CINXE.COM
Search results for: thermal imaging
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermal imaging</title> <meta name="description" content="Search results for: thermal imaging"> <meta name="keywords" content="thermal imaging"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermal imaging" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermal imaging"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4757</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermal imaging</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4757</span> Evaluate the Changes in Stress Level Using Facial Thermal Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Derakhshan">Amin Derakhshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mikaili"> Mohammad Mikaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Khalilzadeh"> Mohammad Ali Khalilzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mohammadian"> Amin Mohammadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a stress recognition system from multi-modal bio-potential signals. For stress recognition, Support Vector Machines (SVM) and LDA are applied to design the stress classifiers and its characteristics are investigated. Using gathered data under psychological polygraph experiments, the classifiers are trained and tested. The pattern recognition method classifies stressful from non-stressful subjects based on labels which come from polygraph data. The successful classification rate is 96% for 12 subjects. It means that facial thermal imaging due to its non-contact advantage could be a remarkable alternative for psycho-physiological methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stress" title="stress">stress</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=face" title=" face"> face</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=polygraph" title=" polygraph"> polygraph</a> </p> <a href="https://publications.waset.org/abstracts/8628/evaluate-the-changes-in-stress-level-using-facial-thermal-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4756</span> Electro-Thermal Imaging of Breast Phantom: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Feza%20Carlak">H. Feza Carlak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Gencer"> N. G. Gencer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20diagnostic%20imaging" title="medical diagnostic imaging">medical diagnostic imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20phantom" title=" breast phantom"> breast phantom</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20thermography" title=" active thermography"> active thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20detection" title=" breast cancer detection"> breast cancer detection</a> </p> <a href="https://publications.waset.org/abstracts/7912/electro-thermal-imaging-of-breast-phantom-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4755</span> Analyses of Defects in Flexible Silicon Photovoltaic Modules via Thermal Imaging and Electroluminescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Maleczek">S. Maleczek</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Drabczyk"> K. Drabczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bogdan"> L. Bogdan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Iwan"> A. Iwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that for industrial applications using solar panel constructed from silicon solar cells require high-efficiency performance. One of the main problems in solar panels is different mechanical and structural defects, causing the decrease of generated power. To analyse defects in solar cells, various techniques are used. However, the thermal imaging is fast and simple method for locating defects. The main goal of this work was to analyze defects in constructed flexible silicon photovoltaic modules via thermal imaging and electroluminescence method. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. Thermal behavior was observed using thermographic camera (VIGOcam v50, VIGO System S.A, Poland) using a DC conventional source. Electroluminescence was observed by Steinbeis Center Photovoltaics (Stuttgart, Germany) equipped with a camera, in which there is a Si-CCD, 16 Mpix detector Kodak KAF-16803type. The camera has a typical spectral response in the range 350 - 1100 nm with a maximum QE of 60 % at 550 nm. In our work commercial silicon solar cells with the size 156 × 156 mm were cut for nine parts (called single solar cells) and used to create photovoltaic modules with the size of 160 × 70 cm (containing about 80 single solar cells). Flexible silicon photovoltaic modules on polyamides or polyester fabric were constructed and investigated taking into consideration anomalies on the surface of modules. Thermal imaging provided evidence of visible voltage-activated conduction. In electro-luminescence images, two regions are noticeable: darker, where solar cell is inactive and brighter corresponding with correctly working photovoltaic cells. The electroluminescence method is non-destructive and gives greater resolution of images thereby allowing a more precise evaluation of microcracks of solar cell after lamination process. Our study showed good correlations between defects observed by thermal imaging and electroluminescence. Finally, we can conclude that the thermographic examination of large scale photovoltaic modules allows us the fast, simple and inexpensive localization of defects at the single solar cells and modules. Moreover, thermographic camera was also useful to detection electrical interconnection between single solar cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-luminescence" title="electro-luminescence">electro-luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20devices" title=" flexible devices"> flexible devices</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20solar%20cells" title=" silicon solar cells"> silicon solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a> </p> <a href="https://publications.waset.org/abstracts/79736/analyses-of-defects-in-flexible-silicon-photovoltaic-modules-via-thermal-imaging-and-electroluminescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4754</span> Imaging of Peritoneal Malignancies - A Pictorial Essay and Proposed Imaging Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Hennedige">T. Hennedige</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Imaging plays a crucial role in the evaluation of the extent of peritoneal disease, which in turn determines prognosis and treatment choice. Despite advances in imaging technology, assessment of the peritoneum remains relatively challenging secondary to its large surface area, complex anatomy, and variety of imaging modalities available. This poster will review the mechanisms of spread, namely intraperitoneal dissemination, directly along peritoneal pathways, haematogeneous dissemination, and lymphatic spread. This will be followed by a side-by-side pictorial comparison of the detection of peritoneal deposits using CT, MRI, and PET/CT, depicting the advantages and shortcomings of each modality. An imaging selection framework will then be presented, which may aid the clinician in selecting the appropriate imaging modality for the malignancy in question. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging" title="imaging">imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=CT" title=" CT"> CT</a>, <a href="https://publications.waset.org/abstracts/search?q=malignancy" title=" malignancy"> malignancy</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=peritoneum" title=" peritoneum"> peritoneum</a>, <a href="https://publications.waset.org/abstracts/search?q=PET" title=" PET"> PET</a> </p> <a href="https://publications.waset.org/abstracts/150443/imaging-of-peritoneal-malignancies-a-pictorial-essay-and-proposed-imaging-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4753</span> Preserved Relative Differences between Regions of Different Thermal Scans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Majeed">Tahir Majeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Handschuh"> Michael Handschuh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ren%C3%A9%20Meier"> René Meier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rheumatoid arthritis patients have swelling and pain at the joints of the hand. The regions where the patient feels pain also show increased body temperature. Thermal cameras can be used to detect the rise in temperature of the affected regions. To monitor the disease progression of rheumatoid arthritis patients, they must visit the clinic regularly for scanning and examination. After scanning and evaluation, the dosage of the medicine is regulated accordingly. To monitor the disease progression over time, the correlation between the images between different visits must be established. It has been observed that by using low-cost thermal cameras, the thermal measurements do not remain the same over time, even within a single scanning. In some situations, temperatures can vary as much as 2°C within the same scanning sequence. In this paper, it has been shown that although the absolute temperature varies over time, the relative difference between the different regions remains similar. Results have been computed over four scanning sequences and are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=relative%20thermal%20difference" title="relative thermal difference">relative thermal difference</a>, <a href="https://publications.waset.org/abstracts/search?q=rheumatoid%20arthritis" title=" rheumatoid arthritis"> rheumatoid arthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20sensors" title=" thermal sensors"> thermal sensors</a> </p> <a href="https://publications.waset.org/abstracts/138729/preserved-relative-differences-between-regions-of-different-thermal-scans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4752</span> Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroki%20Takiguchi">Hiroki Takiguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masahiro%20Furuya"> Masahiro Furuya</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Arai"> Takahiro Arai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20spectroscopic%20imaging" title="near-infrared spectroscopic imaging">near-infrared spectroscopic imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20fluid%20channel" title=" micro fluid channel"> micro fluid channel</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration%20distribution" title=" concentration distribution"> concentration distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20phenomenon" title=" diffusion phenomenon"> diffusion phenomenon</a> </p> <a href="https://publications.waset.org/abstracts/82076/real-time-observation-of-concentration-distribution-for-mix-liquids-including-water-in-micro-fluid-channel-with-near-infrared-spectroscopic-imaging-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4751</span> Sizing and Thermal Analysis of Mechanically Pumped Fluid Loop Thermal Control Technique for Small Satellite Scientific Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanmugasundaram%20Selvadurai">Shanmugasundaram Selvadurai</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Chandran"> Amal Chandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Small satellites have become an alternative low-cost solution for several missions to accomplish specific missions such as Earth imaging, Technology demonstration, Education, and other commercial purposes. Small satellite missions focusing on Infrared imaging applications require lower temperature for scientific instruments and such low temperature can be achieved only using external cryocoolers but the disadvantage is that they generate a large amount of waste heat. Existing passive thermal control techniques are not capable to handle such large thermal loads and hence one of the traditional active Thermal Control System (TCS) is studied for a small satellite configuration. This work aims to downscale the existing Mechanically Pumped Fluid Loop (MPFL) TCS to a 27U CubeSat platform for an imaginary scientific instrument. The temperature-sensitive detector in the instrument considered to be maintained between 130K and 150K to reduce dark current noise and increase the data quality. A Single-Phase fluid based MPFL is chosen for this system-level study and this TCS consists of a microfluid pump, a micro-cryocooler, a fluid accumulator, external heaters, flow regulators, and sensors. This work also explains the thermal control system architecture with a conceptual design, arrangement of all the components, and thermal analysis for different low orbit conditions. Sizing and extensive trade studies for the components are conducted and the results have shown that the Single-phase MPFL system is able to handle the given thermal loads and maintain the satellite’s interface temperature within the desired limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20thermal%20control%20system" title="active thermal control system">active thermal control system</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20thermal" title=" satellite thermal"> satellite thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanically%20pumped%20fluid%20loop%20system" title=" mechanically pumped fluid loop system"> mechanically pumped fluid loop system</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenics" title=" cryogenics"> cryogenics</a>, <a href="https://publications.waset.org/abstracts/search?q=cryocooler" title=" cryocooler"> cryocooler</a> </p> <a href="https://publications.waset.org/abstracts/138359/sizing-and-thermal-analysis-of-mechanically-pumped-fluid-loop-thermal-control-technique-for-small-satellite-scientific-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4750</span> Infrared Thermography as an Informative Tool in Energy Audit and Software Modelling of Historic Buildings: A Case Study of the Sheffield Cathedral</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ademuyiwa%20Agbonyin">Ademuyiwa Agbonyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Stamatis%20Zoras"> Stamatis Zoras</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zandi"> Mohammad Zandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the extent to which building energy modelling can be informed based on preliminary information provided by infrared thermography using a thermal imaging camera in a walkthrough audit. The case-study building is the Sheffield Cathedral, built in the early 1400s. Based on an informative qualitative report generated from the thermal images taken at the site, the regions showing significant heat loss are input into a computer model of the cathedral within the integrated environmental solution (IES) virtual environment software which performs an energy simulation to determine quantitative heat losses through the building envelope. Building data such as material thermal properties and building plans are provided by the architects, Thomas Ford and Partners Ltd. The results of the modelling revealed the portions of the building with the highest heat loss and these aligned with those suggested by the thermal camera. Retrofit options for the building are also considered, however, may not see implementation due to a desire to conserve the architectural heritage of the building. Results show that thermal imaging in a walk-through audit serves as a useful guide for the energy modelling process. Hand calculations were also performed to serve as a 'control' to estimate losses, providing a second set of data points of comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=historic%20buildings" title="historic buildings">historic buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20retrofit" title=" energy retrofit"> energy retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20modelling" title=" software modelling"> software modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20modelling" title=" energy modelling"> energy modelling</a> </p> <a href="https://publications.waset.org/abstracts/103567/infrared-thermography-as-an-informative-tool-in-energy-audit-and-software-modelling-of-historic-buildings-a-case-study-of-the-sheffield-cathedral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4749</span> Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahrzad%20Zolfagharnassab">Shahrzad Zolfagharnassab</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rashid%20%20Mohamed%20Shariff"> Abdul Rashid Mohamed Shariff</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ehsani"> Reza Ehsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hawa%20Ze%20Jaffar"> Hawa Ze Jaffar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishak%20Aris"> Ishak Aris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity%20classification" title=" maturity classification"> maturity classification</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20FFB" title=" oil palm FFB"> oil palm FFB</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a> </p> <a href="https://publications.waset.org/abstracts/60418/maturity-classification-of-oil-palm-fresh-fruit-bunches-using-thermal-imaging-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60418.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4748</span> Application of an Artificial Neural Network to Determine the Risk of Malignant Tumors from the Images Resulting from the Asymmetry of Internal and External Thermograms of the Mammary Glands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amdy%20Moustapha%20Drame">Amdy Moustapha Drame</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilya%20V.%20Germashev"> Ilya V. Germashev</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Markushevskaya"> E. A. Markushevskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the main problems of medicine is breast cancer, from which a significant number of women around the world are constantly dying. Therefore, the detection of malignant breast tumors is an urgent task. For many years, various technologies for detecting these tumors have been used, in particular, in thermal imaging in order to determine different levels of breast cancer development. These periodic screening methods are a diagnostic tool for women and may have become an alternative to older methods such as mammography. This article proposes a model for the identification of malignant neoplasms of the mammary glands by the asymmetry of internal and external thermal imaging fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetry" title="asymmetry">asymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=tumors" title=" tumors"> tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogram" title=" thermogram"> thermogram</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20transformation" title=" convolutional transformation"> convolutional transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/185497/application-of-an-artificial-neural-network-to-determine-the-risk-of-malignant-tumors-from-the-images-resulting-from-the-asymmetry-of-internal-and-external-thermograms-of-the-mammary-glands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4747</span> Nano-Particle of π-Conjugated Polymer for Near-Infrared Bio-Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Aoki">Hiroyuki Aoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular imaging has attracted much attention recently, which visualizes biological molecules, cells, tissue, and so on. Among various in vivo imaging techniques, the fluorescence imaging method has been widely employed as a useful modality for small animals in pre-clinical researches. However, the higher signal intensity is needed for highly sensitive in vivo imaging. The objective of the current study is the development of a fluorescent imaging agent with high brightness for the tumor imaging of a mouse. The strategy to enhance the fluorescence signal of a bio-imaging agent is the increase of the absorption of the excitation light and the fluorescence conversion efficiency. We developed a nano-particle fluorescence imaging agent consisting of a π-conjugated polymer emitting a fluorescence signal in a near infrared region. A large absorption coefficient and high emission intensity at a near infrared optical window for biological tissue enabled highly sensitive in vivo imaging with a tumor-targeting ability by an EPR (enhanced permeation and retention) effect. The signal intensity from the π-conjugated fluorescence imaging agent is larger by two orders of magnitude compared to a quantum dot, which has been known as the brightest imaging agent. The π-conjugated polymer nano-particle would be a promising candidate in the in vivo imaging of small animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title="fluorescence">fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugated%20polymer" title=" conjugated polymer"> conjugated polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20imaging" title=" in vivo imaging"> in vivo imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-particle" title=" nano-particle"> nano-particle</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared" title=" near-infrared"> near-infrared</a> </p> <a href="https://publications.waset.org/abstracts/97998/nano-particle-of-p-conjugated-polymer-for-near-infrared-bio-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4746</span> Implementation of a Low-Cost Driver Drowsiness Evaluation System Using a Thermal Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Moazen">Isa Moazen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nahvi"> Ali Nahvi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Driver drowsiness is a major cause of vehicle accidents, and facial images are highly valuable to detect drowsiness. In this paper, we perform our research via a thermal camera to record drivers' facial images on a driving simulator. A robust real-time algorithm extracts the features using horizontal and vertical integration projection, contours, contour orientations, and cropping tools. The features are included four target areas on the cheeks and forehead. Qt compiler and OpenCV are used with two cameras with different resolutions. A high-resolution thermal camera is used for fifteen subjects, and a low-resolution one is used for a person. The results are investigated by four temperature plots and evaluated by observer rating of drowsiness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20driver%20assistance%20systems" title="advanced driver assistance systems">advanced driver assistance systems</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20imaging" title=" thermal imaging"> thermal imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=driver%20drowsiness%20detection" title=" driver drowsiness detection"> driver drowsiness detection</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a> </p> <a href="https://publications.waset.org/abstracts/131366/implementation-of-a-low-cost-driver-drowsiness-evaluation-system-using-a-thermal-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4745</span> Nanoparticles in Diagnosis and Treatment of Cancer, and Medical Imaging Techniques Using Nano-Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rao%20Muhammad%20Afzal%20Khan">Rao Muhammad Afzal Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano technology is emerging as a useful technology in nearly all areas of Science and Technology. Its role in medical imaging is attracting the researchers towards existing and new imaging modalities and techniques. This presentation gives an overview of the development of the work done throughout the world. Furthermore, it lays an idea into the scope of the future use of this technology for diagnosing different diseases. A comparative analysis has also been discussed with an emphasis to detect diseases, in general, and cancer, in particular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20imaging" title="medical imaging">medical imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20detection" title=" cancer detection"> cancer detection</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-imaging" title=" nano-imaging"> nano-imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a> </p> <a href="https://publications.waset.org/abstracts/40616/nanoparticles-in-diagnosis-and-treatment-of-cancer-and-medical-imaging-techniques-using-nano-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4744</span> Influence of Optical Fluence Distribution on Photoacoustic Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20K.%20Metwally">Mohamed K. Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20H.%20El-Gohary"> Sherif H. El-Gohary</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Min%20Byun"> Kyung Min Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Moo%20Han"> Seung Moo Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Yeol%20Lee"> Soo Yeol Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Hyoung%20Cho"> Min Hyoung Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Gon%20Khang"> Gon Khang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinsung%20Cho"> Jinsung Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Seong%20Kim"> Tae-Seong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=fluence%20distribution" title=" fluence distribution"> fluence distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title=" Monte Carlo method"> Monte Carlo method</a>, <a href="https://publications.waset.org/abstracts/search?q=photoacoustic%20imaging" title=" photoacoustic imaging"> photoacoustic imaging</a> </p> <a href="https://publications.waset.org/abstracts/12607/influence-of-optical-fluence-distribution-on-photoacoustic-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4743</span> An Insight into Early Stage Detection of Malignant Tumor by Microwave Imaging </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Hassan%20Khalil">Muhammad Hassan Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Jiadong"> Xu Jiadong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detection of malignant tumor inside the breast of women is a challenging field for the researchers. MWI (Microwave imaging) for breast cancer diagnosis has been of interest for last two decades, newly it suggested for finding cancerous tissues of women breast. A simple and basic idea of the mathematical modeling is used throughout this paper for imaging of malignant tumor. In this paper, the authors explained inverse scattering method in the microwave imaging and also present some simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20detection" title="breast cancer detection">breast cancer detection</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20imaging" title=" microwave imaging"> microwave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=tomography" title=" tomography"> tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a> </p> <a href="https://publications.waset.org/abstracts/2718/an-insight-into-early-stage-detection-of-malignant-tumor-by-microwave-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4742</span> Monocular Depth Estimation Benchmarking with Thermal Dataset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akyar">Ali Akyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Serdar%20Gedik"> Osman Serdar Gedik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monocular%20depth%20estimation" title="monocular depth estimation">monocular depth estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20dataset" title=" thermal dataset"> thermal dataset</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmarking" title=" benchmarking"> benchmarking</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20transformers" title=" vision transformers"> vision transformers</a> </p> <a href="https://publications.waset.org/abstracts/186398/monocular-depth-estimation-benchmarking-with-thermal-dataset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4741</span> Framework for Performance Measure of Super Resolution Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Hemant%20Patil">Varsha Hemant Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20A.%20Bhavsar"> Swati A. Bhavsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolee%20H.%20Patil"> Abolee H. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image quality assessment plays an important role in image evaluation. This paper aims to present an investigation of classic techniques in use for image quality assessment, especially for super-resolution imaging. Researchers have contributed a lot towards the development of super-resolution imaging techniques. However, not much attention is paid to the development of metrics for testing the performance of developed techniques. In this paper, the study report of existing image quality measures is given. The paper classifies reviewed approaches according to functionality and suitability for super-resolution imaging. Probable modifications and improvements of these to suit super-resolution imaging are presented. The prime goal of the paper is to provide a comprehensive reference source for researchers working towards super-resolution imaging and suggest a better framework for measuring the performance of super-resolution imaging techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpolation" title="interpolation">interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=MSE" title=" MSE"> MSE</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=SSIM" title=" SSIM"> SSIM</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20resolution" title=" super resolution"> super resolution</a> </p> <a href="https://publications.waset.org/abstracts/159819/framework-for-performance-measure-of-super-resolution-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4740</span> Design, Shielding and Infrastructure of an X-Ray Diagnostic Imaging Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Diaz">D. Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Guevara"> C. Guevara</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rey"> P. Rey </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contains information about designing, shielding and protocols building in order to avoid ionizing radiation in X-Rays imaging areas as generated by X-Ray, mammography equipment, computed tomography equipment and digital subtraction angiography equipment, according to global standards. Furthermore, tools and elements about infrastructure to improve protection over patients, physicians and staff involved in a diagnostic imaging area are presented. In addition, technical parameters about each machine and the architecture designs and maps are described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=imaging%20area" title="imaging area">imaging area</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray" title=" X-ray"> X-ray</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding" title=" shielding"> shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=dose" title=" dose"> dose</a> </p> <a href="https://publications.waset.org/abstracts/4161/design-shielding-and-infrastructure-of-an-x-ray-diagnostic-imaging-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4739</span> Synthesis and Surface Engineering of Lanthanide Nanoparticles for NIR Luminescence Imaging and Photodynamic Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syue-Liang%20Lin">Syue-Liang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Allen%20Chang"> C. Allen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luminescence imaging is an important technique used in biomedical research and clinical diagnostic applications in recent years. Concurrently, the development of NIR luminescence probes / imaging contrast agents has helped the understanding of the structural and functional properties of cells and animals. Photodynamic therapy (PDT) is used clinically to treat a wide range of medical conditions, but the therapeutic efficacy of general PDT for deeper tumor was limited by the penetration of excitation source. The tumor targeting biomedical nanomaterials UCNP@PS (upconversion nanoparticle conjugated with photosensitizer) for photodynamic therapy and near-infrared imaging of cancer will be developed in our study. Synthesis and characterization of biomedical nanomaterials were completed in this studies. The spectrum of UCNP was characterized by photoluminescence spectroscopy and the morphology was characterized by Transmission Electron Microscope (TEM). TEM and XRD analyses indicated that these nanoparticles are about 20~50 nm with hexagonal phase. NaYF₄:Ln³⁺ (Ln= Yb, Nd, Er) upconversion nanoparticles (UCNPs) with core / shell structure, synthesized by thermal decomposition method in 300°C, have the ability to emit visible light (upconversion: 540 nm, 660 nm) and near-infrared with longer wavelength (downconversion: NIR: 980 nm, 1525 nm) by absorbing 800 nm NIR laser. The information obtained from these studies would be very useful for applications of these nanomaterials for bio-luminescence imaging and photodynamic therapy of deep tumor tissue in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Near%20Infrared%20%28NIR%29" title="Near Infrared (NIR)">Near Infrared (NIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=lanthanide" title=" lanthanide"> lanthanide</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell%20structure" title=" core-shell structure"> core-shell structure</a>, <a href="https://publications.waset.org/abstracts/search?q=upconversion" title=" upconversion"> upconversion</a>, <a href="https://publications.waset.org/abstracts/search?q=theranostics" title=" theranostics"> theranostics</a> </p> <a href="https://publications.waset.org/abstracts/71701/synthesis-and-surface-engineering-of-lanthanide-nanoparticles-for-nir-luminescence-imaging-and-photodynamic-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4738</span> Application of MRI in Radioembolization Imaging and Dosimetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salehi%20Zahabi%20Saleh">Salehi Zahabi Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajabi%20Hosaien"> Rajabi Hosaien</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasaneh%20Samira"> Rasaneh Samira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Yttrium-90 (90Y) radioembolisation(RE) is increasingly used for the treatment of patients with unresectable primary or metastatic liver tumours. Image-based approaches to assess microsphere distribution after RE have gained interest but are mostly hampered by the limited imaging possibilities of the Isotope 90Y. Quantitative 90Y-SPECT imaging has limited spatial resolution because it is based on 90Y Bremsstrahlung whereas 90Y-PET has better spatial resolution but low sensitivity. As a consequence, new alternative methods of visualizing the microspheres have been investigated, such as MR imaging of iron-labelled microspheres. It was also shown that MRI combines high sensitivity with high spatial and temporal resolution and with superior soft tissue contrast and thus can be used to cover a broad range of clinically interesting imaging parameters.The aim of the study in this article was to investigate the capability of MRI to measure the intrahepatic microsphere distribution in order to quantify the absorbed radiation dose in RE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radioembolisation" title="radioembolisation">radioembolisation</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title=" dosimetry"> dosimetry</a> </p> <a href="https://publications.waset.org/abstracts/45127/application-of-mri-in-radioembolization-imaging-and-dosimetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4737</span> Development of Polymer Nano-Particles as in vivo Imaging Agents for Photo-Acoustic Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Aoki">Hiroyuki Aoki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular imaging has attracted much attention to visualize a tumor site in a living body on the basis of biological functions. A fluorescence in vivo imaging technique has been widely employed as a useful modality for small animals in pre-clinical researches. However, it is difficult to observe a site deep inside a body because of a short penetration depth of light. A photo-acoustic effect is a generation of a sound wave following light absorption. Because the sound wave is less susceptible to the absorption of tissues, an in vivo imaging method based on the photoacoustic effect can observe deep inside a living body. The current study developed an in vivo imaging agent for a photoacoustic imaging method. Nano-particles of poly(lactic acid) including indocyanine dye were developed as bio-compatible imaging agent with strong light absorption. A tumor site inside a mouse body was successfully observed in a photo-acoustic image. A photo-acoustic imaging with polymer nano-particle agent would be a powerful method to visualize a tumor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-particle" title="nano-particle">nano-particle</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-acoustic%20effect" title=" photo-acoustic effect"> photo-acoustic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vivo%20imaging" title=" in vivo imaging"> in vivo imaging</a> </p> <a href="https://publications.waset.org/abstracts/101895/development-of-polymer-nano-particles-as-in-vivo-imaging-agents-for-photo-acoustic-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4736</span> Two Major Methods to Control Thermal Resistance of Focus Ring for Process Uniformity Enhance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Uk%20Park">Jin-Uk Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the semiconductor industry is rapidly demanding complicated structures and mass production. From the point of view of mass production, the ETCH industry is concentrating on maintaining the ER (Etch rate) of the wafer edge constant regardless of changes over time. In this study, two major thermal factors affecting process were identified and controlled. First, the filler of the thermal pad was studied. Second, the significant difference of handling the thermal pad during PM was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=etcher" title="etcher">etcher</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20pad" title=" thermal pad"> thermal pad</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20cleaning" title=" wet cleaning"> wet cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/143443/two-major-methods-to-control-thermal-resistance-of-focus-ring-for-process-uniformity-enhance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4735</span> Using the Transient Plane Source Method for Measuring Thermal Parameters of Electroceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Krupa">Peter Krupa</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetoz%C3%A1r%20Malinari%C4%8D"> Svetozár Malinarič</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transient plane source method has been used to measure the thermal diffusivity and thermal conductivity of a compact isostatic electro-ceramics at room temperature. The samples were fired at temperatures from 100 up to 1320 degrees Celsius in steps of 50. Bulk density and specific heat capacity were also measured with their corresponding standard uncertainties. The results were compared with further thermal analysis (dilatometry and thermogravimetry). Structural processes during firing were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TPS%20method" title="TPS method">TPS method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20diffusivity" title=" thermal diffusivity"> thermal diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-ceramics" title=" electro-ceramics"> electro-ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=firing" title=" firing"> firing</a> </p> <a href="https://publications.waset.org/abstracts/8438/using-the-transient-plane-source-method-for-measuring-thermal-parameters-of-electroceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4734</span> Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Grabowski">Lukasz Grabowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Szlachetka"> Marcin Szlachetka</a>, <a href="https://publications.waset.org/abstracts/search?q=Tytus%20Tulwin"> Tytus Tulwin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft" title="aircraft">aircraft</a>, <a href="https://publications.waset.org/abstracts/search?q=piston%20engine" title=" piston engine"> piston engine</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a> </p> <a href="https://publications.waset.org/abstracts/106609/thermal-imaging-of-aircraft-piston-engine-in-laboratory-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4733</span> Post-Contrast Susceptibility Weighted Imaging vs. Post-Contrast T1 Weighted Imaging for Evaluation of Brain Lesions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujith%20Rajashekar%20Swamy">Sujith Rajashekar Swamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Meghana%20Rajashekara%20Swamy"> Meghana Rajashekara Swamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although T1-weighted gadolinium-enhanced imaging (T1-Gd) has its established clinical role in diagnosing brain lesions of infectious and metastatic origins, the use of post-contrast susceptibility-weighted imaging (SWI) has been understudied. This observational study aims to explore and compare the prominence of brain parenchymal lesions between T1-Gd and SWI-Gd images. A cross-sectional study design was utilized to analyze 58 patients with brain parenchymal lesions using T1-Gd and SWI-Gd scanning techniques. Our results indicated that SWI-Gd enhanced the conspicuity of metastatic as well as infectious brain lesions when compared to T1-Gd. Consequently, it can be used as an adjunct to T1-Gd for post-contrast imaging, thereby avoiding additional contrast administration. Improved conspicuity of brain lesions translates directly to enhanced patient outcomes, and hence SWI-Gd imaging proves useful to meet that endpoint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=susceptibility%20weighted" title="susceptibility weighted">susceptibility weighted</a>, <a href="https://publications.waset.org/abstracts/search?q=T1%20weighted" title=" T1 weighted"> T1 weighted</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20lesions" title=" brain lesions"> brain lesions</a>, <a href="https://publications.waset.org/abstracts/search?q=gadolinium%20contrast" title=" gadolinium contrast"> gadolinium contrast</a> </p> <a href="https://publications.waset.org/abstracts/160957/post-contrast-susceptibility-weighted-imaging-vs-post-contrast-t1-weighted-imaging-for-evaluation-of-brain-lesions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4732</span> Evaluation of Tumor Microenvironment Using Molecular Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakhrosadat%20Sajjadian">Fakhrosadat Sajjadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Ghasemi%20Shayan"> Ramin Ghasemi Shayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tumor microenvironment plays an fundamental part in tumor start, movement, metastasis, and treatment resistance. It varies from ordinary tissue in terms of its extracellular network, vascular and lymphatic arrange, as well as physiological conditions. The clinical application of atomic cancer imaging is regularly prevented by the tall commercialization costs of focused on imaging operators as well as the constrained clinical applications and little showcase measure of a few operators. . Since numerous cancer types share comparable characteristics of the tumor microenvironment, the capacity to target these biomarkers has the potential to supply clinically translatable atomic imaging advances for numerous types encompassing cancer and broad clinical applications. Noteworthy advance has been made in focusing on the tumor microenvironment for atomic cancer imaging. In this survey, we summarize the standards and methodologies of later progresses in atomic imaging of the tumor microenvironment, utilizing distinctive imaging modalities for early discovery and conclusion of cancer. To conclude, The tumor microenvironment (TME) encompassing tumor cells could be a profoundly energetic and heterogeneous composition of safe cells, fibroblasts, forerunner cells, endothelial cells, flagging atoms and extracellular network (ECM) components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular" title="molecular">molecular</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=TME" title=" TME"> TME</a>, <a href="https://publications.waset.org/abstracts/search?q=medicine" title=" medicine"> medicine</a> </p> <a href="https://publications.waset.org/abstracts/182733/evaluation-of-tumor-microenvironment-using-molecular-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4731</span> Advantages of Multispectral Imaging for Accurate Gas Temperature Profile Retrieval from Fire Combustion Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Philippe%20Gagnon">Jean-Philippe Gagnon</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Saute"> Benjamin Saute</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Boubanga-Tombet"> Stéphane Boubanga-Tombet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. However, it is well known that most combustion gases such as carbon dioxide (CO₂), water vapor (H₂O), and carbon monoxide (CO) selectively absorb/emit infrared radiation at discrete energies, i.e., over a very narrow spectral range. Therefore, temperature profiles of most combustion processes derived from conventional broadband imaging are inaccurate without prior knowledge or assumptions about the spectral emissivity properties of the combustion gases. Using spectral filters allows estimating these critical emissivity parameters in addition to providing selectivity regarding the chemical nature of the combustion gases. However, due to the turbulent nature of most flames, it is crucial that such information be obtained without sacrificing temporal resolution. For this reason, Telops has developed a time-resolved multispectral imaging system which combines a high-performance broadband camera synchronized with a rotating spectral filter wheel. In order to illustrate the benefits of using this system to characterize combustion experiments, measurements were carried out using a Telops MS-IR MW on a very simple combustion system: a wood fire. The temperature profiles calculated using the spectral information from the different channels were compared with corresponding temperature profiles obtained with conventional broadband imaging. The results illustrate the benefits of the Telops MS-IR cameras for the characterization of laminar and turbulent combustion systems at a high temporal resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrared" title="infrared">infrared</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral" title=" multispectral"> multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=fire" title=" fire"> fire</a>, <a href="https://publications.waset.org/abstracts/search?q=broadband" title=" broadband"> broadband</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20temperature" title=" gas temperature"> gas temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=IR%20camera" title=" IR camera"> IR camera</a> </p> <a href="https://publications.waset.org/abstracts/146725/advantages-of-multispectral-imaging-for-accurate-gas-temperature-profile-retrieval-from-fire-combustion-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4730</span> Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Van%20Tran%20Thi%20Thuy">Van Tran Thi Thuy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dukjoon%20Kim"> Dukjoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic" title="magnetic">magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a>, <a href="https://publications.waset.org/abstracts/search?q=PNIPAM" title=" PNIPAM"> PNIPAM</a>, <a href="https://publications.waset.org/abstracts/search?q=polysuccinimide" title=" polysuccinimide"> polysuccinimide</a> </p> <a href="https://publications.waset.org/abstracts/19181/poly-n-isopropyl-acrylamide-co-acrylic-acid-graft-polyaspartate-coated-magnetic-nanoparticles-for-molecular-imaging-and-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4729</span> Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Verena%20M.%20Moock">Verena M. Moock</a>, <a href="https://publications.waset.org/abstracts/search?q=Darien%20E.%20Arce%20Ch%C3%A1vez"> Darien E. Arce Chávez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20M.%20Espejel%20Gonz%C3%A1lez"> Mariana M. Espejel González</a>, <a href="https://publications.waset.org/abstracts/search?q=Leopoldo%20Ru%C3%ADz-Huerta"> Leopoldo Ruíz-Huerta</a>, <a href="https://publications.waset.org/abstracts/search?q=Crescencio%20Garc%C3%ADa-Segundo"> Crescencio García-Segundo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20metrology" title=" digital metrology"> digital metrology</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20imaging" title=" infrared imaging"> infrared imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20expansion" title=" thermal expansion"> thermal expansion</a> </p> <a href="https://publications.waset.org/abstracts/157387/heat-induced-uncertainty-of-industrial-computed-tomography-measuring-a-stainless-steel-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4728</span> Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Florides">G. A. Florides</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Theofanous"> E. Theofanous</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Iosif-Stylianou"> I. Iosif-Stylianou</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Christodoulides"> P. Christodoulides</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kalogirou"> S. Kalogirou</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Messarites"> V. Messarites</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Zomeni"> Z. Zomeni</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tsiolakis"> E. Tsiolakis</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Pouloupatis"> P. D. Pouloupatis</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Panayiotou"> G. P. Panayiotou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20heat%20exchangers" title="ground heat exchangers">ground heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20thermal%20conductivity" title=" ground thermal conductivity"> ground thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20thermal%20diffusivity" title=" ground thermal diffusivity"> ground thermal diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20thermal%20properties" title=" ground thermal properties"> ground thermal properties</a> </p> <a href="https://publications.waset.org/abstracts/2459/thermal-properties-of-the-ground-in-cyprus-and-their-correlations-and-effect-on-the-efficiency-of-ground-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=thermal%20imaging&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>