idea Given some context of [[geometry]], then a _vector bundle_ is a collection of [[vector spaces]] that varies in a geometric way over a given base [[space]] $X$: over each [[generalized element|element]] $x \in X$ there is a [[vector space]] $V_x$, called the _[[fiber]]_ over $x$, and as $x$ varies in $X$, the fibers vary along in a geometric way. One also says that vector bundles are _[[fiber bundles]]_ whose fiber carries [[vector space]]-structure. Hence the theory of vector bundles is _parameterized_ [[linear algebra]]. The vector bundles over a fixed base $X$ form a category [[Vect(X)|$VectBund_X$]], and as the base space is allowed to vary these fit into a global category [[VectBund]]. For example * in [[topology]] a _[[topological vector bundle]]_ is a collection of [[vector spaces]] which &quot;vary continuously&quot; over a [[topological space]] $X$, * in [[differential geometry]] a _[[differentiable vector bundle]]_ is a collection of vector space which &quot;varies differentiably&quot; over a [[differentiable manifold]], * in [[algebraic geometry]] an _[[algebraic vector bundle]]_ is a collection of vector spaces which vary algebraically over a [[scheme]]. and so on. One requires that &quot;locally&quot;, on small enough patches of the base space $X$, the variation of the fibers is constant up to isomorphism (one says the vector bundle is &quot;locally trivial&quot;), but the key point of vector bundles is that there may be non-trivial structure in how the collection of vector spaces &quot;globally glues together&quot;. For example if $X = S^1$ is the [[circle]] regarded as a [[topological space]] in the standard way, and if we consider [[real vector spaces]], then there are up to [[isomorphism]] two different $\mathbb{R}$-vector bundles over $S^1$ whose [[fibers]] look like the 1-dimensional real vector space $\mathbb{R}$ itself, namely 1. the [[cylinder]] &lt;img src=&quot;https://ncatlab.org/nlab/files/cylinder.jpg&quot; width=&quot;190&quot;&gt; 1. the [[Möbius strip]]: &lt;img src=&quot;https://ncatlab.org/nlab/files/moebiusstrip.jpg&quot; width=&quot;200&quot;&gt; (In these pictures each vertical interval is to be thought of as a stand-in for a copy of the [[real line]] $\mathbb{R}$.) Clearly for the cylinder nothing special happens to the fibers as one moves around the circle (one says this is a _trivial vector bundle_) while the M&amp;#246;bius strip is &quot;locally trivial&quot; but globally has a twist: as one moves once around the circle the original fiber comes back identified with its reflection at the origin. &lt;div style=&quot;float:right;margin:0 10px 10px 0;&quot;&gt; &lt;img src=&quot;https://ncatlab.org/nlab/files/TangentSpaceToSphere.png&quot; width=&quot;250&quot;&gt; &lt;blockquote&gt; graphics grabbed from &lt;a href=&quot;Hatcher&quot;&gt;Hatcher&lt;/a&gt; &lt;/blockquote&gt; &lt;/div&gt; An important class of examples of vector bundles are [[tangent bundles]] of [[differentiable manifolds]] $X$. Here the [[vector space]] at each point of $X$ is the [[tangent space]] of that point, the space of all [[tangent vectors]] based at that point. The graphics on the right shows one of the tangent space of the [[2-sphere]]. Dually, given an [[embedding of differentiable manifolds]] into a [[Euclidean space]], then the [[normal vectors]] to the tangent bundle span a vector bundle called the _[[normal bundle]]_ of the embedding. All the usual operations on [[finite dimensional vector spaces]] in [[linear algebra]] generalize to vector bundles by applying them [[fiber]]-wise. For instance there is [[direct sum of vector bundles]] and the [[tensor product of vector bundles]] over the same base space. To the extent that the base [[space]] $X$ is encoded in its [[algebra of functions]] (tautologically in [[algebraic geometry]] or via [[Gelfand duality]] in [[topology]]), the [[Serre-Swan theorem]] asserts that vector bundles over $X$ are equivalently encoded in the [[projective modules]] over these algebras constituted by their [[sections]]. Vector bundles have various applications and uses: 1. their [[Grothendieck group]] under [[direct sum of vector bundles]] yields [[topological K-theory]], an interesting [[generalized (Eilenberg-Steenrod) cohomology theory]]; 1. a [[reduction of the structure group]] of vector bundles encodes actual [[geometry]] on the base space; when applied to [[tangent bundles]] such _[[G-structures]]_ on vector bundles encode for instance [[orthogonal structure]], [[Riemannian geometry]], [[complex geometry]], [[symplectic geometry]], [[conformal geometry]] etc. (in general: [[Cartan geometry]]); when applied to [[normal bundles]] these [[G-structures]] give rise, via [[Thom&#39;s theorem]], to [[Thom spectra]] and [[cobordism theory]]; 1. equipping differentiable vector bundles with [[connection on a vector bundle]] is the basis for [[Chern-Weil theory]] and for the application of vector bundles in [[physics]], where they model [[gauge fields]] and [[instanton sectors]]; see also at _[[fiber bundles in physics]]_. ## Definition ### Standard See at _[[topological vector bundle]]_ ### Sheaf-theoretic version Vector bundles can also be defined via [[sheaf and topos theory|sheaf theory]], which permits easy transport to general [[Grothendieck toposes]]. Let $Sh(X)$ be the [[category]] of ([[set]]-valued) [[sheaf|sheaves]] on $X$. The sheaf of continuous local sections of the product projection $$X \times \mathbb{R} \to X$$ forms a [[local ring]] object $R$; when interpreted in the [[internal logic]] of $Sh(X)$, it is the Dedekind [[real numbers object]]. Then, according to a [[Serre-Swan theorem|theorem of Richard Swan]], in its sheaf-theoretic incarnation a vector bundle is the same thing as a [[projective module|projective R-module]]. * A theorem of Kaplansky states &quot;every [[projective module]] over a [[local ring]] is [[free module|free]]&quot;. When interpreted in [[sheaf semantics]] ([[Kripke-Joyal semantics]]), the [[existential quantifier]] implicit in &quot;free&quot; is interpreted _locally_, so we can consider a vector bundle as a locally free module over the Dedekind reals. ### Virtual vector bundles In one class of models for [[K-theory]] -- [[generalized (Eilenberg-Steenrod) cohomology]] theory -- cocycles are represented by $\mathbb{Z}_2$-graded vector bundles (pairs of vector bundles, essentially) modulo a certain equivalence relation. In that context it is sometimes useful to consider a certain variant of infinite-dimensional $\mathbb{Z}_2$-graded vector bundles called [[vectorial bundle | vectorial bundles]]. Much else to be discussed... ## Examples * [[canonical bundle]] * [[valence bundle]] * ... ## Related concepts * [[principal bundle]], [[associated bundle]] * **vector bundle**: * [[VectBund(X)]], [[VectBund]] * [[real vector bundle]] * [[complex vector bundle]] * [[holomorphic vector bundle]], [[pseudoholomorphic vector bundle]] * [[universal vector bundle]] * [[rank]] of a vector bundle * [[dual vector bundle]] * [[module bundle]] * [[direct sum of vector bundles]] * [[short exact sequence of vector bundles]] * [[connection on a vector bundle]] * [[flat vector bundle]] * [[real vector bundle]], [[complex vector bundle]] * [[super vector bundle]] * [[measurable field of Hilbert spaces]] * [[2-vector bundle]] * [[(∞,1)-vector bundle]] / [[(∞,n)-vector bundle]] ## Literature {#Literature} * [[Glenys Luke]], [[Alexandr S. Mishchenko]], *Vector bundles and their applications*, Math. and its Appl. **447** Kluwer (1998) &amp;lbrack;[doi:10.1007/978-1-4757-6923-4](https://doi.org/10.1007/978-1-4757-6923-4), [MR99m:55019](http://www.ams.org/mathscinet-getitem?mr=99m:55019)&amp;rbrack; * &amp;#1040;. &amp;#1057;. &amp;#1052;&amp;#1080;&amp;#1097;&amp;#1077;&amp;#1085;&amp;#1082;&amp;#1086;, _&amp;#1042;&amp;#1077;&amp;#1082;&amp;#1090;&amp;#1086;&amp;#1088;&amp;#1085;&amp;#1099;&amp;#1077; &amp;#1088;&amp;#1072;&amp;#1089;&amp;#1089;&amp;#1083;&amp;#1086;&amp;#1077;&amp;#1085;&amp;#1080;&amp;#1103; &amp;#1080; &amp;#1080;&amp;#1093; &amp;#1087;&amp;#1088;&amp;#1080;&amp;#1084;&amp;#1077;&amp;#1085;&amp;#1077;&amp;#1085;&amp;#1080;&amp;#1103;_ (Russian; A. S. Mishchenko, Vector bundles and their applications) Nauka, Moscow, 1984. 208 pp. * Howard Osborn, _Vector bundles. Vol. 1. Foundations and Stiefel-Whitney classes_, Pure and Appl. Math. __101__, Academic Press 1982. xii+371 pp. [MR85e:55001](http://www.ams.org/mathscinet-getitem?mr=85e:55001) * [[Dale Husemöller]], _Fibre bundles_, McGraw-Hill 1966 (300 p.); Springer GTM 1975 (327 p.), 1994 (353 p.). * [[Dale Husemöller]], [[Michael Joachim]], [[Branislav Jurco]], [[Martin Schottenloher]], _[[Basic Bundle Theory and K-Cohomology Invariants]]_, Lecture Notes in Physics, Springer 2008 ([pdf](http://www.mathematik.uni-muenchen.de/~schotten/Texte/978-3-540-74955-4_Book_LNP726corr1.pdf)) An exposition with an eye towards [[gauge theory]] is in section 16.1 of * [[Theodore Frankel]], _[[The Geometry of Physics - An Introduction]]_ * [[Raoul Bott]], [[Loring Tu]], _Differential forms in algebraic topology_, Graduate Texts in Mathematics __82__, Springer 1982. xiv+331 pp. Discussion with an eye towards [[K-theory]] is in * [[Max Karoubi]], _K-theory. An introduction_, Grundlehren der Mathematischen Wissenschaften __226__, Springer 1978. xviii+308 pp. * {#Hatcher} [[Allen Hatcher]], _Vector bundles and K-Theory_, (partly finished book) [web](https://pi.math.cornell.edu/~hatcher/VBKT/VBpage.html) [[!redirects vector bundles]] </textarea> </div> <!-- Container --> </body> </html>