CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–45 of 45 results for author: <span class="mathjax">Kwon, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Kwon%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Kwon, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Kwon%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Kwon, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05159">arXiv:2501.05159</a> <span> [<a href="https://arxiv.org/pdf/2501.05159">pdf</a>, <a href="https://arxiv.org/format/2501.05159">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantifying Traffic Patterns with Percolation Theory: A Case Study of Seoul Roads </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yongsung Kwon</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+M+J">Mi Jin Lee</a>, <a href="/search/physics?searchtype=author&query=Son%2C+S">Seung-Woo Son</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05159v1-abstract-short" style="display: inline;"> Urban traffic systems are characterized by dynamic interactions between congestion and free-flow states, influenced by human activity and road topology. This study employs percolation theory to analyze traffic dynamics in Seoul, focusing on the transition point $q_c$ and Fisher exponent $蟿$. The transition point $q_c$ quantifies the robustness of the free-flow clusters, while the exponent $蟿$ capt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05159v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05159v1-abstract-full" style="display: none;"> Urban traffic systems are characterized by dynamic interactions between congestion and free-flow states, influenced by human activity and road topology. This study employs percolation theory to analyze traffic dynamics in Seoul, focusing on the transition point $q_c$ and Fisher exponent $蟿$. The transition point $q_c$ quantifies the robustness of the free-flow clusters, while the exponent $蟿$ captures the spatial fragmentation of the traffic networks. Our analysis reveals temporal variations in these metrics, with lower $q_c$ and lower $蟿$ values during rush hours representing low-dimensional behavior. Weight-weight correlations are found to significantly impact cluster formation, driving the early onset of dominant traffic states. Comparisons with uncorrelated models highlight the role of real-world correlations. This approach provides a comprehensive framework for evaluating traffic resilience and informs strategies to optimize urban transportation systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05159v1-abstract-full').style.display = 'none'; document.getElementById('2501.05159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08122">arXiv:2408.08122</a> <span> [<a href="https://arxiv.org/pdf/2408.08122">pdf</a>, <a href="https://arxiv.org/format/2408.08122">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Cluster Formations of Free and Congested Flows in Urban Road Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yongsung Kwon</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+M">Minjin Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+M+J">Mi Jin Lee</a>, <a href="/search/physics?searchtype=author&query=Son%2C+S">Seung-Woo Son</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08122v1-abstract-short" style="display: inline;"> Understanding traffic behavior is crucial for enhancing the stable functioning and safety of transportation systems. Previous percolation-based transportation studies have analyzed transition behaviors from free-flow to traffic-jam states, with a focus on robustness and resilience during congestion. However, relatively less attention is paid to the percolation analysis of the free-flow states, spe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08122v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08122v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08122v1-abstract-full" style="display: none;"> Understanding traffic behavior is crucial for enhancing the stable functioning and safety of transportation systems. Previous percolation-based transportation studies have analyzed transition behaviors from free-flow to traffic-jam states, with a focus on robustness and resilience during congestion. However, relatively less attention is paid to the percolation analysis of the free-flow states, specifically how free-flow clusters form and grow. In this study, we investigate the percolation patterns of two opposing traffic scenarios -- traffic jam state and free-flow state -- within the same road network using Chengdu taxi data and compare their percolating behaviors. Our analysis reveals differences between the two scenarios in the growth patterns of the giant connected component (GCC), which is captured by a persistent gap between the GCC size curves, particularly during peak hours. We attribute these disparities to a long-range spatial correlation of traffic speed within a road network. Empirically, we find distinct long-range spatial correlations in traffic, using rescaled taxi speeds on roads, and we examine their relationship with each percolation pattern. Our analysis provides an integrated view of traffic dynamics and uncovers intrinsic traffic correlations within urban areas that drive these intriguing percolation patterns. Our findings also offer valuable metrics for effective traffic management and accident prevention strategies, aligning with urban transportation safety and reliability goals. These insights are beneficial for assessing and designing resilient urban road networks that maintain functionality under stress, ultimately improving the reliability of traffic assessments and reducing accidents. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08122v1-abstract-full').style.display = 'none'; document.getElementById('2408.08122v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19421">arXiv:2406.19421</a> <span> [<a href="https://arxiv.org/pdf/2406.19421">pdf</a>, <a href="https://arxiv.org/format/2406.19421">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The Belle II Detector Upgrades Framework Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&query=Aloisio%2C+A">A. Aloisio</a>, <a href="/search/physics?searchtype=author&query=Auguste%2C+D+P">D. P. Auguste</a>, <a href="/search/physics?searchtype=author&query=Aversano%2C+M">M. Aversano</a>, <a href="/search/physics?searchtype=author&query=Babeluk%2C+M">M. Babeluk</a>, <a href="/search/physics?searchtype=author&query=Bahinipati%2C+S">S. Bahinipati</a>, <a href="/search/physics?searchtype=author&query=Banerjee%2C+S">Sw. Banerjee</a>, <a href="/search/physics?searchtype=author&query=Barbero%2C+M">M. Barbero</a>, <a href="/search/physics?searchtype=author&query=Baudot%2C+J">J. Baudot</a>, <a href="/search/physics?searchtype=author&query=Beaubien%2C+A">A. Beaubien</a>, <a href="/search/physics?searchtype=author&query=Becherer%2C+F">F. Becherer</a>, <a href="/search/physics?searchtype=author&query=Bergauer%2C+T">T. Bergauer</a>, <a href="/search/physics?searchtype=author&query=Bernlochner.%2C+F+U">F. U. Bernlochner.</a>, <a href="/search/physics?searchtype=author&query=Bertacchi%2C+V">V. Bertacchi</a>, <a href="/search/physics?searchtype=author&query=Bertolone%2C+G">G. Bertolone</a>, <a href="/search/physics?searchtype=author&query=Bespin%2C+C">C. Bespin</a>, <a href="/search/physics?searchtype=author&query=Bessner%2C+M">M. Bessner</a>, <a href="/search/physics?searchtype=author&query=Bettarini%2C+S">S. Bettarini</a>, <a href="/search/physics?searchtype=author&query=Bevan%2C+A+J">A. J. Bevan</a>, <a href="/search/physics?searchtype=author&query=Bhuyan%2C+B">B. Bhuyan</a>, <a href="/search/physics?searchtype=author&query=Bona%2C+M">M. Bona</a>, <a href="/search/physics?searchtype=author&query=Bonis%2C+J+F">J. F. Bonis</a>, <a href="/search/physics?searchtype=author&query=Borah%2C+J">J. Borah</a>, <a href="/search/physics?searchtype=author&query=Bosi%2C+F">F. Bosi</a>, <a href="/search/physics?searchtype=author&query=Boudagga%2C+R">R. Boudagga</a> , et al. (186 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19421v2-abstract-short" style="display: inline;"> We describe the planned near-term and potential longer-term upgrades of the Belle II detector at the SuperKEKB electron-positron collider operating at the KEK laboratory in Tsukuba, Japan. These upgrades will allow increasingly sensitive searches for possible new physics beyond the Standard Model in flavor, tau, electroweak and dark sector physics that are both complementary to and competitive wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19421v2-abstract-full').style.display = 'inline'; document.getElementById('2406.19421v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19421v2-abstract-full" style="display: none;"> We describe the planned near-term and potential longer-term upgrades of the Belle II detector at the SuperKEKB electron-positron collider operating at the KEK laboratory in Tsukuba, Japan. These upgrades will allow increasingly sensitive searches for possible new physics beyond the Standard Model in flavor, tau, electroweak and dark sector physics that are both complementary to and competitive with the LHC and other experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19421v2-abstract-full').style.display = 'none'; document.getElementById('2406.19421v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Editor: F. Forti 170 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK-REPORT-2024-1, BELLE2-REPORT-2024-042 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16049">arXiv:2403.16049</a> <span> [<a href="https://arxiv.org/pdf/2403.16049">pdf</a>, <a href="https://arxiv.org/format/2403.16049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2024.115032">10.1016/j.chaos.2024.115032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving Demand Forecasting in Open Systems with Cartogram-Enhanced Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Park%2C+S">Sangjoon Park</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yongsung Kwon</a>, <a href="/search/physics?searchtype=author&query=Soh%2C+H">Hyungjoon Soh</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+M+J">Mi Jin Lee</a>, <a href="/search/physics?searchtype=author&query=Son%2C+S">Seung-Woo Son</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16049v2-abstract-short" style="display: inline;"> Predicting temporal patterns across various domains poses significant challenges due to their nuanced and often nonlinear trajectories. To address this challenge, prediction frameworks have been continuously refined, employing data-driven statistical methods, mathematical models, and machine learning. Recently, as one of the challenging systems, shared transport systems such as public bicycles hav… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16049v2-abstract-full').style.display = 'inline'; document.getElementById('2403.16049v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16049v2-abstract-full" style="display: none;"> Predicting temporal patterns across various domains poses significant challenges due to their nuanced and often nonlinear trajectories. To address this challenge, prediction frameworks have been continuously refined, employing data-driven statistical methods, mathematical models, and machine learning. Recently, as one of the challenging systems, shared transport systems such as public bicycles have gained prominence due to urban constraints and environmental concerns. Predicting rental and return patterns at bicycle stations remains a formidable task due to the system's openness and imbalanced usage patterns across stations. In this study, we propose a deep learning framework to predict rental and return patterns by leveraging cartogram approaches. The cartogram approach facilitates the prediction of demand for newly installed stations with no training data as well as long-period prediction, which has not been achieved before. We apply this method to public bicycle rental-and-return data in Seoul, South Korea, employing a spatial-temporal convolutional graph attention network. Our improved architecture incorporates batch attention and modified node feature updates for better prediction accuracy across different time scales. We demonstrate the effectiveness of our framework in predicting temporal patterns and its potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16049v2-abstract-full').style.display = 'none'; document.getElementById('2403.16049v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04387">arXiv:2402.04387</a> <span> [<a href="https://arxiv.org/pdf/2402.04387">pdf</a>, <a href="https://arxiv.org/format/2402.04387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Giant piezoelectricity in group IV monochalcogenides with ferroelectric AA layer stacking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lee%2C+S">Seungjun Lee</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H">Hyeong-Ryul Kim</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+W">Wei Jiang</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Young-Kyun Kwon</a>, <a href="/search/physics?searchtype=author&query=Low%2C+T">Tony Low</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04387v1-abstract-short" style="display: inline;"> The piezoelectricity of group IV monochalcogenides (MXs, with M = Ge, Sn and X = S, Se) has attracted much attention due to their substantially higher piezoelectric coefficients compared to other 2D materials. However, with increasing layer number, their piezoelectricity rapidly disappears due to the antiferroelectric stacking order, severely limiting their practical applications. Using first-prin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04387v1-abstract-full').style.display = 'inline'; document.getElementById('2402.04387v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04387v1-abstract-full" style="display: none;"> The piezoelectricity of group IV monochalcogenides (MXs, with M = Ge, Sn and X = S, Se) has attracted much attention due to their substantially higher piezoelectric coefficients compared to other 2D materials. However, with increasing layer number, their piezoelectricity rapidly disappears due to the antiferroelectric stacking order, severely limiting their practical applications. Using first-principles calculations, we investigated the piezoelectricity of MXs with the ferroelectric AA stacking configuration, which has recently been stabilized in experiments. We found that AA-stacked MXs have a ferroelectric ground state with the smallest lattice constant among other stacking configurations, resulting in a giant piezoelectric coefficient, which is the first demonstration of a strategy where the piezoelectric coefficients can increase with the number of layers. This can be attributed to a strong negative correlation between the lattice constant along the armchair direction and the piezoelectric coefficient, and spontaneous compressive strain stabilized in ferroelectric AA stacking configuration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04387v1-abstract-full').style.display = 'none'; document.getElementById('2402.04387v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages and 5 figures for main manuscript. 9pages and 3 figures for SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.07633">arXiv:2303.07633</a> <span> [<a href="https://arxiv.org/pdf/2303.07633">pdf</a>, <a href="https://arxiv.org/format/2303.07633">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0150217">10.1063/5.0150217 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Global efficiency and network structure of urban traffic flows: A percolation-based empirical analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yungi Kwon</a>, <a href="/search/physics?searchtype=author&query=Jung%2C+J">Jung-Hoon Jung</a>, <a href="/search/physics?searchtype=author&query=Eom%2C+Y">Young-Ho Eom</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.07633v2-abstract-short" style="display: inline;"> Making the connection between the function and structure of networked systems is one of the fundamental issues in complex systems and network science. Urban traffic flows are related to various problems in cities and can be represented as a network of local traffic flows. To identify an empirical relation between the function and network structure of urban traffic flows, we construct a time-varyin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07633v2-abstract-full').style.display = 'inline'; document.getElementById('2303.07633v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.07633v2-abstract-full" style="display: none;"> Making the connection between the function and structure of networked systems is one of the fundamental issues in complex systems and network science. Urban traffic flows are related to various problems in cities and can be represented as a network of local traffic flows. To identify an empirical relation between the function and network structure of urban traffic flows, we construct a time-varying traffic flow network of a megacity, Seoul, and analyze its global efficiency with a percolation-based approach. Comparing the real-world traffic flow network with its corresponding null-model network having a randomized structure, we show that the real-world network is less efficient than its null-model network during rush hour, yet more efficient during non-rush hour. We observe that in the real-world network, links with the highest betweenness tend to have lower quality during rush hour compared to links with lower betweenness, but higher quality during non-rush hour. Since the top betweenness links tend to be the bridges that connect the network together, their congestion has a stronger impact on the network's global efficiency. Our results suggest that the spatial structure of traffic flow networks is important to understand their function. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.07633v2-abstract-full').style.display = 'none'; document.getElementById('2303.07633v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chaos 33, 113104 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09503">arXiv:2302.09503</a> <span> [<a href="https://arxiv.org/pdf/2302.09503">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Tracing multiple scattering trajectories for deep optical imaging in scattering media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kang%2C+S">Sungsam Kang</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yongwoo Kwon</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+H">Hojun Lee</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S">Seho Kim</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+J+H">Jin Hee Hong</a>, <a href="/search/physics?searchtype=author&query=Yoon%2C+S">Seokchan Yoon</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+W">Wonshik Choi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09503v1-abstract-short" style="display: inline;"> Multiple light scattering hampers imaging objects in complex scattering media. Approaches used in real practices mainly aim to filter out multiple scattering obscuring the ballistic waves that travel straight through the scattering medium. Here, we propose a method that makes the deterministic use of multiple scattering for microscopic imaging of an object embedded deep within scattering media. Th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09503v1-abstract-full').style.display = 'inline'; document.getElementById('2302.09503v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09503v1-abstract-full" style="display: none;"> Multiple light scattering hampers imaging objects in complex scattering media. Approaches used in real practices mainly aim to filter out multiple scattering obscuring the ballistic waves that travel straight through the scattering medium. Here, we propose a method that makes the deterministic use of multiple scattering for microscopic imaging of an object embedded deep within scattering media. The proposed method finds a stack of multiple complex phase plates that generate similar light trajectories as the original scattering medium. By implementing the inverse scattering using the identified phase plates, our method rectifies multiple scattering and amplifies ballistic waves by almost 600 times, which leads to a substantial increase in imaging depth. Our study marks an important milestone in solving the longstanding high-order inverse scattering problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09503v1-abstract-full').style.display = 'none'; document.getElementById('2302.09503v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01493">arXiv:2302.01493</a> <span> [<a href="https://arxiv.org/pdf/2302.01493">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning (DL)-based Automatic Segmentation of the Internal Pudendal Artery (IPA) for Reduction of Erectile Dysfunction in Definitive Radiotherapy of Localized Prostate Cancer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Balagopal%2C+A">Anjali Balagopal</a>, <a href="/search/physics?searchtype=author&query=Dohopolski%2C+M">Michael Dohopolski</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y+S">Young Suk Kwon</a>, <a href="/search/physics?searchtype=author&query=Montalvo%2C+S">Steven Montalvo</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+H">Howard Morgan</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+T">Ti Bai</a>, <a href="/search/physics?searchtype=author&query=Nguyen%2C+D">Dan Nguyen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+X">Xiao Liang</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+X">Xinran Zhong</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+M">Mu-Han Lin</a>, <a href="/search/physics?searchtype=author&query=Desai%2C+N">Neil Desai</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+S">Steve Jiang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01493v1-abstract-short" style="display: inline;"> Background and purpose: Radiation-induced erectile dysfunction (RiED) is commonly seen in prostate cancer patients. Clinical trials have been developed in multiple institutions to investigate whether dose-sparing to the internal-pudendal-arteries (IPA) will improve retention of sexual potency. The IPA is usually not considered a conventional organ-at-risk (OAR) due to segmentation difficulty. In t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01493v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01493v1-abstract-full" style="display: none;"> Background and purpose: Radiation-induced erectile dysfunction (RiED) is commonly seen in prostate cancer patients. Clinical trials have been developed in multiple institutions to investigate whether dose-sparing to the internal-pudendal-arteries (IPA) will improve retention of sexual potency. The IPA is usually not considered a conventional organ-at-risk (OAR) due to segmentation difficulty. In this work, we propose a deep learning (DL)-based auto-segmentation model for the IPA that utilizes CT and MRI or CT alone as the input image modality to accommodate variation in clinical practice. Materials and methods: 86 patients with CT and MRI images and noisy IPA labels were recruited in this study. We split the data into 42/14/30 for model training, testing, and a clinical observer study, respectively. There were three major innovations in this model: 1) we designed an architecture with squeeze-and-excite blocks and modality attention for effective feature extraction and production of accurate segmentation, 2) a novel loss function was used for training the model effectively with noisy labels, and 3) modality dropout strategy was used for making the model capable of segmentation in the absence of MRI. Results: The DSC, ASD, and HD95 values for the test dataset were 62.2%, 2.54mm, and 7mm, respectively. AI segmented contours were dosimetrically equivalent to the expert physician's contours. The observer study showed that expert physicians' scored AI contours (mean=3.7) higher than inexperienced physicians' contours (mean=3.1). When inexperienced physicians started with AI contours, the score improved to 3.7. Conclusion: The proposed model achieved good quality IPA contours to improve uniformity of segmentation and to facilitate introduction of standardized IPA segmentation into clinical trials and practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01493v1-abstract-full').style.display = 'none'; document.getElementById('2302.01493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07259">arXiv:2212.07259</a> <span> [<a href="https://arxiv.org/pdf/2212.07259">pdf</a>, <a href="https://arxiv.org/format/2212.07259">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/accb8e">10.3847/1538-4365/accb8e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A data-driven physics-based transport model of solar energetic particles accelerated by coronal mass ejection shocks propagating through the solar coronal and heliospheric magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+L">Lei Cheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Ju Zhang</a>, <a href="/search/physics?searchtype=author&query=Riley%2C+P">Pete Riley</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+R+Y">Ryun Young Kwon</a>, <a href="/search/physics?searchtype=author&query=Lario%2C+D">David Lario</a>, <a href="/search/physics?searchtype=author&query=Balmaceda%2C+L">Laura Balmaceda</a>, <a href="/search/physics?searchtype=author&query=Pogorelov%2C+N">Nikolai Pogorelov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07259v1-abstract-short" style="display: inline;"> In an effort to develop computational tools for predicting radiation hazards from solar energetic particles (SEPs), we have created a data-driven physics-based particle transport model to calculate the injection, acceleration and propagation of SEPs from coronal mass ejection (CME) shocks traversing through the solar corona and interplanetary magnetic fields. The model runs on an input of corona a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07259v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07259v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07259v1-abstract-full" style="display: none;"> In an effort to develop computational tools for predicting radiation hazards from solar energetic particles (SEPs), we have created a data-driven physics-based particle transport model to calculate the injection, acceleration and propagation of SEPs from coronal mass ejection (CME) shocks traversing through the solar corona and interplanetary magnetic fields. The model runs on an input of corona and heliospheric plasma and magnetic field configuration from an MHD model driven by solar photospheric magnetic field measurements superposed with observed CME shocks determined from coronagraph images. Using several advanced computation techniques involving stochastic simulation and integration, it rigorously solves the time-dependent 5-dimensional focus transport equation in the phase space that includes pitch-angle scattering, diffusion across magnetic field line, and particle acceleration by CME shocks. We apply the model to the 2011 November 3 CME event. The calculation results reproduce multi-spacecraft SEP observations reasonably well without normalization of particle flux. This circumsolar SEP event seen by spacecraft at Earth, STEREO-A and STEREO-B at widely separated longitudes can be explained by diffusive shock acceleration by a single CME shock with a moderate speed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07259v1-abstract-full').style.display = 'none'; document.getElementById('2212.07259v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00907">arXiv:2211.00907</a> <span> [<a href="https://arxiv.org/pdf/2211.00907">pdf</a>, <a href="https://arxiv.org/ps/2211.00907">ps</a>, <a href="https://arxiv.org/format/2211.00907">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Effects of electromagnetic fluctuations in plasmas on solar neutrino fluxes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hwang%2C+E">Eunseok Hwang</a>, <a href="/search/physics?searchtype=author&query=Jang%2C+D">Dukjae Jang</a>, <a href="/search/physics?searchtype=author&query=Park%2C+K">Kiwan Park</a>, <a href="/search/physics?searchtype=author&query=Kusakabe%2C+M">Motohiko Kusakabe</a>, <a href="/search/physics?searchtype=author&query=Kajino%2C+T">Toshitaka Kajino</a>, <a href="/search/physics?searchtype=author&query=Balantekin%2C+A+B">A. Baha Balantekin</a>, <a href="/search/physics?searchtype=author&query=Maruyama%2C+T">Tomoyuki Maruyama</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Youngshin Kwon</a>, <a href="/search/physics?searchtype=author&query=Kwak%2C+K">Kyujin Kwak</a>, <a href="/search/physics?searchtype=author&query=Cheoun%2C+M">Myung-Ki Cheoun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00907v1-abstract-short" style="display: inline;"> We explore the effects of electromagnetic (EM) fluctuations in plasmas on solar neutrino fluxes exploiting the fluctuation-dissipation theorem. We find that the EM spectrum in the solar core is enhanced by the EM fluctuations due to the high density of the Sun, which increases the radiation energy density and pressure. By the EM fluctuations involving the modified radiation formula, the central te… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00907v1-abstract-full').style.display = 'inline'; document.getElementById('2211.00907v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00907v1-abstract-full" style="display: none;"> We explore the effects of electromagnetic (EM) fluctuations in plasmas on solar neutrino fluxes exploiting the fluctuation-dissipation theorem. We find that the EM spectrum in the solar core is enhanced by the EM fluctuations due to the high density of the Sun, which increases the radiation energy density and pressure. By the EM fluctuations involving the modified radiation formula, the central temperature decreases when the central pressure of the Sun is fixed. With a help of the empirical relation between central temperature and neutrino fluxes deduced from the numerical solar models, we present the change in each of the solar neutrino fluxes by the EM fluctuations. We also discuss the enhanced radiation pressure and energy density by the EM fluctuations for other astronomical objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00907v1-abstract-full').style.display = 'none'; document.getElementById('2211.00907v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13425">arXiv:2210.13425</a> <span> [<a href="https://arxiv.org/pdf/2210.13425">pdf</a>, <a href="https://arxiv.org/format/2210.13425">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsif.2023.0160">10.1098/rsif.2023.0160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Molecular-scale substrate anisotropy and crowding drive long-range nematic order of cell monolayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Luo%2C+Y">Yimin Luo</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+M">Mengyang Gu</a>, <a href="/search/physics?searchtype=author&query=Park%2C+M">Minwook Park</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+X">Xinyi Fang</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Younghoon Kwon</a>, <a href="/search/physics?searchtype=author&query=Urue%C3%B1a%2C+J+M">Juan Manuel Urue帽a</a>, <a href="/search/physics?searchtype=author&query=de+Alaniz%2C+J+R">Javier Read de Alaniz</a>, <a href="/search/physics?searchtype=author&query=Helgeson%2C+M+E">Matthew E. Helgeson</a>, <a href="/search/physics?searchtype=author&query=Marchetti%2C+M+C">M. Cristina Marchetti</a>, <a href="/search/physics?searchtype=author&query=Valentine%2C+M+T">Megan T. Valentine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13425v1-abstract-short" style="display: inline;"> The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. Elongated cells can co-align due to steric effects, forming states with local order. We show that molecular-scale substrate anisotropy can direct cell organization, resulting in the emergence of nematic order on tissue scales. To quantitatively examine the diso… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13425v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13425v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13425v1-abstract-full" style="display: none;"> The ability of cells to reorganize in response to external stimuli is important in areas ranging from morphogenesis to tissue engineering. Elongated cells can co-align due to steric effects, forming states with local order. We show that molecular-scale substrate anisotropy can direct cell organization, resulting in the emergence of nematic order on tissue scales. To quantitatively examine the disorder-order transition, we developed a high-throughput imaging platform to analyze velocity and orientational correlations for several thousand cells over days. The establishment of global, seemingly long-ranged order is facilitated by enhanced cell division along the substrate's nematic axis, and associated extensile stresses that restructure the cells' actomyosin networks. Our work, which connects to a class of systems known as active dry nematics, provides a new understanding of the dynamics of cellular remodeling and organization in weakly interacting cell collectives. This enables data-driven discovery of cell-cell interactions and points to strategies for tissue engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13425v1-abstract-full').style.display = 'none'; document.getElementById('2210.13425v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.04753">arXiv:2210.04753</a> <span> [<a href="https://arxiv.org/pdf/2210.04753">pdf</a>, <a href="https://arxiv.org/format/2210.04753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adem.202301654">10.1002/adem.202301654 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Establishing Epitaxial Connectedness in Multi-Stacking: The Survival of Thru-Holes in Thru-Hole Epitaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lee%2C+Y">Youngjun Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S">Seungjun Lee</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+J">Jaewu Choi</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+C">Chinkyo Kim</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Young-Kyun Kwon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.04753v2-abstract-short" style="display: inline;"> Thru-hole epitaxy has recently been reported to be able to grow readily detachable domains crystallographically aligned with the underlying substrate over 2D mask material transferred onto a substrate. [Jang \textit{et al.}, \textit{Adv. Mater. Interfaces}, \textbf{2023} \textit{10}, 4 2201406] While the experimental demonstration of thru-hole epitaxy of GaN over multiple stacks of $h$-BN was evid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04753v2-abstract-full').style.display = 'inline'; document.getElementById('2210.04753v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.04753v2-abstract-full" style="display: none;"> Thru-hole epitaxy has recently been reported to be able to grow readily detachable domains crystallographically aligned with the underlying substrate over 2D mask material transferred onto a substrate. [Jang \textit{et al.}, \textit{Adv. Mater. Interfaces}, \textbf{2023} \textit{10}, 4 2201406] While the experimental demonstration of thru-hole epitaxy of GaN over multiple stacks of $h$-BN was evident, the detailed mechanism of how small holes in each stack of $h$-BN survived as thru-holes during multiple stacking of $h$-BN was not intuitively clear. Here, we use Monte Carlo simulations to investigate the conditions under which holes in each stack of 2D mask layers can survive as thru-holes during multiple stacking. If holes are highly anisotropic in shape by connecting smaller holes in a particular direction, thru-holes can be maintained with a high survival rate per stack, establishing more epitaxial connectedness. Our work verifies and supports that thru-hole epitaxy is attributed to the epitaxial connectedness established by thru-holes surviving even through multiple stacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.04753v2-abstract-full').style.display = 'none'; document.getElementById('2210.04753v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Eng. Mater. 26 (3), 2301654 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02566">arXiv:2209.02566</a> <span> [<a href="https://arxiv.org/pdf/2209.02566">pdf</a>, <a href="https://arxiv.org/format/2209.02566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acac21">10.3847/1538-4357/acac21 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation of the Solar Energetic Particle Event on 2020 May 29 Observed by Parker Solar Probe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cheng%2C+L">Lei Cheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Ming Zhang</a>, <a href="/search/physics?searchtype=author&query=Lario%2C+D">David Lario</a>, <a href="/search/physics?searchtype=author&query=Balmaceda%2C+L+A">Laura A. Balmaceda</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+R+Y">Ryun Young Kwon</a>, <a href="/search/physics?searchtype=author&query=Cohen%2C+C">Christina Cohen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02566v1-abstract-short" style="display: inline;"> This paper presents a stochastic three-dimensional (3D) focused transport simulation of solar energetic particles (SEPs) produced by a data-driven coronal mass ejection (CME) shock propagating through a data-driven model of coronal and heliospheric magnetic fields. The injection of SEPs at the CME shock is treated using diffusive shock acceleration of post-shock superthermal solar wind ions. A tim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02566v1-abstract-full').style.display = 'inline'; document.getElementById('2209.02566v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02566v1-abstract-full" style="display: none;"> This paper presents a stochastic three-dimensional (3D) focused transport simulation of solar energetic particles (SEPs) produced by a data-driven coronal mass ejection (CME) shock propagating through a data-driven model of coronal and heliospheric magnetic fields. The injection of SEPs at the CME shock is treated using diffusive shock acceleration of post-shock superthermal solar wind ions. A time backward stochastic simulation is employed to solve the transport equation to obtain the SEP time-intensity profile at any location, energy, and pitch angle. The model is applied to a SEP event on 2020 May 29, observed by STEREO-A close to 1 au and by Parker Solar Probe (PSP) when it was about 0.33 au away from the Sun. The SEP event was associated with a very slow CME with a plane-of-sky speed of 337 km/s at a height below 6 $\rm R_S$ as reported in the SOHO/LASCO CME catalog. We compute the time profiles of particle flux at PSP and STEREO-A locations, and estimate both the spectral index of the proton energy spectrum for energies between 2 and 16 MeV and the equivalent path length of the magnetic field lines experienced by the first arriving SEPs. We found that the simulation results are well correlated with observations. The SEP event could be explained by the acceleration of particles by a weak CME shock in the low solar corona that is not magnetically connected to the observers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02566v1-abstract-full').style.display = 'none'; document.getElementById('2209.02566v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02511">arXiv:2209.02511</a> <span> [<a href="https://arxiv.org/pdf/2209.02511">pdf</a>, <a href="https://arxiv.org/format/2209.02511">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/01/P01038">10.1088/1748-0221/18/01/P01038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of the Electromagnetic Pixel Calorimeter Prototype EPICAL-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alme%2C+J">J. Alme</a>, <a href="/search/physics?searchtype=author&query=Barthel%2C+R">R. Barthel</a>, <a href="/search/physics?searchtype=author&query=van+Bochove%2C+A">A. van Bochove</a>, <a href="/search/physics?searchtype=author&query=Borshchov%2C+V">V. Borshchov</a>, <a href="/search/physics?searchtype=author&query=Bosley%2C+R">R. Bosley</a>, <a href="/search/physics?searchtype=author&query=Brink%2C+A+v+d">A. van den Brink</a>, <a href="/search/physics?searchtype=author&query=Broeils%2C+E">E. Broeils</a>, <a href="/search/physics?searchtype=author&query=B%C3%BCsching%2C+H">H. B眉sching</a>, <a href="/search/physics?searchtype=author&query=Eikeland%2C+V+N">V. N. Eikeland</a>, <a href="/search/physics?searchtype=author&query=Groettvik%2C+O+S">O. S. Groettvik</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Y+H">Y. H. Han</a>, <a href="/search/physics?searchtype=author&query=van+der+Kolk%2C+N">N. van der Kolk</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J+H">J. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+T+J">T. J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Y. Kwon</a>, <a href="/search/physics?searchtype=author&query=Mager%2C+M">M. Mager</a>, <a href="/search/physics?searchtype=author&query=Malik%2C+Q+W">Q. W. Malik</a>, <a href="/search/physics?searchtype=author&query=Okkinga%2C+E">E. Okkinga</a>, <a href="/search/physics?searchtype=author&query=Park%2C+T+Y">T. Y. Park</a>, <a href="/search/physics?searchtype=author&query=Peitzmann%2C+T">T. Peitzmann</a>, <a href="/search/physics?searchtype=author&query=Pliquett%2C+F">F. Pliquett</a>, <a href="/search/physics?searchtype=author&query=Protsenko%2C+M">M. Protsenko</a>, <a href="/search/physics?searchtype=author&query=Reidt%2C+F">F. Reidt</a>, <a href="/search/physics?searchtype=author&query=van+Rijk%2C+S">S. van Rijk</a>, <a href="/search/physics?searchtype=author&query=R%C3%B8ed%2C+K">K. R酶ed</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02511v4-abstract-short" style="display: inline;"> The first evaluation of an ultra-high granularity digital electromagnetic calorimeter prototype using 1.0-5.8 GeV/c electrons is presented. The $25\times10^6$ pixel detector consists of 24 layers of ALPIDE CMOS MAPS sensors, with a pitch of around 30~$渭$m, and has a depth of almost 20 radiation lengths of tungsten absorber. Ultra-thin cables allow for a very compact design. The properties that are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02511v4-abstract-full').style.display = 'inline'; document.getElementById('2209.02511v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02511v4-abstract-full" style="display: none;"> The first evaluation of an ultra-high granularity digital electromagnetic calorimeter prototype using 1.0-5.8 GeV/c electrons is presented. The $25\times10^6$ pixel detector consists of 24 layers of ALPIDE CMOS MAPS sensors, with a pitch of around 30~$渭$m, and has a depth of almost 20 radiation lengths of tungsten absorber. Ultra-thin cables allow for a very compact design. The properties that are critical for physics studies are measured: electromagnetic shower response, energy resolution and linearity. The stochastic energy resolution is comparable with the state-of-the art resolution for a Si-W calorimeter, with data described well by a simulation model using GEANT and Allpix$^2$. The performance achieved makes this technology a good candidate for use in the ALICE FoCal upgrade, and in general demonstrates the strong potential for future applications in high-energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02511v4-abstract-full').style.display = 'none'; document.getElementById('2209.02511v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 19 figures, submitted to JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.01815">arXiv:2207.01815</a> <span> [<a href="https://arxiv.org/pdf/2207.01815">pdf</a>, <a href="https://arxiv.org/format/2207.01815">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167539">10.1016/j.nima.2022.167539 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results from the EPICAL-2 Ultra-High Granularity Electromagnetic Calorimeter Prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Peitzmann%2C+T">T. Peitzmann</a>, <a href="/search/physics?searchtype=author&query=Alme%2C+J">J. Alme</a>, <a href="/search/physics?searchtype=author&query=Barthel%2C+R">R. Barthel</a>, <a href="/search/physics?searchtype=author&query=van+Bochove%2C+A">A. van Bochove</a>, <a href="/search/physics?searchtype=author&query=Borshchov%2C+V">V. Borshchov</a>, <a href="/search/physics?searchtype=author&query=Bosley%2C+R">R. Bosley</a>, <a href="/search/physics?searchtype=author&query=Brink%2C+A+v+d">A. van den Brink</a>, <a href="/search/physics?searchtype=author&query=Broeils%2C+E">E. Broeils</a>, <a href="/search/physics?searchtype=author&query=B%C3%BCsching%2C+H">H. B眉sching</a>, <a href="/search/physics?searchtype=author&query=Eikeland%2C+V+N">V. N. Eikeland</a>, <a href="/search/physics?searchtype=author&query=Groettvik%2C+O+S">O. S. Groettvik</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Y+H">Y. H. Han</a>, <a href="/search/physics?searchtype=author&query=van+der+Kolk%2C+N">N. van der Kolk</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J+H">J. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+T+J">T. J. Kim</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Y. Kwon</a>, <a href="/search/physics?searchtype=author&query=Mager%2C+M">M. Mager</a>, <a href="/search/physics?searchtype=author&query=Malik%2C+Q+W">Q. W. Malik</a>, <a href="/search/physics?searchtype=author&query=Okkinga%2C+E">E. Okkinga</a>, <a href="/search/physics?searchtype=author&query=Park%2C+T+Y">T. Y. Park</a>, <a href="/search/physics?searchtype=author&query=Pliquett%2C+F">F. Pliquett</a>, <a href="/search/physics?searchtype=author&query=Protsenko%2C+M">M. Protsenko</a>, <a href="/search/physics?searchtype=author&query=Reidt%2C+F">F. Reidt</a>, <a href="/search/physics?searchtype=author&query=van+Rijk%2C+S">S. van Rijk</a>, <a href="/search/physics?searchtype=author&query=R%C3%B8ed%2C+K">K. R酶ed</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.01815v2-abstract-short" style="display: inline;"> A prototype of a new type of calorimeter has been designed and constructed, based on a silicon-tungsten sampling design using pixel sensors with digital readout. It makes use of the Alpide MAPS sensor developed for the ALICE ITS upgrade. A binary readout is possible due to the pixel size of $\approx 30 \times 30 \, 渭\mathrm{m}^2$. This prototype has been successfully tested with cosmic muons and w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01815v2-abstract-full').style.display = 'inline'; document.getElementById('2207.01815v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.01815v2-abstract-full" style="display: none;"> A prototype of a new type of calorimeter has been designed and constructed, based on a silicon-tungsten sampling design using pixel sensors with digital readout. It makes use of the Alpide MAPS sensor developed for the ALICE ITS upgrade. A binary readout is possible due to the pixel size of $\approx 30 \times 30 \, 渭\mathrm{m}^2$. This prototype has been successfully tested with cosmic muons and with test beams at DESY and the CERN SPS. We report on performance results obtained at DESY, showing good energy resolution and linearity, and compare to detailed MC simulations. Also shown are preliminary results of the high-energy performance as measured at the SPS. The two-shower separation capabilities are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.01815v2-abstract-full').style.display = 'none'; document.getElementById('2207.01815v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings to PM2021 - The 15. PISA Meeting on Advanced Detectors, updated after referee review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05115">arXiv:2205.05115</a> <span> [<a href="https://arxiv.org/pdf/2205.05115">pdf</a>, <a href="https://arxiv.org/format/2205.05115">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2023GL102958">10.1029/2023GL102958 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First High-speed Video Camera Observations of a Lightning Flash Associated with a Downward Terrestrial Gamma-ray Flash </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/physics?searchtype=author&query=Saba%2C+M+M+F">M. M. F. Saba</a>, <a href="/search/physics?searchtype=author&query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/physics?searchtype=author&query=Krehbiel%2C+P+R">P. R. Krehbiel</a>, <a href="/search/physics?searchtype=author&query=Rison%2C+W">W. Rison</a>, <a href="/search/physics?searchtype=author&query=Kieu%2C+N">N. Kieu</a>, <a href="/search/physics?searchtype=author&query=da+Silva%2C+D+R">D. R. da Silva</a>, <a href="/search/physics?searchtype=author&query=Rodeheffer%2C+D">Dan Rodeheffer</a>, <a href="/search/physics?searchtype=author&query=Stanley%2C+M+A">M. A. Stanley</a>, <a href="/search/physics?searchtype=author&query=Remington%2C+J">J. Remington</a>, <a href="/search/physics?searchtype=author&query=Mazich%2C+J">J. Mazich</a>, <a href="/search/physics?searchtype=author&query=LeVon%2C+R">R. LeVon</a>, <a href="/search/physics?searchtype=author&query=Smout%2C+K">K. Smout</a>, <a href="/search/physics?searchtype=author&query=Petrizze%2C+A">A. Petrizze</a>, <a href="/search/physics?searchtype=author&query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/physics?searchtype=author&query=Allen%2C+M">M. Allen</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&query=Arimura%2C+R">R. Arimura</a>, <a href="/search/physics?searchtype=author&query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/physics?searchtype=author&query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/physics?searchtype=author&query=Buckland%2C+I">I. Buckland</a>, <a href="/search/physics?searchtype=author&query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/physics?searchtype=author&query=Fujii%2C+T">T. Fujii</a> , et al. (127 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05115v2-abstract-short" style="display: inline;"> In this paper, we present the first high-speed video observation of a cloud-to-ground lightning flash and its associated downward-directed Terrestrial Gamma-ray Flash (TGF). The optical emission of the event was observed by a high-speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric-field… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05115v2-abstract-full').style.display = 'inline'; document.getElementById('2205.05115v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05115v2-abstract-full" style="display: none;"> In this paper, we present the first high-speed video observation of a cloud-to-ground lightning flash and its associated downward-directed Terrestrial Gamma-ray Flash (TGF). The optical emission of the event was observed by a high-speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric-field fast antenna, and the National Lightning Detection Network. The cloud-to-ground flash associated with the observed TGF was formed by a fast downward leader followed by a very intense return stroke peak current of -154 kA. The TGF occurred while the downward leader was below cloud base, and even when it was halfway in its propagation to ground. The suite of gamma-ray and lightning instruments, timing resolution, and source proximity offer us detailed information and therefore a unique look at the TGF phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05115v2-abstract-full').style.display = 'none'; document.getElementById('2205.05115v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Geophysical Research Letters, 50, e2023GL102958 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09962">arXiv:2111.09962</a> <span> [<a href="https://arxiv.org/pdf/2111.09962">pdf</a>, <a href="https://arxiv.org/format/2111.09962">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.062002">10.1103/PhysRevD.105.062002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Variations in Cosmic Ray Single Count Rates During Thunderstorms and Implications for Large-Scale Electric Field Changes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/physics?searchtype=author&query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/physics?searchtype=author&query=Allen%2C+M">M. Allen</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&query=Arimura%2C+R">R. Arimura</a>, <a href="/search/physics?searchtype=author&query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/physics?searchtype=author&query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/physics?searchtype=author&query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/physics?searchtype=author&query=Buckland%2C+I">I. Buckland</a>, <a href="/search/physics?searchtype=author&query=Cady%2C+R">R. Cady</a>, <a href="/search/physics?searchtype=author&query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&query=Chiba%2C+J">J. Chiba</a>, <a href="/search/physics?searchtype=author&query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/physics?searchtype=author&query=Fujii%2C+T">T. Fujii</a>, <a href="/search/physics?searchtype=author&query=Fujisue%2C+K">K. Fujisue</a>, <a href="/search/physics?searchtype=author&query=Fujita%2C+K">K. Fujita</a>, <a href="/search/physics?searchtype=author&query=Fujiwara%2C+R">R. Fujiwara</a>, <a href="/search/physics?searchtype=author&query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/physics?searchtype=author&query=Fukushima%2C+R">R. Fukushima</a>, <a href="/search/physics?searchtype=author&query=Furlich%2C+G">G. Furlich</a>, <a href="/search/physics?searchtype=author&query=Globus%2C+N">N. Globus</a>, <a href="/search/physics?searchtype=author&query=Gonzalez%2C+R">R. Gonzalez</a>, <a href="/search/physics?searchtype=author&query=Hanlon%2C+W">W. Hanlon</a>, <a href="/search/physics?searchtype=author&query=Hayashi%2C+M">M. Hayashi</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09962v1-abstract-short" style="display: inline;"> We present the first observation by the Telescope Array Surface Detector (TASD) of the effect of thunderstorms on the development of cosmic ray single count rate intensity over a 700 km$^{2}$ area. Observations of variations in the secondary low-energy cosmic ray counting rate, using the TASD, allow us to study the electric field inside thunderstorms, on a large scale, as it progresses on top of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09962v1-abstract-full').style.display = 'inline'; document.getElementById('2111.09962v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09962v1-abstract-full" style="display: none;"> We present the first observation by the Telescope Array Surface Detector (TASD) of the effect of thunderstorms on the development of cosmic ray single count rate intensity over a 700 km$^{2}$ area. Observations of variations in the secondary low-energy cosmic ray counting rate, using the TASD, allow us to study the electric field inside thunderstorms, on a large scale, as it progresses on top of the 700 km$^{2}$ detector, without dealing with the limitation of narrow exposure in time and space using balloons and aircraft detectors. In this work, variations in the cosmic ray intensity (single count rate) using the TASD, were studied and found to be on average at the $\sim(0.5-1)\%$ and up to 2\% level. These observations were found to be both in excess and in deficit. They were also found to be correlated with lightning in addition to thunderstorms. These variations lasted for tens of minutes; their footprint on the ground ranged from 6 to 24 km in diameter and moved in the same direction as the thunderstorm. With the use of simple electric field models inside the cloud and between cloud to ground, the observed variations in the cosmic ray single count rate were recreated using CORSIKA simulations. Depending on the electric field model used and the direction of the electric field in that model, the electric field magnitude that reproduces the observed low-energy cosmic ray single count rate variations was found to be approximately between 0.2-0.4 GV. This in turn allows us to get a reasonable insight on the electric field and its effect on cosmic ray air showers inside thunderstorms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09962v1-abstract-full').style.display = 'none'; document.getElementById('2111.09962v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00124">arXiv:2111.00124</a> <span> [<a href="https://arxiv.org/pdf/2111.00124">pdf</a>, <a href="https://arxiv.org/format/2111.00124">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Predicting Atlantic Multidecadal Variability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+G">Glenn Liu</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Peidong Wang</a>, <a href="/search/physics?searchtype=author&query=Beveridge%2C+M">Matthew Beveridge</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Young-Oh Kwon</a>, <a href="/search/physics?searchtype=author&query=Drori%2C+I">Iddo Drori</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00124v1-abstract-short" style="display: inline;"> Atlantic Multidecadal Variability (AMV) describes variations of North Atlantic sea surface temperature with a typical cycle of between 60 and 70 years. AMV strongly impacts local climate over North America and Europe, therefore prediction of AMV, especially the extreme values, is of great societal utility for understanding and responding to regional climate change. This work tests multiple machine… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00124v1-abstract-full').style.display = 'inline'; document.getElementById('2111.00124v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00124v1-abstract-full" style="display: none;"> Atlantic Multidecadal Variability (AMV) describes variations of North Atlantic sea surface temperature with a typical cycle of between 60 and 70 years. AMV strongly impacts local climate over North America and Europe, therefore prediction of AMV, especially the extreme values, is of great societal utility for understanding and responding to regional climate change. This work tests multiple machine learning models to improve the state of AMV prediction from maps of sea surface temperature, salinity, and sea level pressure in the North Atlantic region. We use data from the Community Earth System Model 1 Large Ensemble Project, a state-of-the-art climate model with 3,440 years of data. Our results demonstrate that all of the models we use outperform the traditional persistence forecast baseline. Predicting the AMV is important for identifying future extreme temperatures and precipitation, as well as hurricane activity, in Europe and North America up to 25 years in advance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00124v1-abstract-full').style.display = 'none'; document.getElementById('2111.00124v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Tackling Climate Change with Machine Learning workshop at NeurIPS 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13000">arXiv:2105.13000</a> <span> [<a href="https://arxiv.org/pdf/2105.13000">pdf</a>, <a href="https://arxiv.org/format/2105.13000">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First demonstration of in-beam performance of bent Monolithic Active Pixel Sensors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=project%2C+A+I">ALICE ITS project</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Rinella%2C+G+A">G. Aglieri Rinella</a>, <a href="/search/physics?searchtype=author&query=Agnello%2C+M">M. Agnello</a>, <a href="/search/physics?searchtype=author&query=Alessandro%2C+B">B. Alessandro</a>, <a href="/search/physics?searchtype=author&query=Agnese%2C+F">F. Agnese</a>, <a href="/search/physics?searchtype=author&query=Akram%2C+R+S">R. S. Akram</a>, <a href="/search/physics?searchtype=author&query=Alme%2C+J">J. Alme</a>, <a href="/search/physics?searchtype=author&query=Anderssen%2C+E">E. Anderssen</a>, <a href="/search/physics?searchtype=author&query=Andreou%2C+D">D. Andreou</a>, <a href="/search/physics?searchtype=author&query=Antinori%2C+F">F. Antinori</a>, <a href="/search/physics?searchtype=author&query=Apadula%2C+N">N. Apadula</a>, <a href="/search/physics?searchtype=author&query=Atkinson%2C+P">P. Atkinson</a>, <a href="/search/physics?searchtype=author&query=Baccomi%2C+R">R. Baccomi</a>, <a href="/search/physics?searchtype=author&query=Badal%C3%A0%2C+A">A. Badal脿</a>, <a href="/search/physics?searchtype=author&query=Balbino%2C+A">A. Balbino</a>, <a href="/search/physics?searchtype=author&query=Bartels%2C+C">C. Bartels</a>, <a href="/search/physics?searchtype=author&query=Barthel%2C+R">R. Barthel</a>, <a href="/search/physics?searchtype=author&query=Baruffaldi%2C+F">F. Baruffaldi</a>, <a href="/search/physics?searchtype=author&query=Belikov%2C+I">I. Belikov</a>, <a href="/search/physics?searchtype=author&query=Beole%2C+S">S. Beole</a>, <a href="/search/physics?searchtype=author&query=Becht%2C+P">P. Becht</a>, <a href="/search/physics?searchtype=author&query=Bhatti%2C+A">A. Bhatti</a>, <a href="/search/physics?searchtype=author&query=Bhopal%2C+M">M. Bhopal</a>, <a href="/search/physics?searchtype=author&query=Bianchi%2C+N">N. Bianchi</a> , et al. (230 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13000v2-abstract-short" style="display: inline;"> A novel approach for designing the next generation of vertex detectors foresees to employ wafer-scale sensors that can be bent to truly cylindrical geometries after thinning them to thicknesses of 20-40$渭$m. To solidify this concept, the feasibility of operating bent MAPS was demonstrated using 1.5$\times$3cm ALPIDE chips. Already with their thickness of 50$渭$m, they can be successfully bent to ra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13000v2-abstract-full').style.display = 'inline'; document.getElementById('2105.13000v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13000v2-abstract-full" style="display: none;"> A novel approach for designing the next generation of vertex detectors foresees to employ wafer-scale sensors that can be bent to truly cylindrical geometries after thinning them to thicknesses of 20-40$渭$m. To solidify this concept, the feasibility of operating bent MAPS was demonstrated using 1.5$\times$3cm ALPIDE chips. Already with their thickness of 50$渭$m, they can be successfully bent to radii of about 2cm without any signs of mechanical or electrical damage. During a subsequent characterisation using a 5.4GeV electron beam, it was further confirmed that they preserve their full electrical functionality as well as particle detection performance. In this article, the bending procedure and the setup used for characterisation are detailed. Furthermore, the analysis of the beam test, including the measurement of the detection efficiency as a function of beam position and local inclination angle, is discussed. The results show that the sensors maintain their excellent performance after bending to radii of 2cm, with detection efficiencies above 99.9% at typical operating conditions, paving the way towards a new class of detectors with unprecedented low material budget and ideal geometrical properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13000v2-abstract-full').style.display = 'none'; document.getElementById('2105.13000v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.01086">arXiv:2103.01086</a> <span> [<a href="https://arxiv.org/pdf/2103.01086">pdf</a>, <a href="https://arxiv.org/ps/2103.01086">ps</a>, <a href="https://arxiv.org/format/2103.01086">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165726">10.1016/j.nima.2021.165726 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface detectors of the TAx4 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Telescope+Array+Collaboration"> Telescope Array Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+M">M. Abe</a>, <a href="/search/physics?searchtype=author&query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/physics?searchtype=author&query=Allen%2C+M">M. Allen</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/physics?searchtype=author&query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/physics?searchtype=author&query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/physics?searchtype=author&query=Cady%2C+R">R. Cady</a>, <a href="/search/physics?searchtype=author&query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&query=Chiba%2C+J">J. Chiba</a>, <a href="/search/physics?searchtype=author&query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/physics?searchtype=author&query=Fujii%2C+T">T. Fujii</a>, <a href="/search/physics?searchtype=author&query=Fujisue%2C+K">K. Fujisue</a>, <a href="/search/physics?searchtype=author&query=Fujita%2C+K">K. Fujita</a>, <a href="/search/physics?searchtype=author&query=Fujiwara%2C+R">R. Fujiwara</a>, <a href="/search/physics?searchtype=author&query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/physics?searchtype=author&query=Fukushima%2C+R">R. Fukushima</a>, <a href="/search/physics?searchtype=author&query=Furlich%2C+G">G. Furlich</a>, <a href="/search/physics?searchtype=author&query=Hanlon%2C+W">W. Hanlon</a>, <a href="/search/physics?searchtype=author&query=Hayashi%2C+M">M. Hayashi</a>, <a href="/search/physics?searchtype=author&query=Hayashida%2C+N">N. Hayashida</a>, <a href="/search/physics?searchtype=author&query=Hibino%2C+K">K. Hibino</a> , et al. (124 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.01086v1-abstract-short" style="display: inline;"> Telescope Array (TA) is the largest ultrahigh energy cosmic-ray (UHECR) observatory in the Northern Hemisphere. It explores the origin of UHECRs by measuring their energy spectrum, arrival-direction distribution, and mass composition using a surface detector (SD) array covering approximately 700 km$^2$ and fluorescence detector (FD) stations. TA has found evidence for a cluster of cosmic rays with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01086v1-abstract-full').style.display = 'inline'; document.getElementById('2103.01086v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.01086v1-abstract-full" style="display: none;"> Telescope Array (TA) is the largest ultrahigh energy cosmic-ray (UHECR) observatory in the Northern Hemisphere. It explores the origin of UHECRs by measuring their energy spectrum, arrival-direction distribution, and mass composition using a surface detector (SD) array covering approximately 700 km$^2$ and fluorescence detector (FD) stations. TA has found evidence for a cluster of cosmic rays with energies greater than 57 EeV. In order to confirm this evidence with more data, it is necessary to increase the data collection rate.We have begun building an expansion of TA that we call TAx4. In this paper, we explain the motivation, design, technical features, and expected performance of the TAx4 SD. We also present TAx4's current status and examples of the data that have already been collected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01086v1-abstract-full').style.display = 'none'; document.getElementById('2103.01086v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 17 figures, submitted to Nuclear Inst. and Methods in Physics Research, A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.04316">arXiv:2102.04316</a> <span> [<a href="https://arxiv.org/pdf/2102.04316">pdf</a>, <a href="https://arxiv.org/format/2102.04316">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/jfm.2021.177">10.1017/jfm.2021.177 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An isolated logarithmic layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yongseok Kwon</a>, <a href="/search/physics?searchtype=author&query=Jimenez%2C+J">Javier Jimenez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.04316v1-abstract-short" style="display: inline;"> To isolate the multiscale dynamics of the logarithmic layer of wall-bounded turbulent flows, a novel numerical experiment is conducted in which the mean tangential Reynolds stress is eliminated except in a subregion corresponding to the typical location of the logarithmic layer in channels. Various statistical comparisons against channel flow databases show that, despite some differences, this mod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04316v1-abstract-full').style.display = 'inline'; document.getElementById('2102.04316v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.04316v1-abstract-full" style="display: none;"> To isolate the multiscale dynamics of the logarithmic layer of wall-bounded turbulent flows, a novel numerical experiment is conducted in which the mean tangential Reynolds stress is eliminated except in a subregion corresponding to the typical location of the logarithmic layer in channels. Various statistical comparisons against channel flow databases show that, despite some differences, this modified flow system reproduces the kinematics and dynamics of natural logarithmic layers well, even in the absence of a buffer and an outer zone. This supports the previous idea that the logarithmic layer has its own autonomous dynamics. In particular, the results suggest that the mean velocity gradient and the wall-parallel scale of the largest eddies are determined by the height of the tallest momentum-transferring motions, implying that the very large-scale motions of wall-bounded flows are not an intrinsic part of logarithmic-layer dynamics. Using a similar set-up, an isolated layer with a constant total stress, representing the logarithmic layer without a driving force, is simulated and examined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.04316v1-abstract-full').style.display = 'none'; document.getElementById('2102.04316v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in the journal of fluid mechanics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Fluid Mech. 916 (2021) A35 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.02088">arXiv:2011.02088</a> <span> [<a href="https://arxiv.org/pdf/2011.02088">pdf</a>, <a href="https://arxiv.org/format/2011.02088">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165748">10.1016/j.nima.2021.165748 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The trigger slow control system of the Belle II experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kim%2C+C+-">C. -H. Kim</a>, <a href="/search/physics?searchtype=author&query=Unno%2C+Y">Y. Unno</a>, <a href="/search/physics?searchtype=author&query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S+H">S. H. Kim</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+I+S">I. S. Lee</a>, <a href="/search/physics?searchtype=author&query=Koga%2C+T">T. Koga</a>, <a href="/search/physics?searchtype=author&query=Lai%2C+Y+-">Y. -T. Lai</a>, <a href="/search/physics?searchtype=author&query=Iwasaki%2C+Y">Y. Iwasaki</a>, <a href="/search/physics?searchtype=author&query=Yamada%2C+S">S. Yamada</a>, <a href="/search/physics?searchtype=author&query=Nakao%2C+M">M. Nakao</a>, <a href="/search/physics?searchtype=author&query=Nakazawa%2C+H">H. Nakazawa</a>, <a href="/search/physics?searchtype=author&query=Jang%2C+E+-">E. -J. Jang</a>, <a href="/search/physics?searchtype=author&query=Choi%2C+S+-">S. -K. Choi</a>, <a href="/search/physics?searchtype=author&query=Konno%2C+T">T. Konno</a>, <a href="/search/physics?searchtype=author&query=Liventsev%2C+D">D. Liventsev</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S+-">S. -H. Park</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y+-">Y. -J. Kwon</a>, <a href="/search/physics?searchtype=author&query=Hartbrich%2C+O">O. Hartbrich</a>, <a href="/search/physics?searchtype=author&query=Ritzert%2C+M">M. Ritzert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.02088v2-abstract-short" style="display: inline;"> The Belle II experiment at the SuperKEKB $e^{+}e^{-}$ collider in KEK, Japan, started physics data-taking with a complete detector from early 2019 with the primary physics goal of probing new physics in heavy quark and lepton decays. An online trigger system is indispensable for the Belle II experiment to reduce the beam background events associated with high electron and positron beam currents wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02088v2-abstract-full').style.display = 'inline'; document.getElementById('2011.02088v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.02088v2-abstract-full" style="display: none;"> The Belle II experiment at the SuperKEKB $e^{+}e^{-}$ collider in KEK, Japan, started physics data-taking with a complete detector from early 2019 with the primary physics goal of probing new physics in heavy quark and lepton decays. An online trigger system is indispensable for the Belle II experiment to reduce the beam background events associated with high electron and positron beam currents without sacrificing the target physics-oriented events. During the Belle II operation upon beam collision, the trigger system must be consistently controlled and its status must be carefully monitored in the process of data acquisition against unexpected situations. For this purpose, we have developed a slow control system for the Belle II trigger system. Around seventy thousand configuration parameters are saved in the Belle II central database server for every run when a run starts and stops. These parameters play an essential role in offline validation of the quality of runs. Around three thousand real-time variables are stored in the Belle II main archiving server, and the trend of some of these variables are regularly used for online and offline monitoring purposes. Various operator interface tools have been prepared and used. When the configuration parameters are not correctly applied, or some of the processes are unexpectedly terminated, the slow control system detects it, stops the data-taking process, and generates an alarm. In this article, we report how we constructed the Belle II trigger slow control system, and how we successfully managed to operate during its initial stage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.02088v2-abstract-full').style.display = 'none'; document.getElementById('2011.02088v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14327">arXiv:2009.14327</a> <span> [<a href="https://arxiv.org/pdf/2009.14327">pdf</a>, <a href="https://arxiv.org/format/2009.14327">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2019JD031940">10.1029/2019JD031940 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations of the Origin of Downward Terrestrial Gamma-Ray Flashes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/physics?searchtype=author&query=Krehbiel%2C+P+R">P. R. Krehbiel</a>, <a href="/search/physics?searchtype=author&query=Remington%2C+J">J. Remington</a>, <a href="/search/physics?searchtype=author&query=Stanley%2C+M+A">M. A. Stanley</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/physics?searchtype=author&query=LeVon%2C+R">R. LeVon</a>, <a href="/search/physics?searchtype=author&query=Rison%2C+W">W. Rison</a>, <a href="/search/physics?searchtype=author&query=Rodeheffer%2C+D">D. Rodeheffer</a>, <a href="/search/physics?searchtype=author&query=Collaboration%2C+t+T+A+S">the Telescope Array Scientific Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/physics?searchtype=author&query=Allen%2C+M">M. Allen</a>, <a href="/search/physics?searchtype=author&query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/physics?searchtype=author&query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/physics?searchtype=author&query=Byrne%2C+M">M. Byrne</a>, <a href="/search/physics?searchtype=author&query=Cady%2C+R">R. Cady</a>, <a href="/search/physics?searchtype=author&query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/physics?searchtype=author&query=di+Matteo%2C+A">A. di Matteo</a>, <a href="/search/physics?searchtype=author&query=Fujii%2C+T">T. Fujii</a>, <a href="/search/physics?searchtype=author&query=Fujita%2C+K">K. Fujita</a>, <a href="/search/physics?searchtype=author&query=Fujiwara%2C+R">R. Fujiwara</a>, <a href="/search/physics?searchtype=author&query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/physics?searchtype=author&query=Furlich%2C+G">G. Furlich</a> , et al. (116 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14327v2-abstract-short" style="display: inline;"> In this paper we report the first close, high-resolution observations of downward-directed terrestrial gamma-ray flashes (TGFs) detected by the large-area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (I… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14327v2-abstract-full').style.display = 'inline'; document.getElementById('2009.14327v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14327v2-abstract-full" style="display: none;"> In this paper we report the first close, high-resolution observations of downward-directed terrestrial gamma-ray flashes (TGFs) detected by the large-area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (IBPs) in the first few milliseconds of negative cloud-to-ground and low-altitude intracloud flashes, and that the IBPs are produced by a newly-identified streamer-based discharge process called fast negative breakdown. The observations indicate the relativistic runaway electron avalanches (RREAs) responsible for producing the TGFs are initiated by embedded spark-like transient conducting events (TCEs) within the fast streamer system, and potentially also by individual fast streamers themselves. The TCEs are inferred to be the cause of impulsive sub-pulses that are characteristic features of classic IBP sferics. Additional development of the avalanches would be facilitated by the enhanced electric field ahead of the advancing front of the fast negative breakdown. In addition to showing the nature of IBPs and their enigmatic sub-pulses, the observations also provide a possible explanation for the unsolved question of how the streamer to leader transition occurs during the initial negative breakdown, namely as a result of strong currents flowing in the final stage of successive IBPs, extending backward through both the IBP itself and the negative streamer breakdown preceding the IBP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14327v2-abstract-full').style.display = 'none'; document.getElementById('2009.14327v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Typo fixed and reference added. Manuscript is 36 pages. Supplemental Information is 42 pages. This paper is to be published in the Journal of Geophysical Research: Atmospheres. Online data repository: Open Science Framework DOI: 10.17605/OSF.IO/Z3XDA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.10777">arXiv:2003.10777</a> <span> [<a href="https://arxiv.org/pdf/2003.10777">pdf</a>, <a href="https://arxiv.org/format/2003.10777">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2019JA027529">10.1029/2019JA027529 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low geo-effectiveness of fast halo CMEs related to the 12 X-class flares in 2002 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schmieder%2C+B">B. Schmieder</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+R+S">R. S. Kim</a>, <a href="/search/physics?searchtype=author&query=Grison%2C+B">B. Grison</a>, <a href="/search/physics?searchtype=author&query=Bocchialini%2C+K">K. Bocchialini</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+R+Y">R. Y. Kwon</a>, <a href="/search/physics?searchtype=author&query=Poedts%2C+S">S. Poedts</a>, <a href="/search/physics?searchtype=author&query=D%C3%A9moulin%2C+P">P. D茅moulin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.10777v1-abstract-short" style="display: inline;"> It is generally accepted that extreme space weather events tend to be related to strong flares and fast halo coronal mass ejections CMEs. In the present paper, we carefully identify the chain of events from the Sun to the Earth induced by all 12 X-class flares that occurred in 2002. In this small sample, we find an unusual high rate (58\%) of solar sources with a longitude larger than 74 degrees.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10777v1-abstract-full').style.display = 'inline'; document.getElementById('2003.10777v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.10777v1-abstract-full" style="display: none;"> It is generally accepted that extreme space weather events tend to be related to strong flares and fast halo coronal mass ejections CMEs. In the present paper, we carefully identify the chain of events from the Sun to the Earth induced by all 12 X-class flares that occurred in 2002. In this small sample, we find an unusual high rate (58\%) of solar sources with a longitude larger than 74 degrees. Yet, all 12 X-class flares are associated with at least one CME. The fast halo CMEs (50\% ) are related to interplanetary CMEs (ICMEs) at L1 and weak Dst minimum values ($> -51\;$nT); while 5 (41\%) of the 12 X-class flares are related to solar proton events (SPE). We conclude that: (i) All twelve analyzed solar events, even those associated with fast halo CMEs originating from the central disk region, and those ICMEs and SPEs were not very geo-effective. This unexpected result demonstrates that the suggested events in the chain (fast halo CME, X-class flares, central disk region, ICME, SPE) are not infallible proxies for geo-effectiveness. (ii) The low value of integrated and normalized southward component of the IMF ($B^*_z$) may explain the low geo-effectiveness for this small sample. In fact, $B^*_z$ is well correlated to the weak Dst and low auroral electrojet (AE) activity. Hence, the only space weather impact at Earth in 2002 we can explain is based on $B^*_z$ at L1. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10777v1-abstract-full').style.display = 'none'; document.getElementById('2003.10777v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JGR 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07594">arXiv:1907.07594</a> <span> [<a href="https://arxiv.org/pdf/1907.07594">pdf</a>, <a href="https://arxiv.org/format/1907.07594">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.12.044052">10.1103/PhysRevApplied.12.044052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microelectromechanical-System-Based Design of a High-Finesse Fiber Cavity Integrated with an Ion Trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lee%2C+M">Moonjoo Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+M">Minjae Lee</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+S">Seokjun Hong</a>, <a href="/search/physics?searchtype=author&query=Sch%C3%BCppert%2C+K">Klemens Sch眉ppert</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yeong-Dae Kwon</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+T">Taehyun Kim</a>, <a href="/search/physics?searchtype=author&query=Colombe%2C+Y">Yves Colombe</a>, <a href="/search/physics?searchtype=author&query=Northup%2C+T+E">Tracy E. Northup</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+D+%22">Dong-Il "Dan" Cho</a>, <a href="/search/physics?searchtype=author&query=Blatt%2C+R">Rainer Blatt</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07594v3-abstract-short" style="display: inline;"> We present a numerical study of a MEMS-based design of a fiber cavity integrated with an ion trap system. Each fiber mirror is supported by a microactuator that controls the mirror's position in three dimensions. The mechanical stability is investigated by a feasibility analysis showing that the actuator offers a stable support of the fiber. The actuators move the fibers' positions continuously wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07594v3-abstract-full').style.display = 'inline'; document.getElementById('1907.07594v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07594v3-abstract-full" style="display: none;"> We present a numerical study of a MEMS-based design of a fiber cavity integrated with an ion trap system. Each fiber mirror is supported by a microactuator that controls the mirror's position in three dimensions. The mechanical stability is investigated by a feasibility analysis showing that the actuator offers a stable support of the fiber. The actuators move the fibers' positions continuously with a stroke of more than 10 $渭$m, with mechanical resonance frequencies on the order of kHz. A calculation of the trapping potential shows that a separation between ion and fiber consistent with strong ion-cavity coupling is feasible. Our miniaturized ion-photon interface constitutes a viable approach to integrated hardware for quantum information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07594v3-abstract-full').style.display = 'none'; document.getElementById('1907.07594v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 12, 044052 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.06945">arXiv:1905.06945</a> <span> [<a href="https://arxiv.org/pdf/1905.06945">pdf</a>, <a href="https://arxiv.org/format/1905.06945">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Uncertainty quantification of molecular property prediction using Bayesian neural network models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ryu%2C+S">Seongok Ryu</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yongchan Kwon</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+W+Y">Woo Youn Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.06945v1-abstract-short" style="display: inline;"> In chemistry, deep neural network models have been increasingly utilized in a variety of applications such as molecular property predictions, novel molecule designs, and planning chemical reactions. Despite the rapid increase in the use of state-of-the-art models and algorithms, deep neural network models often produce poor predictions in real applications because model performance is highly depen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06945v1-abstract-full').style.display = 'inline'; document.getElementById('1905.06945v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.06945v1-abstract-full" style="display: none;"> In chemistry, deep neural network models have been increasingly utilized in a variety of applications such as molecular property predictions, novel molecule designs, and planning chemical reactions. Despite the rapid increase in the use of state-of-the-art models and algorithms, deep neural network models often produce poor predictions in real applications because model performance is highly dependent on the quality of training data. In the field of molecular analysis, data are mostly obtained from either complicated chemical experiments or approximate mathematical equations, and then quality of data may be questioned.In this paper, we quantify uncertainties of prediction using Bayesian neural networks in molecular property predictions. We estimate both model-driven and data-driven uncertainties, demonstrating the usefulness of uncertainty quantification as both a quality checker and a confidence indicator with the three experiments. Our results manifest that uncertainty quantification is necessary for more reliable molecular applications and Bayesian neural network models can be a practical approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.06945v1-abstract-full').style.display = 'none'; document.getElementById('1905.06945v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Workshop on "Machine Learning for Molecules and Materials", NIPS 2018. arXiv admin note: substantial text overlap with arXiv:1903.08375</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.01211">arXiv:1902.01211</a> <span> [<a href="https://arxiv.org/pdf/1902.01211">pdf</a>, <a href="https://arxiv.org/format/1902.01211">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> A next-generation LHC heavy-ion experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adamov%C3%A1%2C+D">D. Adamov谩</a>, <a href="/search/physics?searchtype=author&query=Rinella%2C+G+A">G. Aglieri Rinella</a>, <a href="/search/physics?searchtype=author&query=Agnello%2C+M">M. Agnello</a>, <a href="/search/physics?searchtype=author&query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/physics?searchtype=author&query=Aleksandrov%2C+D">D. Aleksandrov</a>, <a href="/search/physics?searchtype=author&query=Alici%2C+A">A. Alici</a>, <a href="/search/physics?searchtype=author&query=Alkin%2C+A">A. Alkin</a>, <a href="/search/physics?searchtype=author&query=Alt%2C+T">T. Alt</a>, <a href="/search/physics?searchtype=author&query=Altsybeev%2C+I">I. Altsybeev</a>, <a href="/search/physics?searchtype=author&query=Andreou%2C+D">D. Andreou</a>, <a href="/search/physics?searchtype=author&query=Andronic%2C+A">A. Andronic</a>, <a href="/search/physics?searchtype=author&query=Antinori%2C+F">F. Antinori</a>, <a href="/search/physics?searchtype=author&query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&query=Appelsh%C3%A4user%2C+H">H. Appelsh盲user</a>, <a href="/search/physics?searchtype=author&query=Arnaldi%2C+R">R. Arnaldi</a>, <a href="/search/physics?searchtype=author&query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&query=Arslandok%2C+M">M. Arslandok</a>, <a href="/search/physics?searchtype=author&query=Averbeck%2C+R">R. Averbeck</a>, <a href="/search/physics?searchtype=author&query=Azmi%2C+M+D">M. D. Azmi</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Bailhache%2C+R">R. Bailhache</a>, <a href="/search/physics?searchtype=author&query=Bala%2C+R">R. Bala</a>, <a href="/search/physics?searchtype=author&query=Barioglio%2C+L">L. Barioglio</a>, <a href="/search/physics?searchtype=author&query=Barnaf%C3%B6ldi%2C+G+G">G. G. Barnaf枚ldi</a>, <a href="/search/physics?searchtype=author&query=Barnby%2C+L+S">L. S. Barnby</a> , et al. (374 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.01211v2-abstract-short" style="display: inline;"> The present document discusses plans for a compact, next-generation multi-purpose detector at the LHC as a follow-up to the present ALICE experiment. The aim is to build a nearly massless barrel detector consisting of truly cylindrical layers based on curved wafer-scale ultra-thin silicon sensors with MAPS technology, featuring an unprecedented low material budget of 0.05% X$_0$ per layer, with th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01211v2-abstract-full').style.display = 'inline'; document.getElementById('1902.01211v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.01211v2-abstract-full" style="display: none;"> The present document discusses plans for a compact, next-generation multi-purpose detector at the LHC as a follow-up to the present ALICE experiment. The aim is to build a nearly massless barrel detector consisting of truly cylindrical layers based on curved wafer-scale ultra-thin silicon sensors with MAPS technology, featuring an unprecedented low material budget of 0.05% X$_0$ per layer, with the innermost layers possibly positioned inside the beam pipe. In addition to superior tracking and vertexing capabilities over a wide momentum range down to a few tens of MeV/$c$, the detector will provide particle identification via time-of-flight determination with about 20~ps resolution. In addition, electron and photon identification will be performed in a separate shower detector. The proposed detector is conceived for studies of pp, pA and AA collisions at luminosities a factor of 20 to 50 times higher than possible with the upgraded ALICE detector, enabling a rich physics program ranging from measurements with electromagnetic probes at ultra-low transverse momenta to precision physics in the charm and beauty sector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.01211v2-abstract-full').style.display = 'none'; document.getElementById('1902.01211v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Input to the 2020 Update of the European Particle Physics Strategy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.08933">arXiv:1806.08933</a> <span> [<a href="https://arxiv.org/pdf/1806.08933">pdf</a>, <a href="https://arxiv.org/format/1806.08933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Environmental Monitoring for Belle II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Park%2C+S">SeokHee Park</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Youngjoon Kwon</a>, <a href="/search/physics?searchtype=author&query=Nakao%2C+M">Mikihiko Nakao</a>, <a href="/search/physics?searchtype=author&query=Sadaharu%2C+U">Uehara Sadaharu</a>, <a href="/search/physics?searchtype=author&query=Konno%2C+T">Tomoyuki Konno</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.08933v1-abstract-short" style="display: inline;"> The Belle II experiment has just started, searching for physics beyond the Standard Model in $B$, charm and $蟿$ decays using data with the integrated luminosity goal of $50 ~\mathrm{ab}^{-1}$. Before the physics run with full detector system being installed, Belle II Phase 2 run is on-going at the time of the conference, until July 2018. In this presentation, we describe the environmental monitori… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08933v1-abstract-full').style.display = 'inline'; document.getElementById('1806.08933v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.08933v1-abstract-full" style="display: none;"> The Belle II experiment has just started, searching for physics beyond the Standard Model in $B$, charm and $蟿$ decays using data with the integrated luminosity goal of $50 ~\mathrm{ab}^{-1}$. Before the physics run with full detector system being installed, Belle II Phase 2 run is on-going at the time of the conference, until July 2018. In this presentation, we describe the environmental monitoring system with an emphasis on the software tools to help the experts and the non-expert shifters who operate the experiment. The monitoring tools are prepared on the control room especially for the shift-takers. It consists of thre components: the monitoring GUI, the alarm system, and the archiver. The monitoring GUI shows the current state of the detector and the alarm system generate warning states from monitored variables with sound and email notification. The archiver is collecting data on single server and provide collected data to the experimental collaborators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.08933v1-abstract-full').style.display = 'none'; document.getElementById('1806.08933v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Poster presentation at 21st IEEE Real Time Conference (RT2018)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.06258">arXiv:1705.06258</a> <span> [<a href="https://arxiv.org/pdf/1705.06258">pdf</a>, <a href="https://arxiv.org/format/1705.06258">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1029/2017JD027931">10.1029/2017JD027931 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gamma-ray Showers Observed at Ground Level in Coincidence With Downward Lightning Leaders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abbasi%2C+R+U">R. U. Abbasi</a>, <a href="/search/physics?searchtype=author&query=Abu-Zayyad%2C+T">T. Abu-Zayyad</a>, <a href="/search/physics?searchtype=author&query=Allen%2C+M">M. Allen</a>, <a href="/search/physics?searchtype=author&query=Barcikowski%2C+E">E. Barcikowski</a>, <a href="/search/physics?searchtype=author&query=Belz%2C+J+W">J. W. Belz</a>, <a href="/search/physics?searchtype=author&query=Bergman%2C+D+R">D. R. Bergman</a>, <a href="/search/physics?searchtype=author&query=Blake%2C+S+A">S. A. Blake</a>, <a href="/search/physics?searchtype=author&query=Byrne%2C+M">M. Byrne</a>, <a href="/search/physics?searchtype=author&query=Cady%2C+R">R. Cady</a>, <a href="/search/physics?searchtype=author&query=Cheon%2C+B+G">B. G. Cheon</a>, <a href="/search/physics?searchtype=author&query=Chiba%2C+J">J. Chiba</a>, <a href="/search/physics?searchtype=author&query=Chikawa%2C+M">M. Chikawa</a>, <a href="/search/physics?searchtype=author&query=Fujii%2C+T">T. Fujii</a>, <a href="/search/physics?searchtype=author&query=Fukushima%2C+M">M. Fukushima</a>, <a href="/search/physics?searchtype=author&query=Furlich%2C+G">G. Furlich</a>, <a href="/search/physics?searchtype=author&query=Goto%2C+T">T. Goto</a>, <a href="/search/physics?searchtype=author&query=Hanlon%2C+W">W. Hanlon</a>, <a href="/search/physics?searchtype=author&query=Hayashi%2C+Y">Y. Hayashi</a>, <a href="/search/physics?searchtype=author&query=Hayashida%2C+N">N. Hayashida</a>, <a href="/search/physics?searchtype=author&query=Hibino%2C+K">K. Hibino</a>, <a href="/search/physics?searchtype=author&query=Honda%2C+K">K. Honda</a>, <a href="/search/physics?searchtype=author&query=Ikeda%2C+D">D. Ikeda</a>, <a href="/search/physics?searchtype=author&query=Inoue%2C+N">N. Inoue</a>, <a href="/search/physics?searchtype=author&query=Ishii%2C+T">T. Ishii</a>, <a href="/search/physics?searchtype=author&query=Ito%2C+H">H. Ito</a> , et al. (99 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.06258v3-abstract-short" style="display: inline;"> Bursts of gamma ray showers have been observed in coincidence with downward propagating negative leaders in lightning flashes by the Telescope Array Surface Detector (TASD). The TASD is a 700~square kilometer cosmic ray observatory located in southwestern Utah, U.S.A. In data collected between 2014 and 2016, correlated observations showing the structure and temporal development of three shower-pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06258v3-abstract-full').style.display = 'inline'; document.getElementById('1705.06258v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.06258v3-abstract-full" style="display: none;"> Bursts of gamma ray showers have been observed in coincidence with downward propagating negative leaders in lightning flashes by the Telescope Array Surface Detector (TASD). The TASD is a 700~square kilometer cosmic ray observatory located in southwestern Utah, U.S.A. In data collected between 2014 and 2016, correlated observations showing the structure and temporal development of three shower-producing flashes were obtained with a 3D lightning mapping array, and electric field change measurements were obtained for an additional seven flashes, in both cases co-located with the TASD. National Lightning Detection Network (NLDN) information was also used throughout. The showers arrived in a sequence of 2--5 short-duration ($\le$10~$渭$s) bursts over time intervals of several hundred microseconds, and originated at an altitude of $\simeq$3--5 kilometers above ground level during the first 1--2 ms of downward negative leader breakdown at the beginning of cloud-to-ground lightning flashes. The shower footprints, associated waveforms and the effect of atmospheric propagation indicate that the showers consist primarily of downward-beamed gamma radiation. This has been supported by GEANT simulation studies, which indicate primary source fluxes of $\simeq$$10^{12}$--$10^{14}$ photons for $16^{\circ}$ half-angle beams. We conclude that the showers are terrestrial gamma-ray flashes (TGFs), similar to those observed by satellites, but that the ground-based observations are more representative of the temporal source activity and are also more sensitive than satellite observations, which detect only the most powerful TGFs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.06258v3-abstract-full').style.display = 'none'; document.getElementById('1705.06258v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Geophys. Res. Atmos., 123 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.03820">arXiv:1704.03820</a> <span> [<a href="https://arxiv.org/pdf/1704.03820">pdf</a>, <a href="https://arxiv.org/ps/1704.03820">ps</a>, <a href="https://arxiv.org/format/1704.03820">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1751-8121/aa7dba">10.1088/1751-8121/aa7dba <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonstationary distributions of wave intensities in Wave Turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Choi%2C+Y">Yeontaek Choi</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Young-Sam Kwon</a>, <a href="/search/physics?searchtype=author&query=Jo%2C+S">Sanggyu Jo</a>, <a href="/search/physics?searchtype=author&query=Nazarenko%2C+S">Sergey Nazarenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.03820v1-abstract-short" style="display: inline;"> We obtain a general solution for the probability density function of wave intensities in non-stationary Wave Turbulence. The solution is expressed in terms of the wave action spectrum evolving according the the wave-kinetic equation. We establish that, in absence of wave breaking, the wave statistics asymptotes to a Gaussian distribution in forced-dissipated wave systems that approach a steady sta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03820v1-abstract-full').style.display = 'inline'; document.getElementById('1704.03820v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.03820v1-abstract-full" style="display: none;"> We obtain a general solution for the probability density function of wave intensities in non-stationary Wave Turbulence. The solution is expressed in terms of the wave action spectrum evolving according the the wave-kinetic equation. We establish that, in absence of wave breaking, the wave statistics asymptotes to a Gaussian distribution in forced-dissipated wave systems that approach a steady state. Also, in non-stationary systems, if the statistics is Gaussian initially, it will remain Gaussian at any time. Generally, the statistics that is not Gaussian initially will remain non-Gaussian over the characteristic nonlinear time of the wave spectrum. In freely decaying wave turbulence, substantial deviations from Gaussianity may persist infinitely long. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.03820v1-abstract-full').style.display = 'none'; document.getElementById('1704.03820v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.02027">arXiv:1610.02027</a> <span> [<a href="https://arxiv.org/pdf/1610.02027">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Drift-compensated Low-noise Frequency Synthesis Based on a cryoCSO for the KRISS-F1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Heo%2C+M">Myoung-Sun Heo</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S+E">Sang Eon Park</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+W">Won-Kyu Lee</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S">Sang-Bum Lee</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+H">Hyun-Gue Hong</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+T+Y">Taeg Yong Kwon</a>, <a href="/search/physics?searchtype=author&query=Park%2C+C+Y">Chang Yong Park</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+D">Dai-Hyuk Yu</a>, <a href="/search/physics?searchtype=author&query=Santarelli%2C+G">G. Santarelli</a>, <a href="/search/physics?searchtype=author&query=Hilton%2C+A">Ashby Hilton</a>, <a href="/search/physics?searchtype=author&query=Luiten%2C+A+N">Andre N. Luiten</a>, <a href="/search/physics?searchtype=author&query=Hartnett%2C+J+G">John G. Hartnett</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.02027v1-abstract-short" style="display: inline;"> In this paper we report on the implementation and stability analysis of a drift-compensated frequency synthesizer from a cryogenic sapphire oscillator (CSO) designed for a Cs/Rb atomic fountain clock. The synthesizer has two microwave outputs of 7 GHz and 9 GHz for Rb and Cs atom interrogation, respectively. The short-term stability of these microwave signals, measured using an optical frequency c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02027v1-abstract-full').style.display = 'inline'; document.getElementById('1610.02027v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.02027v1-abstract-full" style="display: none;"> In this paper we report on the implementation and stability analysis of a drift-compensated frequency synthesizer from a cryogenic sapphire oscillator (CSO) designed for a Cs/Rb atomic fountain clock. The synthesizer has two microwave outputs of 7 GHz and 9 GHz for Rb and Cs atom interrogation, respectively. The short-term stability of these microwave signals, measured using an optical frequency comb locked to an ultra-stable laser, is better than $5\times10^{-15}$ at an averaging time of 1 s. We demonstrate that the short-term stability of the synthesizer is lower than the quantum projection noise limit of the Cs fountain clock, KRISS-F1(Cs) by measuring the short-term stability of the fountain with varying trapped atom number. The stability of the fountain at 1-s averaging time reaches $2.5\times10^{-14}$ at the highest atom number in the experiment when the synthesizer is used as an interrogation oscillator of the fountain. In order to compensate the frequency drift of the CSO, the output frequency of a waveform generator in the synthesis chain is ramped linearly. By doing this, the stability of the synthesizer at an average time of one hour reaches a level of $10^{-16}$ which is measured with the fountain clock. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.02027v1-abstract-full').style.display = 'none'; document.getElementById('1610.02027v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1408.4225">arXiv:1408.4225</a> <span> [<a href="https://arxiv.org/pdf/1408.4225">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Analytic Model of Variable Characteristic of Coefficient of Restitution and Its Application to Soccer Ball Trajectory Planning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ryu%2C+H">Hwan-Taek Ryu</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+B">Byung-Ju Yi</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Younghun Kwon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1408.4225v1-abstract-short" style="display: inline;"> In this article, we investigate the behavior of the coefficient of restitution (COR) which is an important parameter in many impact-related fields. In many cases, the COR is considered as a constant value, but it varies according to many variables. In this paper, we introduce an analytical variable COR model considering aero dynamics along with its verification through experiment. To introduce and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4225v1-abstract-full').style.display = 'inline'; document.getElementById('1408.4225v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1408.4225v1-abstract-full" style="display: none;"> In this article, we investigate the behavior of the coefficient of restitution (COR) which is an important parameter in many impact-related fields. In many cases, the COR is considered as a constant value, but it varies according to many variables. In this paper, we introduce an analytical variable COR model considering aero dynamics along with its verification through experiment. To introduce and analyze the variable characteristic of the COR model, the collision phenomenon between a pendulum and two kinds of ball is employed as an example and aerodynamics such as drag force is considered for analyzing the after-effect of the collision. Collision velocity of the pendulum, dynamic parameters of colliding bodies, contact time, drag coefficient, the air density, and the cross-sectional area of the ball are found as the typical variables of analytical COR model. This observation generalizes the result in previous researches. To verify new COR model, the travel distances for the curve-fitted constant COR model and the curve-fitted variable COR model are compared through simulation and experiment. Moreover, comparison between constant COR and variable COR is presented in several point of views. Finally, using the variable COR model, the travel distance of the ball for collision velocity, which is beyond the curve-fitted range, is estimated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1408.4225v1-abstract-full').style.display = 'none'; document.getElementById('1408.4225v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1305.1077">arXiv:1305.1077</a> <span> [<a href="https://arxiv.org/pdf/1305.1077">pdf</a>, <a href="https://arxiv.org/format/1305.1077">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.111.203002">10.1103/PhysRevLett.111.203002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Femtojoule-scale all-optical latching and modulation via cavity nonlinear optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yeong-Dae Kwon</a>, <a href="/search/physics?searchtype=author&query=Armen%2C+M+A">Michael A. Armen</a>, <a href="/search/physics?searchtype=author&query=Mabuchi%2C+H">Hideo Mabuchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1305.1077v2-abstract-short" style="display: inline;"> We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multi-atom cavity quantum electrodynamical (cavity QED) system, and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our resu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.1077v2-abstract-full').style.display = 'inline'; document.getElementById('1305.1077v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1305.1077v2-abstract-full" style="display: none;"> We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multi-atom cavity quantum electrodynamical (cavity QED) system, and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultra-low power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1305.1077v2-abstract-full').style.display = 'none'; document.getElementById('1305.1077v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, Supplemental Information included as ancillary file</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1210.3881">arXiv:1210.3881</a> <span> [<a href="https://arxiv.org/pdf/1210.3881">pdf</a>, <a href="https://arxiv.org/format/1210.3881">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Spatially developing turbulent boundary layer on a flat plate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lee%2C+J+H">J. H. Lee</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y+S">Y. S. Kwon</a>, <a href="/search/physics?searchtype=author&query=Hutchins%2C+N">N. Hutchins</a>, <a href="/search/physics?searchtype=author&query=Monty%2C+J+P">J. P. Monty</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1210.3881v1-abstract-short" style="display: inline;"> This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent bound… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.3881v1-abstract-full').style.display = 'inline'; document.getElementById('1210.3881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1210.3881v1-abstract-full" style="display: none;"> This fluid dynamics video submitted to the Gallery of Fluid motion shows a turbulent boundary layer developing under a 5 metre-long flat plate towed through water. A stationary imaging system provides a unique view of the developing boundary layer as it would form over the hull of a ship or fuselage of an aircraft. The towed plate permits visualisation of the zero-pressure-gradient turbulent boundary layer as it develops from the trip to a high Reynolds number state ($Re_蟿\approx 3000$). An evolving large-scale coherent structure will appear almost stationary in this frame of reference. The visualisations provide an unique view of the evolution of fundamental processes in the boundary layer (such as interfacial bulging, entrainment, vortical motions, etc.). In the more traditional laboratory frame of reference, in which fluid passes over a stationary body, it is difficult to observe the full evolution and lifetime of turbulent coherent structures. An equivalent experiment in a wind/water-tunnel would require a camera and laser that moves with the flow, effectively `chasing' eddies as they advect downstream. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1210.3881v1-abstract-full').style.display = 'none'; document.getElementById('1210.3881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This submission contains two video files for the Gallery of Fluid Motion</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1112.5939">arXiv:1112.5939</a> <span> [<a href="https://arxiv.org/pdf/1112.5939">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Absolute frequency measurement of 1S0 (F = 1/2) - 3P0 (F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Park%2C+C+Y">Chang Yong Park</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+D">Dai-Hyuk Yu</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+W">Won-Kyu Lee</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S+E">Sang Eon Park</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+E+B">Eok Bong Kim</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+K">Sun Kyung Lee</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+J+W">Jun Woo Cho</a>, <a href="/search/physics?searchtype=author&query=Yoon%2C+T+H">Tai Hyun Yoon</a>, <a href="/search/physics?searchtype=author&query=Mun%2C+J">Jongchul Mun</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S+J">Sung Jong Park</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+T+Y">Taeg Yong Kwon</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S">Sang-Bum Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1112.5939v3-abstract-short" style="display: inline;"> We measured the absolute frequency of the optical clock transition 1S0 (F = 1/2) - 3P0 (F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 863.5(8.1) Hz. The frequency was measured against Terrestrial Time (TT; the SI second on the geoid) by using an optical frequency comb of which the frequency was phase-locked to an H-maser as a flyw… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5939v3-abstract-full').style.display = 'inline'; document.getElementById('1112.5939v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1112.5939v3-abstract-full" style="display: none;"> We measured the absolute frequency of the optical clock transition 1S0 (F = 1/2) - 3P0 (F = 1/2) of 171Yb atoms confined in a one-dimensional optical lattice and it was determined to be 518 295 836 590 863.5(8.1) Hz. The frequency was measured against Terrestrial Time (TT; the SI second on the geoid) by using an optical frequency comb of which the frequency was phase-locked to an H-maser as a flywheel oscillator traceable to TT. The magic wavelength was also measured as 394 798.48(79) GHz. The results are in good agreement with two previous measurements of other institutes within the specified uncertainty of this work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1112.5939v3-abstract-full').style.display = 'none'; document.getElementById('1112.5939v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 December, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures, 1 Table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1111.0159">arXiv:1111.0159</a> <span> [<a href="https://arxiv.org/pdf/1111.0159">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Decoupled algorithm for transient viscoelastic flow modeling and description of elastic flow instability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Youngdon Kwon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1111.0159v1-abstract-short" style="display: inline;"> In the finite element analysis with fast decoupled time integration scheme for viscoelastic fluid (the Leonov model) flow, we investigate strong nonlinear behavior in 2D creeping contraction flow. The algorithm is applicable in the whole range of the retardation parameter. In the analysis of steady solutions, there exists upper convergence limit of available numerical solutions in this contraction… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.0159v1-abstract-full').style.display = 'inline'; document.getElementById('1111.0159v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1111.0159v1-abstract-full" style="display: none;"> In the finite element analysis with fast decoupled time integration scheme for viscoelastic fluid (the Leonov model) flow, we investigate strong nonlinear behavior in 2D creeping contraction flow. The algorithm is applicable in the whole range of the retardation parameter. In the analysis of steady solutions, there exists upper convergence limit of available numerical solutions in this contraction flow that is free from the frustrating mesh dependence when we incorporate the tensor-logarithmic formulation [Fattal and Kupferman, JNNFM, 2004]. With adjustment of a nonlinear parameter, 2 kinds of fluid have been chosen for flow modeling such as highly shear thinning and Boger-type liquids. According to the type of such property, the transient modeling has revealed distinct flow dynamics of elastic instability. With pressure difference imposed slightly below the steady limit, the result demonstrates fluctuating solution without approaching steady state for the shear thinning fluid. From it, we conclude that the existence of upper limit for convergent steady solution possibly implies transition to spatially as well as temporally varying flow field without steady asymptotic. Under the pressure fairly higher than the limit, the result expresses severe fluctuation of flowrate, oscillation of corner vortices and also asymmetric irregular wave propagation along the downstream wall. In addition, flow dynamics seems quite stochastic with almost no temporal correlation. For the Boger-type fluid, under the traction higher than steady limit the flowrate and corner vortices exhibit periodic oscillation with flow asymmetry. Both types of instability express purely elastic instability in this inertialess flow approximation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1111.0159v1-abstract-full').style.display = 'none'; document.getElementById('1111.0159v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2011. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1105.6370">arXiv:1105.6370</a> <span> [<a href="https://arxiv.org/pdf/1105.6370">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Artificial DNA Lattice Fabrication by Non-Complementarity and Geometrical Incompatibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shin%2C+J">Jihoon Shin</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">Junghoon Kim</a>, <a href="/search/physics?searchtype=author&query=Amin%2C+R">Rashid Amin</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+S">Seungjae Kim</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y+H">Young Hun Kwon</a>, <a href="/search/physics?searchtype=author&query=Park%2C+S+H">Sung Ha Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1105.6370v1-abstract-short" style="display: inline;"> Fabrication of DNA nanostructures primarily follows two fundamental rules. First, DNA oligonucleotides mutually combine by Watson-Crick base pairing rules between complementary base sequences. Second, the geometrical compatibility of the DNA oligonucleotide must match for lattices to form. Here we present a fabrication scheme of DNA nanostructures with non-complementary and/or geometrically incomp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.6370v1-abstract-full').style.display = 'inline'; document.getElementById('1105.6370v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1105.6370v1-abstract-full" style="display: none;"> Fabrication of DNA nanostructures primarily follows two fundamental rules. First, DNA oligonucleotides mutually combine by Watson-Crick base pairing rules between complementary base sequences. Second, the geometrical compatibility of the DNA oligonucleotide must match for lattices to form. Here we present a fabrication scheme of DNA nanostructures with non-complementary and/or geometrically incompatible DNA oligonucleotides, which contradicts conventional DNA structure creation rules. Quantitative analyses of DNA lattice sizes were carried out to verify the unfavorable binding occurrences which correspond to errors in algorithmic self-assembly. Further studies of these types of bindings may shed more light on the exact mechanisms at work in the self-assembly of DNA nanostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1105.6370v1-abstract-full').style.display = 'none'; document.getElementById('1105.6370v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures, ACS Nano (2011); Accepted to ACS Nano, supplementary information can be found at http://pubs.acs.org/doi/abs/10.1021/nn201312g</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1011.0352">arXiv:1011.0352</a> <span> [<a href="https://arxiv.org/pdf/1011.0352">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Belle II Technical Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abe%2C+T">T. Abe</a>, <a href="/search/physics?searchtype=author&query=Adachi%2C+I">I. Adachi</a>, <a href="/search/physics?searchtype=author&query=Adamczyk%2C+K">K. Adamczyk</a>, <a href="/search/physics?searchtype=author&query=Ahn%2C+S">S. Ahn</a>, <a href="/search/physics?searchtype=author&query=Aihara%2C+H">H. Aihara</a>, <a href="/search/physics?searchtype=author&query=Akai%2C+K">K. Akai</a>, <a href="/search/physics?searchtype=author&query=Aloi%2C+M">M. Aloi</a>, <a href="/search/physics?searchtype=author&query=Andricek%2C+L">L. Andricek</a>, <a href="/search/physics?searchtype=author&query=Aoki%2C+K">K. Aoki</a>, <a href="/search/physics?searchtype=author&query=Arai%2C+Y">Y. Arai</a>, <a href="/search/physics?searchtype=author&query=Arefiev%2C+A">A. Arefiev</a>, <a href="/search/physics?searchtype=author&query=Arinstein%2C+K">K. Arinstein</a>, <a href="/search/physics?searchtype=author&query=Arita%2C+Y">Y. Arita</a>, <a href="/search/physics?searchtype=author&query=Asner%2C+D+M">D. M. Asner</a>, <a href="/search/physics?searchtype=author&query=Aulchenko%2C+V">V. Aulchenko</a>, <a href="/search/physics?searchtype=author&query=Aushev%2C+T">T. Aushev</a>, <a href="/search/physics?searchtype=author&query=Aziz%2C+T">T. Aziz</a>, <a href="/search/physics?searchtype=author&query=Bakich%2C+A+M">A. M. Bakich</a>, <a href="/search/physics?searchtype=author&query=Balagura%2C+V">V. Balagura</a>, <a href="/search/physics?searchtype=author&query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&query=Barberio%2C+E">E. Barberio</a>, <a href="/search/physics?searchtype=author&query=Barvich%2C+T">T. Barvich</a>, <a href="/search/physics?searchtype=author&query=Belous%2C+K">K. Belous</a>, <a href="/search/physics?searchtype=author&query=Bergauer%2C+T">T. Bergauer</a>, <a href="/search/physics?searchtype=author&query=Bhardwaj%2C+V">V. Bhardwaj</a> , et al. (387 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1011.0352v1-abstract-short" style="display: inline;"> The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0352v1-abstract-full').style.display = 'inline'; document.getElementById('1011.0352v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1011.0352v1-abstract-full" style="display: none;"> The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1011.0352v1-abstract-full').style.display = 'none'; document.getElementById('1011.0352v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Edited by: Z. Dole啪al and S. Uno</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> KEK Report 2010-1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1004.4996">arXiv:1004.4996</a> <span> [<a href="https://arxiv.org/pdf/1004.4996">pdf</a>, <a href="https://arxiv.org/ps/1004.4996">ps</a>, <a href="https://arxiv.org/format/1004.4996">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/5/05/P05007">10.1088/1748-0221/5/05/P05007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of the interactions of pions in the CALICE silicon-tungsten calorimeter prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&query=Karyotakis%2C+Y">Y. Karyotakis</a>, <a href="/search/physics?searchtype=author&query=Repond%2C+J">J. Repond</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J">J. Yu</a>, <a href="/search/physics?searchtype=author&query=Eigen%2C+G">G. Eigen</a>, <a href="/search/physics?searchtype=author&query=Mikami%2C+Y">Y. Mikami</a>, <a href="/search/physics?searchtype=author&query=Watson%2C+N+K">N. K. Watson</a>, <a href="/search/physics?searchtype=author&query=Wilson%2C+J+A">J. A. Wilson</a>, <a href="/search/physics?searchtype=author&query=Goto%2C+T">T. Goto</a>, <a href="/search/physics?searchtype=author&query=Mavromanolakis%2C+G">G. Mavromanolakis</a>, <a href="/search/physics?searchtype=author&query=Thomson%2C+M+A">M. A. Thomson</a>, <a href="/search/physics?searchtype=author&query=Ward%2C+D+R">D. R. Ward</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+W">W. Yan</a>, <a href="/search/physics?searchtype=author&query=Benchekroun%2C+D">D. Benchekroun</a>, <a href="/search/physics?searchtype=author&query=Hoummada%2C+A">A. Hoummada</a>, <a href="/search/physics?searchtype=author&query=Khoulaki%2C+Y">Y. Khoulaki</a>, <a href="/search/physics?searchtype=author&query=Apostolakis%2C+J">J. Apostolakis</a>, <a href="/search/physics?searchtype=author&query=Ribon%2C+A">A. Ribon</a>, <a href="/search/physics?searchtype=author&query=Uzhinskiy%2C+V">V. Uzhinskiy</a>, <a href="/search/physics?searchtype=author&query=Benyamna%2C+M">M. Benyamna</a>, <a href="/search/physics?searchtype=author&query=C%C3%A2rloganu%2C+C">C. C芒rloganu</a>, <a href="/search/physics?searchtype=author&query=Fehr%2C+F">F. Fehr</a>, <a href="/search/physics?searchtype=author&query=Gay%2C+P">P. Gay</a>, <a href="/search/physics?searchtype=author&query=Blazey%2C+G+C">G. C. Blazey</a>, <a href="/search/physics?searchtype=author&query=Chakraborty%2C+D">D. Chakraborty</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1004.4996v1-abstract-short" style="display: inline;"> A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions in the calorimeter. One of the main objectives of the CALICE program is to validate the Monte Carlo tools available for the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4996v1-abstract-full').style.display = 'inline'; document.getElementById('1004.4996v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1004.4996v1-abstract-full" style="display: none;"> A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions in the calorimeter. One of the main objectives of the CALICE program is to validate the Monte Carlo tools available for the design of a full-sized detector. The interactions of pions in the Si-W calorimeter are therefore confronted with the predictions of various physical models implemented in the GEANT4 simulation framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1004.4996v1-abstract-full').style.display = 'none'; document.getElementById('1004.4996v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 5:P05007,2010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1003.2662">arXiv:1003.2662</a> <span> [<a href="https://arxiv.org/pdf/1003.2662">pdf</a>, <a href="https://arxiv.org/format/1003.2662">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/5/05/P05004">10.1088/1748-0221/5/05/P05004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Construction and Commissioning of the CALICE Analog Hadron Calorimeter Prototype </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adloff%2C+C">C. Adloff</a>, <a href="/search/physics?searchtype=author&query=Karyotakis%2C+Y">Y. Karyotakis</a>, <a href="/search/physics?searchtype=author&query=Repond%2C+J">J. Repond</a>, <a href="/search/physics?searchtype=author&query=Brandt%2C+A">A. Brandt</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+H">H. Brown</a>, <a href="/search/physics?searchtype=author&query=De%2C+K">K. De</a>, <a href="/search/physics?searchtype=author&query=Medina%2C+C">C. Medina</a>, <a href="/search/physics?searchtype=author&query=Smith%2C+J">J. Smith</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">J. Li</a>, <a href="/search/physics?searchtype=author&query=Sosebee%2C+M">M. Sosebee</a>, <a href="/search/physics?searchtype=author&query=White%2C+A">A. White</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J">J. Yu</a>, <a href="/search/physics?searchtype=author&query=Buanes%2C+T">T. Buanes</a>, <a href="/search/physics?searchtype=author&query=Eigen%2C+G">G. Eigen</a>, <a href="/search/physics?searchtype=author&query=Mikami%2C+Y">Y. Mikami</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+O">O. Miller</a>, <a href="/search/physics?searchtype=author&query=Watson%2C+N+K">N. K. Watson</a>, <a href="/search/physics?searchtype=author&query=Wilson%2C+J+A">J. A. Wilson</a>, <a href="/search/physics?searchtype=author&query=Goto%2C+T">T. Goto</a>, <a href="/search/physics?searchtype=author&query=Mavromanolakis%2C+G">G. Mavromanolakis</a>, <a href="/search/physics?searchtype=author&query=Thomson%2C+M+A">M. A. Thomson</a>, <a href="/search/physics?searchtype=author&query=Ward%2C+D+R">D. R. Ward</a>, <a href="/search/physics?searchtype=author&query=Yan%2C+W">W. Yan</a>, <a href="/search/physics?searchtype=author&query=Benchekroun%2C+D">D. Benchekroun</a>, <a href="/search/physics?searchtype=author&query=Hoummada%2C+A">A. Hoummada</a> , et al. (205 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1003.2662v1-abstract-short" style="display: inline;"> An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.2662v1-abstract-full').style.display = 'inline'; document.getElementById('1003.2662v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1003.2662v1-abstract-full" style="display: none;"> An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1003.2662v1-abstract-full').style.display = 'none'; document.getElementById('1003.2662v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 32 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY 10-032 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 5 (2010) P05004 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0605079">arXiv:physics/0605079</a> <span> [<a href="https://arxiv.org/pdf/physics/0605079">pdf</a>, <a href="https://arxiv.org/ps/physics/0605079">ps</a>, <a href="https://arxiv.org/format/physics/0605079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.chaos.2006.04.020">10.1016/j.chaos.2006.04.020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum mechanism of Biological Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Younghun Kwon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0605079v1-abstract-short" style="display: inline;"> We wish to suggest an algorithm for biological search including DNA search. Our argument supposes that biological search be performed by quantum search.If we assume this, we can naturally answer the following long lasting puzzles such that "Why does DNA use the helix structure?" and "How can the evolution in biological system occur?". </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0605079v1-abstract-full" style="display: none;"> We wish to suggest an algorithm for biological search including DNA search. Our argument supposes that biological search be performed by quantum search.If we assume this, we can naturally answer the following long lasting puzzles such that "Why does DNA use the helix structure?" and "How can the evolution in biological system occur?". <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0605079v1-abstract-full').style.display = 'none'; document.getElementById('physics/0605079v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2006. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0508152">arXiv:physics/0508152</a> <span> [<a href="https://arxiv.org/pdf/physics/0508152">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.optcom.2005.08.048">10.1016/j.optcom.2005.08.048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep level emission of ZnO nanoparticles deposited inside UV opal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abrarov%2C+S+M">S. M. Abrarov</a>, <a href="/search/physics?searchtype=author&query=Yuldashev%2C+S+U">Sh. U. Yuldashev</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+T+W">T. W. Kim</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y+H">Y. H. Kwon</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+T+W">T. W. Kang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0508152v1-abstract-short" style="display: inline;"> The temperature-dependent photoluminescence (PL) spectra of zinc oxide (ZnO) nanocrystals deposited inside the ultraviolet (UV) opal were studied. ZnO was grown in the voids between FCC packed silicon dioxide spheres using spray pyrolysis under ultrasonic vibration in the solution containing a zinc nitrate precursor. The ZnO nanoparticles inside opal matrix with UV photonic band-gap exhibit supp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0508152v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0508152v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0508152v1-abstract-full" style="display: none;"> The temperature-dependent photoluminescence (PL) spectra of zinc oxide (ZnO) nanocrystals deposited inside the ultraviolet (UV) opal were studied. ZnO was grown in the voids between FCC packed silicon dioxide spheres using spray pyrolysis under ultrasonic vibration in the solution containing a zinc nitrate precursor. The ZnO nanoparticles inside opal matrix with UV photonic band-gap exhibit suppression of the excitonic emission and enhancement of the deep level emission. Suppression of the excitonic lines is due to the inhibition of spontaneous emission, while enhancement and broadening of the DL emission in the green spectral region is due to Purcell effect. The infiltration of ZnO inside the photonic crystal may be a useful technique to increase its emission efficiency in the selected spectral region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0508152v1-abstract-full').style.display = 'none'; document.getElementById('physics/0508152v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Opt. Commun. 259 (1) (2006) 378-384 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0312335">arXiv:cond-mat/0312335</a> <span> [<a href="https://arxiv.org/pdf/cond-mat/0312335">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0312335">ps</a>, <a href="https://arxiv.org/format/cond-mat/0312335">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Condensed Matter">cond-mat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1023/B:JOLT.0000012566.13979.3a">10.1023/B:JOLT.0000012566.13979.3a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nanoscale Quantum Solvation of para-H$_2$ around the Linear OCS Molecule inside $^4$He Droplets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yongkyung Kwon</a>, <a href="/search/physics?searchtype=author&query=Whaley%2C+K+B">K. Birgitta Whaley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0312335v1-abstract-short" style="display: inline;"> We present a microscopic analysis of the quantum solvation structures of para-H$_2$ around the OCS molecule when embedded in low temperature $^4$He droplets. The structures of clusters containing M=5 and 6 para-H$_2$ molecules are compared with corresponding structures for M=1 (OCS-H$_2$ complex) and M=17 (a full solvation shell), as well as with the clusters in the absence of helium. We find th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0312335v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0312335v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0312335v1-abstract-full" style="display: none;"> We present a microscopic analysis of the quantum solvation structures of para-H$_2$ around the OCS molecule when embedded in low temperature $^4$He droplets. The structures of clusters containing M=5 and 6 para-H$_2$ molecules are compared with corresponding structures for M=1 (OCS-H$_2$ complex) and M=17 (a full solvation shell), as well as with the clusters in the absence of helium. We find that the helium has negligible effect on the structures for the small and large OCS(H$_2$)$_M$ clusters, but that it modifies the cluster structure for M=6. We discuss implications of these results for the onset of superfluidity in the solvating hydrogen shell and for spectroscopic measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0312335v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0312335v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, accepted for publication in J. Low Temp. Phys</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0204089">arXiv:physics/0204089</a> <span> [<a href="https://arxiv.org/pdf/physics/0204089">pdf</a>, <a href="https://arxiv.org/ps/physics/0204089">ps</a>, <a href="https://arxiv.org/format/physics/0204089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/9789812778475_0003">10.1142/9789812778475_0003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The finite-temperature Monte Carlo method and its application to superfluid helium clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+P">Patrick Huang</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Yongkyung Kwon</a>, <a href="/search/physics?searchtype=author&query=Whaley%2C+K+B">K. Birgitta Whaley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0204089v1-abstract-short" style="display: inline;"> We review the use of the path integral Monte Carlo (PIMC) methodology to the study of finite-size quantum clusters, with particular emphasis on recent applications to pure and impurity-doped He clusters. We describe the principles of PIMC, the use of the multilevel Metropolis method for sampling particle permutations, and the methods used to accurately incorporate anisotropic molecule-helium int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0204089v1-abstract-full').style.display = 'inline'; document.getElementById('physics/0204089v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0204089v1-abstract-full" style="display: none;"> We review the use of the path integral Monte Carlo (PIMC) methodology to the study of finite-size quantum clusters, with particular emphasis on recent applications to pure and impurity-doped He clusters. We describe the principles of PIMC, the use of the multilevel Metropolis method for sampling particle permutations, and the methods used to accurately incorporate anisotropic molecule-helium interactions into the path integral scheme. Applications to spectroscopic studies of embedded atoms and molecules are summarized, with discussion of the new concepts of local and nanoscale superfluidity that have been generated by recent PIMC studies of the impurity-doped He clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0204089v1-abstract-full').style.display = 'none'; document.getElementById('physics/0204089v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2002; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2002. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">P. Huang, Y. Kwon, and K. B. Whaley, in "Quantum Fluids in Confinement", Vol. 4 of "Advances in Quantum Many-Body Theories", edited by E. Krotscheck and J. Navarro (World Scientific, Singapore, 2002), in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/9702008">arXiv:physics/9702008</a> <span> [<a href="https://arxiv.org/pdf/physics/9702008">pdf</a>, <a href="https://arxiv.org/ps/physics/9702008">ps</a>, <a href="https://arxiv.org/format/physics/9702008">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.78.2916">10.1103/PhysRevLett.78.2916 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-pion correlations in Au+Au collisions at 10.8 GeV/c per nucleon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=E877+Collaboration"> E877 Collaboration</a>, <a href="/search/physics?searchtype=author&query=Barrette%2C+J">J. Barrette</a>, <a href="/search/physics?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&query=Bennett%2C+S">S. Bennett</a>, <a href="/search/physics?searchtype=author&query=Bersch%2C+R">R. Bersch</a>, <a href="/search/physics?searchtype=author&query=Braun-Munzinger%2C+P">P. Braun-Munzinger</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+W+C">W. C. Chang</a>, <a href="/search/physics?searchtype=author&query=Cleland%2C+W+E">W. E. Cleland</a>, <a href="/search/physics?searchtype=author&query=Cole%2C+J+D">J. D. Cole</a>, <a href="/search/physics?searchtype=author&query=Cormier%2C+T+M">T. M. Cormier</a>, <a href="/search/physics?searchtype=author&query=David%2C+G">G. David</a>, <a href="/search/physics?searchtype=author&query=Dee%2C+J">J. Dee</a>, <a href="/search/physics?searchtype=author&query=Dietzsch%2C+O">O. Dietzsch</a>, <a href="/search/physics?searchtype=author&query=Drigert%2C+M+W">M. W. Drigert</a>, <a href="/search/physics?searchtype=author&query=Gilbert%2C+S">S. Gilbert</a>, <a href="/search/physics?searchtype=author&query=Hall%2C+J+R">J. R. Hall</a>, <a href="/search/physics?searchtype=author&query=Hemmick%2C+T+K">T. K. Hemmick</a>, <a href="/search/physics?searchtype=author&query=Herrmann%2C+N">N. Herrmann</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+B">B. Hong</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+C+L">C. L. Jiang</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+S+C">S. C. Johnson</a>, <a href="/search/physics?searchtype=author&query=Kwon%2C+Y">Y. Kwon</a>, <a href="/search/physics?searchtype=author&query=Lacasse%2C+R">R. Lacasse</a>, <a href="/search/physics?searchtype=author&query=Lukaszew%2C+A">A. Lukaszew</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Q. Li</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/9702008v1-abstract-short" style="display: inline;"> Two-particle correlation functions for positive and negative pions have been measured in Au+Au collisions at 10.8~GeV/c per nucleon. The data were analyzed using one- and three-dimensional correlation functions. From the results of the three-dimensional fit the phase space density of pions was calculated. It is consistent with local thermal equilibrium. </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/9702008v1-abstract-full" style="display: none;"> Two-particle correlation functions for positive and negative pions have been measured in Au+Au collisions at 10.8~GeV/c per nucleon. The data were analyzed using one- and three-dimensional correlation functions. From the results of the three-dimensional fit the phase space density of pions was calculated. It is consistent with local thermal equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/9702008v1-abstract-full').style.display = 'none'; document.getElementById('physics/9702008v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 1997; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 1997. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages RevTeX (including 3 Figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.Lett.78:2916-2919,1997 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>