CINXE.COM
High Energy Physics - Theory
<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> <title>High Energy Physics - Theory </title> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="apple-touch-icon" sizes="180x180" href="/static/browse/0.3.4/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="/static/browse/0.3.4/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="/static/browse/0.3.4/images/icons/favicon-16x16.png"> <link rel="manifest" href="/static/browse/0.3.4/images/icons/site.webmanifest"> <link rel="mask-icon" href="/static/browse/0.3.4/images/icons/safari-pinned-tab.svg" color="#5bbad5"> <meta name="msapplication-TileColor" content="#da532c"> <meta name="theme-color" content="#ffffff"> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/arXiv.css?v=20240822" /> <link rel="stylesheet" type="text/css" media="print" href="/static/browse/0.3.4/css/arXiv-print.css?v=20200611" /> <link rel="stylesheet" type="text/css" media="screen" href="/static/browse/0.3.4/css/browse_search.css" /> <script language="javascript" src="/static/browse/0.3.4/js/accordion.js" /></script> <script src="/static/browse/0.3.4/js/mathjaxToggle.min.js" type="text/javascript"></script> <script type="text/javascript" language="javascript">mathjaxToggle();</script> </head> <body class="with-cu-identity"> <div class="flex-wrap-footer"> <header> <a href="#content" class="is-sr-only">Skip to main content</a> <!-- start desktop header --> <div class="columns is-vcentered is-hidden-mobile" id="cu-identity"> <div class="column" id="cu-logo"> <a href="https://www.cornell.edu/"><img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University" /></a> </div><div class="column" id="support-ack"> <span id="support-ack-url">We gratefully acknowledge support from the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors.</span> <a href="https://info.arxiv.org/about/donate.html" class="btn-header-donate">Donate</a> </div> </div> <div id="header" class="is-hidden-mobile"> <a aria-hidden="true" tabindex="-1" href="/IgnoreMe"></a> <div class="header-breadcrumbs"> <a href="/"><img src="/static/browse/0.3.4/images/arxiv-logo-one-color-white.svg" alt="arxiv logo" style="height:40px;"/></a> <span>></span> <a href="/list/hep-th/recent">hep-th</a> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div><!-- /end desktop header --> <div class="mobile-header"> <div class="columns is-mobile"> <div class="column logo-arxiv"><a href="https://arxiv.org/"><img src="/static/browse/0.3.4/images/arxiv-logomark-small-white.svg" alt="arXiv logo" style="height:60px;" /></a></div> <div class="column logo-cornell"><a href="https://www.cornell.edu/"> <picture> <source media="(min-width: 501px)" srcset="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg 400w" sizes="400w" /> <source srcset="/static/browse/0.3.4/images/icons/cu/cornell_seal_simple_black.svg 2x" /> <img src="/static/browse/0.3.4/images/icons/cu/cornell-reduced-white-SMALL.svg" alt="Cornell University Logo" /> </picture> </a></div> <div class="column nav" id="toggle-container" role="menubar"> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-white"><title>open search</title><path d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"/></svg></button> <div class="mobile-toggle-block toggle-target"> <form class="mobile-search-form" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <input class="input" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <input type="hidden" name="source" value="header"> <input type="hidden" name="searchtype" value="all"> <button class="button">GO</button> </div> </form> </div> <button class="toggle-control"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-white" role="menu"><title>open navigation menu</title><path d="M16 132h416c8.837 0 16-7.163 16-16V76c0-8.837-7.163-16-16-16H16C7.163 60 0 67.163 0 76v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16zm0 160h416c8.837 0 16-7.163 16-16v-40c0-8.837-7.163-16-16-16H16c-8.837 0-16 7.163-16 16v40c0 8.837 7.163 16 16 16z"/ ></svg></button> <div class="mobile-toggle-block toggle-target"> <nav class="mobile-menu" aria-labelledby="mobilemenulabel"> <h2 id="mobilemenulabel">quick links</h2> <ul> <li><a href="https://arxiv.org/login">Login</a></li> <li><a href="https://info.arxiv.org/help">Help Pages</a></li> <li><a href="https://info.arxiv.org/about">About</a></li> </ul> </nav> </div> </div> </div> </div><!-- /end mobile-header --> </header> <main> <div id="content"> <div id='content-inner'> <div id='dlpage'> <h1>High Energy Physics - Theory</h1> <ul> <li><a href="#item0">New submissions</a></li> <li><a href="#item14">Cross-lists</a></li> <li><a href="#item24">Replacements</a></li> </ul> <p>See <a id="recent-hep-th" aria-labelledby="recent-hep-th" href="/list/hep-th/recent">recent</a> articles</p> <h3>Showing new listings for Monday, 25 November 2024</h3> <div class='paging'>Total of 43 entries </div> <div class='morefewer'>Showing up to 2000 entries per page: <a href=/list/hep-th/new?skip=0&show=1000 rel="nofollow"> fewer</a> | <span style="color: #454545">more</span> | <span style="color: #454545">all</span> </div> <dl id='articles'> <h3>New submissions (showing 13 of 13 entries)</h3> <dt> <a name='item1'>[1]</a> <a href ="/abs/2411.14529" title="Abstract" id="2411.14529"> arXiv:2411.14529 </a> [<a href="/pdf/2411.14529" title="Download PDF" id="pdf-2411.14529" aria-labelledby="pdf-2411.14529">pdf</a>, <a href="https://arxiv.org/html/2411.14529v1" title="View HTML" id="html-2411.14529" aria-labelledby="html-2411.14529" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14529" title="Other formats" id="oth-2411.14529" aria-labelledby="oth-2411.14529">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> De Sitter space constraints on brane tensions and couplings </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Hassan,+S">Saquib Hassan</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Obied,+G">Georges Obied</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=March-Russell,+J">John March-Russell</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 63 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Phenomenology (hep-ph) </div> <p class='mathjax'> We argue for the existence of bounds on the tensions of $p$-branes in de Sitter space in terms of the Hubble rate and the strength of a class of Chern-Simons-like couplings. The world-volume couplings involve Abelian 1-form gauge fields in the bulk and possibly field strengths intrinsic to the brane. In many cases these couplings are the D-brane Chern-Simons terms present in string theory, while in other cases they are the interactions of axion domain walls with $U(1)$ fields. Our arguments use the same logic and assumptions as the recent Festina Lente proposal (thus utilizing the properties of Nariai de Sitter black holes) and generalize it to extended objects, thereby providing a bottom-up set of constraints independent of any particular UV completion. We compare these bounds to the properties of (wrapped) D-branes in Type II string theory in the weak coupling limit, under the assumption that these properties are not modified significantly in de Sitter constructions. We find that all constraints are satisfied by D-branes, providing further evidence for the Festina Lente conjecture. For the particular case of 2-branes with Chern-Simons interactions we obtain a bound, which however can be evaded if the theory contains a light axion. Similarly, we find the bounds do not apply to axion domain walls due to the presence of the axion. </p> </div> </dd> <dt> <a name='item2'>[2]</a> <a href ="/abs/2411.14531" title="Abstract" id="2411.14531"> arXiv:2411.14531 </a> [<a href="/pdf/2411.14531" title="Download PDF" id="pdf-2411.14531" aria-labelledby="pdf-2411.14531">pdf</a>, <a href="/format/2411.14531" title="Other formats" id="oth-2411.14531" aria-labelledby="oth-2411.14531">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A Bound on 3d Mirror Pairs </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Zhong,+Z">Zhenghao Zhong</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 40 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> A distinctive duality present in 3d $\mathcal{N}=4$ theories is the 3d mirror symmetry. Under this duality, the Coulomb (Higgs) branch of one theory corresponds to the Higgs (Coulomb) branch of its mirror dual. This paper is divided into two parts. In the first part, we examine quiver gauge theories constructed from unitary gauge groups arranged in the shape of ABCD-type Dynkin diagrams. This is arguably the largest family of quivers in the literature with known 3d mirror pairs. Using brane lockings and magnetic quivers, we show how this family can be vastly expanded by replacing any number of the unitary gauge groups with special unitary gauge groups and finding the mirror pairs. In the second part, we argue that in the landscape of 3d mirror pairs, most Lagrangian (quiver gauge theories) will not have 3d mirror duals that are also Lagrangian (quiver gauge theories). For unitary quiver gauge theories, we conjecture that any quiver with an exceptional affine Dynkin diagram as a subquiver cannot have a Lagrangian (quiver gauge theory) mirror. </p> </div> </dd> <dt> <a name='item3'>[3]</a> <a href ="/abs/2411.14543" title="Abstract" id="2411.14543"> arXiv:2411.14543 </a> [<a href="/pdf/2411.14543" title="Download PDF" id="pdf-2411.14543" aria-labelledby="pdf-2411.14543">pdf</a>, <a href="https://arxiv.org/html/2411.14543v1" title="View HTML" id="html-2411.14543" aria-labelledby="html-2411.14543" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14543" title="Other formats" id="oth-2411.14543" aria-labelledby="oth-2411.14543">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> On Intersecting Conformal Defects </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Shachar,+T">Tom Shachar</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 28 pages, 5 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Statistical Mechanics (cond-mat.stat-mech) </div> <p class='mathjax'> We study the physics of 2 and 3 mutually intersecting conformal defects forming wedges and corners in general dimension. For 2 defects we derive the beta-function of the edge interactions for infinite and semi-infinite wedges and study them in the tricritical model in $d=3-\epsilon$ as example. We discuss the dependency of the anomalous dimension on the intersection angle, connecting to an old issue known in the literature. Additionally, we study trihedral corners formed by 3 planes, and compute the corner anomalous dimension which can be considered as a higher-dimensional analog of the cusp anomalous dimension. We also study 3-line corners related to the three-body potential of point-like impurities. </p> </div> </dd> <dt> <a name='item4'>[4]</a> <a href ="/abs/2411.14673" title="Abstract" id="2411.14673"> arXiv:2411.14673 </a> [<a href="/pdf/2411.14673" title="Download PDF" id="pdf-2411.14673" aria-labelledby="pdf-2411.14673">pdf</a>, <a href="https://arxiv.org/html/2411.14673v1" title="View HTML" id="html-2411.14673" aria-labelledby="html-2411.14673" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14673" title="Other formats" id="oth-2411.14673" aria-labelledby="oth-2411.14673">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Holographic black hole cosmologies </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Sahu,+A">Abhisek Sahu</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Van+Raamsdonk,+M">Mark Van Raamsdonk</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 37 pages, 17 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; General Relativity and Quantum Cosmology (gr-qc) </div> <p class='mathjax'> We describe and study a holographic construction of big-bang / big-crunch cosmological spacetimes where the matter consists of a lattice of black holes. The cosmological spacetime is dual to an entangled state of a collection of holographic CFTs associated with the second asymptotic regions of the black holes. For a cosmology with spatial slice geometry $\Sigma$, this state is constructed via a Euclidean path integral for the CFT on a geometry obtained by connecting two copies of $\Sigma$ by a lattice of tubes. In three-dimensional gravity, we describe the cosmological solutions and the associated Euclidean saddles explicitly. For the case of (globally) flat cosmology, we determine when the Euclidean solution associated with the cosmology provides the dominant saddle compared to other natural candidates that preserve the symmetries of the boundary space. We find that the cosmological saddle dominates when the black holes are sufficiently large and close together. Our cosmology has a mixed state version where the physics behind the black hole horizons is unspecified and the Euclidean construction involves a pair of CFTs with an ensemble of operator insertions correlated between the two CFTs. Various purifications (adding second asymptotic regions for the black holes) correspond to various ways to promote this ensemble to an interaction by adding auxiliary degrees of freedom that couple the two CFTs in the Euclidean picture. These auxiliary degrees of freedom provide a Hilbert space for the cosmology in the Lorentzian picture. </p> </div> </dd> <dt> <a name='item5'>[5]</a> <a href ="/abs/2411.14702" title="Abstract" id="2411.14702"> arXiv:2411.14702 </a> [<a href="/pdf/2411.14702" title="Download PDF" id="pdf-2411.14702" aria-labelledby="pdf-2411.14702">pdf</a>, <a href="https://arxiv.org/html/2411.14702v1" title="View HTML" id="html-2411.14702" aria-labelledby="html-2411.14702" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14702" title="Other formats" id="oth-2411.14702" aria-labelledby="oth-2411.14702">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> An effective description of the instability of coherent states of gravitons in string theory </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Damian,+C">Cesar Damian</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Loaiza-Brito,+O">Oscar Loaiza-Brito</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 19 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> We study the dynamics of a coherent state of closed type II string gravitons within the framework of the Steepest Entropy Ascent Quantum Thermodynamics, an effective model where the quantum evolution is driven by a maximal increase of entropy. We find that by perturbing the pure coherent state of gravitons by the presence of other coherent fields in the string spectrum, there exists conditions upon which the system undergoes decoherence by reaching thermodynamical equilibrium. Following the proposal by Dvali, et al., this suggests the instability of the classical dS space. We identify the time scale it takes the system to reach equilibrium consisting of a mixed state of fields in the string spectrum and compare it with the quantum-break time. Also we find that in such final state the quantum-break time seems to be larger than the classical break-time, in agreement with the Swampland conjectures about the dS solution in string theory. </p> </div> </dd> <dt> <a name='item6'>[6]</a> <a href ="/abs/2411.14866" title="Abstract" id="2411.14866"> arXiv:2411.14866 </a> [<a href="/pdf/2411.14866" title="Download PDF" id="pdf-2411.14866" aria-labelledby="pdf-2411.14866">pdf</a>, <a href="https://arxiv.org/html/2411.14866v1" title="View HTML" id="html-2411.14866" aria-labelledby="html-2411.14866" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14866" title="Other formats" id="oth-2411.14866" aria-labelledby="oth-2411.14866">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> BMS-like algebras: canonical realisations and BRST quantisation </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Batlle,+C">Carlos Batlle</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Figueroa-O'Farrill,+J">Jos茅 Figueroa-O'Farrill</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Gomis,+J">Joaquim Gomis</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Vishwa,+G">Girish Vishwa</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 21 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Rings and Algebras (math.RA); Representation Theory (math.RT) </div> <p class='mathjax'> We generalise BMS algebras in three dimensions by the introduction of an arbitrary real parameter $\lambda$, recovering the standard algebras (BMS, extended BMS and Weyl-BMS) for $\lambda=-1$. We exhibit a realisation of the (centreless) Weyl $\lambda$-BMS algebra in terms of the symplectic structure on the space of solutions of the massless Klein-Gordon equation in $2+1$, using the eigenstates of the spacetime momentum operator. The quadratic Casimir of the Lorentz algebra plays an essential r么le in the construction. The Weyl $\lambda$-BMS algebra admits a three-parameter family of central extensions, resulting in the (centrally extended) Weyl-BMS algebra, which we reformulate in terms of operator product expansions. We construct the BRST complex of a putative Weyl-BMS string and show that the BRST cohomology is isomorphic to the chiral ring of a topologically twisted $N=2$ superconformal field theory. We also comment on the obstructions to obtaining a conformal BMS Lie algebra -- that is, one that includes in addition the special-conformal generators -- and the need to consider a W-algebra. We then construct the quantum version of this W-algebra in terms of operator product expansions. We show that this W-algebra does not admit a BRST complex. </p> </div> </dd> <dt> <a name='item7'>[7]</a> <a href ="/abs/2411.14942" title="Abstract" id="2411.14942"> arXiv:2411.14942 </a> [<a href="/pdf/2411.14942" title="Download PDF" id="pdf-2411.14942" aria-labelledby="pdf-2411.14942">pdf</a>, <a href="https://arxiv.org/html/2411.14942v1" title="View HTML" id="html-2411.14942" aria-labelledby="html-2411.14942" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14942" title="Other formats" id="oth-2411.14942" aria-labelledby="oth-2411.14942">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Comparative Study of Neural Network Methods for Solving Topological Solitons </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Hashimoto,+K">Koji Hashimoto</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Matsuo,+K">Koshiro Matsuo</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Murata,+M">Masaki Murata</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Ogiwara,+G">Gakuto Ogiwara</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 12 pages, 4 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Artificial Intelligence (cs.AI); Machine Learning (cs.LG) </div> <p class='mathjax'> Topological solitons, which are stable, localized solutions of nonlinear differential equations, are crucial in various fields of physics and mathematics, including particle physics and cosmology. However, solving these solitons presents significant challenges due to the complexity of the underlying equations and the computational resources required for accurate solutions. To address this, we have developed a novel method using neural network (NN) to efficiently solve solitons. A similar NN approach is Physics-Informed Neural Networks (PINN). In a comparative analysis between our method and PINN, we find that our method achieves shorter computation times while maintaining the same level of accuracy. This advancement in computational efficiency not only overcomes current limitations but also opens new avenues for studying topological solitons and their dynamical behavior. </p> </div> </dd> <dt> <a name='item8'>[8]</a> <a href ="/abs/2411.14989" title="Abstract" id="2411.14989"> arXiv:2411.14989 </a> [<a href="/pdf/2411.14989" title="Download PDF" id="pdf-2411.14989" aria-labelledby="pdf-2411.14989">pdf</a>, <a href="/format/2411.14989" title="Other formats" id="oth-2411.14989" aria-labelledby="oth-2411.14989">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Positive and Negative Ladders in Loop Space </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Glew,+R">Ross Glew</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Lukowski,+T">Tomasz Lukowski</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 20 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> Motivated by a new term-wise factorised formula for the two-loop MHV integrand for scattering amplitudes in $\mathcal{N}=4$ super Yang-Mills (SYM), together with recent results for the five-point negative ladders in loop space, we present the canonical forms for general ladders in loop space for an arbitrary number of particles to all loops. We make use of the graphical notation introduced in the negative geometries literature, where each loop momentum is represented as a vertex, and mutual positivity (resp. negativity) conditions as a positive (resp. negative) edge. In this paper we extend this notation to include the notion of chambers of the one-loop momentum amplituhedron. Equipped with this new graphical notation, we find the canonical form of the $L$-loop (negative/positive) ladders for all MHV$_n$ amplitudes. Our final formula is remarkably simple and reminiscent of the chiral pentagon expansion of the one and two loop momentum amplituhedron. It expresses ladder contributions as sums over maximal cuts, with each term appearing in the sum factorising into products of either chiral pentagons or their simple generalisations. </p> </div> </dd> <dt> <a name='item9'>[9]</a> <a href ="/abs/2411.14997" title="Abstract" id="2411.14997"> arXiv:2411.14997 </a> [<a href="/pdf/2411.14997" title="Download PDF" id="pdf-2411.14997" aria-labelledby="pdf-2411.14997">pdf</a>, <a href="https://arxiv.org/html/2411.14997v1" title="View HTML" id="html-2411.14997" aria-labelledby="html-2411.14997" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14997" title="Other formats" id="oth-2411.14997" aria-labelledby="oth-2411.14997">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Gauging in Parameter Space: A Top-Down Perspective </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Yu,+X">Xingyang Yu</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 9 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> In this paper, we discuss a novel top-down perspective on gauging parameters in quantum field theories (QFTs) by promoting them to partially dynamical fields. Through a generalized notion of symmetry theories, we explore the consequences of this promotion, revealing new topological defects, decompositions as well as generalized symmetry structures across various dimensions. We provide a systematic top-down derivation of symmetry theories for parameters and discuss how special types of branes, such as Euclidean branes and fluxbranes are related to gauging in the parameter space in QFTs. We illustrate our theoretical framework with two key examples: the modified instanton sum in 4D N=4 super Yang-Mills theory and the gauging of gauge ranks in 3D ABJ(M) theories. </p> </div> </dd> <dt> <a name='item10'>[10]</a> <a href ="/abs/2411.14998" title="Abstract" id="2411.14998"> arXiv:2411.14998 </a> [<a href="/pdf/2411.14998" title="Download PDF" id="pdf-2411.14998" aria-labelledby="pdf-2411.14998">pdf</a>, <a href="https://arxiv.org/html/2411.14998v1" title="View HTML" id="html-2411.14998" aria-labelledby="html-2411.14998" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14998" title="Other formats" id="oth-2411.14998" aria-labelledby="oth-2411.14998">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> String Theory in a Pinch: Resolving the Gregory-Laflamme Singularity </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Emparan,+R">Roberto Emparan</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Sanchez-Garitaonandia,+M">Mikel Sanchez-Garitaonandia</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Toma%C5%A1evi%C4%87,+M">Marija Toma拧evi膰</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 34 pages, 9 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; General Relativity and Quantum Cosmology (gr-qc) </div> <p class='mathjax'> Thin enough black strings are unstable to growing ripples along their length, eventually pinching and forming a naked singularity on the horizon. We investigate how string theory can resolve this singularity. First, we study the string-scale version of the static non-uniform black strings that branch off at the instability threshold: "string-ball strings", which are linearly extended, self-gravitating configurations of string balls obtained in the Horowitz-Polchinski (HP) approach to near-Hagedorn string states. We construct non-uniform HP strings in spatial dimensions $d\leq 6$ and show that, as the inhomogeneity increases, they approach localized HP balls. By examining the thermodynamic properties of the different phases in the canonical and microcanonical ensembles, we find that, for a given mass, the uniform HP string will not evolve into a non-uniform or localized configuration. Building on these results and independent evidence from the evolution of the black string instability with $\alpha'$ corrections, we propose that string theory slows and eventually halts the pinching evolution at a classically stable stringy neck, with details depending on the dimension $d$. The system then enters a slower phase in which the neck gradually evaporates into radiation. We discuss this scenario as a framework for understanding how string theory resolves the formation of naked singularities. </p> </div> </dd> <dt> <a name='item11'>[11]</a> <a href ="/abs/2411.15080" title="Abstract" id="2411.15080"> arXiv:2411.15080 </a> [<a href="/pdf/2411.15080" title="Download PDF" id="pdf-2411.15080" aria-labelledby="pdf-2411.15080">pdf</a>, <a href="https://arxiv.org/html/2411.15080v1" title="View HTML" id="html-2411.15080" aria-labelledby="html-2411.15080" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.15080" title="Other formats" id="oth-2411.15080" aria-labelledby="oth-2411.15080">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> One-loop integrability with shifting masses </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Fabri,+M">Matheus Fabri</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Polvara,+D">Davide Polvara</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 20 pages + appendices </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> We investigate the perturbative integrability of two-dimensional massive quantum field theories with polynomial-like interactions and show that any theory of such class which is purely elastic at the tree level is also purely elastic at one loop. To preserve the elasticity, the physical renormalized masses of the theory must differ from the classical ones by quantum corrections carried by one-loop bubble diagrams. After the masses are corrected in this manner we show that one-loop inelastic processes vanish and integrability is preserved under one-loop effects. Relying on this fact we show that the closed expression for one-loop S-matrices in terms of tree S-matrices obtained in <a href="https://arxiv.org/abs/2402.12087" data-arxiv-id="2402.12087" class="link-https">arXiv:2402.12087</a> extends to models that do not preserve the mass ratios at one loop. We test our results on the full class of nonsimply-laced affine Toda theories and find exact match with the S-matrices bootstrapped in the past. </p> </div> </dd> <dt> <a name='item12'>[12]</a> <a href ="/abs/2411.15123" title="Abstract" id="2411.15123"> arXiv:2411.15123 </a> [<a href="/pdf/2411.15123" title="Download PDF" id="pdf-2411.15123" aria-labelledby="pdf-2411.15123">pdf</a>, <a href="https://arxiv.org/html/2411.15123v1" title="View HTML" id="html-2411.15123" aria-labelledby="html-2411.15123" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.15123" title="Other formats" id="oth-2411.15123" aria-labelledby="oth-2411.15123">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A boundary term for open string field theory </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Stettinger,+G">Georg Stettinger</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 15 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> We consider Witten's open string field theory in the presence of a non-trivial boundary of spacetime. For the kinetic term, we derive a Gibbons-Hawking-type contribution that has to be added to the action to guarantee a well-defined variational principle. The derivation is done first in a heuristic way and then confirmed by a path integral based approach using the CFT operator formalism. In the last section we use the latter method to compute the boundary contributions coming from the cubic vertex, although it is problematic to apply consistent boundary conditions on the string field due to the non-locality of the vertex. </p> </div> </dd> <dt> <a name='item13'>[13]</a> <a href ="/abs/2411.15126" title="Abstract" id="2411.15126"> arXiv:2411.15126 </a> [<a href="/pdf/2411.15126" title="Download PDF" id="pdf-2411.15126" aria-labelledby="pdf-2411.15126">pdf</a>, <a href="https://arxiv.org/html/2411.15126v1" title="View HTML" id="html-2411.15126" aria-labelledby="html-2411.15126" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.15126" title="Other formats" id="oth-2411.15126" aria-labelledby="oth-2411.15126">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> SymTFTs for $U(1)$ symmetries from descent </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Gagliano,+F">Finn Gagliano</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Etxebarria,+I+G">I帽aki Garc铆a Etxebarria</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 25 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> Recently, the notion of symmetry descent has been introduced in order to obtain the $(d+1)$-dimensional Symmetry TFT (SymTFT) of a $d$-dimensional QFT from the edge mode behaviour of a theory in $(d+2)$-dimensions. This method has so far been used to obtain SymTFTs for discrete higher-form symmetries of geometrically engineered QFTs. In this note, we extend the symmetry descent procedure to obtain SymTFTs for $U(1)$ higher-form symmetries of geometrically engineered QFTs. We find the resulting SymTFTs match those in the works of Antinucci-Benini and Brennan-Sun. </p> </div> </dd> </dl> <dl id='articles'> <h3>Cross submissions (showing 10 of 10 entries)</h3> <dt> <a name='item14'>[14]</a> <a href ="/abs/2411.14523" title="Abstract" id="2411.14523"> arXiv:2411.14523 </a> (cross-list from quant-ph) [<a href="/pdf/2411.14523" title="Download PDF" id="pdf-2411.14523" aria-labelledby="pdf-2411.14523">pdf</a>, <a href="https://arxiv.org/html/2411.14523v1" title="View HTML" id="html-2411.14523" aria-labelledby="html-2411.14523" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14523" title="Other formats" id="oth-2411.14523" aria-labelledby="oth-2411.14523">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> A relativistic QFT description for the interaction of a spin with a magnetic field </div> <div class='list-authors'><a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Shah,+R">Ruhi Shah</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Mart%C3%ADn-Mart%C3%ADnez,+E">Eduardo Mart铆n-Mart铆nez</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Perche,+T+R">T. Rick Perche</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 13 pages + appendices, 1 figure, revTeX 4.2 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Quantum Physics (quant-ph)</span>; General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> We analyze how non-relativistic effective models for the magnetic coupling of a spin to the electromagnetic field (proportional to $\hat{\boldsymbol{\sigma}}\cdot \boldsymbol{B}$) emerge from a full quantum field theoretical description of charged fermionic fields with the quantum electromagnetic field. This allows us to keep track of relativistic corrections to the models commonly used in experimental spin physics. We discuss how this interaction compares to the usual simplified models used in relativistic quantum information. </p> </div> </dd> <dt> <a name='item15'>[15]</a> <a href ="/abs/2411.14528" title="Abstract" id="2411.14528"> arXiv:2411.14528 </a> (cross-list from gr-qc) [<a href="/pdf/2411.14528" title="Download PDF" id="pdf-2411.14528" aria-labelledby="pdf-2411.14528">pdf</a>, <a href="https://arxiv.org/html/2411.14528v1" title="View HTML" id="html-2411.14528" aria-labelledby="html-2411.14528" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14528" title="Other formats" id="oth-2411.14528" aria-labelledby="oth-2411.14528">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Penrose and super-Penrose energy extraction from a Reissner-Nordstr\"om black hole spacetime with a cosmological constant through the BSW mechanism: Full story </div> <div class='list-authors'><a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Feiteira,+D">Duarte Feiteira</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Lemos,+J+P+S">Jos茅 P. S. Lemos</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Zaslavskii,+O+B">Oleg B. Zaslavskii</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 20 pages, 1 figure </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">General Relativity and Quantum Cosmology (gr-qc)</span>; High Energy Astrophysical Phenomena (astro-ph.HE); High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> The Penrose process, a process that transfers energy from a black hole to infinity, together with the BSW mechanism, which uses collisions of ingoing particles at the event horizon of a black hole to locally produce large amounts of energy, is studied in a combined description for a $d$ dimensional extremal Reissner-Nordstr枚m black hole spacetime with negative, zero, or positive cosmological constant, i.e., for an asymptotically anti-de Sitter (AdS), flat, or de Sitter (dS) spacetime. In an extremal Reissner-Nordstr枚m black hole background, in the vicinity of the horizon, several types of radial collisions between electrically charged particles can be considered. The most interesting one is between a critical particle, with its electric charge adjusted in a specific way, and a usual particle, as it gives a divergent center of mass frame energy locally, this being a favorable but not sufficient condition to extract energy from the black hole. To understand whether energy can be extracted in such a collisional Penrose process, we investigate in detail a collision between ingoing particles 1 and 2, from which particles 3 and 4 emerge, with the possibility that particle 3 can carry energy far out from the black hole horizon. One finds that the mass, energy, electric charge, and initial direction of motion of particle 3 can have different values, depending on the collision internal process, but these values lie within some range. Moreover, the energy of particle 3 can be arbitrarily high but not infinite, characterizing a super-Penrose process. It is also shown that particle 4 has negative energy, living in its own electric ergosphere before being engulfed by the event horizon. For zero cosmological constant the results do not depend on the number of dimensions, but they do for nonzero cosmological constant, which also introduces differences in the lower bound for the energy extracted. </p> </div> </dd> <dt> <a name='item16'>[16]</a> <a href ="/abs/2411.14758" title="Abstract" id="2411.14758"> arXiv:2411.14758 </a> (cross-list from astro-ph.CO) [<a href="/pdf/2411.14758" title="Download PDF" id="pdf-2411.14758" aria-labelledby="pdf-2411.14758">pdf</a>, <a href="https://arxiv.org/html/2411.14758v1" title="View HTML" id="html-2411.14758" aria-labelledby="html-2411.14758" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14758" title="Other formats" id="oth-2411.14758" aria-labelledby="oth-2411.14758">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Anisotropy in the cosmic acceleration inferred from supernovae </div> <div class='list-authors'><a href="https://arxiv.org/search/astro-ph?searchtype=author&query=Rameez,+M">Mohamed Rameez</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 13 pages, 3 figures, 1 table. Invited proceedings for the Royal Society discussion meeting "Challenging the Standard Cosmological Model" [<a href="https://royalsociety.org/science-events-and-lectures/2024/04/cosmological-model/" rel="external noopener nofollow" class="link-external link-https">this https URL</a>]. Submitted to Philosophical Transactions A </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Cosmology and Nongalactic Astrophysics (astro-ph.CO)</span>; General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Theory (hep-th); Mathematical Physics (math-ph) </div> <p class='mathjax'> Under the assumption that they are standard(isable) candles, the lightcurves of Type Ia supernovae have been analyzed in the framework of the standard Friedmann-Lema卯tre-Robertson-Walker cosmology to conclude that the expansion rate of the Universe is accelerating due to dark energy. While the original claims in the late 1990s were made using overlapping samples of less than 100 supernovae in total, catalogues of nearly 2000 supernovae are now available. In light of recent developments such as the cosmic dipole anomaly and the larger than expected bulk flow in the local Universe (which does not converge to the Cosmic Rest Frame), we analyze the newer datasets using a Maximum Likelihood Estimator and find that the acceleration of the expansion rate of the Universe is unequivocally anisotropic. The associated debate in the literature highlights the artifices of using supernovae as standardisable candles, while also providing deeper insights into a consistent relativistic view of peculiar motions as departures from the Hubble expansion of the Universe. The effects of our being `tilted observers' embedded in a deep bulk flow may have been mistaken for cosmic acceleration. </p> </div> </dd> <dt> <a name='item17'>[17]</a> <a href ="/abs/2411.14812" title="Abstract" id="2411.14812"> arXiv:2411.14812 </a> (cross-list from hep-lat) [<a href="/pdf/2411.14812" title="Download PDF" id="pdf-2411.14812" aria-labelledby="pdf-2411.14812">pdf</a>, <a href="https://arxiv.org/html/2411.14812v1" title="View HTML" id="html-2411.14812" aria-labelledby="html-2411.14812" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14812" title="Other formats" id="oth-2411.14812" aria-labelledby="oth-2411.14812">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Lattice gradient flows (de-)stabilizing topological sectors </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Tanizaki,+Y">Yuya Tanizaki</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Tomiya,+A">Akio Tomiya</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Watanabe,+H">Hiromasa Watanabe</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 1+24 pages, 11 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Theory (hep-th); Nuclear Theory (nucl-th) </div> <p class='mathjax'> We investigate the stability of topological charge under gradient flow taking the admissibility condition into account. For the $SU(2)$ Wilson gauge theory with $\beta=2.45$ and $L^4=12^4$, we numerically show that the gradient flows with the Iwasaki and DBW2 gauge actions stabilize the topological sectors significantly, and they have qualitatively different behaviors compared with the Wilson and tree-level Symanzik flows. By considering the classical continuum limit of the flow actions, we discuss that the coefficient of dimension-$6$ operators has to be positive for stabilizing the one-instanton configuration, and the Iwasaki and DBW2 actions satisfy this criterion while the Wilson and Symanzik actions do not. Moreover, we observe that the DBW2 flow stabilizes the topological sectors at the very early stage of the flow ($\hat{t}\approx 0.5$--$1$), which suggests that the use of the DBW2 action for the gradient flow is computationally efficient to determine the gauge topology. </p> </div> </dd> <dt> <a name='item18'>[18]</a> <a href ="/abs/2411.14848" title="Abstract" id="2411.14848"> arXiv:2411.14848 </a> (cross-list from hep-lat) [<a href="/pdf/2411.14848" title="Download PDF" id="pdf-2411.14848" aria-labelledby="pdf-2411.14848">pdf</a>, <a href="https://arxiv.org/html/2411.14848v1" title="View HTML" id="html-2411.14848" aria-labelledby="html-2411.14848" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14848" title="Other formats" id="oth-2411.14848" aria-labelledby="oth-2411.14848">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Chiral Lagrangian for Karsten-Wilczek Minimally Doubled Fermions </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Shukre,+K">Kunal Shukre</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Chakrabarti,+D">Dipankar Chakrabarti</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Basak,+S">Subhasish Basak</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 9 pages, 3 tables. Proceedings of the 41st International Symposium on Lattice Field Theory (Lattice 2024), July 28th - August 3rd, 2024, University of Liverpool, UK </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> Lattice chiral perturbation theory is developed for Karsten-Wilczek fermions, a variant of minimally doubled fermions. As a first step, we consider the n盲ive fermionic field on lattice without its doubler. Once the symmetries of the action, the Symanzik effective theory and the spurion structure are established for the single fermion, we extend our study to include the doubler. Symanzik effective actions are considered up to five-dimensional operators in both cases. The two fermionic tastes are realized by point-splitting the quark wavefunction in the coordinate space. Spurion analysis is used to construct the chiral lagrangians for Karsten-Wilczek fermions from the Symanzik actions. In this work, we have not included a pion that is massive in the continuum limit. </p> </div> </dd> <dt> <a name='item19'>[19]</a> <a href ="/abs/2411.14909" title="Abstract" id="2411.14909"> arXiv:2411.14909 </a> (cross-list from gr-qc) [<a href="/pdf/2411.14909" title="Download PDF" id="pdf-2411.14909" aria-labelledby="pdf-2411.14909">pdf</a>, <a href="https://arxiv.org/html/2411.14909v1" title="View HTML" id="html-2411.14909" aria-labelledby="html-2411.14909" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.14909" title="Other formats" id="oth-2411.14909" aria-labelledby="oth-2411.14909">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Matter-antimatter (a)symmetry in de Sitter Universe </div> <div class='list-authors'><a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Gazeau,+J">Jean-Pierre Gazeau</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Pejhan,+H">Hamed Pejhan</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 5 pages, 1 figure, version accepted for publication in Europhysics Letters (EPL) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">General Relativity and Quantum Cosmology (gr-qc)</span>; High Energy Physics - Theory (hep-th); Mathematical Physics (math-ph) </div> <p class='mathjax'> We investigate the matter-antimatter properties of elementary systems, modeled as free quantum fields, within the global structure of de Sitter spacetime. By leveraging the distinctive causal and analytic properties of de Sitter spacetime, we propose that matter-antimatter asymmetry could emerge as an observer-dependent effect shaped by time orientation within a local causal patch, rather than as a fundamental property of de Sitter Universe itself. This kinematic perspective complements, rather than replaces, standard dynamical processes (such as baryon number violation, $\texttt{CP}$ violation, and nonequilibrium processes) that fulfill Sakharov's criteria. Within this framework, the limited presence of antimatter in our predominantly matter-filled Universe, specifically within the causal patch of de Sitter spacetime under consideration, may arise from these mechanisms, though through pathways distinct from conventional interpretations. </p> </div> </dd> <dt> <a name='item20'>[20]</a> <a href ="/abs/2411.14964" title="Abstract" id="2411.14964"> arXiv:2411.14964 </a> (cross-list from gr-qc) [<a href="/pdf/2411.14964" title="Download PDF" id="pdf-2411.14964" aria-labelledby="pdf-2411.14964">pdf</a>, <a href="/format/2411.14964" title="Other formats" id="oth-2411.14964" aria-labelledby="oth-2411.14964">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Inner horizon instability via the trace anomaly effective action </div> <div class='list-authors'><a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Arrechea,+J">Julio Arrechea</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Neri,+G">Giulio Neri</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Liberati,+S">Stefano Liberati</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 43 pages, 5 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">General Relativity and Quantum Cosmology (gr-qc)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> In quantum field theory applied to black hole spacetimes, substantial evidence suggests that the Unruh and Hartle-Hawking vacuum states become singular at Cauchy horizons. This raises essential questions regarding the impact of quantum field backreaction on the stability of Cauchy horizons in static scenarios and inner horizons in evolving spacetimes. To approach this problem, we employ analytic approximations to the renormalized stress-energy tensor (RSET) of quantum fields in four dimensions. Specifically, we utilize the anomaly-induced effective action, which generates four-dimensional approximate RSETs through a pair of auxiliary scalar fields that satisfy higher-order equations of motion. The boundary conditions imposed on these auxiliary fields yield RSETs with leading-order terms that mimic the behaviour of different vacuum states. This study presents the first application of the anomaly-induced effective action method to Reissner-Nordstr枚m black hole interiors, evaluating its accuracy, applicability, and connections with prior RSET approximations. Among the range of possible states accessible through this method, we found none that remain regular at both the event and Cauchy horizons, aligning with theoretical expectations. The method shows strong agreement with exact four-dimensional RSET results for the Hartle-Hawking state but does not fully capture the unique characteristics of the Unruh state in Reissner-Nordstr枚m spacetimes. We conclude by suggesting possible extensions to address these limitations. </p> </div> </dd> <dt> <a name='item21'>[21]</a> <a href ="/abs/2411.15085" title="Abstract" id="2411.15085"> arXiv:2411.15085 </a> (cross-list from hep-lat) [<a href="/pdf/2411.15085" title="Download PDF" id="pdf-2411.15085" aria-labelledby="pdf-2411.15085">pdf</a>, <a href="https://arxiv.org/html/2411.15085v1" title="View HTML" id="html-2411.15085" aria-labelledby="html-2411.15085" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.15085" title="Other formats" id="oth-2411.15085" aria-labelledby="oth-2411.15085">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> On the origin of mixed inhomogeneous phase in vortical gluon plasma </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Braguta,+V+V">V. V. Braguta</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Chernodub,+M+N">M. N. Chernodub</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Gershtein,+Y+A">Ya. A. Gershtein</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Roenko,+A+A">A. A. Roenko</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 23 pages, 18 figures, Movies showing the evolution of inhomogeneity with change in the simulation parameters are attached as ancillary files </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> Recently, lattice simulations of SU(3) Yang-Mills theory revealed that rotating hot gluon matter in thermal equilibrium possesses a novel inhomogeneous phase consisting of the deconfinement phase located in the center region, which is spatially separated from the confinement phase in the periphery. This inhomogeneous two-phase structure is also expected to be produced by vorticity in quark-gluon plasma formed in non-central relativistic heavy-ion collisions. We show that its vortical properties are determined by two types of couplings of the angular velocity to the gluon fields: a linear coupling to the mechanical angular momentum of gluons and a quadratic ``magnetovortical'' coupling to a chromomagnetic component. We demonstrate numerically that the distinctive inhomogeneous structure of the vortical (quark-)gluon plasma is determined by the latter, while the former plays only a subleading role. We argue that the anisotropy of the gluonic action in the curved co-rotating background can quantitatively explain the remarkable property that the spatial structure of this inhomogeneous phase disobeys the picture based on a straightforward implementation of the Tolman-Ehrenfest law. We also support our findings with Monte Carlo simulations of Yang-Mills plasma at the real-valued angular frequency, which take into account only the magnetic part of the action. </p> </div> </dd> <dt> <a name='item22'>[22]</a> <a href ="/abs/2411.15094" title="Abstract" id="2411.15094"> arXiv:2411.15094 </a> (cross-list from hep-ph) [<a href="/pdf/2411.15094" title="Download PDF" id="pdf-2411.15094" aria-labelledby="pdf-2411.15094">pdf</a>, <a href="https://arxiv.org/html/2411.15094v1" title="View HTML" id="html-2411.15094" aria-labelledby="html-2411.15094" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.15094" title="Other formats" id="oth-2411.15094" aria-labelledby="oth-2411.15094">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Thermalization effects on the dynamics of growing vacuum bubbles </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Krajewski,+T">Tomasz Krajewski</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Lewicki,+M">Marek Lewicki</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Vasar,+M">Martin Vasar</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Vaskonen,+V">Ville Vaskonen</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Veerm%C3%A4e,+H">Hardi Veerm盲e</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Zych,+M">Mateusz Zych</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 26 pages, 7 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Phenomenology (hep-ph)</span>; Cosmology and Nongalactic Astrophysics (astro-ph.CO); High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> We study the evolution of growing vacuum bubbles. The bubble walls interact with the surrounding fluid and may, consequently, reach a terminal velocity. If the mean free path of the particles in the fluid is much shorter than the bubble wall thickness, the fluid is locally in thermal equilibrium and the wall's terminal velocity can be determined by entropy conservation. On the other hand, if local thermal equilibrium inside the wall cannot be maintained, the wall velocity can be estimated from the pressure impacted by ballistic particle dynamics at the wall. We find that the latter case leads to slightly slower bubble walls. Expectedly, we find the largest differences in the terminal velocity when the fluid is entirely ballistic. This observation indicates that the non-equilibrium effects inside walls are relevant. To study bubble evolution, we perform hydrodynamic lattice simulations in the case of local thermal equilibrium and $N$-body simulations in the ballistic case to investigate the dynamical effects during expansion. Both simulations show that even if a stationary solution exists in theory it may not be reached depending on the dynamics of the accelerating bubble walls. </p> </div> </dd> <dt> <a name='item23'>[23]</a> <a href ="/abs/2411.15108" title="Abstract" id="2411.15108"> arXiv:2411.15108 </a> (cross-list from hep-ph) [<a href="/pdf/2411.15108" title="Download PDF" id="pdf-2411.15108" aria-labelledby="pdf-2411.15108">pdf</a>, <a href="/format/2411.15108" title="Other formats" id="oth-2411.15108" aria-labelledby="oth-2411.15108">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Pseudo-FIMP dark matter in presence of a SIMP </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Bhattacharya,+S">Subhaditya Bhattacharya</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Pradhan,+D">Dipankar Pradhan</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Thakkar,+J">Jahaan Thakkar</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 26 pages, 11 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Phenomenology (hep-ph)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> Pseudo-feebly Interacting Massive Particle (pFIMP) has been postulated in two component dark matter (DM) scenarios, where it has feeble interaction with the visible sector, but sizeable one with a thermal bath partner. In this work, we study the possibility and dynamics of pFIMP in presence of a Strongly Interacting Massive Particle (SIMP), which is well known to solve too-big-to-fail and core-vs-cusp problems. Our analysis is primarily model-independent via solving coupled Boltzmann equations, with negligible DM-DM conversion adhering to pure SIMP-FIMP limit, and then with larger DM-DM conversion rate pertaining to SIMP-pFIMP limit. We also illustrate the simplest model yielding pFIMP-SIMP set-up having two scalars stabilised under $\mathbb{Z}_2\otimes \mathbb{Z}_3$ symmetry, and explore the accessible parameter space after addressing relic density, unitarity, self interaction constraints etc. pFIMP detectability is limited in such circumstances, but possible via a thermal DM loop when the SIMP has a visible sector interaction via light mediator. </p> </div> </dd> </dl> <dl id='articles'> <h3>Replacement submissions (showing 20 of 20 entries)</h3> <dt> <a name='item24'>[24]</a> <a href ="/abs/2406.01685" title="Abstract" id="2406.01685"> arXiv:2406.01685 </a> (replaced) [<a href="/pdf/2406.01685" title="Download PDF" id="pdf-2406.01685" aria-labelledby="pdf-2406.01685">pdf</a>, <a href="https://arxiv.org/html/2406.01685v2" title="View HTML" id="html-2406.01685" aria-labelledby="html-2406.01685" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2406.01685" title="Other formats" id="oth-2406.01685" aria-labelledby="oth-2406.01685">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> SCFT deformations via uplifted solitons </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Chatzis,+D">Dimitrios Chatzis</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Fatemiabhari,+A">Ali Fatemiabhari</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Nunez,+C">Carlos Nunez</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Weck,+P">Peter Weck</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 59 pages, 6 figures, journal accepted version </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> A holographic method for implementing a particular supersymmetry-preserving deformation to 4d SCFTs is presented. At the heart of the procedure is a soliton solution of minimal $d=5$ gauged supergravity. Embedding this solution into ten- and eleven-dimensional string theory backgrounds of the form AdS$_5 \times M$, we systematically construct a range of new solutions. Each holographically realizes a twisted compactification of the SCFT$_4$ dual to the original background. In the IR, the resulting SQFTs flow to gapped three-dimensional systems. Using a variety of holographic observables, we give evidence for this interpretation and for confinement in the deformed SQFTs. Our method applies to any holographic solutions admitting a consistent truncation to minimal $d=5$ gauged supergravity, and can likely be generalized to solutions with other AdS$_d$ factors. </p> </div> </dd> <dt> <a name='item25'>[25]</a> <a href ="/abs/2406.06685" title="Abstract" id="2406.06685"> arXiv:2406.06685 </a> (replaced) [<a href="/pdf/2406.06685" title="Download PDF" id="pdf-2406.06685" aria-labelledby="pdf-2406.06685">pdf</a>, <a href="/format/2406.06685" title="Other formats" id="oth-2406.06685" aria-labelledby="oth-2406.06685">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Transient dynamics of quasinormal mode sums </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Carballo,+J">Javier Carballo</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Withers,+B">Benjamin Withers</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 42 pages, 12 figures, 1 table. Added some comments and references. Matches published version </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Strongly Correlated Electrons (cond-mat.str-el); General Relativity and Quantum Cosmology (gr-qc); Nuclear Theory (nucl-th) </div> <p class='mathjax'> Quasinormal modes of spacetimes with event horizons are typically governed by a non-normal operator. This gives rise to spectral instabilities, a topic of recent interest in the black hole pseudospectrum programme. In this work we show that non-normality leads to the existence of arbitrarily long-lived sums of short-lived quasinormal modes, corresponding to localising packets of energy near the future horizon. There exist sums of $M$ quasinormal modes whose lifetimes scale as $\log{M}$. This transient behaviour results from large cancellations between non-orthogonal quasinormal modes. We provide simple closed-form examples for a massive scalar field in the static patch of dS$_{d+1}$ and the BTZ black hole. We also provide numerical examples for scalar perturbations of Schwarzschild-AdS$_{d+1}$, and gravitational perturbations of Schwarzschild in asymptotically flat spacetime, using hyperboloidal foliations. The existence of these perturbations is linked to certain properties of black hole pseudospectra. We comment on implications for thermalisation times in holographic plasmas. </p> </div> </dd> <dt> <a name='item26'>[26]</a> <a href ="/abs/2407.15925" title="Abstract" id="2407.15925"> arXiv:2407.15925 </a> (replaced) [<a href="/pdf/2407.15925" title="Download PDF" id="pdf-2407.15925" aria-labelledby="pdf-2407.15925">pdf</a>, <a href="https://arxiv.org/html/2407.15925v3" title="View HTML" id="html-2407.15925" aria-labelledby="html-2407.15925" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2407.15925" title="Other formats" id="oth-2407.15925" aria-labelledby="oth-2407.15925">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Non-analytic terms of string amplitudes from partial waves </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Huang,+Y">Yu-tin Huang</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Paul,+H">Hynek Paul</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Santagata,+M">Michele Santagata</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 36 pages and 1 ancillary file; v2: minor improvements, typos fixed; v3: minor changes, published version </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> JHEP 11 (2024) 117 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> We describe a general formalism based on the partial-wave decomposition to compute the iterative $s$-channel discontinuity of four-point amplitudes at any loop order. As an application, we focus on the low-energy expansions of type I and II superstring amplitudes. Besides providing new results for their leading and sub-leading logarithmic contributions beyond genus one, our approach elucidates the general structure of non-analytic threshold terms. In the case of open strings, the use of orthogonal colour projectors allows us to efficiently compute all contributions from different worldsheet topologies at a given loop order. </p> </div> </dd> <dt> <a name='item27'>[27]</a> <a href ="/abs/2407.20014" title="Abstract" id="2407.20014"> arXiv:2407.20014 </a> (replaced) [<a href="/pdf/2407.20014" title="Download PDF" id="pdf-2407.20014" aria-labelledby="pdf-2407.20014">pdf</a>, <a href="https://arxiv.org/html/2407.20014v2" title="View HTML" id="html-2407.20014" aria-labelledby="html-2407.20014" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2407.20014" title="Other formats" id="oth-2407.20014" aria-labelledby="oth-2407.20014">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Cubic asymmetric multitrace matrix model </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Bukor,+B">Benedek Bukor</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Tekel,+J">Juraj Tekel</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> v2 - title slightly changed, discussion expanded in several places, section 4.2-4.4 added, version to be submitted to JHEP </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> We analyze multitrace random matrix models with the help of the saddle point approximation and we introduce a multitrace term of type $-c_1c_3$ to the action. We obtain the numerical phase diagram of the model, with a stable asymmetric phase and the triple point. Furthermore, we examine response functions in this model. </p> </div> </dd> <dt> <a name='item28'>[28]</a> <a href ="/abs/2408.08181" title="Abstract" id="2408.08181"> arXiv:2408.08181 </a> (replaced) [<a href="/pdf/2408.08181" title="Download PDF" id="pdf-2408.08181" aria-labelledby="pdf-2408.08181">pdf</a>, <a href="https://arxiv.org/html/2408.08181v2" title="View HTML" id="html-2408.08181" aria-labelledby="html-2408.08181" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2408.08181" title="Other formats" id="oth-2408.08181" aria-labelledby="oth-2408.08181">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> On geometric bases for quantum A-polynomials of knots </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Galakhov,+D">Dmitry Galakhov</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Morozov,+A">Alexei Morozov</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 16 pages, v2: minor updates </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys.Lett.B 860 (2025) 139139 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Mathematical Physics (math-ph); Geometric Topology (math.GT); Quantum Algebra (math.QA) </div> <p class='mathjax'> A simple geometric way is suggested to derive the Ward identities in the Chern-Simons theory, also known as quantum $A$- and $C$-polynomials for knots. In quasi-classical limit it is closely related to the well publicized augmentation theory and contact geometry. Quantization allows to present it in much simpler terms, what could make these techniques available to a broader audience. To avoid overloading of the presentation, only the case of the colored Jones polynomial for the trefoil knot is considered, though various generalizations are straightforward. Restriction to solely Jones polynomials (rather than full HOMFLY-PT) is related to a serious simplification, provided by the use of Kauffman calculus. Going beyond looks realistic, however it remains a problem, both challenging and promising. </p> </div> </dd> <dt> <a name='item29'>[29]</a> <a href ="/abs/2408.12328" title="Abstract" id="2408.12328"> arXiv:2408.12328 </a> (replaced) [<a href="/pdf/2408.12328" title="Download PDF" id="pdf-2408.12328" aria-labelledby="pdf-2408.12328">pdf</a>, <a href="https://arxiv.org/html/2408.12328v2" title="View HTML" id="html-2408.12328" aria-labelledby="html-2408.12328" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2408.12328" title="Other formats" id="oth-2408.12328" aria-labelledby="oth-2408.12328">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Phase diagram of a generalized Stephanov model for finite-density QCD </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Baranka,+G">Gy枚rgy Baranka</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Giordano,+M">Matteo Giordano</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> Minor corrections; matches published version; 18 pages, 7 figures </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; High Energy Physics - Lattice (hep-lat) </div> <p class='mathjax'> We solve a random matrix model for QCD at finite chemical potential, obtained by generalizing the Stephanov model by modifying the random-matrix integration measure with a one-parameter trace deformation. This allows one to check how important the integration measure is for the qualitative features of random matrix models, as well as to test the robustness and universality of the qualitative picture of the original model. While for a small trace deformation the phase diagram is identical to that of the Stephanov model, for a large deformation an exotic phase with spontaneous charge-conjugation breaking appears. </p> </div> </dd> <dt> <a name='item30'>[30]</a> <a href ="/abs/2410.03175" title="Abstract" id="2410.03175"> arXiv:2410.03175 </a> (replaced) [<a href="/pdf/2410.03175" title="Download PDF" id="pdf-2410.03175" aria-labelledby="pdf-2410.03175">pdf</a>, <a href="https://arxiv.org/html/2410.03175v2" title="View HTML" id="html-2410.03175" aria-labelledby="html-2410.03175" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2410.03175" title="Other formats" id="oth-2410.03175" aria-labelledby="oth-2410.03175">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> CMM formula as superintegrability property of unitary model </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Mironov,+A">A. Mironov</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Morozov,+A">A. Morozov</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Popolitov,+A">A. Popolitov</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 12 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Mathematical Physics (math-ph) </div> <p class='mathjax'> A typical example of superintegrability is provided by expression of the Hopf link hyperpolynomial in an arbitrary representation through a pair of the Macdonald polynomials at special points. In the simpler case of the Hopf link HOMFLY-PT polynomial and a pair of the Schur functions, it is a relation in the unitary matrix model. We explain that the Cherednik-Mehta-Macdonald (CMM) identity for bilinear Macdonald residues with an elliptic weight function is nothing but a reformulation of these same formulas. Their lifting to arbitrary knots and links, even torus ones remains obscure. </p> </div> </dd> <dt> <a name='item31'>[31]</a> <a href ="/abs/2410.23333" title="Abstract" id="2410.23333"> arXiv:2410.23333 </a> (replaced) [<a href="/pdf/2410.23333" title="Download PDF" id="pdf-2410.23333" aria-labelledby="pdf-2410.23333">pdf</a>, <a href="https://arxiv.org/html/2410.23333v2" title="View HTML" id="html-2410.23333" aria-labelledby="html-2410.23333" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2410.23333" title="Other formats" id="oth-2410.23333" aria-labelledby="oth-2410.23333">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> From data to the analytic S-matrix: A Bootstrap fit of the pion scattering amplitude </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Guerrieri,+A">Andrea Guerrieri</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=H%C3%A4ring,+K">Kelian H盲ring</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Su,+N">Ning Su</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 11 pages + appendices, 14 figures, fixed some typos, improved the text, added more references </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; High Energy Physics - Lattice (hep-lat); High Energy Physics - Phenomenology (hep-ph) </div> <p class='mathjax'> We propose a novel strategy to fit experimental data using a UV complete amplitude ansatz satisfying the constraints of Analyticity, Crossing, and Unitarity. We focus on $\pi\pi$ scattering combining both experimental and lattice data. The fit strategy requires using S-matrix Bootstrap methods and non-convex Particle Swarm Optimization techniques. Using this procedure, we numerically construct a full-fledged scattering amplitude that fits the data and contains the known QCD spectrum that couples to $\pi \pi$ states below $1.4$ GeV. The amplitude constructed agrees below the two-particle threshold with the two-loop $\chi$PT prediction. Moreover, we correctly predict the $D_2$ phase shift, the appearance of a spin three state, and the behavior of the high-energy total cross-section. Finally, we find a genuine tetraquark resonance around 2 GeV, which we argue might be detected by looking into the decays of B mesons. </p> </div> </dd> <dt> <a name='item32'>[32]</a> <a href ="/abs/2411.10244" title="Abstract" id="2411.10244"> arXiv:2411.10244 </a> (replaced) [<a href="/pdf/2411.10244" title="Download PDF" id="pdf-2411.10244" aria-labelledby="pdf-2411.10244">pdf</a>, <a href="https://arxiv.org/html/2411.10244v2" title="View HTML" id="html-2411.10244" aria-labelledby="html-2411.10244" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.10244" title="Other formats" id="oth-2411.10244" aria-labelledby="oth-2411.10244">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Entanglement asymmetry in CFT with boundary symmetry breaking </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Fossati,+M">Michele Fossati</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Rylands,+C">Colin Rylands</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Calabrese,+P">Pasquale Calabrese</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 20 pages, 5 figures. v2: fixed typos and added references </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Statistical Mechanics (cond-mat.stat-mech); Quantum Physics (quant-ph) </div> <p class='mathjax'> We examine the behavior of the entanglement asymmetry in the ground state of a (1+1)-dimensional conformal field theory with a boundary condition that explicitly breaks a bulk symmetry. Our focus is on the asymmetry of a subsystem $A$ originating from the symmetry-breaking boundary and extending into a semi-infinite bulk. By employing the twist field formalism, we derive a universal expression for the asymmetry, showing that the asymptotic behavior for large subsystems is approached algebraically, with an exponent which is twice the conformal dimension of a boundary condition-changing operator. As a secondary result, we also establish a similar asymptotic behavior for the string order parameter. Our exact analytical findings are validated through numerical simulations in the critical Ising and 3-state Potts models. </p> </div> </dd> <dt> <a name='item33'>[33]</a> <a href ="/abs/2411.12513" title="Abstract" id="2411.12513"> arXiv:2411.12513 </a> (replaced) [<a href="/pdf/2411.12513" title="Download PDF" id="pdf-2411.12513" aria-labelledby="pdf-2411.12513">pdf</a>, <a href="https://arxiv.org/html/2411.12513v2" title="View HTML" id="html-2411.12513" aria-labelledby="html-2411.12513" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.12513" title="Other formats" id="oth-2411.12513" aria-labelledby="oth-2411.12513">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Generalized Fefferman-Graham gauge and boundary Weyl structures </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Arenas-Henriquez,+G">Gabriel Arenas-Henriquez</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Diaz,+F">Felipe Diaz</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Rivera-Betancour,+D">David Rivera-Betancour</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 33 pages. v2: typos corrected, references added </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; General Relativity and Quantum Cosmology (gr-qc) </div> <p class='mathjax'> In the framework of AdS/CFT correspondence, the Fefferman--Graham (FG) gauge offers a useful way to express asymptotically anti-de Sitter spaces, allowing a clear identification of their boundary structure. A known feature of this approach is that choosing a particular conformal representative for the boundary metric breaks explicitly the boundary scaling symmetry. Recent developments have shown that it is possible to generalize the FG gauge to restore boundary Weyl invariance by adopting the Weyl--Fefferman--Graham gauge. In this paper, we focus on three-dimensional gravity and study the emergence of a boundary Weyl structure when considering the most general AdS boundary conditions introduced by Grumiller and Riegler. We extend the holographic renormalization scheme to incorporate Weyl covariant quantities, identifying new subleading divergences appearing at the boundary. To address these, we introduce a new codimension-two counterterm, or corner term, that ensures the finiteness of the gravitational action. From here, we construct the quantum-generating functional, the holographic stress tensor, and compute the corresponding Weyl anomaly, showing that the latter is now expressed in a full Weyl covariant way. Finally, we discuss explicit applications to holographic integrable models and accelerating black holes. For the latter, we show that the new corner term plays a crucial role in the computation of the Euclidean on-shell action. </p> </div> </dd> <dt> <a name='item34'>[34]</a> <a href ="/abs/2411.13007" title="Abstract" id="2411.13007"> arXiv:2411.13007 </a> (replaced) [<a href="/pdf/2411.13007" title="Download PDF" id="pdf-2411.13007" aria-labelledby="pdf-2411.13007">pdf</a>, <a href="https://arxiv.org/html/2411.13007v3" title="View HTML" id="html-2411.13007" aria-labelledby="html-2411.13007" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.13007" title="Other formats" id="oth-2411.13007" aria-labelledby="oth-2411.13007">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Dynamical behaviour of soliton train in holographic superfluids at zero temperature </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Gao,+M">Meng Gao</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Li,+X">Xin Li</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Tian,+Y">Yu Tian</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Yang,+P">Peng Yang</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Zhang,+H">Hongbao Zhang</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 11 pages,13 figures. references added, to appear in PRD </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span> </div> <p class='mathjax'> We construct a soliton train configuration with holographic superfluid model under AdS soliton background. We investigate the stability of a soliton train using Bloch waves under two distinct quantization schemes. Upon imposing a minor perturbation on the soliton train system, it has been observed that there exist two elastic modes and one phonon mode. Most importantly, we find, under soliton train background, that there is a rich phase diagram concerning the chemical potential under standard quantization. Nevertheless, there are no unstable modes under alternative quantization. </p> </div> </dd> <dt> <a name='item35'>[35]</a> <a href ="/abs/2411.13337" title="Abstract" id="2411.13337"> arXiv:2411.13337 </a> (replaced) [<a href="/pdf/2411.13337" title="Download PDF" id="pdf-2411.13337" aria-labelledby="pdf-2411.13337">pdf</a>, <a href="https://arxiv.org/html/2411.13337v2" title="View HTML" id="html-2411.13337" aria-labelledby="html-2411.13337" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.13337" title="Other formats" id="oth-2411.13337" aria-labelledby="oth-2411.13337">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Non-Abelian entanglement asymmetry in random states </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-th?searchtype=author&query=Russotto,+A">Angelo Russotto</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Ares,+F">Filiberto Ares</a>, <a href="https://arxiv.org/search/hep-th?searchtype=author&query=Calabrese,+P">Pasquale Calabrese</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 28 pages, 6 figures. References added </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Theory (hep-th)</span>; Statistical Mechanics (cond-mat.stat-mech); Quantum Physics (quant-ph) </div> <p class='mathjax'> The entanglement asymmetry measures the extent to which a symmetry is broken within a subsystem of an extended quantum system. Here, we analyse this quantity in Haar random states for arbitrary compact, semi-simple Lie groups, building on and generalising recent results obtained for the $U(1)$ symmetric case. We find that, for any symmetry group, the average entanglement asymmetry vanishes in the thermodynamic limit when the subsystem is smaller than its complement. When the subsystem and its complement are of equal size, the entanglement asymmetry jumps to a finite value, indicating a sudden transition of the subsystem from a fully symmetric state to one devoid of any symmetry. For larger subsystem sizes, the entanglement asymmetry displays a logarithmic scaling with a coefficient fixed by the dimension of the group. We also investigate the fluctuations of the entanglement asymmetry, which tend to zero in the thermodynamic limit. We check our findings against exact numerical calculations for the $SU(2)$ and $SU(3)$ groups. We further discuss their implications for the thermalisation of isolated quantum systems and black hole evaporation. </p> </div> </dd> <dt> <a name='item36'>[36]</a> <a href ="/abs/2312.05206" title="Abstract" id="2312.05206"> arXiv:2312.05206 </a> (replaced) [<a href="/pdf/2312.05206" title="Download PDF" id="pdf-2312.05206" aria-labelledby="pdf-2312.05206">pdf</a>, <a href="/format/2312.05206" title="Other formats" id="oth-2312.05206" aria-labelledby="oth-2312.05206">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Anomalous Dimensions via on-shell Methods: Operator Mixing and Leading Mass Effects </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Bresciani,+L">L.C. Bresciani</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Levati,+G">G. Levati</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Mastrolia,+P">P. Mastrolia</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Paradisi,+P">P. Paradisi</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 6 pages, 5 figures. Text improved, appendix and figure added. Published version </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Phenomenology (hep-ph)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> We elaborate on the application of on-shell and unitarity-based methods for evaluating renormalization group coefficients, and generalize this framework to account for the mixing of operators with different dimensions and leading mass effects. We derive a master formula for anomalous dimensions stemming from the general structure of operator mixings, up to two-loop order, and show how the Higgs low-energy theorem can be exploited to include leading mass effects. A few applications on the renormalization properties of popular effective field theories showcase the strength of the proposed approach, which drastically reduces the complexity of standard loop calculations. Our results provide a powerful tool to interpret experimental measurements of low-energy observables, such as flavor violating processes or electric and magnetic dipole moments, as induced by new physics emerging above the electroweak scale. </p> </div> </dd> <dt> <a name='item37'>[37]</a> <a href ="/abs/2401.05678" title="Abstract" id="2401.05678"> arXiv:2401.05678 </a> (replaced) [<a href="/pdf/2401.05678" title="Download PDF" id="pdf-2401.05678" aria-labelledby="pdf-2401.05678">pdf</a>, <a href="https://arxiv.org/html/2401.05678v5" title="View HTML" id="html-2401.05678" aria-labelledby="html-2401.05678" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2401.05678" title="Other formats" id="oth-2401.05678" aria-labelledby="oth-2401.05678">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Clifford algebra Cl(0,6) approach to beyond the standard model and naturalness problems </div> <div class='list-authors'><a href="https://arxiv.org/search/physics?searchtype=author&query=Lu,+W">Wei Lu</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 74 pages </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> International Journal of Geometric Methods in Modern Physics, Vol. 21, No. 05, 2450089 (2024) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">General Physics (physics.gen-ph)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> Is there more to Dirac's gamma matrices than meets the eye? It turns out that gamma zero can be factorized into a product of three operators. This revelation facilitates the expansion of Dirac's space-time algebra to Clifford algebra Cl(0,6). The resultant rich geometric structure can be leveraged to establish a combined framework of the standard model and gravity, wherein a gravi-weak interaction between the extended vierbein field and the extended weak gauge field is allowed. In parallel with the composite Higgs model, we examine the vierbein field as an effective description of fermion-antifermion condensation. Consequently, quantum gravity is realized indirectly via the quantized spinor fields which underlie the composite space-time metric. We propose that the fundamental energy scales of the universe including the Planck scale are emergent and resulted from quantum condensations, thus possibly addressing the cosmological constant problem provided that we adopt an unconventional multi-scale renormalization procedure involving multiplications of divergent integrals. The Clifford algebra approach also permits a weaker form of charge conjugation without particle-antiparticle interchange, which leads to a Majorana-type mass that conserves lepton number. Additionally, in the context of spontaneous breaking of Peccei-Quinn-like symmetries, we explore a three-Higgs-doublet model with Higgs VEVs 246 GeV, 42 GeV and 2.5 GeV which could explain the fermion mass hierarchies. </p> </div> </dd> <dt> <a name='item38'>[38]</a> <a href ="/abs/2406.01498" title="Abstract" id="2406.01498"> arXiv:2406.01498 </a> (replaced) [<a href="/pdf/2406.01498" title="Download PDF" id="pdf-2406.01498" aria-labelledby="pdf-2406.01498">pdf</a>, <a href="/format/2406.01498" title="Other formats" id="oth-2406.01498" aria-labelledby="oth-2406.01498">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> The Hadamard condition on a Cauchy surface and the renormalized stress-energy tensor </div> <div class='list-authors'><a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Ju%C3%A1rez-Aubry,+B+A">Benito A. Ju谩rez-Aubry</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Kay,+B+S">Bernard S. Kay</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Miramontes,+T">Tonatiuh Miramontes</a>, <a href="https://arxiv.org/search/gr-qc?searchtype=author&query=Sudarsky,+D">Daniel Sudarsky</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 65 pages, discussion improved </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> JCAP 10 (2024) 002 </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">General Relativity and Quantum Cosmology (gr-qc)</span>; High Energy Physics - Theory (hep-th); Mathematical Physics (math-ph) </div> <p class='mathjax'> Given a Cauchy surface in a curved spacetime and a suitably defined quantum state on the CCR algebra of the Klein-Gordon quantum field on that surface, we show, by expanding the squared spacetime geodesic distance and the `$U$' and `$V$' Hadamard coefficients (and suitable derivatives thereof) in sufficiently accurate covariant Taylor expansions on the surface that the renormalized expectation value of the quantum stress-energy tensor on the surface is determined by the geometry of the surface and the first 4 time derivatives of the metric off the surface, in addition to the Cauchy data for the field's two-point function. This result has been anticipated in and is motivated by a previous investigation by the authors on the initial value problem in semiclassical gravity, for which the geometric initial data corresponds {\it a priori} to the metric on the surface and up to 3 time derivatives off the surface, but where it was argued that the fourth derivative can be obtained with aid of the field equations on the initial surface. </p> </div> </dd> <dt> <a name='item39'>[39]</a> <a href ="/abs/2407.13359" title="Abstract" id="2407.13359"> arXiv:2407.13359 </a> (replaced) [<a href="/pdf/2407.13359" title="Download PDF" id="pdf-2407.13359" aria-labelledby="pdf-2407.13359">pdf</a>, <a href="https://arxiv.org/html/2407.13359v2" title="View HTML" id="html-2407.13359" aria-labelledby="html-2407.13359" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2407.13359" title="Other formats" id="oth-2407.13359" aria-labelledby="oth-2407.13359">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Modified Abelian and SU(2) Wilson theories on a lattice from a non-compact regularization </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Babusci,+D">D. Babusci</a>, <a href="https://arxiv.org/search/hep-lat?searchtype=author&query=Palumbo,+F">F. Palumbo</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 11 pages; a new section (sec. V) added; match the published version </div> <div class='list-journal-ref'><span class='descriptor'>Journal-ref:</span> Phys. Rev. D 110, 094511 (2024) </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Lattice (hep-lat)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> Multiflavor gauge theories of matter systems on a three-dimensional lattice have recently been widely investigated especially in connection with a possible symmetry enlargement at a continuous phase transition. Abelian models were studied both with compact gauge fields and in a mixed formulation in which the coupling with matter fields is in compact form while the gauge fields Lagrangian is written in terms of noncompact gauge fields, getting quite different results. Such a mixed formulation is not permissible for non-Abelian theories, for which however there exists an entirely noncompact formulation (in which exact gauge invariance is enforced by help of auxiliary fields), which for SU(2) was shown to yield in the scaling window a larger physical volume than Wilson's one. The corresponding U(1) noncompact regularization is derived in the present work. In both Abelian and SU(2) cases there is only one auxiliary field that for a large mass has a linear coupling with the other fields and it can be integrated out yielding a negative definite correction. The coupling with the auxiliary field might make the inversion of the fermion matrix easier. </p> </div> </dd> <dt> <a name='item40'>[40]</a> <a href ="/abs/2407.21643" title="Abstract" id="2407.21643"> arXiv:2407.21643 </a> (replaced) [<a href="/pdf/2407.21643" title="Download PDF" id="pdf-2407.21643" aria-labelledby="pdf-2407.21643">pdf</a>, <a href="https://arxiv.org/html/2407.21643v2" title="View HTML" id="html-2407.21643" aria-labelledby="html-2407.21643" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2407.21643" title="Other formats" id="oth-2407.21643" aria-labelledby="oth-2407.21643">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Weak rates in strongly coupled cold quark matter </div> <div class='list-authors'><a href="https://arxiv.org/search/nucl-th?searchtype=author&query=Hoyos,+C">Carlos Hoyos</a>, <a href="https://arxiv.org/search/nucl-th?searchtype=author&query=Olzi,+A">Andrea Olzi</a>, <a href="https://arxiv.org/search/nucl-th?searchtype=author&query=Rodriguez-Fernandez,+D">David Rodriguez-Fernandez</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 20 pages+appendices, 5 figures, minor corrections </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Nuclear Theory (nucl-th)</span>; High Energy Astrophysical Phenomena (astro-ph.HE); High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> The rates of flavor-changing weak processes are crucial in determining the conditions of beta equilibrium in neutron stars and mergers, influencing the damping of oscillations, the stability of rotating pulsars, and the emission of gravitational waves. We derive a formula for these rates at nonzero temperature, to leading order in the Fermi coupling and exact in the QCD coupling. Utilizing a simple phenomenological holographic model dual to QCD, we study massless unpaired quark matter at high densities. We numerically compute the rate for small deviations from beta equilibrium and derive an analytic approximation for small temperatures. Our findings reveal that, compared to the perturbative result, the rate is suppressed by logarithmic factors of the temperature. </p> </div> </dd> <dt> <a name='item41'>[41]</a> <a href ="/abs/2409.01554" title="Abstract" id="2409.01554"> arXiv:2409.01554 </a> (replaced) [<a href="/pdf/2409.01554" title="Download PDF" id="pdf-2409.01554" aria-labelledby="pdf-2409.01554">pdf</a>, <a href="https://arxiv.org/html/2409.01554v2" title="View HTML" id="html-2409.01554" aria-labelledby="html-2409.01554" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2409.01554" title="Other formats" id="oth-2409.01554" aria-labelledby="oth-2409.01554">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Measuring the Time Variation of the Fine-structure Constant with Quasars Detected by LAMOST </div> <div class='list-authors'><a href="https://arxiv.org/search/astro-ph?searchtype=author&query=Wei,+J">Jin-Nan Wei</a>, <a href="https://arxiv.org/search/astro-ph?searchtype=author&query=Chen,+R">Rui-Jie Chen</a>, <a href="https://arxiv.org/search/astro-ph?searchtype=author&query=Wei,+J">Jun-Jie Wei</a>, <a href="https://arxiv.org/search/astro-ph?searchtype=author&query=L%C3%B3pez-Corredoira,+M">Mart铆n L贸pez-Corredoira</a>, <a href="https://arxiv.org/search/astro-ph?searchtype=author&query=Wu,+X">Xue-Feng Wu</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 12 pages, 3 figures, 1 table. Accepted for publication in RAA </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Cosmology and Nongalactic Astrophysics (astro-ph.CO)</span>; General Relativity and Quantum Cosmology (gr-qc); High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> The [O III] $\lambda\lambda\ 4960,5008$ emission lines in the optical spectra of galaxies and quasars have been widely used to investigate the possible variation of the fine-structure constant $\alpha$ over cosmic time. In this work, we utilize the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) quasar survey, for the first time, to measure the relative $\alpha$ variation $\Delta\alpha/\alpha$ in time through the [O III] doublet method. From the LAMOST Data Release 9 quasar catalog, we refine a sample of 209 quasar spectra with strong and narrow [O III] emission lines over a redshift range of $0<z<0.8$. Analysis on all of the 209 spectra obtains $\Delta\alpha/\alpha = (0.5 \pm 3.7) \times 10^{-4}$, which suggests that there is no evidence of varying $\alpha$ on the explored cosmological timescales. Assuming a linear variation, the mean rate of change in $\Delta\alpha/\alpha$ is limited to be $(-3.4 \pm 2.4)\times 10^{-13}$ $\mathrm{yr^{-1}}$ in the last 7.0 Gyr. While our LAMOST-based constraint on $\Delta\alpha/\alpha$ is not competitive with those of the Sloan Digital Sky Survey (SDSS) quasar observations, our analysis serves to corroborate the results of SDSS with another independent survey. </p> </div> </dd> <dt> <a name='item42'>[42]</a> <a href ="/abs/2410.18500" title="Abstract" id="2410.18500"> arXiv:2410.18500 </a> (replaced) [<a href="/pdf/2410.18500" title="Download PDF" id="pdf-2410.18500" aria-labelledby="pdf-2410.18500">pdf</a>, <a href="https://arxiv.org/html/2410.18500v2" title="View HTML" id="html-2410.18500" aria-labelledby="html-2410.18500" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2410.18500" title="Other formats" id="oth-2410.18500" aria-labelledby="oth-2410.18500">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Time-dependent Dunkl-Pauli Oscillator </div> <div class='list-authors'><a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Benchikha,+A">A. Benchikha</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=Hamil,+B">B. Hamil</a>, <a href="https://arxiv.org/search/quant-ph?searchtype=author&query=L%C3%BCtf%C3%BCo%C4%9Flu,+B+C">B. C. L眉tf眉o臒lu</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 13 pages </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">Quantum Physics (quant-ph)</span>; High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> This study explores the time-dependent Dunkl-Pauli oscillator in two dimensions. We constructed the Dunkl-Pauli Hamiltonian, which incorporates a time-varying magnetic field and a harmonic oscillator characterized by time-dependent mass and frequency, initially in Cartesian coordinates. Subsequently, we reformulated the Hamiltonian in polar coordinates and analyzed the eigenvalues and eigenfunctions of the Dunkl angular operator, deriving exact solutions using the Lewis-Riesenfeld invariant method. Our findings regarding the total quantum phase factor and wave functions reveal the significant impact of Dunkl operators on quantum systems, providing precise expressions for wave functions and energy eigenvalues. This work enhances the understanding of quantum systems with deformed symmetries and suggests avenues for future research in quantum mechanics and mathematical physics. </p> </div> </dd> <dt> <a name='item43'>[43]</a> <a href ="/abs/2411.03119" title="Abstract" id="2411.03119"> arXiv:2411.03119 </a> (replaced) [<a href="/pdf/2411.03119" title="Download PDF" id="pdf-2411.03119" aria-labelledby="pdf-2411.03119">pdf</a>, <a href="https://arxiv.org/html/2411.03119v3" title="View HTML" id="html-2411.03119" aria-labelledby="html-2411.03119" rel="noopener noreferrer" target="_blank">html</a>, <a href="/format/2411.03119" title="Other formats" id="oth-2411.03119" aria-labelledby="oth-2411.03119">other</a>] </dt> <dd> <div class='meta'> <div class='list-title mathjax'><span class='descriptor'>Title:</span> Predicting New Above-Threshold Molecular States Via Triangular Singularities </div> <div class='list-authors'><a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Huang,+Y">Yin Huang</a>, <a href="https://arxiv.org/search/hep-ph?searchtype=author&query=Chen,+X">Xurong Chen</a></div> <div class='list-comments mathjax'><span class='descriptor'>Comments:</span> 5 papes, 1 figures, 2 tables </div> <div class='list-subjects'><span class='descriptor'>Subjects:</span> <span class="primary-subject">High Energy Physics - Phenomenology (hep-ph)</span>; High Energy Physics - Experiment (hep-ex); High Energy Physics - Theory (hep-th) </div> <p class='mathjax'> Considering that the experimentally observed molecular states are significantly fewer than those predicted theoretically, and that these states are traditionally classified as lying below thresholds while several candidates are found above them, we propose to broaden the definition of molecular states to include those that exist just above the thresholds. Identifying resonance peaks in invariant mass distributions and scattering cross-sections is crucial for probing these states, yet the mechanisms responsible for such enhancements remain unclear, complicating our understanding of new particle production. While the peaks linked to triangular singularities do not correspond to true hadronic states, the associated production mechanisms may provide valuable insight into the search for genuine hadrons. In this work, we propose employing the triangular singularity mechanism to theoretically investigate yet-to-be-observed molecular states, particularly those that could test heavy quark symmetry. We argue that these states may have true masses surpassing the thresholds of their constituent components, rather than being predicted to be below them by theoretical models. Our findings suggest the possible existence of 18 predicted heavy quark molecular states, including $X(4014)$, $Z_{cs}(4123)$, $X_{c0}(4500)$, $X_{c1}(4685)$, $Y(4320)$, $Z(4430)$, and $\Upsilon(11020)$, which are posited to contain $D^{*}\bar{D}^{*}$, $D^{*}\bar{D}^{*}_{s}$, \( D_{s1}^{+}D_{s}^{-} \),\( D_{s1}^{+}D_{s}^{*-} \), $D_1\bar{D}$, $D_1\bar{D}^{*}$, and $B_{1}(5721)\bar{B}$ constituents, respectively. The recognition of these states would substantiate heavy quark symmetry and enhance our understanding of hadronic dynamics and molecular states formation. </p> </div> </dd> </dl> <div class='paging'>Total of 43 entries </div> <div class='morefewer'>Showing up to 2000 entries per page: <a href=/list/hep-th/new?skip=0&show=1000 rel="nofollow"> fewer</a> | <span style="color: #454545">more</span> | <span style="color: #454545">all</span> </div> </div> </div> </div> </main> <footer style="clear: both;"> <div class="columns is-desktop" role="navigation" aria-label="Secondary" style="margin: -0.75em -0.75em 0.75em -0.75em"> <!-- Macro-Column 1 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- End Macro-Column 1 --> <!-- Macro-Column 2 --> <div class="column" style="padding: 0;"> <div class="columns"> <div class="column"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul style="list-style: none; line-height: 2;"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> <!-- End Macro-Column 2 --> </div> </footer> </div> <script src="/static/base/1.0.1/js/member_acknowledgement.js"></script> </body> </html>