CINXE.COM

Jorge Finke | Pontificia Universidad Javeriana - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Jorge Finke | Pontificia Universidad Javeriana - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="zgy3FdctnfXlpvF6h1ktOsnYY/DetnKwkge+HhXFFNP+3peSipkQxWBcjkry2R5fvK95ujqa0eAuFq7DAnnPlQ==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="jorge finke" /> <meta name="description" content="Jorge Finke, Pontificia Universidad Javeriana: 29 Followers, 1 Following, 78 Research papers. Research interests: Economics of Corruption, Engineering, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = 'd0d4cf753dac7d44fa55ec8140bebbf4477d3bc9'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15265,"monthly_visitors":"113 million","monthly_visitor_count":113657801,"monthly_visitor_count_in_millions":113,"user_count":277970821,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1733261373000); window.Aedu.timeDifference = new Date().getTime() - 1733261373000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bad3fa1257b860f4633ff1db966aa3ae7dfe1980708675f3e2488742c1a0d941.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-34a3460a4873b743570e35df99c7839e3ddd9a3d06ef96c9fe38311a96a8a24e.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://javeriana.academia.edu/Finke" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-d50db999ccdab527b1e040b4cc8af62d4a8254a0385f5004e234635ba055442a.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke","photo":"/images/s65_no_pic.png","has_photo":false,"department":{"id":423129,"name":"Electrical Engineering and Computer Science","url":"https://javeriana.academia.edu/Departments/Electrical_Engineering_and_Computer_Science/Documents","university":{"id":1854,"name":"Pontificia Universidad Javeriana","url":"https://javeriana.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":41014,"name":"Economics of Corruption","url":"https://www.academia.edu/Documents/in/Economics_of_Corruption"},{"id":48,"name":"Engineering","url":"https://www.academia.edu/Documents/in/Engineering"},{"id":12857,"name":"Technology and Society","url":"https://www.academia.edu/Documents/in/Technology_and_Society"},{"id":3220,"name":"Fighting and Preventing Corruption through Law","url":"https://www.academia.edu/Documents/in/Fighting_and_Preventing_Corruption_through_Law"},{"id":13330,"name":"Complex Networks","url":"https://www.academia.edu/Documents/in/Complex_Networks"},{"id":154235,"name":"Community Structure","url":"https://www.academia.edu/Documents/in/Community_Structure"},{"id":757,"name":"Game Theory","url":"https://www.academia.edu/Documents/in/Game_Theory"},{"id":433813,"name":"Ideal Free Distribution","url":"https://www.academia.edu/Documents/in/Ideal_Free_Distribution"},{"id":73699,"name":"Corruption","url":"https://www.academia.edu/Documents/in/Corruption"},{"id":4486,"name":"Political Science","url":"https://www.academia.edu/Documents/in/Political_Science"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":187579,"link":"http://jfinke.org","name":"Homepage","link_domain":"jfinke.org","icon":"//www.google.com/s2/u/0/favicons?domain=jfinke.org"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://javeriana.academia.edu/Finke&quot;,&quot;location&quot;:&quot;/Finke&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;javeriana.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/Finke&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-1c3e16f7-562a-4656-8a60-7e8dedda0fc4"></div> <div id="ProfileCheckPaperUpdate-react-component-1c3e16f7-562a-4656-8a60-7e8dedda0fc4"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" border="0" alt="" src="//a.academia-assets.com/images/s200_no_pic.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Jorge Finke</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://javeriana.academia.edu/">Pontificia Universidad Javeriana</a>, <a class="u-tcGrayDarker" href="https://javeriana.academia.edu/Departments/Electrical_Engineering_and_Computer_Science/Documents">Electrical Engineering and Computer Science</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Jorge" data-follow-user-id="316649" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="316649"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">29</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><span class="u-fw700">Phone:&nbsp;</span>(57-2) 3218200 ext. 798 <br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="316649">View All (10)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="316649" href="https://www.academia.edu/Documents/in/Economics_of_Corruption"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://javeriana.academia.edu/Finke&quot;,&quot;location&quot;:&quot;/Finke&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;javeriana.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/Finke&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Economics of Corruption&quot;]}" data-trace="false" data-dom-id="Pill-react-component-ca307b9b-c740-420c-bfa8-ad5fd3d4ee5c"></div> <div id="Pill-react-component-ca307b9b-c740-420c-bfa8-ad5fd3d4ee5c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="316649" href="https://www.academia.edu/Documents/in/Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Engineering&quot;]}" data-trace="false" data-dom-id="Pill-react-component-8c04fcb7-65e3-4fbe-a59b-399a98f669a1"></div> <div id="Pill-react-component-8c04fcb7-65e3-4fbe-a59b-399a98f669a1"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="316649" href="https://www.academia.edu/Documents/in/Technology_and_Society"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Technology and Society&quot;]}" data-trace="false" data-dom-id="Pill-react-component-b56f2b2a-9af9-470c-bed0-9eb3104741a8"></div> <div id="Pill-react-component-b56f2b2a-9af9-470c-bed0-9eb3104741a8"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="316649" href="https://www.academia.edu/Documents/in/Fighting_and_Preventing_Corruption_through_Law"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Fighting and Preventing Corruption through Law&quot;]}" data-trace="false" data-dom-id="Pill-react-component-005a65c4-9d35-436a-afff-1bc655dea45a"></div> <div id="Pill-react-component-005a65c4-9d35-436a-afff-1bc655dea45a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="316649" href="https://www.academia.edu/Documents/in/Complex_Networks"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Complex Networks&quot;]}" data-trace="false" data-dom-id="Pill-react-component-19708007-0966-472e-b6bf-da34ba76e04c"></div> <div id="Pill-react-component-19708007-0966-472e-b6bf-da34ba76e04c"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Jorge Finke</h3></div><div class="js-work-strip profile--work_container" data-work-id="96156199"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96156199/The_%C3%93MICAS_alliance_an_international_research_program_on_multi_omics_for_crop_breeding_optimization"><img alt="Research paper thumbnail of The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/98133121/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96156199/The_%C3%93MICAS_alliance_an_international_research_program_on_multi_omics_for_crop_breeding_optimization">The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization</a></div><div class="wp-workCard_item"><span>Frontiers in Plant Science</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The OMICAS alliance is part of the Colombian government’s Scientific Ecosystem, established betwe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The OMICAS alliance is part of the Colombian government’s Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program’s kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools t...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68b485a80cef0c2f9206c9077dec2ba8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98133121,&quot;asset_id&quot;:96156199,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98133121/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96156199"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96156199"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96156199; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96156199]").text(description); $(".js-view-count[data-work-id=96156199]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96156199; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96156199']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96156199, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68b485a80cef0c2f9206c9077dec2ba8" } } $('.js-work-strip[data-work-id=96156199]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96156199,"title":"The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization","translated_title":"","metadata":{"abstract":"The OMICAS alliance is part of the Colombian government’s Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program’s kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools t...","publisher":"Frontiers Media SA","publication_name":"Frontiers in Plant Science"},"translated_abstract":"The OMICAS alliance is part of the Colombian government’s Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program’s kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools t...","internal_url":"https://www.academia.edu/96156199/The_%C3%93MICAS_alliance_an_international_research_program_on_multi_omics_for_crop_breeding_optimization","translated_internal_url":"","created_at":"2023-02-02T00:43:28.440-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98133121,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98133121/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/98133121/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_OMICAS_alliance_an_international_res.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98133121/pdf-libre.pdf?1675359794=\u0026response-content-disposition=attachment%3B+filename%3DThe_OMICAS_alliance_an_international_res.pdf\u0026Expires=1733264972\u0026Signature=Y5lPb~Y1KlP6B5h6nAMCQqp9XQtxqSybby-zGPsebBIODQ2Wl6rb7e3qoPOY8z4fF8VQCJQ-xUJIPu1yqV2G-ywK1erBYRBM3Z6qEkbkN1L7yU0F22KUOLz6rvDtdleUk373fNF1YuZPyYMFV0huTqdJPVd6CPVk1WMR~NAlbBRTfGH6pQ3UsSvC13r8msRnuJZ1c5gMyjGef1EkbbKNDT5IpkdxxIj6iBpVmnUXc58Qzg8fkn1pP1KaSNwbAuNjTXhCuCIWtTOb5UycuKiCx5~3ctqs4HBv6nK~nPUrOo5-AondKrIdXoh0pUSq0dcgifQcHi-kSUsKy--HLmRBKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_ÓMICAS_alliance_an_international_research_program_on_multi_omics_for_crop_breeding_optimization","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":98133121,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98133121/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/98133121/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_OMICAS_alliance_an_international_res.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98133121/pdf-libre.pdf?1675359794=\u0026response-content-disposition=attachment%3B+filename%3DThe_OMICAS_alliance_an_international_res.pdf\u0026Expires=1733264972\u0026Signature=Y5lPb~Y1KlP6B5h6nAMCQqp9XQtxqSybby-zGPsebBIODQ2Wl6rb7e3qoPOY8z4fF8VQCJQ-xUJIPu1yqV2G-ywK1erBYRBM3Z6qEkbkN1L7yU0F22KUOLz6rvDtdleUk373fNF1YuZPyYMFV0huTqdJPVd6CPVk1WMR~NAlbBRTfGH6pQ3UsSvC13r8msRnuJZ1c5gMyjGef1EkbbKNDT5IpkdxxIj6iBpVmnUXc58Qzg8fkn1pP1KaSNwbAuNjTXhCuCIWtTOb5UycuKiCx5~3ctqs4HBv6nK~nPUrOo5-AondKrIdXoh0pUSq0dcgifQcHi-kSUsKy--HLmRBKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5398,"name":"Biotechnology","url":"https://www.academia.edu/Documents/in/Biotechnology"}],"urls":[{"id":28616251,"url":"https://www.frontiersin.org/articles/10.3389/fpls.2022.992663/full"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83495740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83495740/Supervised_Gene_Function_Prediction_Using_Spectral_Clustering_on_Gene_Co_expression_Networks"><img alt="Research paper thumbnail of Supervised Gene Function Prediction Using Spectral Clustering on Gene Co-expression Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83495740/Supervised_Gene_Function_Prediction_Using_Spectral_Clustering_on_Gene_Co_expression_Networks">Supervised Gene Function Prediction Using Spectral Clustering on Gene Co-expression Networks</a></div><div class="wp-workCard_item"><span>Complex Networks &amp; Their Applications X</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83495740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83495740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83495740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83495740]").text(description); $(".js-view-count[data-work-id=83495740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83495740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83495740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83495740, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83495740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83495740,"title":"Supervised Gene Function Prediction Using Spectral Clustering on Gene Co-expression Networks","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Complex Networks \u0026 Their Applications X"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83495740/Supervised_Gene_Function_Prediction_Using_Spectral_Clustering_on_Gene_Co_expression_Networks","translated_internal_url":"","created_at":"2022-07-21T02:37:50.119-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supervised_Gene_Function_Prediction_Using_Spectral_Clustering_on_Gene_Co_expression_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":22332390,"url":"https://link.springer.com/content/pdf/10.1007/978-3-030-93413-2_54"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83495729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83495729/Spectral_Evolution_of_Twitter_Mention_Networks"><img alt="Research paper thumbnail of Spectral Evolution of Twitter Mention Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83495729/Spectral_Evolution_of_Twitter_Mention_Networks">Spectral Evolution of Twitter Mention Networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This papers applies the spectral evolution model presented in [5] to networks of mentions between...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This papers applies the spectral evolution model presented in [5] to networks of mentions between Twitter users who identified messages with the most popular political hashtags in Colombia (during the period which concludes the disarmament of the Revolutionary Armed Forces of Colombia). The model characterizes the dynamics of each mention network (i.e., how new edges are established) in terms of the eigen decomposition of its adjacency matrix. It assumes that as new edges are established the eigenvalues change, while the eigenvectors remain constant. The goal of our work is to evaluate various link prediction methods that underlie the spectral evolution model. In particular, we consider prediction methods based on graph kernels and a learning algorithm that tries to estimate the trajectories of the spectrum. Our results show that the learning algorithm tends to outperform the kernel methods at predicting the formation of new edges.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83495729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83495729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83495729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83495729]").text(description); $(".js-view-count[data-work-id=83495729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83495729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83495729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83495729, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83495729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83495729,"title":"Spectral Evolution of Twitter Mention Networks","translated_title":"","metadata":{"abstract":"This papers applies the spectral evolution model presented in [5] to networks of mentions between Twitter users who identified messages with the most popular political hashtags in Colombia (during the period which concludes the disarmament of the Revolutionary Armed Forces of Colombia). The model characterizes the dynamics of each mention network (i.e., how new edges are established) in terms of the eigen decomposition of its adjacency matrix. It assumes that as new edges are established the eigenvalues change, while the eigenvectors remain constant. The goal of our work is to evaluate various link prediction methods that underlie the spectral evolution model. In particular, we consider prediction methods based on graph kernels and a learning algorithm that tries to estimate the trajectories of the spectrum. Our results show that the learning algorithm tends to outperform the kernel methods at predicting the formation of new edges.","publisher":"COMPLEX NETWORKS","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"This papers applies the spectral evolution model presented in [5] to networks of mentions between Twitter users who identified messages with the most popular political hashtags in Colombia (during the period which concludes the disarmament of the Revolutionary Armed Forces of Colombia). The model characterizes the dynamics of each mention network (i.e., how new edges are established) in terms of the eigen decomposition of its adjacency matrix. It assumes that as new edges are established the eigenvalues change, while the eigenvectors remain constant. The goal of our work is to evaluate various link prediction methods that underlie the spectral evolution model. In particular, we consider prediction methods based on graph kernels and a learning algorithm that tries to estimate the trajectories of the spectrum. Our results show that the learning algorithm tends to outperform the kernel methods at predicting the formation of new edges.","internal_url":"https://www.academia.edu/83495729/Spectral_Evolution_of_Twitter_Mention_Networks","translated_internal_url":"","created_at":"2022-07-21T02:37:29.120-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spectral_Evolution_of_Twitter_Mention_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[],"urls":[{"id":22332383,"url":"https://doi.org/10.1007/978-3-030-36687-2_44"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83495716"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83495716/Detecting_Hotspots_on_Networks"><img alt="Research paper thumbnail of Detecting Hotspots on Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83495716/Detecting_Hotspots_on_Networks">Detecting Hotspots on Networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Traditional approaches for measuring the concentration of events pay little attention to the effe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Traditional approaches for measuring the concentration of events pay little attention to the effects of topological properties. To overcome this limitation, our work develops a theoretical framework to determine whether events are concentrated on a subset of interconnected nodes. We focus on low-clustered networks with regular, Poisson, and power-law degree distributions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83495716"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83495716"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83495716; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83495716]").text(description); $(".js-view-count[data-work-id=83495716]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83495716; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83495716']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83495716, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83495716]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83495716,"title":"Detecting Hotspots on Networks","translated_title":"","metadata":{"abstract":"Traditional approaches for measuring the concentration of events pay little attention to the effects of topological properties. To overcome this limitation, our work develops a theoretical framework to determine whether events are concentrated on a subset of interconnected nodes. We focus on low-clustered networks with regular, Poisson, and power-law degree distributions.","publisher":"COMPLEX NETWORKS","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Traditional approaches for measuring the concentration of events pay little attention to the effects of topological properties. To overcome this limitation, our work develops a theoretical framework to determine whether events are concentrated on a subset of interconnected nodes. We focus on low-clustered networks with regular, Poisson, and power-law degree distributions.","internal_url":"https://www.academia.edu/83495716/Detecting_Hotspots_on_Networks","translated_internal_url":"","created_at":"2022-07-21T02:37:09.521-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Detecting_Hotspots_on_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":22332379,"url":"https://doi.org/10.1007/978-3-030-36687-2_53"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83495664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83495664/Characterizing_the_head_of_the_degree_distributions_of_growing_networks"><img alt="Research paper thumbnail of Characterizing the head of the degree distributions of growing networks" class="work-thumbnail" src="https://attachments.academia-assets.com/88818823/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83495664/Characterizing_the_head_of_the_degree_distributions_of_growing_networks">Characterizing the head of the degree distributions of growing networks</a></div><div class="wp-workCard_item"><span>arXiv: Physics and Society</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The analysis in this paper helps to explain the formation of growing networks with degree distrib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="01d945f1df798a27fc2cd1ef00b98ebc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:88818823,&quot;asset_id&quot;:83495664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/88818823/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83495664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83495664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83495664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83495664]").text(description); $(".js-view-count[data-work-id=83495664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83495664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83495664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83495664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "01d945f1df798a27fc2cd1ef00b98ebc" } } $('.js-work-strip[data-work-id=83495664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83495664,"title":"Characterizing the head of the degree distributions of growing networks","translated_title":"","metadata":{"abstract":"The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"arXiv: Physics and Society"},"translated_abstract":"The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...","internal_url":"https://www.academia.edu/83495664/Characterizing_the_head_of_the_degree_distributions_of_growing_networks","translated_internal_url":"","created_at":"2022-07-21T02:35:33.392-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88818823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88818823/thumbnails/1.jpg","file_name":"2011.04643v2.pdf","download_url":"https://www.academia.edu/attachments/88818823/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterizing_the_head_of_the_degree_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88818823/2011.04643v2-libre.pdf?1658404639=\u0026response-content-disposition=attachment%3B+filename%3DCharacterizing_the_head_of_the_degree_di.pdf\u0026Expires=1733264972\u0026Signature=crfMELZt6T93nRAdXSb3iBlZ2zi1EHaQ5CmpulLamjV6t-wBtB7JAwezqmbhX6amM302nCyq8RecuGimR5QK4TUriYuvrcy5mvDvpojpKvihS-KclHehdqxh~oXLagX9pJkwm8GKDicY5J2fGkI5ZPGAyeSMxKY2teEGZ5zlyecGQqQqoctuIebGJxnYOlZihhMtZd8tiqA6F5OTIcaFQDyW3mNBsM9lNyhlifI-yv-XHjHJnn2lxNeEbJ~20NhgQhuZjo8TMDQg1J7PBq0pyQZkhHRzj3rIFLpE9WzDoVCa8nSN4KPT20fn4zMOB~PePCvQvnODBmBqM0lvDJaqIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Characterizing_the_head_of_the_degree_distributions_of_growing_networks","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":88818823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88818823/thumbnails/1.jpg","file_name":"2011.04643v2.pdf","download_url":"https://www.academia.edu/attachments/88818823/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterizing_the_head_of_the_degree_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88818823/2011.04643v2-libre.pdf?1658404639=\u0026response-content-disposition=attachment%3B+filename%3DCharacterizing_the_head_of_the_degree_di.pdf\u0026Expires=1733264972\u0026Signature=crfMELZt6T93nRAdXSb3iBlZ2zi1EHaQ5CmpulLamjV6t-wBtB7JAwezqmbhX6amM302nCyq8RecuGimR5QK4TUriYuvrcy5mvDvpojpKvihS-KclHehdqxh~oXLagX9pJkwm8GKDicY5J2fGkI5ZPGAyeSMxKY2teEGZ5zlyecGQqQqoctuIebGJxnYOlZihhMtZd8tiqA6F5OTIcaFQDyW3mNBsM9lNyhlifI-yv-XHjHJnn2lxNeEbJ~20NhgQhuZjo8TMDQg1J7PBq0pyQZkhHRzj3rIFLpE9WzDoVCa8nSN4KPT20fn4zMOB~PePCvQvnODBmBqM0lvDJaqIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":22332355,"url":"https://arxiv.org/pdf/2011.04643v2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317455"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317455/Anomalous_node_detection_in_networks_with_communities_of_different_size"><img alt="Research paper thumbnail of Anomalous node detection in networks with communities of different size" class="work-thumbnail" src="https://attachments.academia-assets.com/86072976/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317455/Anomalous_node_detection_in_networks_with_communities_of_different_size">Anomalous node detection in networks with communities of different size</a></div><div class="wp-workCard_item"><span>2017 American Control Conference (ACC)</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="273454b186bd68e6293a951df8f13709" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072976,&quot;asset_id&quot;:79317455,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072976/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317455"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317455"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317455; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317455]").text(description); $(".js-view-count[data-work-id=79317455]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317455; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317455']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317455, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "273454b186bd68e6293a951df8f13709" } } $('.js-work-strip[data-work-id=79317455]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317455,"title":"Anomalous node detection in networks with communities of different size","translated_title":"","metadata":{"publisher":"IEEE","grobid_abstract":"Based on two simple mechanisms for establishing and removing links, this paper defines an event-driven model for the anomalous node detection problem. This includes a representation for (i) the tendency of regular nodes to connect with similar others (i.e., establish homophilic relationships); and (ii) the tendency of anomalous nodes to connect to random targets (i.e., establish random connections across the network). Our approach is motivated by the desire to design scalable strategies for detecting signatures of anomalous behavior, using a formal representation to take into account the evolution of network properties. In particular, we assume that regular nodes are distributed across two communities (of different size), and propose an algorithm that identifies anomalous nodes based on both geometric and spectral measures. Our focus is on defining the anomalous detection problem in a mathematical framework and to highlight key challenges when certain topological properties dominate the problem (i.e., in terms of the strength of communities and their size).","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 American Control Conference (ACC)","grobid_abstract_attachment_id":86072976},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317455/Anomalous_node_detection_in_networks_with_communities_of_different_size","translated_internal_url":"","created_at":"2022-05-17T09:06:21.851-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072976/thumbnails/1.jpg","file_name":"07963443.pdf","download_url":"https://www.academia.edu/attachments/86072976/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anomalous_node_detection_in_networks_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072976/07963443-libre.pdf?1652804022=\u0026response-content-disposition=attachment%3B+filename%3DAnomalous_node_detection_in_networks_wit.pdf\u0026Expires=1733264972\u0026Signature=R68E9ni-hAyO2GjlV4cOtBQoQszxZ55WD0e82eJAdv3kHPaRgyYhan5q2w2B38JqjezD11R3xc3HpqkIegsZFesJf7oWLj-JrfskdCFKBnoeGU08~8cHbVfhCTkTTzk5uXIAizI3JnTHX4bQRLRJoS00tuiWopJqXlNAdliDFgeVWePB9HxH93eai5dIFbNihG2a0ldXDL10i4YZZcjQwhmaM5CRMUCak7c46YaE8LJSFFWjwkJ15P6sJFwcfN05sooEEjOTm0yPGpx6bM53YYnNXBkSuhmeehwpMfntdmrbnTewBT2xktHHXRdXGHF7SZQXQvAkQV8KDICq6Ek8Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anomalous_node_detection_in_networks_with_communities_of_different_size","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072976/thumbnails/1.jpg","file_name":"07963443.pdf","download_url":"https://www.academia.edu/attachments/86072976/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anomalous_node_detection_in_networks_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072976/07963443-libre.pdf?1652804022=\u0026response-content-disposition=attachment%3B+filename%3DAnomalous_node_detection_in_networks_wit.pdf\u0026Expires=1733264972\u0026Signature=R68E9ni-hAyO2GjlV4cOtBQoQszxZ55WD0e82eJAdv3kHPaRgyYhan5q2w2B38JqjezD11R3xc3HpqkIegsZFesJf7oWLj-JrfskdCFKBnoeGU08~8cHbVfhCTkTTzk5uXIAizI3JnTHX4bQRLRJoS00tuiWopJqXlNAdliDFgeVWePB9HxH93eai5dIFbNihG2a0ldXDL10i4YZZcjQwhmaM5CRMUCak7c46YaE8LJSFFWjwkJ15P6sJFwcfN05sooEEjOTm0yPGpx6bM53YYnNXBkSuhmeehwpMfntdmrbnTewBT2xktHHXRdXGHF7SZQXQvAkQV8KDICq6Ek8Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":20535005,"url":"http://xplorestaging.ieee.org/ielx7/7951530/7962914/07963443.pdf?arnumber=7963443"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317453"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317453/A_top_down_supervised_learning_approach_to_hierarchical_multi_label_classification_in_networks"><img alt="Research paper thumbnail of A top-down supervised learning approach to hierarchical multi-label classification in networks" class="work-thumbnail" src="https://attachments.academia-assets.com/86072977/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317453/A_top_down_supervised_learning_approach_to_hierarchical_multi_label_classification_in_networks">A top-down supervised learning approach to hierarchical multi-label classification in networks</a></div><div class="wp-workCard_item"><span>Applied Network Science</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Node classification is the task of inferring or predicting missing node attributes from informati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Node classification is the task of inferring or predicting missing node attributes from information available for other nodes in a network. This paper presents a general prediction model to hierarchical multi-label classification, where the attributes to be inferred can be specified as a strict poset. It is based on a top-down classification approach that addresses hierarchical multi-label classification with supervised learning by building a local classifier per class. The proposed model is showcased with a case study on the prediction of gene functions for Oryza sativa Japonica , a variety of rice. It is compared to the Hierarchical Binomial-Neighborhood, a probabilistic model, by evaluating both approaches in terms of prediction performance and computational cost. The results in this work support the working hypothesis that the proposed model can achieve good levels of prediction efficiency, while scaling up in relation to the state of the art.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="476cb11e96c5af3b49f3d7b7397a424a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072977,&quot;asset_id&quot;:79317453,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072977/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317453"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317453"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317453; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317453]").text(description); $(".js-view-count[data-work-id=79317453]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317453; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317453']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317453, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "476cb11e96c5af3b49f3d7b7397a424a" } } $('.js-work-strip[data-work-id=79317453]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317453,"title":"A top-down supervised learning approach to hierarchical multi-label classification in networks","translated_title":"","metadata":{"abstract":"Node classification is the task of inferring or predicting missing node attributes from information available for other nodes in a network. This paper presents a general prediction model to hierarchical multi-label classification, where the attributes to be inferred can be specified as a strict poset. It is based on a top-down classification approach that addresses hierarchical multi-label classification with supervised learning by building a local classifier per class. The proposed model is showcased with a case study on the prediction of gene functions for Oryza sativa Japonica , a variety of rice. It is compared to the Hierarchical Binomial-Neighborhood, a probabilistic model, by evaluating both approaches in terms of prediction performance and computational cost. The results in this work support the working hypothesis that the proposed model can achieve good levels of prediction efficiency, while scaling up in relation to the state of the art.","publisher":"Appl. Netw. Sci.","ai_title_tag":"Top-Down Supervised Learning for Hierarchical Multi-Label Classification","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Applied Network Science"},"translated_abstract":"Node classification is the task of inferring or predicting missing node attributes from information available for other nodes in a network. This paper presents a general prediction model to hierarchical multi-label classification, where the attributes to be inferred can be specified as a strict poset. It is based on a top-down classification approach that addresses hierarchical multi-label classification with supervised learning by building a local classifier per class. The proposed model is showcased with a case study on the prediction of gene functions for Oryza sativa Japonica , a variety of rice. It is compared to the Hierarchical Binomial-Neighborhood, a probabilistic model, by evaluating both approaches in terms of prediction performance and computational cost. The results in this work support the working hypothesis that the proposed model can achieve good levels of prediction efficiency, while scaling up in relation to the state of the art.","internal_url":"https://www.academia.edu/79317453/A_top_down_supervised_learning_approach_to_hierarchical_multi_label_classification_in_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:21.716-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072977/thumbnails/1.jpg","file_name":"s41109-022-00445-3.pdf","download_url":"https://www.academia.edu/attachments/86072977/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_top_down_supervised_learning_approach.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072977/s41109-022-00445-3-libre.pdf?1652804002=\u0026response-content-disposition=attachment%3B+filename%3DA_top_down_supervised_learning_approach.pdf\u0026Expires=1733264972\u0026Signature=GDbndfzqiL7I4DaoZrDQ9GvmBK-jcL86oRtmsnMaQkIZjVpIn~pjZ2a-afphGEFatyUU55VJ6p~DYQAbJzQIk3dmzNyp93b6S~Foq3Cqyl-xsACQdEZhgGrMVCCqmU5OS5d8xJJyYf8UbRQNW6jDe9pOpB~To1kcwumhq60A7XQGmG6RH1b26WEWuOWWmJWm192YvE9PJT3nLDZfQidFlukkikA2E4fQEg5qODYAFNARRneCDUMPhthsU1idfVs2PPji0p~qjDe5nRCI0VbBk0b3n5dIWoO6ATgefx7tbAzZMIHhcyJe5RJ9tWb-0PKVsN1DzjKjlZRL-3AG~6Z~Fg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_top_down_supervised_learning_approach_to_hierarchical_multi_label_classification_in_networks","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072977/thumbnails/1.jpg","file_name":"s41109-022-00445-3.pdf","download_url":"https://www.academia.edu/attachments/86072977/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_top_down_supervised_learning_approach.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072977/s41109-022-00445-3-libre.pdf?1652804002=\u0026response-content-disposition=attachment%3B+filename%3DA_top_down_supervised_learning_approach.pdf\u0026Expires=1733264972\u0026Signature=GDbndfzqiL7I4DaoZrDQ9GvmBK-jcL86oRtmsnMaQkIZjVpIn~pjZ2a-afphGEFatyUU55VJ6p~DYQAbJzQIk3dmzNyp93b6S~Foq3Cqyl-xsACQdEZhgGrMVCCqmU5OS5d8xJJyYf8UbRQNW6jDe9pOpB~To1kcwumhq60A7XQGmG6RH1b26WEWuOWWmJWm192YvE9PJT3nLDZfQidFlukkikA2E4fQEg5qODYAFNARRneCDUMPhthsU1idfVs2PPji0p~qjDe5nRCI0VbBk0b3n5dIWoO6ATgefx7tbAzZMIHhcyJe5RJ9tWb-0PKVsN1DzjKjlZRL-3AG~6Z~Fg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"}],"urls":[{"id":20535003,"url":"https://doi.org/10.1007/s41109-022-00445-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317452"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317452/Characterizing_the_head_of_the_degrees_distributions_of_growing_networks"><img alt="Research paper thumbnail of Characterizing the head of the degrees distributions of growing networks" class="work-thumbnail" src="https://attachments.academia-assets.com/86072979/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317452/Characterizing_the_head_of_the_degrees_distributions_of_growing_networks">Characterizing the head of the degrees distributions of growing networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The analysis in this paper helps to explain the formation of growing networks with degree distrib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a01ea339803b63534df3dc6106a6c2b0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072979,&quot;asset_id&quot;:79317452,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072979/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317452"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317452"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317452; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317452]").text(description); $(".js-view-count[data-work-id=79317452]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317452; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317452']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317452, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a01ea339803b63534df3dc6106a6c2b0" } } $('.js-work-strip[data-work-id=79317452]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317452,"title":"Characterizing the head of the degrees distributions of growing networks","translated_title":"","metadata":{"abstract":"The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...","publication_date":{"day":9,"month":11,"year":2020,"errors":{}}},"translated_abstract":"The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...","internal_url":"https://www.academia.edu/79317452/Characterizing_the_head_of_the_degrees_distributions_of_growing_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:21.597-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072979,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072979/thumbnails/1.jpg","file_name":"2011.04643v1.pdf","download_url":"https://www.academia.edu/attachments/86072979/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterizing_the_head_of_the_degrees_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072979/2011.04643v1-libre.pdf?1652804997=\u0026response-content-disposition=attachment%3B+filename%3DCharacterizing_the_head_of_the_degrees_d.pdf\u0026Expires=1733264972\u0026Signature=Ut0AaNvq6j2-1VYQSftvmfpkBJlCThrJ5leGmeRzk~Km02DF35dtM-hqDe-h81Z5rsE0WxYSpexEcT9hpBtsSdTE0YssRhYVPgNTzZyqxR7pf4ysOKO7L7hXyOsB2l1ejCoPpOeRVn~VLR2mh23UFIHz1TrMkeE9ad27Tov66xZTI9ATvMOfSkAVR-WtXNKDwZbvxily201COwM7kdD4MGVPiutmeGOu6GtKLJr1jStGMn-hIdES~irndaep5zo0aNSApCE5Vkz82FcvQ51W1eEIacYb66MlQytIiZa2bDFA5ExdHbw5CrqRAaeTT6Rlfm56C59-rcuegBXufvad~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Characterizing_the_head_of_the_degrees_distributions_of_growing_networks","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072979,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072979/thumbnails/1.jpg","file_name":"2011.04643v1.pdf","download_url":"https://www.academia.edu/attachments/86072979/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterizing_the_head_of_the_degrees_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072979/2011.04643v1-libre.pdf?1652804997=\u0026response-content-disposition=attachment%3B+filename%3DCharacterizing_the_head_of_the_degrees_d.pdf\u0026Expires=1733264972\u0026Signature=Ut0AaNvq6j2-1VYQSftvmfpkBJlCThrJ5leGmeRzk~Km02DF35dtM-hqDe-h81Z5rsE0WxYSpexEcT9hpBtsSdTE0YssRhYVPgNTzZyqxR7pf4ysOKO7L7hXyOsB2l1ejCoPpOeRVn~VLR2mh23UFIHz1TrMkeE9ad27Tov66xZTI9ATvMOfSkAVR-WtXNKDwZbvxily201COwM7kdD4MGVPiutmeGOu6GtKLJr1jStGMn-hIdES~irndaep5zo0aNSApCE5Vkz82FcvQ51W1eEIacYb66MlQytIiZa2bDFA5ExdHbw5CrqRAaeTT6Rlfm56C59-rcuegBXufvad~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":20535002,"url":"https://arxiv.org/pdf/2011.04643v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317451"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317451/In_silico_Gene_Annotation_Prediction_Using_the_Co_expression_Network_Structure"><img alt="Research paper thumbnail of In-silico Gene Annotation Prediction Using the Co-expression Network Structure" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317451/In_silico_Gene_Annotation_Prediction_Using_the_Co_expression_Network_Structure">In-silico Gene Annotation Prediction Using the Co-expression Network Structure</a></div><div class="wp-workCard_item"><span>Complex Networks and Their Applications VIII</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Identifying which genes are involved in particular biological processes is relevant to understand...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Identifying which genes are involved in particular biological processes is relevant to understand the structure and function of a genome. A number of techniques have been proposed that aim to annotate genes, i.e., identify unknown biological associations between biological processes and genes. The ultimate goal of these techniques is to narrow down the search for promising candidates to carry out further studies through in-vivo experiments. This paper presents an approach for the in-silico prediction of functional gene annotations. It uses existing knowledge body of gene annotations of a given genome and the topological properties of its gene co-expression network, to train a supervised machine learning model that is designed to discover unknown annotations. The approach is applied to Oryza Sativa Japonica (a variety of rice). Our results show that the topological properties help in obtaining a more precise prediction for annotating genes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317451"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317451"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317451; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317451]").text(description); $(".js-view-count[data-work-id=79317451]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317451; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317451']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317451, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79317451]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317451,"title":"In-silico Gene Annotation Prediction Using the Co-expression Network Structure","translated_title":"","metadata":{"abstract":"Identifying which genes are involved in particular biological processes is relevant to understand the structure and function of a genome. A number of techniques have been proposed that aim to annotate genes, i.e., identify unknown biological associations between biological processes and genes. The ultimate goal of these techniques is to narrow down the search for promising candidates to carry out further studies through in-vivo experiments. This paper presents an approach for the in-silico prediction of functional gene annotations. It uses existing knowledge body of gene annotations of a given genome and the topological properties of its gene co-expression network, to train a supervised machine learning model that is designed to discover unknown annotations. The approach is applied to Oryza Sativa Japonica (a variety of rice). Our results show that the topological properties help in obtaining a more precise prediction for annotating genes.","publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Complex Networks and Their Applications VIII"},"translated_abstract":"Identifying which genes are involved in particular biological processes is relevant to understand the structure and function of a genome. A number of techniques have been proposed that aim to annotate genes, i.e., identify unknown biological associations between biological processes and genes. The ultimate goal of these techniques is to narrow down the search for promising candidates to carry out further studies through in-vivo experiments. This paper presents an approach for the in-silico prediction of functional gene annotations. It uses existing knowledge body of gene annotations of a given genome and the topological properties of its gene co-expression network, to train a supervised machine learning model that is designed to discover unknown annotations. The approach is applied to Oryza Sativa Japonica (a variety of rice). Our results show that the topological properties help in obtaining a more precise prediction for annotating genes.","internal_url":"https://www.academia.edu/79317451/In_silico_Gene_Annotation_Prediction_Using_the_Co_expression_Network_Structure","translated_internal_url":"","created_at":"2022-05-17T09:06:21.465-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"In_silico_Gene_Annotation_Prediction_Using_the_Co_expression_Network_Structure","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":865697,"name":"In Silico","url":"https://www.academia.edu/Documents/in/In_Silico"}],"urls":[{"id":20535001,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-36683-4_64"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317450"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317450/Dynamics_of_group_cohesion_in_homophilic_networks"><img alt="Research paper thumbnail of Dynamics of group cohesion in homophilic networks" class="work-thumbnail" src="https://attachments.academia-assets.com/86072973/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317450/Dynamics_of_group_cohesion_in_homophilic_networks">Dynamics of group cohesion in homophilic networks</a></div><div class="wp-workCard_item"><span>2017 IEEE 56th Annual Conference on Decision and Control (CDC)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Understanding cohesion and homophily in empirical networks allows us build better personalization...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Understanding cohesion and homophily in empirical networks allows us build better personalization and recommendation systems. This paper proposes a network model that explains the emergence of cohesion and homophily as an aggregate outcome at the group- and network-level. We introduce two simple mechanisms that capture the underlying tendencies of nodes to connect with similar and different others. Our main theoretical result presents conditions on the network under which it reaches high degrees of cohesion and homophily.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ed00557d30c44c565334112d4e8287a3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072973,&quot;asset_id&quot;:79317450,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072973/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317450"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317450"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317450; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317450]").text(description); $(".js-view-count[data-work-id=79317450]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317450; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317450']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317450, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ed00557d30c44c565334112d4e8287a3" } } $('.js-work-strip[data-work-id=79317450]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317450,"title":"Dynamics of group cohesion in homophilic networks","translated_title":"","metadata":{"abstract":"Understanding cohesion and homophily in empirical networks allows us build better personalization and recommendation systems. This paper proposes a network model that explains the emergence of cohesion and homophily as an aggregate outcome at the group- and network-level. We introduce two simple mechanisms that capture the underlying tendencies of nodes to connect with similar and different others. Our main theoretical result presents conditions on the network under which it reaches high degrees of cohesion and homophily.","publisher":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)"},"translated_abstract":"Understanding cohesion and homophily in empirical networks allows us build better personalization and recommendation systems. This paper proposes a network model that explains the emergence of cohesion and homophily as an aggregate outcome at the group- and network-level. We introduce two simple mechanisms that capture the underlying tendencies of nodes to connect with similar and different others. Our main theoretical result presents conditions on the network under which it reaches high degrees of cohesion and homophily.","internal_url":"https://www.academia.edu/79317450/Dynamics_of_group_cohesion_in_homophilic_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:21.313-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072973,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072973/thumbnails/1.jpg","file_name":"8263988.pdf","download_url":"https://www.academia.edu/attachments/86072973/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dynamics_of_group_cohesion_in_homophilic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072973/8263988-libre.pdf?1652803999=\u0026response-content-disposition=attachment%3B+filename%3DDynamics_of_group_cohesion_in_homophilic.pdf\u0026Expires=1733264972\u0026Signature=EwZseWLqd3VpCag7I02HnK8Veeq4oZlGvXV6TAG6C1L6ZNy0y0S~56zvI5MgloPHags23-Cfg2416nWBXFGwALmsbPyYTF0E~njrQzh4wW8Hek6txCUpMdjzKiXPwcidiNI9eVORYtvXdstfC~t5RDizMW0n3n33-hMoxsCCxruosNtPPOCLvQCl36VtXwhJPly7UG9TrfFUqAEcvC92tb6l6nhBZXkIp4Th4IlhpsYGkyhiOxVXKC7iCrXx3GATYimYcL0~TmjqQaLy7uR-GAKmaf9pI9kS-B02q2-TSr6QCP2y7It1okIyu6H1Y4UlnbU0OsuT6VZFZVB0KIvREw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dynamics_of_group_cohesion_in_homophilic_networks","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072973,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072973/thumbnails/1.jpg","file_name":"8263988.pdf","download_url":"https://www.academia.edu/attachments/86072973/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dynamics_of_group_cohesion_in_homophilic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072973/8263988-libre.pdf?1652803999=\u0026response-content-disposition=attachment%3B+filename%3DDynamics_of_group_cohesion_in_homophilic.pdf\u0026Expires=1733264972\u0026Signature=EwZseWLqd3VpCag7I02HnK8Veeq4oZlGvXV6TAG6C1L6ZNy0y0S~56zvI5MgloPHags23-Cfg2416nWBXFGwALmsbPyYTF0E~njrQzh4wW8Hek6txCUpMdjzKiXPwcidiNI9eVORYtvXdstfC~t5RDizMW0n3n33-hMoxsCCxruosNtPPOCLvQCl36VtXwhJPly7UG9TrfFUqAEcvC92tb6l6nhBZXkIp4Th4IlhpsYGkyhiOxVXKC7iCrXx3GATYimYcL0~TmjqQaLy7uR-GAKmaf9pI9kS-B02q2-TSr6QCP2y7It1okIyu6H1Y4UlnbU0OsuT6VZFZVB0KIvREw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"}],"urls":[{"id":20535000,"url":"https://doi.org/10.1109/CDC.2017.8263988"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317449"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317449/Dynamics_of_degree_distributions_of_social_networks"><img alt="Research paper thumbnail of Dynamics of degree distributions of social networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317449/Dynamics_of_degree_distributions_of_social_networks">Dynamics of degree distributions of social networks</a></div><div class="wp-workCard_item"><span>2017 IEEE 56th Annual Conference on Decision and Control (CDC)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Social network models aim to capture the complex structure of social connections. They are a fram...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Social network models aim to capture the complex structure of social connections. They are a framework for the design of control algorithms that take into account relationships, interactions, and communications between social actors. Based on three formation mechanisms — random attachment, triad formation, and network response — our work characterizes the dynamics of the degree distributions of social networks. In particular, we show that the complementary cumulative in- and out-degree distributions of highly clustered, reciprocal networks can be approximated by infinite dimensional time-varying linear systems. Furthermore, we determine the invariance of both limit distributions and the stability properties of the average degree.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317449"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317449"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317449; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317449]").text(description); $(".js-view-count[data-work-id=79317449]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317449; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317449']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317449, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79317449]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317449,"title":"Dynamics of degree distributions of social networks","translated_title":"","metadata":{"abstract":"Social network models aim to capture the complex structure of social connections. They are a framework for the design of control algorithms that take into account relationships, interactions, and communications between social actors. Based on three formation mechanisms — random attachment, triad formation, and network response — our work characterizes the dynamics of the degree distributions of social networks. In particular, we show that the complementary cumulative in- and out-degree distributions of highly clustered, reciprocal networks can be approximated by infinite dimensional time-varying linear systems. Furthermore, we determine the invariance of both limit distributions and the stability properties of the average degree.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)"},"translated_abstract":"Social network models aim to capture the complex structure of social connections. They are a framework for the design of control algorithms that take into account relationships, interactions, and communications between social actors. Based on three formation mechanisms — random attachment, triad formation, and network response — our work characterizes the dynamics of the degree distributions of social networks. In particular, we show that the complementary cumulative in- and out-degree distributions of highly clustered, reciprocal networks can be approximated by infinite dimensional time-varying linear systems. Furthermore, we determine the invariance of both limit distributions and the stability properties of the average degree.","internal_url":"https://www.academia.edu/79317449/Dynamics_of_degree_distributions_of_social_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:21.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dynamics_of_degree_distributions_of_social_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":20534999,"url":"http://xplorestaging.ieee.org/ielx7/8253407/8263624/08264406.pdf?arnumber=8264406"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317448"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317448/A_Random_Network_Model_for_the_Analysis_of_Blockchain_Designs_with_Communication_Delay"><img alt="Research paper thumbnail of A Random Network Model for the Analysis of Blockchain Designs with Communication Delay" class="work-thumbnail" src="https://attachments.academia-assets.com/86072914/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317448/A_Random_Network_Model_for_the_Analysis_of_Blockchain_Designs_with_Communication_Delay">A Random Network Model for the Analysis of Blockchain Designs with Communication Delay</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper proposes a random network model for blockchains, a distributed hierarchical data struc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper proposes a random network model for blockchains, a distributed hierarchical data structure of blocks that has found several applications in various industries. The model is parametric on two probability distribution functions governing block production and communication delay, which are key to capture the complexity of the mechanism used to synchronize the many distributed local copies of a blockchain. The proposed model is equipped with simulation algorithms for both bounded and unbounded number of distributed copies of the blockchain. They are used to study fast blockchain systems, i.e., blockchains in which the average time of block production can match the average time of message broadcasting used for blockchain synchronization. In particular, the model and the algorithms are useful to understand efficiency criteria associated with fast blockchains for identifying, e.g., when increasing the block production will have negative impact on the stability of the distributed...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="96fa3588541396de21a710275ed3202a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072914,&quot;asset_id&quot;:79317448,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072914/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317448"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317448"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317448; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317448]").text(description); $(".js-view-count[data-work-id=79317448]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317448; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317448']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317448, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "96fa3588541396de21a710275ed3202a" } } $('.js-work-strip[data-work-id=79317448]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317448,"title":"A Random Network Model for the Analysis of Blockchain Designs with Communication Delay","translated_title":"","metadata":{"abstract":"This paper proposes a random network model for blockchains, a distributed hierarchical data structure of blocks that has found several applications in various industries. The model is parametric on two probability distribution functions governing block production and communication delay, which are key to capture the complexity of the mechanism used to synchronize the many distributed local copies of a blockchain. The proposed model is equipped with simulation algorithms for both bounded and unbounded number of distributed copies of the blockchain. They are used to study fast blockchain systems, i.e., blockchains in which the average time of block production can match the average time of message broadcasting used for blockchain synchronization. In particular, the model and the algorithms are useful to understand efficiency criteria associated with fast blockchains for identifying, e.g., when increasing the block production will have negative impact on the stability of the distributed...","publisher":"ArXiv","ai_title_tag":"Random Network Model for Blockchain with Communication Delay","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"This paper proposes a random network model for blockchains, a distributed hierarchical data structure of blocks that has found several applications in various industries. The model is parametric on two probability distribution functions governing block production and communication delay, which are key to capture the complexity of the mechanism used to synchronize the many distributed local copies of a blockchain. The proposed model is equipped with simulation algorithms for both bounded and unbounded number of distributed copies of the blockchain. They are used to study fast blockchain systems, i.e., blockchains in which the average time of block production can match the average time of message broadcasting used for blockchain synchronization. In particular, the model and the algorithms are useful to understand efficiency criteria associated with fast blockchains for identifying, e.g., when increasing the block production will have negative impact on the stability of the distributed...","internal_url":"https://www.academia.edu/79317448/A_Random_Network_Model_for_the_Analysis_of_Blockchain_Designs_with_Communication_Delay","translated_internal_url":"","created_at":"2022-05-17T09:06:21.025-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072914,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072914/thumbnails/1.jpg","file_name":"1909.06435v1.pdf","download_url":"https://www.academia.edu/attachments/86072914/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Random_Network_Model_for_the_Analysis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072914/1909.06435v1-libre.pdf?1652804039=\u0026response-content-disposition=attachment%3B+filename%3DA_Random_Network_Model_for_the_Analysis.pdf\u0026Expires=1733264972\u0026Signature=JZjin0tvmx9BPQQ~mKRHrw-xOtA7oSky6ACCU2Z69tN3oaThqgfrgp1Q1dWmkJKX3DpnLwyXzoKnsJtYU0znMhdKOU7cafxM~MKDlQf19cuXULGw-O31VPz05hjsLyWIVpmVUDAA5EiiJqoFof8h7daBlLEjrkBBr3l1PJopBEEQYhJt3s4vCLLk5dhmzsN-ORGkhc58bEvdJRl5vvpJjGze6fw8MSBXDrI0BP-bLfp9F4G6VfDD9AJ550mZyUTDCFWOzFSB~dmkwcIaXOKm5EYxLlqbx3f1pzVJZqDmtgtn6kVyUMaN4onRla2zTw03fIY9hG2mnYjOn4NWqXRKhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Random_Network_Model_for_the_Analysis_of_Blockchain_Designs_with_Communication_Delay","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072914,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072914/thumbnails/1.jpg","file_name":"1909.06435v1.pdf","download_url":"https://www.academia.edu/attachments/86072914/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Random_Network_Model_for_the_Analysis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072914/1909.06435v1-libre.pdf?1652804039=\u0026response-content-disposition=attachment%3B+filename%3DA_Random_Network_Model_for_the_Analysis.pdf\u0026Expires=1733264972\u0026Signature=JZjin0tvmx9BPQQ~mKRHrw-xOtA7oSky6ACCU2Z69tN3oaThqgfrgp1Q1dWmkJKX3DpnLwyXzoKnsJtYU0znMhdKOU7cafxM~MKDlQf19cuXULGw-O31VPz05hjsLyWIVpmVUDAA5EiiJqoFof8h7daBlLEjrkBBr3l1PJopBEEQYhJt3s4vCLLk5dhmzsN-ORGkhc58bEvdJRl5vvpJjGze6fw8MSBXDrI0BP-bLfp9F4G6VfDD9AJ550mZyUTDCFWOzFSB~dmkwcIaXOKm5EYxLlqbx3f1pzVJZqDmtgtn6kVyUMaN4onRla2zTw03fIY9hG2mnYjOn4NWqXRKhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"}],"urls":[{"id":20534998,"url":"https://arxiv.org/pdf/1909.06435v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317447"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317447/J_un_2_01_2_Power_law_weighted_networks_from_local_attachments"><img alt="Research paper thumbnail of J un 2 01 2 Power-law weighted networks from local attachments" class="work-thumbnail" src="https://attachments.academia-assets.com/86072913/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317447/J_un_2_01_2_Power_law_weighted_networks_from_local_attachments">J un 2 01 2 Power-law weighted networks from local attachments</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This letter introduces a mechanism for constructing, through a process of distributed decision-ma...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This letter introduces a mechanism for constructing, through a process of distributed decision-making, substrates for the study of collective dynamics on extended power-law weighted networks with both a desired scaling exponent and a fixed clustering coefficient. The analytical results show that the connectivity distribution converges to the scaling behavior often found in social and engineering systems. To illustrate the approach of the proposed framework we generate network substrates that resemble steady state properties of the empirical citation distributions of (i) publications indexed by the Institute for Scientific Information from 1981 to 1997; (ii) patents granted by the U.S. Patent and Trademark Office from 1975 to 1999; and (iii) opinions written by the Supreme Court and the cases they cite from 1754 to 2002.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="737a075284ce1dbdc144dc6de6da98c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072913,&quot;asset_id&quot;:79317447,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072913/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317447"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317447"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317447; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317447]").text(description); $(".js-view-count[data-work-id=79317447]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317447; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317447']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317447, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "737a075284ce1dbdc144dc6de6da98c3" } } $('.js-work-strip[data-work-id=79317447]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317447,"title":"J un 2 01 2 Power-law weighted networks from local attachments","translated_title":"","metadata":{"abstract":"This letter introduces a mechanism for constructing, through a process of distributed decision-making, substrates for the study of collective dynamics on extended power-law weighted networks with both a desired scaling exponent and a fixed clustering coefficient. The analytical results show that the connectivity distribution converges to the scaling behavior often found in social and engineering systems. To illustrate the approach of the proposed framework we generate network substrates that resemble steady state properties of the empirical citation distributions of (i) publications indexed by the Institute for Scientific Information from 1981 to 1997; (ii) patents granted by the U.S. Patent and Trademark Office from 1975 to 1999; and (iii) opinions written by the Supreme Court and the cases they cite from 1754 to 2002.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"This letter introduces a mechanism for constructing, through a process of distributed decision-making, substrates for the study of collective dynamics on extended power-law weighted networks with both a desired scaling exponent and a fixed clustering coefficient. The analytical results show that the connectivity distribution converges to the scaling behavior often found in social and engineering systems. To illustrate the approach of the proposed framework we generate network substrates that resemble steady state properties of the empirical citation distributions of (i) publications indexed by the Institute for Scientific Information from 1981 to 1997; (ii) patents granted by the U.S. Patent and Trademark Office from 1975 to 1999; and (iii) opinions written by the Supreme Court and the cases they cite from 1754 to 2002.","internal_url":"https://www.academia.edu/79317447/J_un_2_01_2_Power_law_weighted_networks_from_local_attachments","translated_internal_url":"","created_at":"2022-05-17T09:06:20.900-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072913,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072913/thumbnails/1.jpg","file_name":"Preprint-EPL12.pdf","download_url":"https://www.academia.edu/attachments/86072913/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"J_un_2_01_2_Power_law_weighted_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072913/Preprint-EPL12-libre.pdf?1652804035=\u0026response-content-disposition=attachment%3B+filename%3DJ_un_2_01_2_Power_law_weighted_networks.pdf\u0026Expires=1733264972\u0026Signature=YBZa-Rm4TxMUTBA3~mdWeWxEcdR8p3GcS-MUOyEdyZsTeEQMks6uvKjlcFEtdcwPh2xHlX8P34hDjyY73XC0shBhTJw1Xz0XIeTwZpHr3KsTzPMLGEyOF~6XJzzta3Yr1yvr2SMFDWov-sslHQmDk7tHYUhg0bF8NG5-d4RILbX2Indd3wJ7NTAFpAErz5Wj3YTjWwNU2US9y6mDOA~Qlg2Fb9MCbpnYjtb8QkeHxF1CMeLYYNlyQDXxjsHgn268fIWjk0vURK1ryhWsJNoTDiuoGv4niY7oxSNbULt6iso3NF9UCFvPEnT2zOYcxAdy4ddQmLdmi~nd41ETQUKvMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"J_un_2_01_2_Power_law_weighted_networks_from_local_attachments","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072913,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072913/thumbnails/1.jpg","file_name":"Preprint-EPL12.pdf","download_url":"https://www.academia.edu/attachments/86072913/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"J_un_2_01_2_Power_law_weighted_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072913/Preprint-EPL12-libre.pdf?1652804035=\u0026response-content-disposition=attachment%3B+filename%3DJ_un_2_01_2_Power_law_weighted_networks.pdf\u0026Expires=1733264972\u0026Signature=YBZa-Rm4TxMUTBA3~mdWeWxEcdR8p3GcS-MUOyEdyZsTeEQMks6uvKjlcFEtdcwPh2xHlX8P34hDjyY73XC0shBhTJw1Xz0XIeTwZpHr3KsTzPMLGEyOF~6XJzzta3Yr1yvr2SMFDWov-sslHQmDk7tHYUhg0bF8NG5-d4RILbX2Indd3wJ7NTAFpAErz5Wj3YTjWwNU2US9y6mDOA~Qlg2Fb9MCbpnYjtb8QkeHxF1CMeLYYNlyQDXxjsHgn268fIWjk0vURK1ryhWsJNoTDiuoGv4niY7oxSNbULt6iso3NF9UCFvPEnT2zOYcxAdy4ddQmLdmi~nd41ETQUKvMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":20534997,"url":"http://pmoriano.com/docs/Preprint-EPL12.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317446"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317446/Preferential_attachment_with_power_law_growth_in_the_number_of_new_edges"><img alt="Research paper thumbnail of Preferential attachment with power law growth in the number of new edges" class="work-thumbnail" src="https://attachments.academia-assets.com/86072912/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317446/Preferential_attachment_with_power_law_growth_in_the_number_of_new_edges">Preferential attachment with power law growth in the number of new edges</a></div><div class="wp-workCard_item"><span>2017 IEEE 56th Annual Conference on Decision and Control (CDC)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Barabasi-Albert model is used to explain the formation of power laws in the degree distributi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Barabasi-Albert model is used to explain the formation of power laws in the degree distributions of networks. The model assumes that the principle of preferential attachment underlies the growth of networks, that is, new nodes connects to a fixed number of nodes with a probability that is proportional to their degrees. Yet, for empirical networks the number of new edges is often not constant, but varies as more nodes become part of the network. This paper considers an extension to the original Barabasi-Albert model, in which the number of edges established by a new node follows a power law distribution with support in the total number of nodes. While most new nodes connect to a few nodes, some new nodes connect to a larger number. We first characterize the dynamics of growth of the degree of the nodes. Second, we identify sufficient conditions under which the expected value of the average degree of the network is asymptotically stable. Finally, we show how the dynamics of the mo...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41373134a6e2ab2596979f2a1ebecc2a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072912,&quot;asset_id&quot;:79317446,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072912/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317446"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317446"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317446; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317446]").text(description); $(".js-view-count[data-work-id=79317446]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317446; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317446']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317446, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41373134a6e2ab2596979f2a1ebecc2a" } } $('.js-work-strip[data-work-id=79317446]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317446,"title":"Preferential attachment with power law growth in the number of new edges","translated_title":"","metadata":{"abstract":"The Barabasi-Albert model is used to explain the formation of power laws in the degree distributions of networks. The model assumes that the principle of preferential attachment underlies the growth of networks, that is, new nodes connects to a fixed number of nodes with a probability that is proportional to their degrees. Yet, for empirical networks the number of new edges is often not constant, but varies as more nodes become part of the network. This paper considers an extension to the original Barabasi-Albert model, in which the number of edges established by a new node follows a power law distribution with support in the total number of nodes. While most new nodes connect to a few nodes, some new nodes connect to a larger number. We first characterize the dynamics of growth of the degree of the nodes. Second, we identify sufficient conditions under which the expected value of the average degree of the network is asymptotically stable. Finally, we show how the dynamics of the mo...","publisher":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)"},"translated_abstract":"The Barabasi-Albert model is used to explain the formation of power laws in the degree distributions of networks. The model assumes that the principle of preferential attachment underlies the growth of networks, that is, new nodes connects to a fixed number of nodes with a probability that is proportional to their degrees. Yet, for empirical networks the number of new edges is often not constant, but varies as more nodes become part of the network. This paper considers an extension to the original Barabasi-Albert model, in which the number of edges established by a new node follows a power law distribution with support in the total number of nodes. While most new nodes connect to a few nodes, some new nodes connect to a larger number. We first characterize the dynamics of growth of the degree of the nodes. Second, we identify sufficient conditions under which the expected value of the average degree of the network is asymptotically stable. Finally, we show how the dynamics of the mo...","internal_url":"https://www.academia.edu/79317446/Preferential_attachment_with_power_law_growth_in_the_number_of_new_edges","translated_internal_url":"","created_at":"2022-05-17T09:06:20.754-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072912,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072912/thumbnails/1.jpg","file_name":"8264048.pdf","download_url":"https://www.academia.edu/attachments/86072912/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Preferential_attachment_with_power_law_g.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072912/8264048-libre.pdf?1652804028=\u0026response-content-disposition=attachment%3B+filename%3DPreferential_attachment_with_power_law_g.pdf\u0026Expires=1733264972\u0026Signature=bMP0ogwtdf8BwQJDKp4fylwG1Fp3Xz6vYE9HuyPf9FBLd~C7GnIsNgn1oHssJTm4d0U-RLCu9Jok-cotX1~aU1~54ndfPFILzKu0Wo1MAD8PHRztRWbyhxireS2qK0QGYdkbn3DfwfbrVhhgGsS1QkHBrTCUzfz6Hge3GoYj7M-iTZYPGytzaDdCAwWo7peNxxnvGXy4n9rT5Tl9TQ301p~6pBqN9Gmo3isJbi8UhPrebtoZh0AJBfkjxcEcOvlrGp73F6f6nvmGqjTr0hMNwr5byfSGpqNfKqhtvf2D5sFAyV-NLhIQ3t6GsTDmuQL3t2lEKc9-dvlEG~1N~25m~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Preferential_attachment_with_power_law_growth_in_the_number_of_new_edges","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072912,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072912/thumbnails/1.jpg","file_name":"8264048.pdf","download_url":"https://www.academia.edu/attachments/86072912/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Preferential_attachment_with_power_law_g.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072912/8264048-libre.pdf?1652804028=\u0026response-content-disposition=attachment%3B+filename%3DPreferential_attachment_with_power_law_g.pdf\u0026Expires=1733264972\u0026Signature=bMP0ogwtdf8BwQJDKp4fylwG1Fp3Xz6vYE9HuyPf9FBLd~C7GnIsNgn1oHssJTm4d0U-RLCu9Jok-cotX1~aU1~54ndfPFILzKu0Wo1MAD8PHRztRWbyhxireS2qK0QGYdkbn3DfwfbrVhhgGsS1QkHBrTCUzfz6Hge3GoYj7M-iTZYPGytzaDdCAwWo7peNxxnvGXy4n9rT5Tl9TQ301p~6pBqN9Gmo3isJbi8UhPrebtoZh0AJBfkjxcEcOvlrGp73F6f6nvmGqjTr0hMNwr5byfSGpqNfKqhtvf2D5sFAyV-NLhIQ3t6GsTDmuQL3t2lEKc9-dvlEG~1N~25m~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":20534996,"url":"https://jfinke.org/wp-content/papercite-data/pdf/8264048.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317445"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317445/Using_Overlapping_Communities_and_Network_Structure_for_Identifying_Reduced_Groups_of_Stress_Responsive_Genes"><img alt="Research paper thumbnail of Using Overlapping Communities and Network Structure for Identifying Reduced Groups of Stress Responsive Genes" class="work-thumbnail" src="https://attachments.academia-assets.com/86072915/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317445/Using_Overlapping_Communities_and_Network_Structure_for_Identifying_Reduced_Groups_of_Stress_Responsive_Genes">Using Overlapping Communities and Network Structure for Identifying Reduced Groups of Stress Responsive Genes</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper proposes a workflow to identify genes responding to a specific treatment in an organis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper proposes a workflow to identify genes responding to a specific treatment in an organism, such as abiotic stresses, a main cause of extensive agricultural production losses worldwide. On input RNA sequencing read counts (measured for genotypes under control and treatment conditions) and biological replicates, it outputs a collection of characterized genes, potentially relevant to treatment. Technically, the proposed approach is both a generalization and an extension of WGCNA; its main goal is to identify specific modules in a network of genes after a sequence of normalization and filtering steps. In this work, module detection is achieved by using Hierarchical Link Clustering, which can recognize overlapping communities and thus have more biological meaning given the overlapping regulatory domains of systems that generate co-expression. Additional steps and information are also added to the workflow, where some networks in the intermediate steps are forced to be scale-free...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="97247383124d685c0ecaaeb8f9280fca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072915,&quot;asset_id&quot;:79317445,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072915/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317445"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317445"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317445; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317445]").text(description); $(".js-view-count[data-work-id=79317445]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317445; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317445']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317445, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "97247383124d685c0ecaaeb8f9280fca" } } $('.js-work-strip[data-work-id=79317445]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317445,"title":"Using Overlapping Communities and Network Structure for Identifying Reduced Groups of Stress Responsive Genes","translated_title":"","metadata":{"abstract":"This paper proposes a workflow to identify genes responding to a specific treatment in an organism, such as abiotic stresses, a main cause of extensive agricultural production losses worldwide. On input RNA sequencing read counts (measured for genotypes under control and treatment conditions) and biological replicates, it outputs a collection of characterized genes, potentially relevant to treatment. Technically, the proposed approach is both a generalization and an extension of WGCNA; its main goal is to identify specific modules in a network of genes after a sequence of normalization and filtering steps. In this work, module detection is achieved by using Hierarchical Link Clustering, which can recognize overlapping communities and thus have more biological meaning given the overlapping regulatory domains of systems that generate co-expression. Additional steps and information are also added to the workflow, where some networks in the intermediate steps are forced to be scale-free...","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"This paper proposes a workflow to identify genes responding to a specific treatment in an organism, such as abiotic stresses, a main cause of extensive agricultural production losses worldwide. On input RNA sequencing read counts (measured for genotypes under control and treatment conditions) and biological replicates, it outputs a collection of characterized genes, potentially relevant to treatment. Technically, the proposed approach is both a generalization and an extension of WGCNA; its main goal is to identify specific modules in a network of genes after a sequence of normalization and filtering steps. In this work, module detection is achieved by using Hierarchical Link Clustering, which can recognize overlapping communities and thus have more biological meaning given the overlapping regulatory domains of systems that generate co-expression. Additional steps and information are also added to the workflow, where some networks in the intermediate steps are forced to be scale-free...","internal_url":"https://www.academia.edu/79317445/Using_Overlapping_Communities_and_Network_Structure_for_Identifying_Reduced_Groups_of_Stress_Responsive_Genes","translated_internal_url":"","created_at":"2022-05-17T09:06:20.631-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072915,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072915/thumbnails/1.jpg","file_name":"2011.03526v1.pdf","download_url":"https://www.academia.edu/attachments/86072915/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Overlapping_Communities_and_Networ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072915/2011.03526v1-libre.pdf?1652804034=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Overlapping_Communities_and_Networ.pdf\u0026Expires=1733264972\u0026Signature=N0ZJzc1oGNRBck80jecOWxAXzjaIdgcoTih2wJTogzdrPTv63hUdnwIclJncfvTV5QSsOkqYOvcZlraUyTroHQj8Kh3PKNy-QbkmDthBRTmJVDVHCz25nOd9j6SoqYn7lyWDqzzBCWUyzOzLiWaxWyPyzAVkzq~~EeC8bPcKL1iNnc~kt-moBfYHJkxzNa3bcwE4WW7nzsz2u-MF3SGUhWIYocb1Dd1ELjMwbcMvswECKC5nUaZCTAn5VtLLumq1Ta7vIc3EE5ceE9oeSdih6RUBJezBbNG10jCLKzC~wqDKAWf6-T1m4EkbIK7Wjv-lSEOTTb9goCCZYH-cQ92Nrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_Overlapping_Communities_and_Network_Structure_for_Identifying_Reduced_Groups_of_Stress_Responsive_Genes","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072915,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072915/thumbnails/1.jpg","file_name":"2011.03526v1.pdf","download_url":"https://www.academia.edu/attachments/86072915/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Overlapping_Communities_and_Networ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072915/2011.03526v1-libre.pdf?1652804034=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Overlapping_Communities_and_Networ.pdf\u0026Expires=1733264972\u0026Signature=N0ZJzc1oGNRBck80jecOWxAXzjaIdgcoTih2wJTogzdrPTv63hUdnwIclJncfvTV5QSsOkqYOvcZlraUyTroHQj8Kh3PKNy-QbkmDthBRTmJVDVHCz25nOd9j6SoqYn7lyWDqzzBCWUyzOzLiWaxWyPyzAVkzq~~EeC8bPcKL1iNnc~kt-moBfYHJkxzNa3bcwE4WW7nzsz2u-MF3SGUhWIYocb1Dd1ELjMwbcMvswECKC5nUaZCTAn5VtLLumq1Ta7vIc3EE5ceE9oeSdih6RUBJezBbNG10jCLKzC~wqDKAWf6-T1m4EkbIK7Wjv-lSEOTTb9goCCZYH-cQ92Nrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":86072916,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072916/thumbnails/1.jpg","file_name":"2011.03526v1.pdf","download_url":"https://www.academia.edu/attachments/86072916/download_file","bulk_download_file_name":"Using_Overlapping_Communities_and_Networ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072916/2011.03526v1-libre.pdf?1652804045=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Overlapping_Communities_and_Networ.pdf\u0026Expires=1733264972\u0026Signature=dFLPK9rqmmrl~k1KTSqh0o8GgR7grRcYhWcaSMoHrp24djl3~5~hkji-JxX2VOvH-sSssJpTFZOj7anP3sziT8kVI7nFS5DfaZQwgFVz8ev~XjtWDQNPdST7qAIPhRdzEIFKtBB4C35LIXf5eS4Vy1MABCl0kJ~ThA5XXJEw7zjQvEMjgi5vdw~9V2cRrSSX917mmxjjveYl9w3FqiP4oWV~c4IEmzH5zfOnN6MaQU3zB9RGDb9GzmrdIj190PpIxYtIUU8nrfm76fX4mVcnjyxadbA9iNIGQE2ktpin-D-vnIx~0f2H-JvfW5ZiiDVV1RQH5YiIQMW5W~rASFpaJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"}],"urls":[{"id":20534995,"url":"https://arxiv.org/pdf/2011.03526v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317444"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317444/Algorithmic_Analysis_of_Blockchain_Efficiency_with_Communication_Delay"><img alt="Research paper thumbnail of Algorithmic Analysis of Blockchain Efficiency with Communication Delay" class="work-thumbnail" src="https://attachments.academia-assets.com/86072911/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317444/Algorithmic_Analysis_of_Blockchain_Efficiency_with_Communication_Delay">Algorithmic Analysis of Blockchain Efficiency with Communication Delay</a></div><div class="wp-workCard_item"><span>Fundamental Approaches to Software Engineering</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f4d6a84407e3d2c18deca4f80d4ea240" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072911,&quot;asset_id&quot;:79317444,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072911/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317444"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317444"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317444; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317444]").text(description); $(".js-view-count[data-work-id=79317444]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317444; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317444']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317444, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f4d6a84407e3d2c18deca4f80d4ea240" } } $('.js-work-strip[data-work-id=79317444]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317444,"title":"Algorithmic Analysis of Blockchain Efficiency with Communication Delay","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Fundamental Approaches to Software Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317444/Algorithmic_Analysis_of_Blockchain_Efficiency_with_Communication_Delay","translated_internal_url":"","created_at":"2022-05-17T09:06:20.433-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072911/thumbnails/1.jpg","file_name":"978-3-030-45234-6_20.pdf","download_url":"https://www.academia.edu/attachments/86072911/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Algorithmic_Analysis_of_Blockchain_Effic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072911/978-3-030-45234-6_20-libre.pdf?1652804039=\u0026response-content-disposition=attachment%3B+filename%3DAlgorithmic_Analysis_of_Blockchain_Effic.pdf\u0026Expires=1733264972\u0026Signature=XNdRjJ-NJIn00U3qWEiVfhSy1e35BvKMy8pfnyITUcRbgQHN14D-Kz9Doh3glV9dAV3iDeh-fxJK5DqK5bbuEGlTh6du51nQb7ZZatFvYsV0TOGwCMOE7c4o88O-Td5x8C0xeiwICY9DvCKp07d4ErmS4o5pB-dTjKMNgI7N3c7G8UWTlhpW5qkvK3Ph~sLaLekR8ZE9GX7KQ4unQyF9Tref-4Y0I27OYK6lmNCc5vhqDmGf1qzQ~qnnQvbgaJ6cvBtjcqSfcXnAotc4Xe4neoYXkwQkBNz0ARJHxSoRmCRdNtJWxYCrJjpbrL5JOX3Swh5Hbi3RixkHsrUZZhxG-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Algorithmic_Analysis_of_Blockchain_Efficiency_with_Communication_Delay","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072911/thumbnails/1.jpg","file_name":"978-3-030-45234-6_20.pdf","download_url":"https://www.academia.edu/attachments/86072911/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Algorithmic_Analysis_of_Blockchain_Effic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072911/978-3-030-45234-6_20-libre.pdf?1652804039=\u0026response-content-disposition=attachment%3B+filename%3DAlgorithmic_Analysis_of_Blockchain_Effic.pdf\u0026Expires=1733264972\u0026Signature=XNdRjJ-NJIn00U3qWEiVfhSy1e35BvKMy8pfnyITUcRbgQHN14D-Kz9Doh3glV9dAV3iDeh-fxJK5DqK5bbuEGlTh6du51nQb7ZZatFvYsV0TOGwCMOE7c4o88O-Td5x8C0xeiwICY9DvCKp07d4ErmS4o5pB-dTjKMNgI7N3c7G8UWTlhpW5qkvK3Ph~sLaLekR8ZE9GX7KQ4unQyF9Tref-4Y0I27OYK6lmNCc5vhqDmGf1qzQ~qnnQvbgaJ6cvBtjcqSfcXnAotc4Xe4neoYXkwQkBNz0ARJHxSoRmCRdNtJWxYCrJjpbrL5JOX3Swh5Hbi3RixkHsrUZZhxG-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2199949,"name":"Blockchain","url":"https://www.academia.edu/Documents/in/Blockchain"}],"urls":[{"id":20534994,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-45234-6_20"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317443/Spectral_evolution_with_approximated_eigenvalue_trajectories_for_link_prediction"><img alt="Research paper thumbnail of Spectral evolution with approximated eigenvalue trajectories for link prediction" class="work-thumbnail" src="https://attachments.academia-assets.com/86072972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317443/Spectral_evolution_with_approximated_eigenvalue_trajectories_for_link_prediction">Spectral evolution with approximated eigenvalue trajectories for link prediction</a></div><div class="wp-workCard_item"><span>Social Network Analysis and Mining</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="517a15410e5b39a1a1789d5ee0f78f1b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072972,&quot;asset_id&quot;:79317443,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072972/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317443]").text(description); $(".js-view-count[data-work-id=79317443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317443, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "517a15410e5b39a1a1789d5ee0f78f1b" } } $('.js-work-strip[data-work-id=79317443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317443,"title":"Spectral evolution with approximated eigenvalue trajectories for link prediction","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"The spectral evolution model aims to characterize the growth of large networks (i.e., how they evolve as new edges are established) in terms of the eigenvalue decomposition of the adjacency matrices. It assumes that, while eigenvectors remain constant, eigenvalues evolve in a predictable manner over time. This paper extends the original formulation of the model twofold. First, it presents a method to compute an approximation of the spectral evolution of eigenvalues based on the Rayleigh quotient. Second, it proposes an algorithm to estimate the evolution of eigenvalues by extrapolating only a fraction of their approximated values. The proposed model is used to characterize mention networks of users who posted tweets that include the most popular political hashtags in Colombia from August 2017 to August 2018 (the period which concludes the disarmament of the Revolutionary Armed Forces of Colombia). To evaluate the extent to which the spectral evolution model resembles these networks, link prediction methods based on learning algorithms (i.e., extrapolation and regression) and graph kernels are implemented. Experimental results show that the learning algorithms deployed on the approximated trajectories outperform the usual kernel and extrapolation methods at predicting the formation of new edges.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Social Network Analysis and Mining","grobid_abstract_attachment_id":86072972},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317443/Spectral_evolution_with_approximated_eigenvalue_trajectories_for_link_prediction","translated_internal_url":"","created_at":"2022-05-17T09:06:20.303-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072972/thumbnails/1.jpg","file_name":"2006.12657v1.pdf","download_url":"https://www.academia.edu/attachments/86072972/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spectral_evolution_with_approximated_eig.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072972/2006.12657v1-libre.pdf?1652804040=\u0026response-content-disposition=attachment%3B+filename%3DSpectral_evolution_with_approximated_eig.pdf\u0026Expires=1733264972\u0026Signature=RvaBM27jPb5BV1B7JjJ216HOH5jqpPO3AAWQS53a-1OAqpsjiSj8g~cWw-wuv~olYULmHbbBTTxYhLNhmgl6LJrVqBy5IXivnU1sEJhAxAvY76Q3linkoGR3KRaefTkOCOep7kvvwqUzEh1xkiuEfApsCiTTos3FubsIQW6dNwdqNwrxzRiAiQjicM-ZRRsNrWOrJxjHYzlhi6yyzDHgtfw6KKFS2qpEeMfilLMTp1mQzCqjqk~7neiXqb2YUvWX~i8tQPppIiZwB3vKhClRYJAdnCqqa9OhkLDwhvNLefcSYZzL5PD1KLV0PGlsugPmI8fCrg2lUvB67dE8f3H90Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spectral_evolution_with_approximated_eigenvalue_trajectories_for_link_prediction","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072972/thumbnails/1.jpg","file_name":"2006.12657v1.pdf","download_url":"https://www.academia.edu/attachments/86072972/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spectral_evolution_with_approximated_eig.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072972/2006.12657v1-libre.pdf?1652804040=\u0026response-content-disposition=attachment%3B+filename%3DSpectral_evolution_with_approximated_eig.pdf\u0026Expires=1733264972\u0026Signature=RvaBM27jPb5BV1B7JjJ216HOH5jqpPO3AAWQS53a-1OAqpsjiSj8g~cWw-wuv~olYULmHbbBTTxYhLNhmgl6LJrVqBy5IXivnU1sEJhAxAvY76Q3linkoGR3KRaefTkOCOep7kvvwqUzEh1xkiuEfApsCiTTos3FubsIQW6dNwdqNwrxzRiAiQjicM-ZRRsNrWOrJxjHYzlhi6yyzDHgtfw6KKFS2qpEeMfilLMTp1mQzCqjqk~7neiXqb2YUvWX~i8tQPppIiZwB3vKhClRYJAdnCqqa9OhkLDwhvNLefcSYZzL5PD1KLV0PGlsugPmI8fCrg2lUvB67dE8f3H90Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":891011,"name":"Eigenvalues and Eigenvectors","url":"https://www.academia.edu/Documents/in/Eigenvalues_and_Eigenvectors"}],"urls":[{"id":20534993,"url":"http://link.springer.com/content/pdf/10.1007/s13278-020-00674-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317442"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317442/Community_Based_Event_Detection_in_Temporal_Networks"><img alt="Research paper thumbnail of Community-Based Event Detection in Temporal Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/86072918/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317442/Community_Based_Event_Detection_in_Temporal_Networks">Community-Based Event Detection in Temporal Networks</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dced003df792caeb36e127533724b081" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072918,&quot;asset_id&quot;:79317442,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072918/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317442"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317442"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317442; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317442]").text(description); $(".js-view-count[data-work-id=79317442]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317442; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317442']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317442, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dced003df792caeb36e127533724b081" } } $('.js-work-strip[data-work-id=79317442]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317442,"title":"Community-Based Event Detection in Temporal Networks","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317442/Community_Based_Event_Detection_in_Temporal_Networks","translated_internal_url":"","created_at":"2022-05-17T09:06:20.149-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072918/thumbnails/1.jpg","file_name":"s41598-019-40137-0.pdf","download_url":"https://www.academia.edu/attachments/86072918/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Community_Based_Event_Detection_in_Tempo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072918/s41598-019-40137-0-libre.pdf?1652804025=\u0026response-content-disposition=attachment%3B+filename%3DCommunity_Based_Event_Detection_in_Tempo.pdf\u0026Expires=1733264972\u0026Signature=Wkne4JXlbQJ310iRj9WoKBI4NbbnzHq9c~SPzx0g2yANiIjV6ywE5ZjVmTEPXchi66dm6WGmi2K6terq~5NpCNH0idnxWcOou-8fWE0KXM0CVQwhYPiPYp8k~mEky8g-C5PJaKNvhgCdhxUfkng0WqbEa7CvqEyhtXfROpQzKBArxIFBuQ20jneG9gACiQG0gYfK1AnVoa-S2299MPAyHpNPBWa12dJzA9zlNl-Z5ghXJ~M9EHcC37Bm1z8Z-lgXVktgGT0366IiUgBtL1yOHqMUqomFnmpF4yXX0f3eHJWZAVTbcGOolUIK33nNApromug8FFzvH4IzP~AyV9Zesg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Community_Based_Event_Detection_in_Temporal_Networks","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072918/thumbnails/1.jpg","file_name":"s41598-019-40137-0.pdf","download_url":"https://www.academia.edu/attachments/86072918/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Community_Based_Event_Detection_in_Tempo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072918/s41598-019-40137-0-libre.pdf?1652804025=\u0026response-content-disposition=attachment%3B+filename%3DCommunity_Based_Event_Detection_in_Tempo.pdf\u0026Expires=1733264972\u0026Signature=Wkne4JXlbQJ310iRj9WoKBI4NbbnzHq9c~SPzx0g2yANiIjV6ywE5ZjVmTEPXchi66dm6WGmi2K6terq~5NpCNH0idnxWcOou-8fWE0KXM0CVQwhYPiPYp8k~mEky8g-C5PJaKNvhgCdhxUfkng0WqbEa7CvqEyhtXfROpQzKBArxIFBuQ20jneG9gACiQG0gYfK1AnVoa-S2299MPAyHpNPBWa12dJzA9zlNl-Z5ghXJ~M9EHcC37Bm1z8Z-lgXVktgGT0366IiUgBtL1yOHqMUqomFnmpF4yXX0f3eHJWZAVTbcGOolUIK33nNApromug8FFzvH4IzP~AyV9Zesg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":20534992,"url":"http://www.nature.com/articles/s41598-019-40137-0.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317441"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317441/Small_World_Networks_of_corruption"><img alt="Research paper thumbnail of Small-World Networks of corruption" class="work-thumbnail" src="https://attachments.academia-assets.com/86072971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317441/Small_World_Networks_of_corruption">Small-World Networks of corruption</a></div><div class="wp-workCard_item"><span>Revista CIFE: Lecturas de Economía Social</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5fe33df29757e03132688d2cd229a4c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072971,&quot;asset_id&quot;:79317441,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072971/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317441"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317441"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317441; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317441]").text(description); $(".js-view-count[data-work-id=79317441]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317441; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317441']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317441, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5fe33df29757e03132688d2cd229a4c8" } } $('.js-work-strip[data-work-id=79317441]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317441,"title":"Small-World Networks of corruption","translated_title":"","metadata":{"publisher":"Universidad Santo Tomas","grobid_abstract":"Collective behavior forms and spreads through social contact. This thesis introduces a framework for understanding how the structure of social ties may impact the evolution of bribery. We represent relationships as highly clustered networks with small characteristic path lengths (i.e., small-world models which have 'local' and 'long-range' contacts). Based on a principal-agent-client formulation, our model focuses on the effects of clustering on an equilibrium of persistent bribery. Collective outcomes depend on decision-making mechanisms that rely on sensitivity functions, which capture the level of influence between local contacts. Moreover, we represent the evolution of the network * Artículo de investigación resultado del proyecto realizado en la Universidad Javeriana, Cali-Colombia por los autores.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Revista CIFE: Lecturas de Economía Social","grobid_abstract_attachment_id":86072971},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317441/Small_World_Networks_of_corruption","translated_internal_url":"","created_at":"2022-05-17T09:06:19.959-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072971/thumbnails/1.jpg","file_name":"e21e056dfe97cebe64f9d47afe2c92b4ee66.pdf","download_url":"https://www.academia.edu/attachments/86072971/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Small_World_Networks_of_corruption.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072971/e21e056dfe97cebe64f9d47afe2c92b4ee66.pdf?1652803643=\u0026response-content-disposition=attachment%3B+filename%3DSmall_World_Networks_of_corruption.pdf\u0026Expires=1733264972\u0026Signature=N-TxgHoRQCxt50UjXTzBkUbkeEH4qfXDbxIjaGDocAZB-QkMwMqRyIYFz5YGaTxlNty1gcSZS1xYkVdqyxdI-k0v0kHE3hF8vspRUH8FrkL9VDEsQwRGO7IEH8dgcaTOYOnysLtIDUPg1Czn9-kdWUtqx1~jq-01xvnH6fklsFreUNRCiMwgRySiz~pH63dyntb8TfgIPljqUhoRN5oxlkdpxfdcrFvjqmDZHNr74YPN3fqKKEujCtQxQCHlvVU8Yy7PgQESwXaj596baEqrrOcmdNP3xyLML2iCyUOFMy603~sEMjzWkPMaaijmKoh2ZtrfC3-eEL0rxyWuoEs56w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Small_World_Networks_of_corruption","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072971/thumbnails/1.jpg","file_name":"e21e056dfe97cebe64f9d47afe2c92b4ee66.pdf","download_url":"https://www.academia.edu/attachments/86072971/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Small_World_Networks_of_corruption.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072971/e21e056dfe97cebe64f9d47afe2c92b4ee66.pdf?1652803643=\u0026response-content-disposition=attachment%3B+filename%3DSmall_World_Networks_of_corruption.pdf\u0026Expires=1733264972\u0026Signature=N-TxgHoRQCxt50UjXTzBkUbkeEH4qfXDbxIjaGDocAZB-QkMwMqRyIYFz5YGaTxlNty1gcSZS1xYkVdqyxdI-k0v0kHE3hF8vspRUH8FrkL9VDEsQwRGO7IEH8dgcaTOYOnysLtIDUPg1Czn9-kdWUtqx1~jq-01xvnH6fklsFreUNRCiMwgRySiz~pH63dyntb8TfgIPljqUhoRN5oxlkdpxfdcrFvjqmDZHNr74YPN3fqKKEujCtQxQCHlvVU8Yy7PgQESwXaj596baEqrrOcmdNP3xyLML2iCyUOFMy603~sEMjzWkPMaaijmKoh2ZtrfC3-eEL0rxyWuoEs56w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":32622,"name":"Language Change","url":"https://www.academia.edu/Documents/in/Language_Change"}],"urls":[{"id":20534991,"url":"http://revistas.usta.edu.co/index.php/cife/article/viewFile/3133/3114"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317440"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317440/Stability_properties_of_reciprocal_networks"><img alt="Research paper thumbnail of Stability properties of reciprocal networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317440/Stability_properties_of_reciprocal_networks">Stability properties of reciprocal networks</a></div><div class="wp-workCard_item"><span>2016 American Control Conference (ACC)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the aims of network formation models is to explain salient properties of empirical network...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the aims of network formation models is to explain salient properties of empirical networks based on simple mechanisms for establishing links. Such mechanisms include random attachment (a generic abstraction of how new incoming nodes connect to a network), triadic closure (how the new nodes establish transitive relationships), and network response (how nodes react to new attachments). Our work analyzes the combined effect of the three mechanisms on various local and global network properties. In particular, we derive an expression for the asymptotic behavior of the local reciprocity coefficient as a function of the in-degree of a node. Furthermore, we show that the dynamics of the global reciprocity and the global clustering coefficients correspond to time-varying linear systems. Finally, we identify conditions under which the equilibria of both coefficients are asymptotically stable.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317440"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317440"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317440; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317440]").text(description); $(".js-view-count[data-work-id=79317440]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317440; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317440']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317440, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79317440]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317440,"title":"Stability properties of reciprocal networks","translated_title":"","metadata":{"abstract":"One of the aims of network formation models is to explain salient properties of empirical networks based on simple mechanisms for establishing links. Such mechanisms include random attachment (a generic abstraction of how new incoming nodes connect to a network), triadic closure (how the new nodes establish transitive relationships), and network response (how nodes react to new attachments). Our work analyzes the combined effect of the three mechanisms on various local and global network properties. In particular, we derive an expression for the asymptotic behavior of the local reciprocity coefficient as a function of the in-degree of a node. Furthermore, we show that the dynamics of the global reciprocity and the global clustering coefficients correspond to time-varying linear systems. Finally, we identify conditions under which the equilibria of both coefficients are asymptotically stable.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 American Control Conference (ACC)"},"translated_abstract":"One of the aims of network formation models is to explain salient properties of empirical networks based on simple mechanisms for establishing links. Such mechanisms include random attachment (a generic abstraction of how new incoming nodes connect to a network), triadic closure (how the new nodes establish transitive relationships), and network response (how nodes react to new attachments). Our work analyzes the combined effect of the three mechanisms on various local and global network properties. In particular, we derive an expression for the asymptotic behavior of the local reciprocity coefficient as a function of the in-degree of a node. Furthermore, we show that the dynamics of the global reciprocity and the global clustering coefficients correspond to time-varying linear systems. Finally, we identify conditions under which the equilibria of both coefficients are asymptotically stable.","internal_url":"https://www.academia.edu/79317440/Stability_properties_of_reciprocal_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:19.868-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Stability_properties_of_reciprocal_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":958429,"name":"Reciprocal","url":"https://www.academia.edu/Documents/in/Reciprocal"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="45387" id="papers"><div class="js-work-strip profile--work_container" data-work-id="96156199"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/96156199/The_%C3%93MICAS_alliance_an_international_research_program_on_multi_omics_for_crop_breeding_optimization"><img alt="Research paper thumbnail of The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization" class="work-thumbnail" src="https://attachments.academia-assets.com/98133121/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/96156199/The_%C3%93MICAS_alliance_an_international_research_program_on_multi_omics_for_crop_breeding_optimization">The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization</a></div><div class="wp-workCard_item"><span>Frontiers in Plant Science</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The OMICAS alliance is part of the Colombian government’s Scientific Ecosystem, established betwe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The OMICAS alliance is part of the Colombian government’s Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program’s kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools t...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="68b485a80cef0c2f9206c9077dec2ba8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:98133121,&quot;asset_id&quot;:96156199,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/98133121/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="96156199"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="96156199"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 96156199; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=96156199]").text(description); $(".js-view-count[data-work-id=96156199]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 96156199; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='96156199']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 96156199, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "68b485a80cef0c2f9206c9077dec2ba8" } } $('.js-work-strip[data-work-id=96156199]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":96156199,"title":"The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization","translated_title":"","metadata":{"abstract":"The OMICAS alliance is part of the Colombian government’s Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program’s kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools t...","publisher":"Frontiers Media SA","publication_name":"Frontiers in Plant Science"},"translated_abstract":"The OMICAS alliance is part of the Colombian government’s Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program’s kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools t...","internal_url":"https://www.academia.edu/96156199/The_%C3%93MICAS_alliance_an_international_research_program_on_multi_omics_for_crop_breeding_optimization","translated_internal_url":"","created_at":"2023-02-02T00:43:28.440-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":98133121,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98133121/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/98133121/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_OMICAS_alliance_an_international_res.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98133121/pdf-libre.pdf?1675359794=\u0026response-content-disposition=attachment%3B+filename%3DThe_OMICAS_alliance_an_international_res.pdf\u0026Expires=1733264972\u0026Signature=Y5lPb~Y1KlP6B5h6nAMCQqp9XQtxqSybby-zGPsebBIODQ2Wl6rb7e3qoPOY8z4fF8VQCJQ-xUJIPu1yqV2G-ywK1erBYRBM3Z6qEkbkN1L7yU0F22KUOLz6rvDtdleUk373fNF1YuZPyYMFV0huTqdJPVd6CPVk1WMR~NAlbBRTfGH6pQ3UsSvC13r8msRnuJZ1c5gMyjGef1EkbbKNDT5IpkdxxIj6iBpVmnUXc58Qzg8fkn1pP1KaSNwbAuNjTXhCuCIWtTOb5UycuKiCx5~3ctqs4HBv6nK~nPUrOo5-AondKrIdXoh0pUSq0dcgifQcHi-kSUsKy--HLmRBKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_ÓMICAS_alliance_an_international_research_program_on_multi_omics_for_crop_breeding_optimization","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":98133121,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/98133121/thumbnails/1.jpg","file_name":"pdf.pdf","download_url":"https://www.academia.edu/attachments/98133121/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_OMICAS_alliance_an_international_res.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/98133121/pdf-libre.pdf?1675359794=\u0026response-content-disposition=attachment%3B+filename%3DThe_OMICAS_alliance_an_international_res.pdf\u0026Expires=1733264972\u0026Signature=Y5lPb~Y1KlP6B5h6nAMCQqp9XQtxqSybby-zGPsebBIODQ2Wl6rb7e3qoPOY8z4fF8VQCJQ-xUJIPu1yqV2G-ywK1erBYRBM3Z6qEkbkN1L7yU0F22KUOLz6rvDtdleUk373fNF1YuZPyYMFV0huTqdJPVd6CPVk1WMR~NAlbBRTfGH6pQ3UsSvC13r8msRnuJZ1c5gMyjGef1EkbbKNDT5IpkdxxIj6iBpVmnUXc58Qzg8fkn1pP1KaSNwbAuNjTXhCuCIWtTOb5UycuKiCx5~3ctqs4HBv6nK~nPUrOo5-AondKrIdXoh0pUSq0dcgifQcHi-kSUsKy--HLmRBKg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5398,"name":"Biotechnology","url":"https://www.academia.edu/Documents/in/Biotechnology"}],"urls":[{"id":28616251,"url":"https://www.frontiersin.org/articles/10.3389/fpls.2022.992663/full"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83495740"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83495740/Supervised_Gene_Function_Prediction_Using_Spectral_Clustering_on_Gene_Co_expression_Networks"><img alt="Research paper thumbnail of Supervised Gene Function Prediction Using Spectral Clustering on Gene Co-expression Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83495740/Supervised_Gene_Function_Prediction_Using_Spectral_Clustering_on_Gene_Co_expression_Networks">Supervised Gene Function Prediction Using Spectral Clustering on Gene Co-expression Networks</a></div><div class="wp-workCard_item"><span>Complex Networks &amp; Their Applications X</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83495740"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83495740"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83495740; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83495740]").text(description); $(".js-view-count[data-work-id=83495740]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83495740; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83495740']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83495740, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83495740]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83495740,"title":"Supervised Gene Function Prediction Using Spectral Clustering on Gene Co-expression Networks","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Complex Networks \u0026 Their Applications X"},"translated_abstract":null,"internal_url":"https://www.academia.edu/83495740/Supervised_Gene_Function_Prediction_Using_Spectral_Clustering_on_Gene_Co_expression_Networks","translated_internal_url":"","created_at":"2022-07-21T02:37:50.119-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Supervised_Gene_Function_Prediction_Using_Spectral_Clustering_on_Gene_Co_expression_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":22332390,"url":"https://link.springer.com/content/pdf/10.1007/978-3-030-93413-2_54"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83495729"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83495729/Spectral_Evolution_of_Twitter_Mention_Networks"><img alt="Research paper thumbnail of Spectral Evolution of Twitter Mention Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83495729/Spectral_Evolution_of_Twitter_Mention_Networks">Spectral Evolution of Twitter Mention Networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This papers applies the spectral evolution model presented in [5] to networks of mentions between...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This papers applies the spectral evolution model presented in [5] to networks of mentions between Twitter users who identified messages with the most popular political hashtags in Colombia (during the period which concludes the disarmament of the Revolutionary Armed Forces of Colombia). The model characterizes the dynamics of each mention network (i.e., how new edges are established) in terms of the eigen decomposition of its adjacency matrix. It assumes that as new edges are established the eigenvalues change, while the eigenvectors remain constant. The goal of our work is to evaluate various link prediction methods that underlie the spectral evolution model. In particular, we consider prediction methods based on graph kernels and a learning algorithm that tries to estimate the trajectories of the spectrum. Our results show that the learning algorithm tends to outperform the kernel methods at predicting the formation of new edges.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83495729"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83495729"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83495729; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83495729]").text(description); $(".js-view-count[data-work-id=83495729]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83495729; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83495729']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83495729, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83495729]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83495729,"title":"Spectral Evolution of Twitter Mention Networks","translated_title":"","metadata":{"abstract":"This papers applies the spectral evolution model presented in [5] to networks of mentions between Twitter users who identified messages with the most popular political hashtags in Colombia (during the period which concludes the disarmament of the Revolutionary Armed Forces of Colombia). The model characterizes the dynamics of each mention network (i.e., how new edges are established) in terms of the eigen decomposition of its adjacency matrix. It assumes that as new edges are established the eigenvalues change, while the eigenvectors remain constant. The goal of our work is to evaluate various link prediction methods that underlie the spectral evolution model. In particular, we consider prediction methods based on graph kernels and a learning algorithm that tries to estimate the trajectories of the spectrum. Our results show that the learning algorithm tends to outperform the kernel methods at predicting the formation of new edges.","publisher":"COMPLEX NETWORKS","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"This papers applies the spectral evolution model presented in [5] to networks of mentions between Twitter users who identified messages with the most popular political hashtags in Colombia (during the period which concludes the disarmament of the Revolutionary Armed Forces of Colombia). The model characterizes the dynamics of each mention network (i.e., how new edges are established) in terms of the eigen decomposition of its adjacency matrix. It assumes that as new edges are established the eigenvalues change, while the eigenvectors remain constant. The goal of our work is to evaluate various link prediction methods that underlie the spectral evolution model. In particular, we consider prediction methods based on graph kernels and a learning algorithm that tries to estimate the trajectories of the spectrum. Our results show that the learning algorithm tends to outperform the kernel methods at predicting the formation of new edges.","internal_url":"https://www.academia.edu/83495729/Spectral_Evolution_of_Twitter_Mention_Networks","translated_internal_url":"","created_at":"2022-07-21T02:37:29.120-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Spectral_Evolution_of_Twitter_Mention_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[],"urls":[{"id":22332383,"url":"https://doi.org/10.1007/978-3-030-36687-2_44"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83495716"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83495716/Detecting_Hotspots_on_Networks"><img alt="Research paper thumbnail of Detecting Hotspots on Networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83495716/Detecting_Hotspots_on_Networks">Detecting Hotspots on Networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Traditional approaches for measuring the concentration of events pay little attention to the effe...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Traditional approaches for measuring the concentration of events pay little attention to the effects of topological properties. To overcome this limitation, our work develops a theoretical framework to determine whether events are concentrated on a subset of interconnected nodes. We focus on low-clustered networks with regular, Poisson, and power-law degree distributions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83495716"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83495716"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83495716; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83495716]").text(description); $(".js-view-count[data-work-id=83495716]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83495716; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83495716']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83495716, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=83495716]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83495716,"title":"Detecting Hotspots on Networks","translated_title":"","metadata":{"abstract":"Traditional approaches for measuring the concentration of events pay little attention to the effects of topological properties. To overcome this limitation, our work develops a theoretical framework to determine whether events are concentrated on a subset of interconnected nodes. We focus on low-clustered networks with regular, Poisson, and power-law degree distributions.","publisher":"COMPLEX NETWORKS","publication_date":{"day":null,"month":null,"year":2019,"errors":{}}},"translated_abstract":"Traditional approaches for measuring the concentration of events pay little attention to the effects of topological properties. To overcome this limitation, our work develops a theoretical framework to determine whether events are concentrated on a subset of interconnected nodes. We focus on low-clustered networks with regular, Poisson, and power-law degree distributions.","internal_url":"https://www.academia.edu/83495716/Detecting_Hotspots_on_Networks","translated_internal_url":"","created_at":"2022-07-21T02:37:09.521-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Detecting_Hotspots_on_Networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":22332379,"url":"https://doi.org/10.1007/978-3-030-36687-2_53"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="83495664"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/83495664/Characterizing_the_head_of_the_degree_distributions_of_growing_networks"><img alt="Research paper thumbnail of Characterizing the head of the degree distributions of growing networks" class="work-thumbnail" src="https://attachments.academia-assets.com/88818823/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/83495664/Characterizing_the_head_of_the_degree_distributions_of_growing_networks">Characterizing the head of the degree distributions of growing networks</a></div><div class="wp-workCard_item"><span>arXiv: Physics and Society</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The analysis in this paper helps to explain the formation of growing networks with degree distrib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="01d945f1df798a27fc2cd1ef00b98ebc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:88818823,&quot;asset_id&quot;:83495664,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/88818823/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="83495664"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="83495664"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 83495664; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=83495664]").text(description); $(".js-view-count[data-work-id=83495664]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 83495664; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='83495664']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 83495664, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "01d945f1df798a27fc2cd1ef00b98ebc" } } $('.js-work-strip[data-work-id=83495664]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":83495664,"title":"Characterizing the head of the degree distributions of growing networks","translated_title":"","metadata":{"abstract":"The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"arXiv: Physics and Society"},"translated_abstract":"The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...","internal_url":"https://www.academia.edu/83495664/Characterizing_the_head_of_the_degree_distributions_of_growing_networks","translated_internal_url":"","created_at":"2022-07-21T02:35:33.392-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":88818823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88818823/thumbnails/1.jpg","file_name":"2011.04643v2.pdf","download_url":"https://www.academia.edu/attachments/88818823/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterizing_the_head_of_the_degree_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88818823/2011.04643v2-libre.pdf?1658404639=\u0026response-content-disposition=attachment%3B+filename%3DCharacterizing_the_head_of_the_degree_di.pdf\u0026Expires=1733264972\u0026Signature=crfMELZt6T93nRAdXSb3iBlZ2zi1EHaQ5CmpulLamjV6t-wBtB7JAwezqmbhX6amM302nCyq8RecuGimR5QK4TUriYuvrcy5mvDvpojpKvihS-KclHehdqxh~oXLagX9pJkwm8GKDicY5J2fGkI5ZPGAyeSMxKY2teEGZ5zlyecGQqQqoctuIebGJxnYOlZihhMtZd8tiqA6F5OTIcaFQDyW3mNBsM9lNyhlifI-yv-XHjHJnn2lxNeEbJ~20NhgQhuZjo8TMDQg1J7PBq0pyQZkhHRzj3rIFLpE9WzDoVCa8nSN4KPT20fn4zMOB~PePCvQvnODBmBqM0lvDJaqIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Characterizing_the_head_of_the_degree_distributions_of_growing_networks","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":88818823,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/88818823/thumbnails/1.jpg","file_name":"2011.04643v2.pdf","download_url":"https://www.academia.edu/attachments/88818823/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterizing_the_head_of_the_degree_di.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/88818823/2011.04643v2-libre.pdf?1658404639=\u0026response-content-disposition=attachment%3B+filename%3DCharacterizing_the_head_of_the_degree_di.pdf\u0026Expires=1733264972\u0026Signature=crfMELZt6T93nRAdXSb3iBlZ2zi1EHaQ5CmpulLamjV6t-wBtB7JAwezqmbhX6amM302nCyq8RecuGimR5QK4TUriYuvrcy5mvDvpojpKvihS-KclHehdqxh~oXLagX9pJkwm8GKDicY5J2fGkI5ZPGAyeSMxKY2teEGZ5zlyecGQqQqoctuIebGJxnYOlZihhMtZd8tiqA6F5OTIcaFQDyW3mNBsM9lNyhlifI-yv-XHjHJnn2lxNeEbJ~20NhgQhuZjo8TMDQg1J7PBq0pyQZkhHRzj3rIFLpE9WzDoVCa8nSN4KPT20fn4zMOB~PePCvQvnODBmBqM0lvDJaqIw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":498,"name":"Physics","url":"https://www.academia.edu/Documents/in/Physics"}],"urls":[{"id":22332355,"url":"https://arxiv.org/pdf/2011.04643v2.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317455"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317455/Anomalous_node_detection_in_networks_with_communities_of_different_size"><img alt="Research paper thumbnail of Anomalous node detection in networks with communities of different size" class="work-thumbnail" src="https://attachments.academia-assets.com/86072976/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317455/Anomalous_node_detection_in_networks_with_communities_of_different_size">Anomalous node detection in networks with communities of different size</a></div><div class="wp-workCard_item"><span>2017 American Control Conference (ACC)</span><span>, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="273454b186bd68e6293a951df8f13709" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072976,&quot;asset_id&quot;:79317455,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072976/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317455"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317455"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317455; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317455]").text(description); $(".js-view-count[data-work-id=79317455]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317455; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317455']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317455, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "273454b186bd68e6293a951df8f13709" } } $('.js-work-strip[data-work-id=79317455]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317455,"title":"Anomalous node detection in networks with communities of different size","translated_title":"","metadata":{"publisher":"IEEE","grobid_abstract":"Based on two simple mechanisms for establishing and removing links, this paper defines an event-driven model for the anomalous node detection problem. This includes a representation for (i) the tendency of regular nodes to connect with similar others (i.e., establish homophilic relationships); and (ii) the tendency of anomalous nodes to connect to random targets (i.e., establish random connections across the network). Our approach is motivated by the desire to design scalable strategies for detecting signatures of anomalous behavior, using a formal representation to take into account the evolution of network properties. In particular, we assume that regular nodes are distributed across two communities (of different size), and propose an algorithm that identifies anomalous nodes based on both geometric and spectral measures. Our focus is on defining the anomalous detection problem in a mathematical framework and to highlight key challenges when certain topological properties dominate the problem (i.e., in terms of the strength of communities and their size).","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 American Control Conference (ACC)","grobid_abstract_attachment_id":86072976},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317455/Anomalous_node_detection_in_networks_with_communities_of_different_size","translated_internal_url":"","created_at":"2022-05-17T09:06:21.851-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072976/thumbnails/1.jpg","file_name":"07963443.pdf","download_url":"https://www.academia.edu/attachments/86072976/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anomalous_node_detection_in_networks_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072976/07963443-libre.pdf?1652804022=\u0026response-content-disposition=attachment%3B+filename%3DAnomalous_node_detection_in_networks_wit.pdf\u0026Expires=1733264972\u0026Signature=R68E9ni-hAyO2GjlV4cOtBQoQszxZ55WD0e82eJAdv3kHPaRgyYhan5q2w2B38JqjezD11R3xc3HpqkIegsZFesJf7oWLj-JrfskdCFKBnoeGU08~8cHbVfhCTkTTzk5uXIAizI3JnTHX4bQRLRJoS00tuiWopJqXlNAdliDFgeVWePB9HxH93eai5dIFbNihG2a0ldXDL10i4YZZcjQwhmaM5CRMUCak7c46YaE8LJSFFWjwkJ15P6sJFwcfN05sooEEjOTm0yPGpx6bM53YYnNXBkSuhmeehwpMfntdmrbnTewBT2xktHHXRdXGHF7SZQXQvAkQV8KDICq6Ek8Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Anomalous_node_detection_in_networks_with_communities_of_different_size","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072976,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072976/thumbnails/1.jpg","file_name":"07963443.pdf","download_url":"https://www.academia.edu/attachments/86072976/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Anomalous_node_detection_in_networks_wit.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072976/07963443-libre.pdf?1652804022=\u0026response-content-disposition=attachment%3B+filename%3DAnomalous_node_detection_in_networks_wit.pdf\u0026Expires=1733264972\u0026Signature=R68E9ni-hAyO2GjlV4cOtBQoQszxZ55WD0e82eJAdv3kHPaRgyYhan5q2w2B38JqjezD11R3xc3HpqkIegsZFesJf7oWLj-JrfskdCFKBnoeGU08~8cHbVfhCTkTTzk5uXIAizI3JnTHX4bQRLRJoS00tuiWopJqXlNAdliDFgeVWePB9HxH93eai5dIFbNihG2a0ldXDL10i4YZZcjQwhmaM5CRMUCak7c46YaE8LJSFFWjwkJ15P6sJFwcfN05sooEEjOTm0yPGpx6bM53YYnNXBkSuhmeehwpMfntdmrbnTewBT2xktHHXRdXGHF7SZQXQvAkQV8KDICq6Ek8Kg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":20535005,"url":"http://xplorestaging.ieee.org/ielx7/7951530/7962914/07963443.pdf?arnumber=7963443"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317453"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317453/A_top_down_supervised_learning_approach_to_hierarchical_multi_label_classification_in_networks"><img alt="Research paper thumbnail of A top-down supervised learning approach to hierarchical multi-label classification in networks" class="work-thumbnail" src="https://attachments.academia-assets.com/86072977/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317453/A_top_down_supervised_learning_approach_to_hierarchical_multi_label_classification_in_networks">A top-down supervised learning approach to hierarchical multi-label classification in networks</a></div><div class="wp-workCard_item"><span>Applied Network Science</span><span>, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Node classification is the task of inferring or predicting missing node attributes from informati...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Node classification is the task of inferring or predicting missing node attributes from information available for other nodes in a network. This paper presents a general prediction model to hierarchical multi-label classification, where the attributes to be inferred can be specified as a strict poset. It is based on a top-down classification approach that addresses hierarchical multi-label classification with supervised learning by building a local classifier per class. The proposed model is showcased with a case study on the prediction of gene functions for Oryza sativa Japonica , a variety of rice. It is compared to the Hierarchical Binomial-Neighborhood, a probabilistic model, by evaluating both approaches in terms of prediction performance and computational cost. The results in this work support the working hypothesis that the proposed model can achieve good levels of prediction efficiency, while scaling up in relation to the state of the art.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="476cb11e96c5af3b49f3d7b7397a424a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072977,&quot;asset_id&quot;:79317453,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072977/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317453"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317453"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317453; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317453]").text(description); $(".js-view-count[data-work-id=79317453]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317453; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317453']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317453, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "476cb11e96c5af3b49f3d7b7397a424a" } } $('.js-work-strip[data-work-id=79317453]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317453,"title":"A top-down supervised learning approach to hierarchical multi-label classification in networks","translated_title":"","metadata":{"abstract":"Node classification is the task of inferring or predicting missing node attributes from information available for other nodes in a network. This paper presents a general prediction model to hierarchical multi-label classification, where the attributes to be inferred can be specified as a strict poset. It is based on a top-down classification approach that addresses hierarchical multi-label classification with supervised learning by building a local classifier per class. The proposed model is showcased with a case study on the prediction of gene functions for Oryza sativa Japonica , a variety of rice. It is compared to the Hierarchical Binomial-Neighborhood, a probabilistic model, by evaluating both approaches in terms of prediction performance and computational cost. The results in this work support the working hypothesis that the proposed model can achieve good levels of prediction efficiency, while scaling up in relation to the state of the art.","publisher":"Appl. Netw. Sci.","ai_title_tag":"Top-Down Supervised Learning for Hierarchical Multi-Label Classification","publication_date":{"day":null,"month":null,"year":2022,"errors":{}},"publication_name":"Applied Network Science"},"translated_abstract":"Node classification is the task of inferring or predicting missing node attributes from information available for other nodes in a network. This paper presents a general prediction model to hierarchical multi-label classification, where the attributes to be inferred can be specified as a strict poset. It is based on a top-down classification approach that addresses hierarchical multi-label classification with supervised learning by building a local classifier per class. The proposed model is showcased with a case study on the prediction of gene functions for Oryza sativa Japonica , a variety of rice. It is compared to the Hierarchical Binomial-Neighborhood, a probabilistic model, by evaluating both approaches in terms of prediction performance and computational cost. The results in this work support the working hypothesis that the proposed model can achieve good levels of prediction efficiency, while scaling up in relation to the state of the art.","internal_url":"https://www.academia.edu/79317453/A_top_down_supervised_learning_approach_to_hierarchical_multi_label_classification_in_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:21.716-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072977/thumbnails/1.jpg","file_name":"s41109-022-00445-3.pdf","download_url":"https://www.academia.edu/attachments/86072977/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_top_down_supervised_learning_approach.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072977/s41109-022-00445-3-libre.pdf?1652804002=\u0026response-content-disposition=attachment%3B+filename%3DA_top_down_supervised_learning_approach.pdf\u0026Expires=1733264972\u0026Signature=GDbndfzqiL7I4DaoZrDQ9GvmBK-jcL86oRtmsnMaQkIZjVpIn~pjZ2a-afphGEFatyUU55VJ6p~DYQAbJzQIk3dmzNyp93b6S~Foq3Cqyl-xsACQdEZhgGrMVCCqmU5OS5d8xJJyYf8UbRQNW6jDe9pOpB~To1kcwumhq60A7XQGmG6RH1b26WEWuOWWmJWm192YvE9PJT3nLDZfQidFlukkikA2E4fQEg5qODYAFNARRneCDUMPhthsU1idfVs2PPji0p~qjDe5nRCI0VbBk0b3n5dIWoO6ATgefx7tbAzZMIHhcyJe5RJ9tWb-0PKVsN1DzjKjlZRL-3AG~6Z~Fg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_top_down_supervised_learning_approach_to_hierarchical_multi_label_classification_in_networks","translated_slug":"","page_count":17,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072977,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072977/thumbnails/1.jpg","file_name":"s41109-022-00445-3.pdf","download_url":"https://www.academia.edu/attachments/86072977/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_top_down_supervised_learning_approach.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072977/s41109-022-00445-3-libre.pdf?1652804002=\u0026response-content-disposition=attachment%3B+filename%3DA_top_down_supervised_learning_approach.pdf\u0026Expires=1733264972\u0026Signature=GDbndfzqiL7I4DaoZrDQ9GvmBK-jcL86oRtmsnMaQkIZjVpIn~pjZ2a-afphGEFatyUU55VJ6p~DYQAbJzQIk3dmzNyp93b6S~Foq3Cqyl-xsACQdEZhgGrMVCCqmU5OS5d8xJJyYf8UbRQNW6jDe9pOpB~To1kcwumhq60A7XQGmG6RH1b26WEWuOWWmJWm192YvE9PJT3nLDZfQidFlukkikA2E4fQEg5qODYAFNARRneCDUMPhthsU1idfVs2PPji0p~qjDe5nRCI0VbBk0b3n5dIWoO6ATgefx7tbAzZMIHhcyJe5RJ9tWb-0PKVsN1DzjKjlZRL-3AG~6Z~Fg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":465,"name":"Artificial Intelligence","url":"https://www.academia.edu/Documents/in/Artificial_Intelligence"},{"id":2008,"name":"Machine Learning","url":"https://www.academia.edu/Documents/in/Machine_Learning"}],"urls":[{"id":20535003,"url":"https://doi.org/10.1007/s41109-022-00445-3"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317452"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317452/Characterizing_the_head_of_the_degrees_distributions_of_growing_networks"><img alt="Research paper thumbnail of Characterizing the head of the degrees distributions of growing networks" class="work-thumbnail" src="https://attachments.academia-assets.com/86072979/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317452/Characterizing_the_head_of_the_degrees_distributions_of_growing_networks">Characterizing the head of the degrees distributions of growing networks</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The analysis in this paper helps to explain the formation of growing networks with degree distrib...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="a01ea339803b63534df3dc6106a6c2b0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072979,&quot;asset_id&quot;:79317452,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072979/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317452"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317452"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317452; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317452]").text(description); $(".js-view-count[data-work-id=79317452]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317452; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317452']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317452, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "a01ea339803b63534df3dc6106a6c2b0" } } $('.js-work-strip[data-work-id=79317452]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317452,"title":"Characterizing the head of the degrees distributions of growing networks","translated_title":"","metadata":{"abstract":"The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...","publication_date":{"day":9,"month":11,"year":2020,"errors":{}}},"translated_abstract":"The analysis in this paper helps to explain the formation of growing networks with degree distributions that follow extended exponential or power-law tails. We present a generic model in which edge dynamics are driven by a continuous attachment of new nodes and a mixed attachment mechanism that triggers random or preferential attachment. Furthermore, reciprocal edges to newly added nodes are established according to a response mechanism. The proposed framework extends previous mixed attachment models by allowing the number of new edges to vary according to various discrete probability distributions, including Poisson, Binomial, Zeta, and Log-Series. We derive analytical expressions for the limit in-degree distribution that results from the mixed attachment and response mechanisms. Moreover, we describe the evolution of the dynamics of the cumulative in-degree distribution. Simulation results illustrate how the number of new edges and the process of reciprocity significantly impact t...","internal_url":"https://www.academia.edu/79317452/Characterizing_the_head_of_the_degrees_distributions_of_growing_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:21.597-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072979,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072979/thumbnails/1.jpg","file_name":"2011.04643v1.pdf","download_url":"https://www.academia.edu/attachments/86072979/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterizing_the_head_of_the_degrees_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072979/2011.04643v1-libre.pdf?1652804997=\u0026response-content-disposition=attachment%3B+filename%3DCharacterizing_the_head_of_the_degrees_d.pdf\u0026Expires=1733264972\u0026Signature=Ut0AaNvq6j2-1VYQSftvmfpkBJlCThrJ5leGmeRzk~Km02DF35dtM-hqDe-h81Z5rsE0WxYSpexEcT9hpBtsSdTE0YssRhYVPgNTzZyqxR7pf4ysOKO7L7hXyOsB2l1ejCoPpOeRVn~VLR2mh23UFIHz1TrMkeE9ad27Tov66xZTI9ATvMOfSkAVR-WtXNKDwZbvxily201COwM7kdD4MGVPiutmeGOu6GtKLJr1jStGMn-hIdES~irndaep5zo0aNSApCE5Vkz82FcvQ51W1eEIacYb66MlQytIiZa2bDFA5ExdHbw5CrqRAaeTT6Rlfm56C59-rcuegBXufvad~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Characterizing_the_head_of_the_degrees_distributions_of_growing_networks","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072979,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072979/thumbnails/1.jpg","file_name":"2011.04643v1.pdf","download_url":"https://www.academia.edu/attachments/86072979/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Characterizing_the_head_of_the_degrees_d.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072979/2011.04643v1-libre.pdf?1652804997=\u0026response-content-disposition=attachment%3B+filename%3DCharacterizing_the_head_of_the_degrees_d.pdf\u0026Expires=1733264972\u0026Signature=Ut0AaNvq6j2-1VYQSftvmfpkBJlCThrJ5leGmeRzk~Km02DF35dtM-hqDe-h81Z5rsE0WxYSpexEcT9hpBtsSdTE0YssRhYVPgNTzZyqxR7pf4ysOKO7L7hXyOsB2l1ejCoPpOeRVn~VLR2mh23UFIHz1TrMkeE9ad27Tov66xZTI9ATvMOfSkAVR-WtXNKDwZbvxily201COwM7kdD4MGVPiutmeGOu6GtKLJr1jStGMn-hIdES~irndaep5zo0aNSApCE5Vkz82FcvQ51W1eEIacYb66MlQytIiZa2bDFA5ExdHbw5CrqRAaeTT6Rlfm56C59-rcuegBXufvad~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":20535002,"url":"https://arxiv.org/pdf/2011.04643v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317451"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317451/In_silico_Gene_Annotation_Prediction_Using_the_Co_expression_Network_Structure"><img alt="Research paper thumbnail of In-silico Gene Annotation Prediction Using the Co-expression Network Structure" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317451/In_silico_Gene_Annotation_Prediction_Using_the_Co_expression_Network_Structure">In-silico Gene Annotation Prediction Using the Co-expression Network Structure</a></div><div class="wp-workCard_item"><span>Complex Networks and Their Applications VIII</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Identifying which genes are involved in particular biological processes is relevant to understand...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Identifying which genes are involved in particular biological processes is relevant to understand the structure and function of a genome. A number of techniques have been proposed that aim to annotate genes, i.e., identify unknown biological associations between biological processes and genes. The ultimate goal of these techniques is to narrow down the search for promising candidates to carry out further studies through in-vivo experiments. This paper presents an approach for the in-silico prediction of functional gene annotations. It uses existing knowledge body of gene annotations of a given genome and the topological properties of its gene co-expression network, to train a supervised machine learning model that is designed to discover unknown annotations. The approach is applied to Oryza Sativa Japonica (a variety of rice). Our results show that the topological properties help in obtaining a more precise prediction for annotating genes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317451"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317451"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317451; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317451]").text(description); $(".js-view-count[data-work-id=79317451]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317451; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317451']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317451, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79317451]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317451,"title":"In-silico Gene Annotation Prediction Using the Co-expression Network Structure","translated_title":"","metadata":{"abstract":"Identifying which genes are involved in particular biological processes is relevant to understand the structure and function of a genome. A number of techniques have been proposed that aim to annotate genes, i.e., identify unknown biological associations between biological processes and genes. The ultimate goal of these techniques is to narrow down the search for promising candidates to carry out further studies through in-vivo experiments. This paper presents an approach for the in-silico prediction of functional gene annotations. It uses existing knowledge body of gene annotations of a given genome and the topological properties of its gene co-expression network, to train a supervised machine learning model that is designed to discover unknown annotations. The approach is applied to Oryza Sativa Japonica (a variety of rice). Our results show that the topological properties help in obtaining a more precise prediction for annotating genes.","publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Complex Networks and Their Applications VIII"},"translated_abstract":"Identifying which genes are involved in particular biological processes is relevant to understand the structure and function of a genome. A number of techniques have been proposed that aim to annotate genes, i.e., identify unknown biological associations between biological processes and genes. The ultimate goal of these techniques is to narrow down the search for promising candidates to carry out further studies through in-vivo experiments. This paper presents an approach for the in-silico prediction of functional gene annotations. It uses existing knowledge body of gene annotations of a given genome and the topological properties of its gene co-expression network, to train a supervised machine learning model that is designed to discover unknown annotations. The approach is applied to Oryza Sativa Japonica (a variety of rice). Our results show that the topological properties help in obtaining a more precise prediction for annotating genes.","internal_url":"https://www.academia.edu/79317451/In_silico_Gene_Annotation_Prediction_Using_the_Co_expression_Network_Structure","translated_internal_url":"","created_at":"2022-05-17T09:06:21.465-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"In_silico_Gene_Annotation_Prediction_Using_the_Co_expression_Network_Structure","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":4233,"name":"Computational Biology","url":"https://www.academia.edu/Documents/in/Computational_Biology"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"},{"id":865697,"name":"In Silico","url":"https://www.academia.edu/Documents/in/In_Silico"}],"urls":[{"id":20535001,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-36683-4_64"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317450"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317450/Dynamics_of_group_cohesion_in_homophilic_networks"><img alt="Research paper thumbnail of Dynamics of group cohesion in homophilic networks" class="work-thumbnail" src="https://attachments.academia-assets.com/86072973/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317450/Dynamics_of_group_cohesion_in_homophilic_networks">Dynamics of group cohesion in homophilic networks</a></div><div class="wp-workCard_item"><span>2017 IEEE 56th Annual Conference on Decision and Control (CDC)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Understanding cohesion and homophily in empirical networks allows us build better personalization...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Understanding cohesion and homophily in empirical networks allows us build better personalization and recommendation systems. This paper proposes a network model that explains the emergence of cohesion and homophily as an aggregate outcome at the group- and network-level. We introduce two simple mechanisms that capture the underlying tendencies of nodes to connect with similar and different others. Our main theoretical result presents conditions on the network under which it reaches high degrees of cohesion and homophily.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ed00557d30c44c565334112d4e8287a3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072973,&quot;asset_id&quot;:79317450,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072973/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317450"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317450"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317450; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317450]").text(description); $(".js-view-count[data-work-id=79317450]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317450; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317450']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317450, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ed00557d30c44c565334112d4e8287a3" } } $('.js-work-strip[data-work-id=79317450]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317450,"title":"Dynamics of group cohesion in homophilic networks","translated_title":"","metadata":{"abstract":"Understanding cohesion and homophily in empirical networks allows us build better personalization and recommendation systems. This paper proposes a network model that explains the emergence of cohesion and homophily as an aggregate outcome at the group- and network-level. We introduce two simple mechanisms that capture the underlying tendencies of nodes to connect with similar and different others. Our main theoretical result presents conditions on the network under which it reaches high degrees of cohesion and homophily.","publisher":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)"},"translated_abstract":"Understanding cohesion and homophily in empirical networks allows us build better personalization and recommendation systems. This paper proposes a network model that explains the emergence of cohesion and homophily as an aggregate outcome at the group- and network-level. We introduce two simple mechanisms that capture the underlying tendencies of nodes to connect with similar and different others. Our main theoretical result presents conditions on the network under which it reaches high degrees of cohesion and homophily.","internal_url":"https://www.academia.edu/79317450/Dynamics_of_group_cohesion_in_homophilic_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:21.313-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072973,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072973/thumbnails/1.jpg","file_name":"8263988.pdf","download_url":"https://www.academia.edu/attachments/86072973/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dynamics_of_group_cohesion_in_homophilic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072973/8263988-libre.pdf?1652803999=\u0026response-content-disposition=attachment%3B+filename%3DDynamics_of_group_cohesion_in_homophilic.pdf\u0026Expires=1733264972\u0026Signature=EwZseWLqd3VpCag7I02HnK8Veeq4oZlGvXV6TAG6C1L6ZNy0y0S~56zvI5MgloPHags23-Cfg2416nWBXFGwALmsbPyYTF0E~njrQzh4wW8Hek6txCUpMdjzKiXPwcidiNI9eVORYtvXdstfC~t5RDizMW0n3n33-hMoxsCCxruosNtPPOCLvQCl36VtXwhJPly7UG9TrfFUqAEcvC92tb6l6nhBZXkIp4Th4IlhpsYGkyhiOxVXKC7iCrXx3GATYimYcL0~TmjqQaLy7uR-GAKmaf9pI9kS-B02q2-TSr6QCP2y7It1okIyu6H1Y4UlnbU0OsuT6VZFZVB0KIvREw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Dynamics_of_group_cohesion_in_homophilic_networks","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072973,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072973/thumbnails/1.jpg","file_name":"8263988.pdf","download_url":"https://www.academia.edu/attachments/86072973/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Dynamics_of_group_cohesion_in_homophilic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072973/8263988-libre.pdf?1652803999=\u0026response-content-disposition=attachment%3B+filename%3DDynamics_of_group_cohesion_in_homophilic.pdf\u0026Expires=1733264972\u0026Signature=EwZseWLqd3VpCag7I02HnK8Veeq4oZlGvXV6TAG6C1L6ZNy0y0S~56zvI5MgloPHags23-Cfg2416nWBXFGwALmsbPyYTF0E~njrQzh4wW8Hek6txCUpMdjzKiXPwcidiNI9eVORYtvXdstfC~t5RDizMW0n3n33-hMoxsCCxruosNtPPOCLvQCl36VtXwhJPly7UG9TrfFUqAEcvC92tb6l6nhBZXkIp4Th4IlhpsYGkyhiOxVXKC7iCrXx3GATYimYcL0~TmjqQaLy7uR-GAKmaf9pI9kS-B02q2-TSr6QCP2y7It1okIyu6H1Y4UlnbU0OsuT6VZFZVB0KIvREw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":111436,"name":"IEEE","url":"https://www.academia.edu/Documents/in/IEEE"}],"urls":[{"id":20535000,"url":"https://doi.org/10.1109/CDC.2017.8263988"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317449"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317449/Dynamics_of_degree_distributions_of_social_networks"><img alt="Research paper thumbnail of Dynamics of degree distributions of social networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317449/Dynamics_of_degree_distributions_of_social_networks">Dynamics of degree distributions of social networks</a></div><div class="wp-workCard_item"><span>2017 IEEE 56th Annual Conference on Decision and Control (CDC)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Social network models aim to capture the complex structure of social connections. They are a fram...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Social network models aim to capture the complex structure of social connections. They are a framework for the design of control algorithms that take into account relationships, interactions, and communications between social actors. Based on three formation mechanisms — random attachment, triad formation, and network response — our work characterizes the dynamics of the degree distributions of social networks. In particular, we show that the complementary cumulative in- and out-degree distributions of highly clustered, reciprocal networks can be approximated by infinite dimensional time-varying linear systems. Furthermore, we determine the invariance of both limit distributions and the stability properties of the average degree.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317449"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317449"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317449; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317449]").text(description); $(".js-view-count[data-work-id=79317449]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317449; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317449']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317449, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79317449]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317449,"title":"Dynamics of degree distributions of social networks","translated_title":"","metadata":{"abstract":"Social network models aim to capture the complex structure of social connections. They are a framework for the design of control algorithms that take into account relationships, interactions, and communications between social actors. Based on three formation mechanisms — random attachment, triad formation, and network response — our work characterizes the dynamics of the degree distributions of social networks. In particular, we show that the complementary cumulative in- and out-degree distributions of highly clustered, reciprocal networks can be approximated by infinite dimensional time-varying linear systems. Furthermore, we determine the invariance of both limit distributions and the stability properties of the average degree.","publisher":"IEEE","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)"},"translated_abstract":"Social network models aim to capture the complex structure of social connections. They are a framework for the design of control algorithms that take into account relationships, interactions, and communications between social actors. Based on three formation mechanisms — random attachment, triad formation, and network response — our work characterizes the dynamics of the degree distributions of social networks. In particular, we show that the complementary cumulative in- and out-degree distributions of highly clustered, reciprocal networks can be approximated by infinite dimensional time-varying linear systems. Furthermore, we determine the invariance of both limit distributions and the stability properties of the average degree.","internal_url":"https://www.academia.edu/79317449/Dynamics_of_degree_distributions_of_social_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:21.159-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Dynamics_of_degree_distributions_of_social_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":20534999,"url":"http://xplorestaging.ieee.org/ielx7/8253407/8263624/08264406.pdf?arnumber=8264406"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317448"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317448/A_Random_Network_Model_for_the_Analysis_of_Blockchain_Designs_with_Communication_Delay"><img alt="Research paper thumbnail of A Random Network Model for the Analysis of Blockchain Designs with Communication Delay" class="work-thumbnail" src="https://attachments.academia-assets.com/86072914/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317448/A_Random_Network_Model_for_the_Analysis_of_Blockchain_Designs_with_Communication_Delay">A Random Network Model for the Analysis of Blockchain Designs with Communication Delay</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2019</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper proposes a random network model for blockchains, a distributed hierarchical data struc...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper proposes a random network model for blockchains, a distributed hierarchical data structure of blocks that has found several applications in various industries. The model is parametric on two probability distribution functions governing block production and communication delay, which are key to capture the complexity of the mechanism used to synchronize the many distributed local copies of a blockchain. The proposed model is equipped with simulation algorithms for both bounded and unbounded number of distributed copies of the blockchain. They are used to study fast blockchain systems, i.e., blockchains in which the average time of block production can match the average time of message broadcasting used for blockchain synchronization. In particular, the model and the algorithms are useful to understand efficiency criteria associated with fast blockchains for identifying, e.g., when increasing the block production will have negative impact on the stability of the distributed...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="96fa3588541396de21a710275ed3202a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072914,&quot;asset_id&quot;:79317448,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072914/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317448"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317448"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317448; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317448]").text(description); $(".js-view-count[data-work-id=79317448]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317448; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317448']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317448, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "96fa3588541396de21a710275ed3202a" } } $('.js-work-strip[data-work-id=79317448]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317448,"title":"A Random Network Model for the Analysis of Blockchain Designs with Communication Delay","translated_title":"","metadata":{"abstract":"This paper proposes a random network model for blockchains, a distributed hierarchical data structure of blocks that has found several applications in various industries. The model is parametric on two probability distribution functions governing block production and communication delay, which are key to capture the complexity of the mechanism used to synchronize the many distributed local copies of a blockchain. The proposed model is equipped with simulation algorithms for both bounded and unbounded number of distributed copies of the blockchain. They are used to study fast blockchain systems, i.e., blockchains in which the average time of block production can match the average time of message broadcasting used for blockchain synchronization. In particular, the model and the algorithms are useful to understand efficiency criteria associated with fast blockchains for identifying, e.g., when increasing the block production will have negative impact on the stability of the distributed...","publisher":"ArXiv","ai_title_tag":"Random Network Model for Blockchain with Communication Delay","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"This paper proposes a random network model for blockchains, a distributed hierarchical data structure of blocks that has found several applications in various industries. The model is parametric on two probability distribution functions governing block production and communication delay, which are key to capture the complexity of the mechanism used to synchronize the many distributed local copies of a blockchain. The proposed model is equipped with simulation algorithms for both bounded and unbounded number of distributed copies of the blockchain. They are used to study fast blockchain systems, i.e., blockchains in which the average time of block production can match the average time of message broadcasting used for blockchain synchronization. In particular, the model and the algorithms are useful to understand efficiency criteria associated with fast blockchains for identifying, e.g., when increasing the block production will have negative impact on the stability of the distributed...","internal_url":"https://www.academia.edu/79317448/A_Random_Network_Model_for_the_Analysis_of_Blockchain_Designs_with_Communication_Delay","translated_internal_url":"","created_at":"2022-05-17T09:06:21.025-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072914,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072914/thumbnails/1.jpg","file_name":"1909.06435v1.pdf","download_url":"https://www.academia.edu/attachments/86072914/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Random_Network_Model_for_the_Analysis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072914/1909.06435v1-libre.pdf?1652804039=\u0026response-content-disposition=attachment%3B+filename%3DA_Random_Network_Model_for_the_Analysis.pdf\u0026Expires=1733264972\u0026Signature=JZjin0tvmx9BPQQ~mKRHrw-xOtA7oSky6ACCU2Z69tN3oaThqgfrgp1Q1dWmkJKX3DpnLwyXzoKnsJtYU0znMhdKOU7cafxM~MKDlQf19cuXULGw-O31VPz05hjsLyWIVpmVUDAA5EiiJqoFof8h7daBlLEjrkBBr3l1PJopBEEQYhJt3s4vCLLk5dhmzsN-ORGkhc58bEvdJRl5vvpJjGze6fw8MSBXDrI0BP-bLfp9F4G6VfDD9AJ550mZyUTDCFWOzFSB~dmkwcIaXOKm5EYxLlqbx3f1pzVJZqDmtgtn6kVyUMaN4onRla2zTw03fIY9hG2mnYjOn4NWqXRKhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_Random_Network_Model_for_the_Analysis_of_Blockchain_Designs_with_Communication_Delay","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072914,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072914/thumbnails/1.jpg","file_name":"1909.06435v1.pdf","download_url":"https://www.academia.edu/attachments/86072914/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_Random_Network_Model_for_the_Analysis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072914/1909.06435v1-libre.pdf?1652804039=\u0026response-content-disposition=attachment%3B+filename%3DA_Random_Network_Model_for_the_Analysis.pdf\u0026Expires=1733264972\u0026Signature=JZjin0tvmx9BPQQ~mKRHrw-xOtA7oSky6ACCU2Z69tN3oaThqgfrgp1Q1dWmkJKX3DpnLwyXzoKnsJtYU0znMhdKOU7cafxM~MKDlQf19cuXULGw-O31VPz05hjsLyWIVpmVUDAA5EiiJqoFof8h7daBlLEjrkBBr3l1PJopBEEQYhJt3s4vCLLk5dhmzsN-ORGkhc58bEvdJRl5vvpJjGze6fw8MSBXDrI0BP-bLfp9F4G6VfDD9AJ550mZyUTDCFWOzFSB~dmkwcIaXOKm5EYxLlqbx3f1pzVJZqDmtgtn6kVyUMaN4onRla2zTw03fIY9hG2mnYjOn4NWqXRKhw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"}],"urls":[{"id":20534998,"url":"https://arxiv.org/pdf/1909.06435v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317447"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317447/J_un_2_01_2_Power_law_weighted_networks_from_local_attachments"><img alt="Research paper thumbnail of J un 2 01 2 Power-law weighted networks from local attachments" class="work-thumbnail" src="https://attachments.academia-assets.com/86072913/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317447/J_un_2_01_2_Power_law_weighted_networks_from_local_attachments">J un 2 01 2 Power-law weighted networks from local attachments</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This letter introduces a mechanism for constructing, through a process of distributed decision-ma...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This letter introduces a mechanism for constructing, through a process of distributed decision-making, substrates for the study of collective dynamics on extended power-law weighted networks with both a desired scaling exponent and a fixed clustering coefficient. The analytical results show that the connectivity distribution converges to the scaling behavior often found in social and engineering systems. To illustrate the approach of the proposed framework we generate network substrates that resemble steady state properties of the empirical citation distributions of (i) publications indexed by the Institute for Scientific Information from 1981 to 1997; (ii) patents granted by the U.S. Patent and Trademark Office from 1975 to 1999; and (iii) opinions written by the Supreme Court and the cases they cite from 1754 to 2002.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="737a075284ce1dbdc144dc6de6da98c3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072913,&quot;asset_id&quot;:79317447,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072913/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317447"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317447"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317447; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317447]").text(description); $(".js-view-count[data-work-id=79317447]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317447; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317447']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317447, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "737a075284ce1dbdc144dc6de6da98c3" } } $('.js-work-strip[data-work-id=79317447]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317447,"title":"J un 2 01 2 Power-law weighted networks from local attachments","translated_title":"","metadata":{"abstract":"This letter introduces a mechanism for constructing, through a process of distributed decision-making, substrates for the study of collective dynamics on extended power-law weighted networks with both a desired scaling exponent and a fixed clustering coefficient. The analytical results show that the connectivity distribution converges to the scaling behavior often found in social and engineering systems. To illustrate the approach of the proposed framework we generate network substrates that resemble steady state properties of the empirical citation distributions of (i) publications indexed by the Institute for Scientific Information from 1981 to 1997; (ii) patents granted by the U.S. Patent and Trademark Office from 1975 to 1999; and (iii) opinions written by the Supreme Court and the cases they cite from 1754 to 2002.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}}},"translated_abstract":"This letter introduces a mechanism for constructing, through a process of distributed decision-making, substrates for the study of collective dynamics on extended power-law weighted networks with both a desired scaling exponent and a fixed clustering coefficient. The analytical results show that the connectivity distribution converges to the scaling behavior often found in social and engineering systems. To illustrate the approach of the proposed framework we generate network substrates that resemble steady state properties of the empirical citation distributions of (i) publications indexed by the Institute for Scientific Information from 1981 to 1997; (ii) patents granted by the U.S. Patent and Trademark Office from 1975 to 1999; and (iii) opinions written by the Supreme Court and the cases they cite from 1754 to 2002.","internal_url":"https://www.academia.edu/79317447/J_un_2_01_2_Power_law_weighted_networks_from_local_attachments","translated_internal_url":"","created_at":"2022-05-17T09:06:20.900-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072913,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072913/thumbnails/1.jpg","file_name":"Preprint-EPL12.pdf","download_url":"https://www.academia.edu/attachments/86072913/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"J_un_2_01_2_Power_law_weighted_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072913/Preprint-EPL12-libre.pdf?1652804035=\u0026response-content-disposition=attachment%3B+filename%3DJ_un_2_01_2_Power_law_weighted_networks.pdf\u0026Expires=1733264972\u0026Signature=YBZa-Rm4TxMUTBA3~mdWeWxEcdR8p3GcS-MUOyEdyZsTeEQMks6uvKjlcFEtdcwPh2xHlX8P34hDjyY73XC0shBhTJw1Xz0XIeTwZpHr3KsTzPMLGEyOF~6XJzzta3Yr1yvr2SMFDWov-sslHQmDk7tHYUhg0bF8NG5-d4RILbX2Indd3wJ7NTAFpAErz5Wj3YTjWwNU2US9y6mDOA~Qlg2Fb9MCbpnYjtb8QkeHxF1CMeLYYNlyQDXxjsHgn268fIWjk0vURK1ryhWsJNoTDiuoGv4niY7oxSNbULt6iso3NF9UCFvPEnT2zOYcxAdy4ddQmLdmi~nd41ETQUKvMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"J_un_2_01_2_Power_law_weighted_networks_from_local_attachments","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072913,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072913/thumbnails/1.jpg","file_name":"Preprint-EPL12.pdf","download_url":"https://www.academia.edu/attachments/86072913/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"J_un_2_01_2_Power_law_weighted_networks.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072913/Preprint-EPL12-libre.pdf?1652804035=\u0026response-content-disposition=attachment%3B+filename%3DJ_un_2_01_2_Power_law_weighted_networks.pdf\u0026Expires=1733264972\u0026Signature=YBZa-Rm4TxMUTBA3~mdWeWxEcdR8p3GcS-MUOyEdyZsTeEQMks6uvKjlcFEtdcwPh2xHlX8P34hDjyY73XC0shBhTJw1Xz0XIeTwZpHr3KsTzPMLGEyOF~6XJzzta3Yr1yvr2SMFDWov-sslHQmDk7tHYUhg0bF8NG5-d4RILbX2Indd3wJ7NTAFpAErz5Wj3YTjWwNU2US9y6mDOA~Qlg2Fb9MCbpnYjtb8QkeHxF1CMeLYYNlyQDXxjsHgn268fIWjk0vURK1ryhWsJNoTDiuoGv4niY7oxSNbULt6iso3NF9UCFvPEnT2zOYcxAdy4ddQmLdmi~nd41ETQUKvMA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":20534997,"url":"http://pmoriano.com/docs/Preprint-EPL12.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317446"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317446/Preferential_attachment_with_power_law_growth_in_the_number_of_new_edges"><img alt="Research paper thumbnail of Preferential attachment with power law growth in the number of new edges" class="work-thumbnail" src="https://attachments.academia-assets.com/86072912/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317446/Preferential_attachment_with_power_law_growth_in_the_number_of_new_edges">Preferential attachment with power law growth in the number of new edges</a></div><div class="wp-workCard_item"><span>2017 IEEE 56th Annual Conference on Decision and Control (CDC)</span><span>, 2017</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The Barabasi-Albert model is used to explain the formation of power laws in the degree distributi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The Barabasi-Albert model is used to explain the formation of power laws in the degree distributions of networks. The model assumes that the principle of preferential attachment underlies the growth of networks, that is, new nodes connects to a fixed number of nodes with a probability that is proportional to their degrees. Yet, for empirical networks the number of new edges is often not constant, but varies as more nodes become part of the network. This paper considers an extension to the original Barabasi-Albert model, in which the number of edges established by a new node follows a power law distribution with support in the total number of nodes. While most new nodes connect to a few nodes, some new nodes connect to a larger number. We first characterize the dynamics of growth of the degree of the nodes. Second, we identify sufficient conditions under which the expected value of the average degree of the network is asymptotically stable. Finally, we show how the dynamics of the mo...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="41373134a6e2ab2596979f2a1ebecc2a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072912,&quot;asset_id&quot;:79317446,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072912/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317446"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317446"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317446; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317446]").text(description); $(".js-view-count[data-work-id=79317446]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317446; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317446']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317446, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "41373134a6e2ab2596979f2a1ebecc2a" } } $('.js-work-strip[data-work-id=79317446]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317446,"title":"Preferential attachment with power law growth in the number of new edges","translated_title":"","metadata":{"abstract":"The Barabasi-Albert model is used to explain the formation of power laws in the degree distributions of networks. The model assumes that the principle of preferential attachment underlies the growth of networks, that is, new nodes connects to a fixed number of nodes with a probability that is proportional to their degrees. Yet, for empirical networks the number of new edges is often not constant, but varies as more nodes become part of the network. This paper considers an extension to the original Barabasi-Albert model, in which the number of edges established by a new node follows a power law distribution with support in the total number of nodes. While most new nodes connect to a few nodes, some new nodes connect to a larger number. We first characterize the dynamics of growth of the degree of the nodes. Second, we identify sufficient conditions under which the expected value of the average degree of the network is asymptotically stable. Finally, we show how the dynamics of the mo...","publisher":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)","publication_date":{"day":null,"month":null,"year":2017,"errors":{}},"publication_name":"2017 IEEE 56th Annual Conference on Decision and Control (CDC)"},"translated_abstract":"The Barabasi-Albert model is used to explain the formation of power laws in the degree distributions of networks. The model assumes that the principle of preferential attachment underlies the growth of networks, that is, new nodes connects to a fixed number of nodes with a probability that is proportional to their degrees. Yet, for empirical networks the number of new edges is often not constant, but varies as more nodes become part of the network. This paper considers an extension to the original Barabasi-Albert model, in which the number of edges established by a new node follows a power law distribution with support in the total number of nodes. While most new nodes connect to a few nodes, some new nodes connect to a larger number. We first characterize the dynamics of growth of the degree of the nodes. Second, we identify sufficient conditions under which the expected value of the average degree of the network is asymptotically stable. Finally, we show how the dynamics of the mo...","internal_url":"https://www.academia.edu/79317446/Preferential_attachment_with_power_law_growth_in_the_number_of_new_edges","translated_internal_url":"","created_at":"2022-05-17T09:06:20.754-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072912,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072912/thumbnails/1.jpg","file_name":"8264048.pdf","download_url":"https://www.academia.edu/attachments/86072912/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Preferential_attachment_with_power_law_g.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072912/8264048-libre.pdf?1652804028=\u0026response-content-disposition=attachment%3B+filename%3DPreferential_attachment_with_power_law_g.pdf\u0026Expires=1733264972\u0026Signature=bMP0ogwtdf8BwQJDKp4fylwG1Fp3Xz6vYE9HuyPf9FBLd~C7GnIsNgn1oHssJTm4d0U-RLCu9Jok-cotX1~aU1~54ndfPFILzKu0Wo1MAD8PHRztRWbyhxireS2qK0QGYdkbn3DfwfbrVhhgGsS1QkHBrTCUzfz6Hge3GoYj7M-iTZYPGytzaDdCAwWo7peNxxnvGXy4n9rT5Tl9TQ301p~6pBqN9Gmo3isJbi8UhPrebtoZh0AJBfkjxcEcOvlrGp73F6f6nvmGqjTr0hMNwr5byfSGpqNfKqhtvf2D5sFAyV-NLhIQ3t6GsTDmuQL3t2lEKc9-dvlEG~1N~25m~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Preferential_attachment_with_power_law_growth_in_the_number_of_new_edges","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072912,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072912/thumbnails/1.jpg","file_name":"8264048.pdf","download_url":"https://www.academia.edu/attachments/86072912/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Preferential_attachment_with_power_law_g.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072912/8264048-libre.pdf?1652804028=\u0026response-content-disposition=attachment%3B+filename%3DPreferential_attachment_with_power_law_g.pdf\u0026Expires=1733264972\u0026Signature=bMP0ogwtdf8BwQJDKp4fylwG1Fp3Xz6vYE9HuyPf9FBLd~C7GnIsNgn1oHssJTm4d0U-RLCu9Jok-cotX1~aU1~54ndfPFILzKu0Wo1MAD8PHRztRWbyhxireS2qK0QGYdkbn3DfwfbrVhhgGsS1QkHBrTCUzfz6Hge3GoYj7M-iTZYPGytzaDdCAwWo7peNxxnvGXy4n9rT5Tl9TQ301p~6pBqN9Gmo3isJbi8UhPrebtoZh0AJBfkjxcEcOvlrGp73F6f6nvmGqjTr0hMNwr5byfSGpqNfKqhtvf2D5sFAyV-NLhIQ3t6GsTDmuQL3t2lEKc9-dvlEG~1N~25m~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":20534996,"url":"https://jfinke.org/wp-content/papercite-data/pdf/8264048.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317445"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317445/Using_Overlapping_Communities_and_Network_Structure_for_Identifying_Reduced_Groups_of_Stress_Responsive_Genes"><img alt="Research paper thumbnail of Using Overlapping Communities and Network Structure for Identifying Reduced Groups of Stress Responsive Genes" class="work-thumbnail" src="https://attachments.academia-assets.com/86072915/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317445/Using_Overlapping_Communities_and_Network_Structure_for_Identifying_Reduced_Groups_of_Stress_Responsive_Genes">Using Overlapping Communities and Network Structure for Identifying Reduced Groups of Stress Responsive Genes</a></div><div class="wp-workCard_item"><span>ArXiv</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This paper proposes a workflow to identify genes responding to a specific treatment in an organis...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This paper proposes a workflow to identify genes responding to a specific treatment in an organism, such as abiotic stresses, a main cause of extensive agricultural production losses worldwide. On input RNA sequencing read counts (measured for genotypes under control and treatment conditions) and biological replicates, it outputs a collection of characterized genes, potentially relevant to treatment. Technically, the proposed approach is both a generalization and an extension of WGCNA; its main goal is to identify specific modules in a network of genes after a sequence of normalization and filtering steps. In this work, module detection is achieved by using Hierarchical Link Clustering, which can recognize overlapping communities and thus have more biological meaning given the overlapping regulatory domains of systems that generate co-expression. Additional steps and information are also added to the workflow, where some networks in the intermediate steps are forced to be scale-free...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="97247383124d685c0ecaaeb8f9280fca" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072915,&quot;asset_id&quot;:79317445,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072915/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317445"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317445"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317445; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317445]").text(description); $(".js-view-count[data-work-id=79317445]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317445; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317445']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317445, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "97247383124d685c0ecaaeb8f9280fca" } } $('.js-work-strip[data-work-id=79317445]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317445,"title":"Using Overlapping Communities and Network Structure for Identifying Reduced Groups of Stress Responsive Genes","translated_title":"","metadata":{"abstract":"This paper proposes a workflow to identify genes responding to a specific treatment in an organism, such as abiotic stresses, a main cause of extensive agricultural production losses worldwide. On input RNA sequencing read counts (measured for genotypes under control and treatment conditions) and biological replicates, it outputs a collection of characterized genes, potentially relevant to treatment. Technically, the proposed approach is both a generalization and an extension of WGCNA; its main goal is to identify specific modules in a network of genes after a sequence of normalization and filtering steps. In this work, module detection is achieved by using Hierarchical Link Clustering, which can recognize overlapping communities and thus have more biological meaning given the overlapping regulatory domains of systems that generate co-expression. Additional steps and information are also added to the workflow, where some networks in the intermediate steps are forced to be scale-free...","publisher":"ArXiv","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"ArXiv"},"translated_abstract":"This paper proposes a workflow to identify genes responding to a specific treatment in an organism, such as abiotic stresses, a main cause of extensive agricultural production losses worldwide. On input RNA sequencing read counts (measured for genotypes under control and treatment conditions) and biological replicates, it outputs a collection of characterized genes, potentially relevant to treatment. Technically, the proposed approach is both a generalization and an extension of WGCNA; its main goal is to identify specific modules in a network of genes after a sequence of normalization and filtering steps. In this work, module detection is achieved by using Hierarchical Link Clustering, which can recognize overlapping communities and thus have more biological meaning given the overlapping regulatory domains of systems that generate co-expression. Additional steps and information are also added to the workflow, where some networks in the intermediate steps are forced to be scale-free...","internal_url":"https://www.academia.edu/79317445/Using_Overlapping_Communities_and_Network_Structure_for_Identifying_Reduced_Groups_of_Stress_Responsive_Genes","translated_internal_url":"","created_at":"2022-05-17T09:06:20.631-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072915,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072915/thumbnails/1.jpg","file_name":"2011.03526v1.pdf","download_url":"https://www.academia.edu/attachments/86072915/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Overlapping_Communities_and_Networ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072915/2011.03526v1-libre.pdf?1652804034=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Overlapping_Communities_and_Networ.pdf\u0026Expires=1733264972\u0026Signature=N0ZJzc1oGNRBck80jecOWxAXzjaIdgcoTih2wJTogzdrPTv63hUdnwIclJncfvTV5QSsOkqYOvcZlraUyTroHQj8Kh3PKNy-QbkmDthBRTmJVDVHCz25nOd9j6SoqYn7lyWDqzzBCWUyzOzLiWaxWyPyzAVkzq~~EeC8bPcKL1iNnc~kt-moBfYHJkxzNa3bcwE4WW7nzsz2u-MF3SGUhWIYocb1Dd1ELjMwbcMvswECKC5nUaZCTAn5VtLLumq1Ta7vIc3EE5ceE9oeSdih6RUBJezBbNG10jCLKzC~wqDKAWf6-T1m4EkbIK7Wjv-lSEOTTb9goCCZYH-cQ92Nrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Using_Overlapping_Communities_and_Network_Structure_for_Identifying_Reduced_Groups_of_Stress_Responsive_Genes","translated_slug":"","page_count":16,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072915,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072915/thumbnails/1.jpg","file_name":"2011.03526v1.pdf","download_url":"https://www.academia.edu/attachments/86072915/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Using_Overlapping_Communities_and_Networ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072915/2011.03526v1-libre.pdf?1652804034=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Overlapping_Communities_and_Networ.pdf\u0026Expires=1733264972\u0026Signature=N0ZJzc1oGNRBck80jecOWxAXzjaIdgcoTih2wJTogzdrPTv63hUdnwIclJncfvTV5QSsOkqYOvcZlraUyTroHQj8Kh3PKNy-QbkmDthBRTmJVDVHCz25nOd9j6SoqYn7lyWDqzzBCWUyzOzLiWaxWyPyzAVkzq~~EeC8bPcKL1iNnc~kt-moBfYHJkxzNa3bcwE4WW7nzsz2u-MF3SGUhWIYocb1Dd1ELjMwbcMvswECKC5nUaZCTAn5VtLLumq1Ta7vIc3EE5ceE9oeSdih6RUBJezBbNG10jCLKzC~wqDKAWf6-T1m4EkbIK7Wjv-lSEOTTb9goCCZYH-cQ92Nrw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":86072916,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072916/thumbnails/1.jpg","file_name":"2011.03526v1.pdf","download_url":"https://www.academia.edu/attachments/86072916/download_file","bulk_download_file_name":"Using_Overlapping_Communities_and_Networ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072916/2011.03526v1-libre.pdf?1652804045=\u0026response-content-disposition=attachment%3B+filename%3DUsing_Overlapping_Communities_and_Networ.pdf\u0026Expires=1733264972\u0026Signature=dFLPK9rqmmrl~k1KTSqh0o8GgR7grRcYhWcaSMoHrp24djl3~5~hkji-JxX2VOvH-sSssJpTFZOj7anP3sziT8kVI7nFS5DfaZQwgFVz8ev~XjtWDQNPdST7qAIPhRdzEIFKtBB4C35LIXf5eS4Vy1MABCl0kJ~ThA5XXJEw7zjQvEMjgi5vdw~9V2cRrSSX917mmxjjveYl9w3FqiP4oWV~c4IEmzH5zfOnN6MaQU3zB9RGDb9GzmrdIj190PpIxYtIUU8nrfm76fX4mVcnjyxadbA9iNIGQE2ktpin-D-vnIx~0f2H-JvfW5ZiiDVV1RQH5YiIQMW5W~rASFpaJg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":3193313,"name":"arXiv","url":"https://www.academia.edu/Documents/in/arXiv"}],"urls":[{"id":20534995,"url":"https://arxiv.org/pdf/2011.03526v1.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317444"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317444/Algorithmic_Analysis_of_Blockchain_Efficiency_with_Communication_Delay"><img alt="Research paper thumbnail of Algorithmic Analysis of Blockchain Efficiency with Communication Delay" class="work-thumbnail" src="https://attachments.academia-assets.com/86072911/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317444/Algorithmic_Analysis_of_Blockchain_Efficiency_with_Communication_Delay">Algorithmic Analysis of Blockchain Efficiency with Communication Delay</a></div><div class="wp-workCard_item"><span>Fundamental Approaches to Software Engineering</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f4d6a84407e3d2c18deca4f80d4ea240" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072911,&quot;asset_id&quot;:79317444,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072911/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317444"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317444"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317444; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317444]").text(description); $(".js-view-count[data-work-id=79317444]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317444; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317444']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317444, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f4d6a84407e3d2c18deca4f80d4ea240" } } $('.js-work-strip[data-work-id=79317444]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317444,"title":"Algorithmic Analysis of Blockchain Efficiency with Communication Delay","translated_title":"","metadata":{"publisher":"Springer International Publishing","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Fundamental Approaches to Software Engineering"},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317444/Algorithmic_Analysis_of_Blockchain_Efficiency_with_Communication_Delay","translated_internal_url":"","created_at":"2022-05-17T09:06:20.433-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072911/thumbnails/1.jpg","file_name":"978-3-030-45234-6_20.pdf","download_url":"https://www.academia.edu/attachments/86072911/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Algorithmic_Analysis_of_Blockchain_Effic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072911/978-3-030-45234-6_20-libre.pdf?1652804039=\u0026response-content-disposition=attachment%3B+filename%3DAlgorithmic_Analysis_of_Blockchain_Effic.pdf\u0026Expires=1733264972\u0026Signature=XNdRjJ-NJIn00U3qWEiVfhSy1e35BvKMy8pfnyITUcRbgQHN14D-Kz9Doh3glV9dAV3iDeh-fxJK5DqK5bbuEGlTh6du51nQb7ZZatFvYsV0TOGwCMOE7c4o88O-Td5x8C0xeiwICY9DvCKp07d4ErmS4o5pB-dTjKMNgI7N3c7G8UWTlhpW5qkvK3Ph~sLaLekR8ZE9GX7KQ4unQyF9Tref-4Y0I27OYK6lmNCc5vhqDmGf1qzQ~qnnQvbgaJ6cvBtjcqSfcXnAotc4Xe4neoYXkwQkBNz0ARJHxSoRmCRdNtJWxYCrJjpbrL5JOX3Swh5Hbi3RixkHsrUZZhxG-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Algorithmic_Analysis_of_Blockchain_Efficiency_with_Communication_Delay","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072911,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072911/thumbnails/1.jpg","file_name":"978-3-030-45234-6_20.pdf","download_url":"https://www.academia.edu/attachments/86072911/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Algorithmic_Analysis_of_Blockchain_Effic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072911/978-3-030-45234-6_20-libre.pdf?1652804039=\u0026response-content-disposition=attachment%3B+filename%3DAlgorithmic_Analysis_of_Blockchain_Effic.pdf\u0026Expires=1733264972\u0026Signature=XNdRjJ-NJIn00U3qWEiVfhSy1e35BvKMy8pfnyITUcRbgQHN14D-Kz9Doh3glV9dAV3iDeh-fxJK5DqK5bbuEGlTh6du51nQb7ZZatFvYsV0TOGwCMOE7c4o88O-Td5x8C0xeiwICY9DvCKp07d4ErmS4o5pB-dTjKMNgI7N3c7G8UWTlhpW5qkvK3Ph~sLaLekR8ZE9GX7KQ4unQyF9Tref-4Y0I27OYK6lmNCc5vhqDmGf1qzQ~qnnQvbgaJ6cvBtjcqSfcXnAotc4Xe4neoYXkwQkBNz0ARJHxSoRmCRdNtJWxYCrJjpbrL5JOX3Swh5Hbi3RixkHsrUZZhxG-A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":2199949,"name":"Blockchain","url":"https://www.academia.edu/Documents/in/Blockchain"}],"urls":[{"id":20534994,"url":"http://link.springer.com/content/pdf/10.1007/978-3-030-45234-6_20"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317443"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317443/Spectral_evolution_with_approximated_eigenvalue_trajectories_for_link_prediction"><img alt="Research paper thumbnail of Spectral evolution with approximated eigenvalue trajectories for link prediction" class="work-thumbnail" src="https://attachments.academia-assets.com/86072972/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317443/Spectral_evolution_with_approximated_eigenvalue_trajectories_for_link_prediction">Spectral evolution with approximated eigenvalue trajectories for link prediction</a></div><div class="wp-workCard_item"><span>Social Network Analysis and Mining</span><span>, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="517a15410e5b39a1a1789d5ee0f78f1b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072972,&quot;asset_id&quot;:79317443,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072972/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317443"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317443"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317443; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317443]").text(description); $(".js-view-count[data-work-id=79317443]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317443; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317443']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317443, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "517a15410e5b39a1a1789d5ee0f78f1b" } } $('.js-work-strip[data-work-id=79317443]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317443,"title":"Spectral evolution with approximated eigenvalue trajectories for link prediction","translated_title":"","metadata":{"publisher":"Springer Science and Business Media LLC","grobid_abstract":"The spectral evolution model aims to characterize the growth of large networks (i.e., how they evolve as new edges are established) in terms of the eigenvalue decomposition of the adjacency matrices. It assumes that, while eigenvectors remain constant, eigenvalues evolve in a predictable manner over time. This paper extends the original formulation of the model twofold. First, it presents a method to compute an approximation of the spectral evolution of eigenvalues based on the Rayleigh quotient. Second, it proposes an algorithm to estimate the evolution of eigenvalues by extrapolating only a fraction of their approximated values. The proposed model is used to characterize mention networks of users who posted tweets that include the most popular political hashtags in Colombia from August 2017 to August 2018 (the period which concludes the disarmament of the Revolutionary Armed Forces of Colombia). To evaluate the extent to which the spectral evolution model resembles these networks, link prediction methods based on learning algorithms (i.e., extrapolation and regression) and graph kernels are implemented. Experimental results show that the learning algorithms deployed on the approximated trajectories outperform the usual kernel and extrapolation methods at predicting the formation of new edges.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Social Network Analysis and Mining","grobid_abstract_attachment_id":86072972},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317443/Spectral_evolution_with_approximated_eigenvalue_trajectories_for_link_prediction","translated_internal_url":"","created_at":"2022-05-17T09:06:20.303-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072972/thumbnails/1.jpg","file_name":"2006.12657v1.pdf","download_url":"https://www.academia.edu/attachments/86072972/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spectral_evolution_with_approximated_eig.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072972/2006.12657v1-libre.pdf?1652804040=\u0026response-content-disposition=attachment%3B+filename%3DSpectral_evolution_with_approximated_eig.pdf\u0026Expires=1733264972\u0026Signature=RvaBM27jPb5BV1B7JjJ216HOH5jqpPO3AAWQS53a-1OAqpsjiSj8g~cWw-wuv~olYULmHbbBTTxYhLNhmgl6LJrVqBy5IXivnU1sEJhAxAvY76Q3linkoGR3KRaefTkOCOep7kvvwqUzEh1xkiuEfApsCiTTos3FubsIQW6dNwdqNwrxzRiAiQjicM-ZRRsNrWOrJxjHYzlhi6yyzDHgtfw6KKFS2qpEeMfilLMTp1mQzCqjqk~7neiXqb2YUvWX~i8tQPppIiZwB3vKhClRYJAdnCqqa9OhkLDwhvNLefcSYZzL5PD1KLV0PGlsugPmI8fCrg2lUvB67dE8f3H90Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Spectral_evolution_with_approximated_eigenvalue_trajectories_for_link_prediction","translated_slug":"","page_count":20,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072972,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072972/thumbnails/1.jpg","file_name":"2006.12657v1.pdf","download_url":"https://www.academia.edu/attachments/86072972/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Spectral_evolution_with_approximated_eig.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072972/2006.12657v1-libre.pdf?1652804040=\u0026response-content-disposition=attachment%3B+filename%3DSpectral_evolution_with_approximated_eig.pdf\u0026Expires=1733264972\u0026Signature=RvaBM27jPb5BV1B7JjJ216HOH5jqpPO3AAWQS53a-1OAqpsjiSj8g~cWw-wuv~olYULmHbbBTTxYhLNhmgl6LJrVqBy5IXivnU1sEJhAxAvY76Q3linkoGR3KRaefTkOCOep7kvvwqUzEh1xkiuEfApsCiTTos3FubsIQW6dNwdqNwrxzRiAiQjicM-ZRRsNrWOrJxjHYzlhi6yyzDHgtfw6KKFS2qpEeMfilLMTp1mQzCqjqk~7neiXqb2YUvWX~i8tQPppIiZwB3vKhClRYJAdnCqqa9OhkLDwhvNLefcSYZzL5PD1KLV0PGlsugPmI8fCrg2lUvB67dE8f3H90Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":891011,"name":"Eigenvalues and Eigenvectors","url":"https://www.academia.edu/Documents/in/Eigenvalues_and_Eigenvectors"}],"urls":[{"id":20534993,"url":"http://link.springer.com/content/pdf/10.1007/s13278-020-00674-3.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317442"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317442/Community_Based_Event_Detection_in_Temporal_Networks"><img alt="Research paper thumbnail of Community-Based Event Detection in Temporal Networks" class="work-thumbnail" src="https://attachments.academia-assets.com/86072918/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317442/Community_Based_Event_Detection_in_Temporal_Networks">Community-Based Event Detection in Temporal Networks</a></div><div class="wp-workCard_item"><span>Scientific Reports</span><span>, 2019</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dced003df792caeb36e127533724b081" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072918,&quot;asset_id&quot;:79317442,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072918/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317442"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317442"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317442; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317442]").text(description); $(".js-view-count[data-work-id=79317442]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317442; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317442']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317442, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dced003df792caeb36e127533724b081" } } $('.js-work-strip[data-work-id=79317442]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317442,"title":"Community-Based Event Detection in Temporal Networks","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":null,"month":null,"year":2019,"errors":{}},"publication_name":"Scientific Reports"},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317442/Community_Based_Event_Detection_in_Temporal_Networks","translated_internal_url":"","created_at":"2022-05-17T09:06:20.149-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072918/thumbnails/1.jpg","file_name":"s41598-019-40137-0.pdf","download_url":"https://www.academia.edu/attachments/86072918/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Community_Based_Event_Detection_in_Tempo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072918/s41598-019-40137-0-libre.pdf?1652804025=\u0026response-content-disposition=attachment%3B+filename%3DCommunity_Based_Event_Detection_in_Tempo.pdf\u0026Expires=1733264972\u0026Signature=Wkne4JXlbQJ310iRj9WoKBI4NbbnzHq9c~SPzx0g2yANiIjV6ywE5ZjVmTEPXchi66dm6WGmi2K6terq~5NpCNH0idnxWcOou-8fWE0KXM0CVQwhYPiPYp8k~mEky8g-C5PJaKNvhgCdhxUfkng0WqbEa7CvqEyhtXfROpQzKBArxIFBuQ20jneG9gACiQG0gYfK1AnVoa-S2299MPAyHpNPBWa12dJzA9zlNl-Z5ghXJ~M9EHcC37Bm1z8Z-lgXVktgGT0366IiUgBtL1yOHqMUqomFnmpF4yXX0f3eHJWZAVTbcGOolUIK33nNApromug8FFzvH4IzP~AyV9Zesg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Community_Based_Event_Detection_in_Temporal_Networks","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072918,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072918/thumbnails/1.jpg","file_name":"s41598-019-40137-0.pdf","download_url":"https://www.academia.edu/attachments/86072918/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Community_Based_Event_Detection_in_Tempo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072918/s41598-019-40137-0-libre.pdf?1652804025=\u0026response-content-disposition=attachment%3B+filename%3DCommunity_Based_Event_Detection_in_Tempo.pdf\u0026Expires=1733264972\u0026Signature=Wkne4JXlbQJ310iRj9WoKBI4NbbnzHq9c~SPzx0g2yANiIjV6ywE5ZjVmTEPXchi66dm6WGmi2K6terq~5NpCNH0idnxWcOou-8fWE0KXM0CVQwhYPiPYp8k~mEky8g-C5PJaKNvhgCdhxUfkng0WqbEa7CvqEyhtXfROpQzKBArxIFBuQ20jneG9gACiQG0gYfK1AnVoa-S2299MPAyHpNPBWa12dJzA9zlNl-Z5ghXJ~M9EHcC37Bm1z8Z-lgXVktgGT0366IiUgBtL1yOHqMUqomFnmpF4yXX0f3eHJWZAVTbcGOolUIK33nNApromug8FFzvH4IzP~AyV9Zesg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"}],"urls":[{"id":20534992,"url":"http://www.nature.com/articles/s41598-019-40137-0.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317441"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317441/Small_World_Networks_of_corruption"><img alt="Research paper thumbnail of Small-World Networks of corruption" class="work-thumbnail" src="https://attachments.academia-assets.com/86072971/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317441/Small_World_Networks_of_corruption">Small-World Networks of corruption</a></div><div class="wp-workCard_item"><span>Revista CIFE: Lecturas de Economía Social</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="5fe33df29757e03132688d2cd229a4c8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:86072971,&quot;asset_id&quot;:79317441,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/86072971/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317441"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317441"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317441; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317441]").text(description); $(".js-view-count[data-work-id=79317441]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317441; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317441']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317441, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "5fe33df29757e03132688d2cd229a4c8" } } $('.js-work-strip[data-work-id=79317441]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317441,"title":"Small-World Networks of corruption","translated_title":"","metadata":{"publisher":"Universidad Santo Tomas","grobid_abstract":"Collective behavior forms and spreads through social contact. This thesis introduces a framework for understanding how the structure of social ties may impact the evolution of bribery. We represent relationships as highly clustered networks with small characteristic path lengths (i.e., small-world models which have 'local' and 'long-range' contacts). Based on a principal-agent-client formulation, our model focuses on the effects of clustering on an equilibrium of persistent bribery. Collective outcomes depend on decision-making mechanisms that rely on sensitivity functions, which capture the level of influence between local contacts. Moreover, we represent the evolution of the network * Artículo de investigación resultado del proyecto realizado en la Universidad Javeriana, Cali-Colombia por los autores.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Revista CIFE: Lecturas de Economía Social","grobid_abstract_attachment_id":86072971},"translated_abstract":null,"internal_url":"https://www.academia.edu/79317441/Small_World_Networks_of_corruption","translated_internal_url":"","created_at":"2022-05-17T09:06:19.959-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":86072971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072971/thumbnails/1.jpg","file_name":"e21e056dfe97cebe64f9d47afe2c92b4ee66.pdf","download_url":"https://www.academia.edu/attachments/86072971/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Small_World_Networks_of_corruption.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072971/e21e056dfe97cebe64f9d47afe2c92b4ee66.pdf?1652803643=\u0026response-content-disposition=attachment%3B+filename%3DSmall_World_Networks_of_corruption.pdf\u0026Expires=1733264972\u0026Signature=N-TxgHoRQCxt50UjXTzBkUbkeEH4qfXDbxIjaGDocAZB-QkMwMqRyIYFz5YGaTxlNty1gcSZS1xYkVdqyxdI-k0v0kHE3hF8vspRUH8FrkL9VDEsQwRGO7IEH8dgcaTOYOnysLtIDUPg1Czn9-kdWUtqx1~jq-01xvnH6fklsFreUNRCiMwgRySiz~pH63dyntb8TfgIPljqUhoRN5oxlkdpxfdcrFvjqmDZHNr74YPN3fqKKEujCtQxQCHlvVU8Yy7PgQESwXaj596baEqrrOcmdNP3xyLML2iCyUOFMy603~sEMjzWkPMaaijmKoh2ZtrfC3-eEL0rxyWuoEs56w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Small_World_Networks_of_corruption","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[{"id":86072971,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/86072971/thumbnails/1.jpg","file_name":"e21e056dfe97cebe64f9d47afe2c92b4ee66.pdf","download_url":"https://www.academia.edu/attachments/86072971/download_file?st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&st=MTczMzI2MTM3Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Small_World_Networks_of_corruption.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/86072971/e21e056dfe97cebe64f9d47afe2c92b4ee66.pdf?1652803643=\u0026response-content-disposition=attachment%3B+filename%3DSmall_World_Networks_of_corruption.pdf\u0026Expires=1733264972\u0026Signature=N-TxgHoRQCxt50UjXTzBkUbkeEH4qfXDbxIjaGDocAZB-QkMwMqRyIYFz5YGaTxlNty1gcSZS1xYkVdqyxdI-k0v0kHE3hF8vspRUH8FrkL9VDEsQwRGO7IEH8dgcaTOYOnysLtIDUPg1Czn9-kdWUtqx1~jq-01xvnH6fklsFreUNRCiMwgRySiz~pH63dyntb8TfgIPljqUhoRN5oxlkdpxfdcrFvjqmDZHNr74YPN3fqKKEujCtQxQCHlvVU8Yy7PgQESwXaj596baEqrrOcmdNP3xyLML2iCyUOFMy603~sEMjzWkPMaaijmKoh2ZtrfC3-eEL0rxyWuoEs56w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":724,"name":"Economics","url":"https://www.academia.edu/Documents/in/Economics"},{"id":32622,"name":"Language Change","url":"https://www.academia.edu/Documents/in/Language_Change"}],"urls":[{"id":20534991,"url":"http://revistas.usta.edu.co/index.php/cife/article/viewFile/3133/3114"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="79317440"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/79317440/Stability_properties_of_reciprocal_networks"><img alt="Research paper thumbnail of Stability properties of reciprocal networks" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/79317440/Stability_properties_of_reciprocal_networks">Stability properties of reciprocal networks</a></div><div class="wp-workCard_item"><span>2016 American Control Conference (ACC)</span><span>, 2016</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">One of the aims of network formation models is to explain salient properties of empirical network...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">One of the aims of network formation models is to explain salient properties of empirical networks based on simple mechanisms for establishing links. Such mechanisms include random attachment (a generic abstraction of how new incoming nodes connect to a network), triadic closure (how the new nodes establish transitive relationships), and network response (how nodes react to new attachments). Our work analyzes the combined effect of the three mechanisms on various local and global network properties. In particular, we derive an expression for the asymptotic behavior of the local reciprocity coefficient as a function of the in-degree of a node. Furthermore, we show that the dynamics of the global reciprocity and the global clustering coefficients correspond to time-varying linear systems. Finally, we identify conditions under which the equilibria of both coefficients are asymptotically stable.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="79317440"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="79317440"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 79317440; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=79317440]").text(description); $(".js-view-count[data-work-id=79317440]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 79317440; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='79317440']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 79317440, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=79317440]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":79317440,"title":"Stability properties of reciprocal networks","translated_title":"","metadata":{"abstract":"One of the aims of network formation models is to explain salient properties of empirical networks based on simple mechanisms for establishing links. Such mechanisms include random attachment (a generic abstraction of how new incoming nodes connect to a network), triadic closure (how the new nodes establish transitive relationships), and network response (how nodes react to new attachments). Our work analyzes the combined effect of the three mechanisms on various local and global network properties. In particular, we derive an expression for the asymptotic behavior of the local reciprocity coefficient as a function of the in-degree of a node. Furthermore, we show that the dynamics of the global reciprocity and the global clustering coefficients correspond to time-varying linear systems. Finally, we identify conditions under which the equilibria of both coefficients are asymptotically stable.","publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"2016 American Control Conference (ACC)"},"translated_abstract":"One of the aims of network formation models is to explain salient properties of empirical networks based on simple mechanisms for establishing links. Such mechanisms include random attachment (a generic abstraction of how new incoming nodes connect to a network), triadic closure (how the new nodes establish transitive relationships), and network response (how nodes react to new attachments). Our work analyzes the combined effect of the three mechanisms on various local and global network properties. In particular, we derive an expression for the asymptotic behavior of the local reciprocity coefficient as a function of the in-degree of a node. Furthermore, we show that the dynamics of the global reciprocity and the global clustering coefficients correspond to time-varying linear systems. Finally, we identify conditions under which the equilibria of both coefficients are asymptotically stable.","internal_url":"https://www.academia.edu/79317440/Stability_properties_of_reciprocal_networks","translated_internal_url":"","created_at":"2022-05-17T09:06:19.868-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":316649,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Stability_properties_of_reciprocal_networks","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":316649,"first_name":"Jorge","middle_initials":null,"last_name":"Finke","page_name":"Finke","domain_name":"javeriana","created_at":"2011-01-26T04:19:09.875-08:00","display_name":"Jorge Finke","url":"https://javeriana.academia.edu/Finke"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":958429,"name":"Reciprocal","url":"https://www.academia.edu/Documents/in/Reciprocal"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "0828fc5a8724f82ccd7547b457e861f5c53912a5a49c8e4d2a2347a32effbb7b", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="pQGo9XH2RtljSIhT8Pg2AnZI99zX1+zcivyxrLbdrTSV04hyLELL6eay92OFeAVnAz/tljP7T4w27aFxoWF2cg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://javeriana.academia.edu/Finke" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Z2L2j6JfJsLugZ5GZ53HvDpRj9rUsviFU2vxHH+Y3wFXsNYI/+ur8mt74XYSHfTZTyaVkDCeW9XveuHBaCQERw==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10