CINXE.COM
Search results for: cytotoxic compounds
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cytotoxic compounds</title> <meta name="description" content="Search results for: cytotoxic compounds"> <meta name="keywords" content="cytotoxic compounds"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cytotoxic compounds" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cytotoxic compounds"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2530</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cytotoxic compounds</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2530</span> Synthesis, Molecular Docking, and Cytotoxic Activity of Novel Triazolopyridazine Derivatives </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20T.%20Tahera">Azza T. Tahera</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20M.%20Ahmeda"> Eman M. Ahmeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20A.%20Khalila"> Nadia A. Khalila</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassin%20M.%20Nissanb"> Yassin M. Nissanb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New 3-(pyridin-4-yl)-[1,2,4] triazolo [4,3-b] pyridazine derivatives 2a-i, 4a,b and 6a,b were designed, synthesized and evaluated as cytotoxic agents. All compounds were investigated for their in vitro cytotoxicity at a single dose 10-5M concentration towards 60 cancer cell lines according to USA NCI protocol. The preliminary screening results showed that the majority of tested compounds exhibited remarkable activity against SR (leukemia) cell panel. Molecular docking for all synthesized compounds was performed on the active site of c-Met kinase. The most active compounds, 2f and 4a were further evaluated at a seven dose level screening and their IC50 as a c-Met kinase inhibitors were determined in vitro. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triazolopyridazines" title="triazolopyridazines">triazolopyridazines</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridazines" title=" pyridazines"> pyridazines</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title=" cytotoxic activity"> cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20panel" title=" cell panel"> cell panel</a> </p> <a href="https://publications.waset.org/abstracts/22560/synthesis-molecular-docking-and-cytotoxic-activity-of-novel-triazolopyridazine-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">537</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2529</span> Cytotoxic Activity Of Major Iridoids From Barleria Trispinosa (Forssk.) Vahl. Growing In Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Assiry">Hamza Assiry</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20A.%20Mohamed"> Gamal A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrin%20R.%20M.%20Ibrahim"> Sabrin R. M. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20M.%20Abdallah"> Hossam M. Abdallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical investigation of the aerial parts of Barleria trispinosa(Forssk.) Vahl. resulted in isolation of four major iridoids that were identified as 6,8-O,O-diacetylshanhiside methyl ester (acetyl barlerin) (1), 8-O-acetylshanzhiside methyl ester (barlerin) (2), shanzhiside methyl ester (3), and 6- ⍺ -L-rhamnopyranosyl-8-O-acetylshanzihiside methyl ester (4). The isolated compounds were confirmed by detailed one and two-dimensional NMR. Isolated compounds were tested for their cytotoxic activity on breast cancer (MCF-7, MDA-MB-231) and colon cancer (LS174T) cell linesusing sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards MDA-MB-231 cell line with IC5016.7 ± 2.7µg / mL compared to doxorubicin whereas compounds 2, showed moderate cytotoxic potential with IC5021.2 ± 1.9µg / mL on MCF-7. The other compounds showed moderate activity on the tested cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acanthaceae" title="acanthaceae">acanthaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=barleria%20trispinosa" title=" barleria trispinosa"> barleria trispinosa</a> </p> <a href="https://publications.waset.org/abstracts/147131/cytotoxic-activity-of-major-iridoids-from-barleria-trispinosa-forssk-vahl-growing-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2528</span> Isolation and Identification of Cytotoxic Compounds from Fruticose Lichen Roccella montagnei, and It’s in Silico Docking Study against CDK-10</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tripti%20Mishra">Tripti Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shipra%20Shukla"> Shipra Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Meena"> Sanjeev Meena</a>, <a href="https://publications.waset.org/abstracts/search?q="></a>, <a href="https://publications.waset.org/abstracts/search?q=Ruchi%20Singh"> Ruchi Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Pal"> Mahesh Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Upreti"> D. K. Upreti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipak%20Datta"> Dipak Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Roccella montagnei belongs to lichen family Roccelleceae growing luxuriantly along the coastal regions of India. As Roccella has been shown to be bioactive, we prepared methanolic extract and assessed its anticancer potential. The methanolic extract showed significant in vitro cytotoxic activity against four human cancer cell lines such as Colon (DLD-1, SW-620), Breast (MCF-7), Head and Neck (FaDu). This prompted us to isolate bioactive compounds through column chromatography. Two compounds Roccellic acid and Everninic acid have been isolated, out of which Everninic acid is reported for the first time. Both the compounds have been tested for in vitro cytotoxic activity in which Roccellic acid showed strong anticancer activity as compared to the Everninic acid. CDK-10 (Cyclin-dependent kinase) contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases, therefore, constitute biomarkers of proliferation and attractive pharmacological targets for the development of anticancer therapeutics. Therefore both the isolated compounds were tested for in silico molecular docking study against CDK-10 isomer enzyme to support the cytotoxic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title="cytotoxic activity">cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=everninic%20acid" title=" everninic acid"> everninic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=roccellic%20acid" title=" roccellic acid"> roccellic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20montagnei" title=" R. montagnei"> R. montagnei</a> </p> <a href="https://publications.waset.org/abstracts/56792/isolation-and-identification-of-cytotoxic-compounds-from-fruticose-lichen-roccella-montagnei-and-its-in-silico-docking-study-against-cdk-10" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2527</span> An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karol%20Rodriguez-Pe%C3%B1a">Karol Rodriguez-Peña</a>, <a href="https://publications.waset.org/abstracts/search?q=Martha%20L.%20Macias-Rubalcava"> Martha L. Macias-Rubalcava</a>, <a href="https://publications.waset.org/abstracts/search?q=Leticia%20Rocha-Zavaleta"> Leticia Rocha-Zavaleta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Sanchez"> Sergio Sanchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphipterygium%20adstringens" title="amphipterygium adstringens">amphipterygium adstringens</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=streptomyces%20scabrisporus" title=" streptomyces scabrisporus"> streptomyces scabrisporus</a>, <a href="https://publications.waset.org/abstracts/search?q=steffimycin" title=" steffimycin"> steffimycin</a> </p> <a href="https://publications.waset.org/abstracts/66620/an-endophyte-of-amphipterygium-adstringens-as-producer-of-cytotoxic-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2526</span> New 5’-O- and 6-Substituted Purine Nucleoside Analogs: Synthesis and Cytotoxic Activity on Selected Human Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meral%20Tuncbilek">Meral Tuncbilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Sac"> Duygu Sac</a>, <a href="https://publications.waset.org/abstracts/search?q=Irem%20Durmaz"> Irem Durmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rengul%20Cetin%20Atalay"> Rengul Cetin Atalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nucleoside analogs are a pharmacologically diverse family that includes cytotoxic compounds, antiviral agents, and immunosuppressive molecules. Purine nucleoside derivatives such as fludarabine, cladribine, and pentostatin are significant drugs used in chemotherapy for the treatment of solid tumors and hematological malignancies. In this study, we synthesized novel purine ribonucleoside analogs containing a 4-(4-substituted phenylsulfonyl) piperazine in the substituent at N6- and O-substituted sulfonyl group at 5’-position as putative cytotoxic agents. The newly obtained compounds were then characterized for their cytotoxicity in human cancer cell lines. The 5’, 6-disubstituted 9-(β-D-ribofuranosyl)purine derivatives (44-67) were readily obtained from commercially available inosine in seven steps in very cost effective synthesis approach. The newly synthesized compounds were first evaluated for their anti-tumor activities against human liver (Huh7), colon (HCT116) and breast (MCF7) carcinoma cell lines. The IC50 values were in micromolar concentrations with 5’, 6-disubstituted purine nucleoside derivatives. Time-dependent IC50 values for each molecule were also calculated in comparison with known cytotoxic agents Camptothecin (CPT), 5-Fluorouracil (5-FU), Cladribine, Pentostatine and Fludarabine. N6-(4-trifluoromethyl phenyl) / N6-(4-bromophenyl) and 5’-O-(4-methoxybenzene sulfonyl) / 5’-O-(benzenesulfonyl) derivatives 54, 64 displayed the best cytotoxic activity with IC50 values of 8.8, 7 µM against MCF7 cell line. The N6-(4-methylphenyl) analog 50 was also very active (IC50= 10.7 μM) against HCT116 cell line. Furthermore, compound 64 had a better cytotoxic activity than the known cell growth inhibitors 5-FU and Fludarabine on Huh7 (1.5 vs 30.7, 29.9 μM for 5-FU and Fludarabine). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title="cytotoxic activity">cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Huh7" title=" Huh7"> Huh7</a>, <a href="https://publications.waset.org/abstracts/search?q=HCT116" title=" HCT116"> HCT116</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF7" title=" MCF7"> MCF7</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleoside" title=" nucleoside"> nucleoside</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/49693/new-5-o-and-6-substituted-purine-nucleoside-analogs-synthesis-and-cytotoxic-activity-on-selected-human-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2525</span> Investigation of Cytotoxic Compounds in Ethyl Acetate and Chloroform Extracts of Nigella sativa Seeds by Sulforhodamine-B Assay-Guided Fractionation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshani%20Uggallage">Harshani Uggallage</a>, <a href="https://publications.waset.org/abstracts/search?q=Kapila%20D.%20Dissanayaka"> Kapila D. Dissanayaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Sulforhodamine-B assay-guided fractionation on Nigella sativa seeds was conducted to determine the presence of cytotoxic compounds against human hepatoma (HepG2) cells. Initially, a freeze-dried sample of Nigella sativa seeds was sequentially extracted into solvents of increasing polarities. Crude extracts from the sequential extraction of Nigella sativa seeds in chloroform and ethyl acetate showed the highest cytotoxicity. The combined mixture of these two extracts was subjected to bioassay guided fractionation using a modified Kupchan method of partitioning, followed by Sephadex® LH-20 chromatography. This chromatographic separation process resulted in a column fraction with a convincing IC50 (half-maximal inhibitory concentration) value of 13.07µg/ml, which is considerable for developing therapeutic drug leads against human hepatoma. Reversed phase High-Performance Liquid Chromatography (HPLC) was finally conducted for the same column fraction, and the result indicates the presence of one or several main cytotoxic compounds against human HepG2 cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds" title="cytotoxic compounds">cytotoxic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=half-maximal%20inhibitory%20concentration" title=" half-maximal inhibitory concentration"> half-maximal inhibitory concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=high-performance%20liquid%20chromatography" title=" high-performance liquid chromatography"> high-performance liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20HepG2%20cells" title=" human HepG2 cells"> human HepG2 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=nigella%20sativa%20seeds" title=" nigella sativa seeds"> nigella sativa seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=Sulforhodamine-B%20assay" title=" Sulforhodamine-B assay"> Sulforhodamine-B assay</a> </p> <a href="https://publications.waset.org/abstracts/144007/investigation-of-cytotoxic-compounds-in-ethyl-acetate-and-chloroform-extracts-of-nigella-sativa-seeds-by-sulforhodamine-b-assay-guided-fractionation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2524</span> Cytotoxic Metabolites from Tagetes minuta L. Growing in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20A.%20A.%20Alqarni">Ali A. A. Alqarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamal%20A.%20Mohamed"> Gamal A. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20M.%20Abdallah"> Hossam M. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrin%20R.%20M.%20Ibrahim"> Sabrin R. M. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemical investigation of the methanolic extract of aerial parts of Tagetes minuta L. (Family: Asteraceae) using different chromatographic techniques led to the isolation of five compounds; ecliptal (1), scopoletin (2), P-hydroxy benzoic acid (3), patuletin (4), and patuletin-7-O-β-D-glucopyranoside (5) (Figure 1). Their structures were established based on physical, chemical, and spectral data [Ultraviolet (UV), Proton ¹H, Carbon thirteen ¹³C, and Heteronuclear Multiple Bond Correlation (HMBC) NMR], as well as Electrospray Ionization Mass Spectroscopy (ESIMS) and comparison with literature data. Their cytotoxic activity was assessed towards human liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and human colon cancer (HCT116) cancer cell lines using sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards HepG2, MCF7, and HCT116 cells with IC₅₀s ranging from 2.74 to 7.01 μM, compared to doxorubicin (IC₅₀ 0.18, 0.60, and 0.20 μM, respectively), whereas compounds 2, 4, and 5 showed moderate cytotoxic potential with IC50s ranging from 11.71 to 35.64 μM. However, 3 was inactive up to a concentration of 100 μM towards the three tested cancer cell lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asteraceae" title="Asteraceae">Asteraceae</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolites" title=" metabolites"> metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=Tagetes%20minuta" title=" Tagetes minuta"> Tagetes minuta</a> </p> <a href="https://publications.waset.org/abstracts/144923/cytotoxic-metabolites-from-tagetes-minuta-l-growing-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2523</span> Isolation of Cytotoxic Compound from Tectona grandis Stem to Be Used as Thai Medicinal Preparation for Cancer Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onmanee%20Prajuabjinda">Onmanee Prajuabjinda</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakakrong%20Thondeeying"> Pakakrong Thondeeying</a>, <a href="https://publications.waset.org/abstracts/search?q=Jipisute%20Chunthorng-Orn"> Jipisute Chunthorng-Orn</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanuz%20Dechayont"> Bhanuz Dechayont</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunporn%20Itharat"> Arunporn Itharat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Thai medicinal preparation has been used for cancer treatment more than ten years ago in Khampramong Temple. Tectona grandis stem is one ingredient of this Thai medicinal remedy. The ethanolic extract of Tectona grandis stem showed the highest cytotoxic activities against human breast adenocarcinoma (MCF-7), but was less cytotoxic against large cell lung carcinoma (COR-L23) (IC50 = 3.92 and 7.78 µg/ml, respectively). It was isolated by bioassay-guided isolation method. Tectoquinone, a anthraquinone compound was isolated from this plant. This compound showed high specific cytotoxicity against human breast adenocarcinoma (MCF-7), but was less cytotoxic against large cell lung carcinoma (COR-L23)(IC50 =16.15 and 47.56 µg/ml or 72.67 and 214.00 µM, respectively). However, it showed less cytotoxic activity than the crude extract. In conclusion, tectoquinone as a main compound, is not the best cytotoxic compound from Tectona grandis, so there are more active cytotoxic compounds in this extract which should be isolated in the future. Moreover, tectoquinone displayed specific cytotoxicity against only human breast adenocarcinoma (MCF-7) which is a good criterion for cancer treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tectona%20grandis" title="Tectona grandis">Tectona grandis</a>, <a href="https://publications.waset.org/abstracts/search?q=SRB%20assay" title=" SRB assay"> SRB assay</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=tectoquinone" title=" tectoquinone"> tectoquinone</a> </p> <a href="https://publications.waset.org/abstracts/25415/isolation-of-cytotoxic-compound-from-tectona-grandis-stem-to-be-used-as-thai-medicinal-preparation-for-cancer-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2522</span> Chemical Analysis and Cytotoxic Evaluation of Asphodelus Aestivus Brot. Flowers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20M.%20Farid">Mai M. Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20El-Shabrawy"> Mona El-Shabrawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameh%20R.%20Hussein"> Sameh R. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elkhateeb"> Ahmed Elkhateeb</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Said%20S.%20Abdel-Hameed"> El-Said S. Abdel-Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20M.%20Marzouk"> Mona M. Marzouk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphodelus aestivus Brot. Is a wild plant distributed in Egypt and is considered one of the five Asphodelus spp. from the family Asphodelaceae; it grows in dry grasslands and on rocky or sandy soil. The chemical components of A. aestivus flowers extract were analyzed using different chromatographic and spectral techniques and led to the isolation of two anthraquinones identified as emodin and emodin-O-glucoside. In addition to, five flavonoid compounds;kaempferol,Kaempferol-3-O-glucoside,Apigenin-6-C-glucoside-7-O-glucoside (Saponarine), luteolin 7-O-β-glucopyranoside, Isoorientin-O-malic acid which is a new compound in nature. The LC-ESI-MS/MS analysis of the flower extract of A. aestivus led to the identification of twenty- two compounds characterized by the presence of flavones, flavonols, and flavone C-glycosides. While GC/MS analysis led to the identification of 24 compounds comprising 98.32% of the oil, the major components of the oil were 9, 12, 15-Octadecatrieoic acid methyl ester 28.72%, and 9, 12-Octadecadieroic acid (Z, Z)-methyl ester 19.96%. In vitro cytotoxic activity of the aqueous methanol extract of A. aestivus flowers against HEPG2, HCT-116, MCF-7, and A549 culture was examined and showed moderate inhibition (62.3±1.1)% on HEPG2 cell line followed by (36.8±0.2)% inhibition on HCT-116 and a weak inhibition (5.7± 0.0.2) on MCF-7 cell line followed by (4.5± 0.4) % inhibition on A549 cell line and this is considered the first cytotoxic report of A. aestivus flowers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthraquinones" title="Anthraquinones">Anthraquinones</a>, <a href="https://publications.waset.org/abstracts/search?q=Asphodelus%20aestivus" title=" Asphodelus aestivus"> Asphodelus aestivus</a>, <a href="https://publications.waset.org/abstracts/search?q=Cytotoxic%20activity" title=" Cytotoxic activity"> Cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavonoids" title=" Flavonoids"> Flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-ESI-MS%2FMS" title=" LC-ESI-MS/MS"> LC-ESI-MS/MS</a> </p> <a href="https://publications.waset.org/abstracts/131479/chemical-analysis-and-cytotoxic-evaluation-of-asphodelus-aestivus-brot-flowers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2521</span> Cytotoxicity of Flavonoid Compounds from Smilax corbularia Kunth Against Cholangiocarcinoma Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakakrong%20Thongdeeying">Pakakrong Thongdeeying</a>, <a href="https://publications.waset.org/abstracts/search?q=Srisopa%20Ruangnoo"> Srisopa Ruangnoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunporn%20Itharat"> Arunporn Itharat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rhizomes of Smilax corbularia Kunth have long been used as common ingredients in anticancer preparations. Thus, the objective of this study is to investigate cytotoxicity of S. corbularia and its ingredients against cholangiocarcinoma cell line (KKU-M156) by SRB assay. Ethanolic and water extracts of S. corbularia rhizomes were obtained using the procedures followed by Thai traditional doctors. Bioassay guided isolation was used to isolate cytotoxic compounds. The results revealed that the ethanolic extract of S. corbularia exhibited activity against KKU-M156 cell line with an IC50 value of 84.53±1.62 µg/ml, but the water extract showed no cytotoxic activity. Three flavonoid compounds [astilbin (1), engeletin (2), and quercetin (3)] were isolated from the ethanolic extract. Compound 3 exhibited the strongest activity against KKU-M156 cell line (IC50 = 8.14 ± 1.15 µg/ml), but 1 and 2 showed no cytotoxic activity (IC50 > 100 µg/ml). In conclusion, quercetin showed the highest efficacy against cholangiocarcinoma. These results support the traditional use of this plant by Thai traditional doctors for cancer treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cholangiocarcinoma" title="cholangiocarcinoma">cholangiocarcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a>, <a href="https://publications.waset.org/abstracts/search?q=Smilax%20corbularia" title=" Smilax corbularia "> Smilax corbularia </a> </p> <a href="https://publications.waset.org/abstracts/25235/cytotoxicity-of-flavonoid-compounds-from-smilax-corbularia-kunth-against-cholangiocarcinoma-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2520</span> Preparation, Characterisation, and Measurement of the in vitro Cytotoxicity of Mesoporous Silica Nanoparticles Loaded with Cytotoxic Pt(II) Oxadiazoline Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Wagner">G. Wagner</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Herrmann"> R. Herrmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cytotoxic platinum compounds play a major role in the chemotherapy of a large number of human cancers. However, due to the severe side effects for the patient and other problems associated with their use, there is a need for the development of more efficient drugs and new methods for their selective delivery to the tumours. One way to achieve the latter could be in the use of nanoparticular substrates that can adsorb or chemically bind the drug. In the cell, the drug is supposed to be slowly released, either by physical desorption or by dissolution of the particle framework. Ideally, the cytotoxic properties of the platinum drug unfold only then, in the cancer cell and over a longer period of time due to the gradual release. In this paper, we report on our first steps in this direction. The binding properties of a series of cytotoxic Pt(II) oxadiazoline compounds to mesoporous silica particles has been studied by NMR and UV/vis spectroscopy. High loadings were achieved when the Pt(II) compound was relatively polar, and has been dissolved in a relatively nonpolar solvent before the silica was added. Typically, 6-10 hours were required for complete equilibration, suggesting the adsorption did not only occur to the outer surface but also to the interior of the pores. The untreated and Pt(II) loaded particles were characterised by C, H, N combustion analysis, BET/BJH nitrogen sorption, electron microscopy (REM and TEM) and EDX. With the latter methods we were able to demonstrate the homogenous distribution of the Pt(II) compound on and in the silica particles, and no Pt(II) bulk precipitate had formed. The in vitro cytotoxicity in a human cancer cell line (HeLa) has been determined for one of the new platinum compounds adsorbed to mesoporous silica particles of different size, and compared with the corresponding compound in solution. The IC50 data are similar in all cases, suggesting that the release of the Pt(II) compound was relatively fast and possibly occurred before the particles reached the cells. Overall, the platinum drug is chemically stable on silica and retained its activity upon prolonged storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title="cytotoxicity">cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica" title=" mesoporous silica"> mesoporous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum%20compounds" title=" platinum compounds"> platinum compounds</a> </p> <a href="https://publications.waset.org/abstracts/42433/preparation-characterisation-and-measurement-of-the-in-vitro-cytotoxicity-of-mesoporous-silica-nanoparticles-loaded-with-cytotoxic-ptii-oxadiazoline-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2519</span> Synthesis and Cytotoxic Activity of New Quinazolinone-Based Compounds against Human Breast Cancer Cell Line MCF-7</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Zahedifard">Maryam Zahedifard</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadhil%20Lafta%20Faraj"> Fadhil Lafta Faraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Hajrezaie"> Maryam Hajrezaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazia%20Abdul%20Majid"> Nazia Abdul Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Ameen%20Abdulla"> Mahmood Ameen Abdulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Hapipah%20Mohd%20Ali"> Hapipah Mohd Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, we prepared two new quinazoline schiff bases through condensation reaction of 2-aminobenzhydrazide with 5-bromosalicylaldehyde and 3-methoxy-5-bromosalicylaldehyde. The chemical structures of both newly synthesized compounds (1 and 2) were confirmed by FT-IR and X-ray crystallography studies. The cytotoxic effect of compounds was investigated against MCF-7 human breast cancer cells. MTT results showed that (1) and (2) decreased the viability of MCF-7 cells in a time-dependent manner, exhibiting an IC50 value of 3.23 ± 0.28 µg/mL and 3.41 ± 0.34 µg/mL, respectively, after a 72-hours treatment period. In contrast, they did not show significant anti-proliferative effect towards MCF-10A normal breast cells and WRL-68 normal liver cells. We found a perturbation in mitochondrial membrane potential and increased cytochrome c release from the mitochondria to the cytosol, suggesting an activation of apoptosis by compounds, which was confirmed by activation of the initiator caspase-9 and the executioner caspases-3/7. (1) was also able to trigger extrinsic pathway via activation of caspase-8 and inhibition of NF-κB translocation. The acute toxicity test showed no toxicity effect of the compounds in rats. Our results showed that the selected synthesized compounds are highly potent to induce apoptosis in MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quinazoline%20Schiff%20base" title="Quinazoline Schiff base">Quinazoline Schiff base</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF-7%20human%20breast%20cancer%20cell%20line" title=" MCF-7 human breast cancer cell line"> MCF-7 human breast cancer cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=caspase" title=" caspase"> caspase</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-%CE%BAB%20translocation" title=" NF-κB translocation"> NF-κB translocation</a> </p> <a href="https://publications.waset.org/abstracts/13587/synthesis-and-cytotoxic-activity-of-new-quinazolinone-based-compounds-against-human-breast-cancer-cell-line-mcf-7" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2518</span> Pharmacological Active Compounds of Sponges and a Gorgonian Coral from the Andaman Sea, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patchara%20Pedpradab">Patchara Pedpradab</a>, <a href="https://publications.waset.org/abstracts/search?q=Kietisak%20Yoksang"> Kietisak Yoksang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kosin%20Pattanamanee"> Kosin Pattanamanee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our ongoing search for pharmacological significant of compounds from marine organisms, we investigated the active constituents of two sponges (Xestospongia sp., Halichondria sp.) and a gorgonian coral (Juncella sp.) from the Andaman Sea, Thailand. Several compounds were isolated from those of marine organisms. A marine sponge, Xestospongia sp. contained an isoqinoline compound namely aureol and cytotoxic thiophenen sesterterpene while Halichondria sp. produced C-28 sterols. The white gorgonian coral, Juncella sp. contained anti-tuberculosis diterpenes namely, junceellin and praelolide. All of the isolated compounds were analyzed by spectroscopic methods, extensively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xestospongia%20sp." title="Xestospongia sp.">Xestospongia sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=Halichondria%20sp." title=" Halichondria sp."> Halichondria sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=gorgonian" title=" gorgonian"> gorgonian</a>, <a href="https://publications.waset.org/abstracts/search?q=Juncella%20sp.%20biological%20activity" title=" Juncella sp. biological activity "> Juncella sp. biological activity </a> </p> <a href="https://publications.waset.org/abstracts/10352/pharmacological-active-compounds-of-sponges-and-a-gorgonian-coral-from-the-andaman-sea-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2517</span> Cytotoxic Activity of Parkia javanica Merr. and Parkia speciosa Hassk. against Human Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srisopa%20Ruangnoo">Srisopa Ruangnoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunporn%20Itharat"> Arunporn Itharat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ethanolic and aqueous extracts of Parkia javanica Merr. germinating seeds and Parkia speciosa Hassk. seeds were evaluated for cytotoxic activity against three different types of human cancer cell lines including colon cancer (LS174T), breast cancer (MCF-7) and prostate cancer (PC3) using sulforhodamine B (SRB) assay. The fresh plant parts were divided into 2 parts. The first part was extracted by maceration with 95% ethanol for 3 days and then filtered, and the filtrates were evaporated by rotary evaporator. The other part was squeezed and filtered. Then the filtrates were dried by freeze dryer. The screening found that the aqueous extract of P. javanica Merr. germinating seeds exhibited more than 70% inhibition (at concentration 50 µg/ml) against all types of human cancer cells. The aqueous extract of P. javanica Merr. germinating seeds showed the highest cytotoxic activity against MCF-7 with the IC50 value as 5.63 µg/ml. The aqueous extract of P. javanica Merr. germinating seeds also showed high cytotoxic activity against PC3 and LS174T with the IC50 values as 10.79 and 11.40 µg/ml, respectively. In conclusion, P. javanica Merr. germinating seed is a natural source of anticancer activity and further research to isolate active compounds from this plant should be undertaken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title="cytotoxic activity">cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkia%20javanica%20Merr." title=" Parkia javanica Merr."> Parkia javanica Merr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkia%20speciosa%20Hassk." title=" Parkia speciosa Hassk."> Parkia speciosa Hassk.</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20cancer%20cell%20lines" title=" human cancer cell lines"> human cancer cell lines</a> </p> <a href="https://publications.waset.org/abstracts/25412/cytotoxic-activity-of-parkia-javanica-merr-and-parkia-speciosa-hassk-against-human-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2516</span> Cytotoxic Activity of Extracts from Hibiscus sabdariffa Leaves against Women’s Cancer Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patsorn%20Worawattananutai">Patsorn Worawattananutai</a>, <a href="https://publications.waset.org/abstracts/search?q=Srisopa%20Ruangnoo"> Srisopa Ruangnoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunporn%20Itharat"> Arunporn Itharat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hibiscus sabdariffa (HS) leaves are vegetables which are extensively used as blood tonic and laxatives in Thai traditional medicine. They are popularly used as healthy sour soup for prevention of chronic diseases such as cancer. Therefore, the cytotoxic activity of different extracts of fresh and dried Hibiscus sabdariffa leaves were investigated via the sulforhodamine B (SRB) assay against three types of women’s cancer cell lines, namely the human cervical adenocarcinoma cell line (HeLa), the human ovarian adenocarcinoma cell line (SKOV-3), and the human breast adenocarcinoma cell line (MCF-7). Extraction methods were squeezing, boiling with water and maceration with 95% or 50% ethanol. The 95% ethanolic extracts of Hibiscus sabdariffa dry leaves (HSDE95) showed the highest cytotoxicity against all types of women’s cancer cell lines with the IC50 values in range 7.51±0.33 to 12.13±1.85 µg/ml. Its IC50 values against SKOV-3, HeLa and MCF-7 were 7.51±0.33, 9.44±1.41 and 12.13±1.85 µg/ml, respectively. In these results, this extract can be classified as “active” according to the NCI guideline which indicated that IC50 values of the active cytotoxic plant extracts have to be beneath 20 µg/ml. Thus, HSDE95 was concluded to be a potent cytotoxic drug for all women’s cancer cells. This extract should be further investigated to isolate active compounds against women’s cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20adenocarcinoma" title="breast adenocarcinoma">breast adenocarcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=cervical%20adenocarcinoma" title=" cervical adenocarcinoma"> cervical adenocarcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title=" cytotoxic activity"> cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Hibiscus%20sabdariffa" title=" Hibiscus sabdariffa"> Hibiscus sabdariffa</a>, <a href="https://publications.waset.org/abstracts/search?q=ovarian%20adenocarcinoma" title=" ovarian adenocarcinoma"> ovarian adenocarcinoma</a> </p> <a href="https://publications.waset.org/abstracts/25269/cytotoxic-activity-of-extracts-from-hibiscus-sabdariffa-leaves-against-womens-cancer-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2515</span> Screening for Antibacterial, Antifungal and Cytotoxic Agents in Three Hard Coral Species from Persian Gulf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ehsanpou">Maryam Ehsanpou</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Afkhami"> Majid Afkhami</a>, <a href="https://publications.waset.org/abstracts/search?q=Flora%20Mohammadizadeh"> Flora Mohammadizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirhoushang%20Bahri"> Amirhoushang Bahri</a>, <a href="https://publications.waset.org/abstracts/search?q=Rastin%20Afkhami"> Rastin Afkhami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the frame of a biodiversity and bioactivity study of marine macro organisms from the Persian Gulf, three hard coral species extracts were investigated for cytotoxic, antibacterial and antifungal activities against five human pathogenic microorganisms. All concentrations of extracts from three hard corals showed no antifungal activity towards the tested strains. In antibacterial assays, the hard coral extracts showed significant activity solely against Staphylococcus aureus with MICs ranging from 3 to 9 μg/ml. The highest antibacterial activity was found in the aqueous methanol extract of Porites compressa with an inhibition zone of 22 mm against Staphylococcus aureus at 18 μg/ml extract concentration. Methanol extracts from Porites harrisoi and Porites compressa exhibited only weak cytotoxic activities. It is important for future research to concentrate on finding the mechanisms employed by corals to defend themselves against invasion, the mechanism of infections and the type of chemical compounds in coral extracts that inhibit antibacterial growth or proliferation in underexplored areas such as the Persian Gulf. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title=" cytotoxic"> cytotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20corals" title=" hard corals"> hard corals</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20Gulf" title=" Persian Gulf"> Persian Gulf</a> </p> <a href="https://publications.waset.org/abstracts/34016/screening-for-antibacterial-antifungal-and-cytotoxic-agents-in-three-hard-coral-species-from-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2514</span> Microbiological Analysis, Cytotoxic and Genotoxic Effects from Material Captured in PM2.5 and PM10 Filters Used in the Aburrá Valley Air Quality Monitoring Network (Colombia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carmen%20E.%20Zapata">Carmen E. Zapata</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Bautista"> Juan Bautista</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Montoya"> Olga Montoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20Moreno"> Claudia Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Marisol%20Suarez"> Marisol Suarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandra%20Betancur"> Alejandra Betancur</a>, <a href="https://publications.waset.org/abstracts/search?q=Duvan%20Nanclares"> Duvan Nanclares</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20A.%20Cano"> Natalia A. Cano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to evaluate the diversity of microorganisms in filters PM2.5 and PM10; and determine the genotoxic and cytotoxic activity of the complex mixture present in PM2.5 filters used in the Aburrá Valley Air Quality Monitoring Network (Colombia). The research results indicate that particulate matter PM2.5 of different monitoring stations are bacteria; however, this study of detection of bacteria and their phylogenetic relationship is not complete evidence to connect the microorganisms with pathogenic or degrading activities of compounds present in the air. Additionally, it was demonstrated the damage induced by the particulate material in the cell membrane, lysosomal and endosomal membrane and in the mitochondrial metabolism; this damage was independent of the PM2.5 concentrations in almost all the cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title="cytotoxic">cytotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=genotoxic" title=" genotoxic"> genotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiological%20analysis" title=" microbiological analysis"> microbiological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=PM10" title=" PM10"> PM10</a>, <a href="https://publications.waset.org/abstracts/search?q=PM2.5" title=" PM2.5"> PM2.5</a> </p> <a href="https://publications.waset.org/abstracts/49590/microbiological-analysis-cytotoxic-and-genotoxic-effects-from-material-captured-in-pm25-and-pm10-filters-used-in-the-aburra-valley-air-quality-monitoring-network-colombia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2513</span> Mentha crispa Essential Oil and Rotundifolone Analogues: Cytotoxic Effect on Glioblastoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dami%C3%A3o%20Sousa">Damião Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Turkez"> Hasan Turkez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Tozlu"> Ozlem Tozlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamires%20Lima"> Tamires Lima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma (GBM) is an aggressive cancer from the brain and with high prevalence and significant morbimortality. Therefore, it is necessary to investigate new therapeutic options against this pathology. Thus, the purpose of this study was to evaluate the antitumor activity from Mentha crispa essential oil (MCEO), its major constituent rotundifolone (ROT) and a series of six analogues on human U87MG glioblastoma cell line. The antitumor effects of the compounds on human U87MG-GBM cell line were assessed using in vitro cell viability assays. In addition, biosafety tests were performed on cultured human blood cells. The data show that MCEO, 1,2-perillaldehyde epoxide (EPER1) and perillaldehyde (PALD) were the most cytotoxic compounds against the U87MG cells, with IC50 values of 16.263, 15.087 and 14.888 μg/mL, respectively. The treatment with MCEO, EPER1 and PALD did not lead to damage in blood cells. These chemical analogues may be useful as prototypes for development of novel antitumor drugs due to their promising activities and toxicological safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antitumor%20activity" title="antitumor activity">antitumor activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20products" title=" natural products"> natural products</a>, <a href="https://publications.waset.org/abstracts/search?q=terpenes" title=" terpenes"> terpenes</a> </p> <a href="https://publications.waset.org/abstracts/90514/mentha-crispa-essential-oil-and-rotundifolone-analogues-cytotoxic-effect-on-glioblastoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2512</span> Cytotoxic Activity of Marine-derived Fungi Trichoderma Longibrachiatum Against PANC-1 Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elin%20Julianti">Elin Julianti</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlia%20Singgih"> Marlia Singgih</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayoshi%20Arai"> Masayoshi Arai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianyu%20Lin"> Jianyu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Masteria%20Yunovilsa%20Putra"> Masteria Yunovilsa Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Azhari"> Muhammad Azhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnia%20S.%20Muharam"> Agnia S. Muharam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The search for a source of new medicinal compounds with anticancer activity from natural products has become important to resolve the ineffectiveness problem of pancreatic cancer therapy. Fungal marine microorganisms are prolific sources of bioactive natural products. In this present study, the ethyl acetate extract of cultured broth of Trichoderma longibrachiatum marine sponge-derived fungi exhibited selective cytotoxicity against human pancreatic carcinoma PANC-1 cells cultured under glucose-deficient conditions (IC50 = 98,4 µg/mL). The T. longibrachiatum was fermented by the static method at room temperature for 60 days. The culture broth was extracted using ethyl acetate by liquid-liquid extraction method. The liquid-liquid extraction was conducted toward the ethyl extract by using 90% MeOH-H₂O and n-|Hexane as a solvent. The extract of 90% MeOH-H₂O was fractionated by liquid extraction using by C₁₈ reversed-phase vacuum flash chromatography using mixtures of MeOH-H₂O, from 50:50 to 100:0, and 1% TFA MeOH as the eluents to yield six fractions. The fraction 2 (MeOH-H2O, 70:30) and fraction 3 (MeOH-H2O, 80:20) showed moderate cytotoxicity with IC50 value of 119.3 and 274.7 µg/mL, respectively. Fraction 4 (MeOH-H₂O, 90:10) showed the highest cytotoxicity activity with IC₅₀value of < 10 µg/mL. The chemical compounds of the fractions that are responsible for cytotoxic activity are potent for further investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title="cytotoxic activity">cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=trichoderma%20longibrachiatum" title=" trichoderma longibrachiatum"> trichoderma longibrachiatum</a>, <a href="https://publications.waset.org/abstracts/search?q=marine-derived%20fungi" title=" marine-derived fungi"> marine-derived fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=PANC-1%20cell%20line" title=" PANC-1 cell line"> PANC-1 cell line</a> </p> <a href="https://publications.waset.org/abstracts/145496/cytotoxic-activity-of-marine-derived-fungi-trichoderma-longibrachiatum-against-panc-1-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2511</span> MTT Assay-Guided Isolation of a Cytotoxic Lead from Hedyotis umbellata and Its Mechanism of Action against Non-Small Cell Lung Cancer A549 Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirti%20Hira">Kirti Hira</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sajeli%20Begum"> A. Sajeli Begum</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mahibalan"> S. Mahibalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Poorna%20Chandra%20Rao"> Poorna Chandra Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Cancer is one of the leading causes of death worldwide. Although existing therapy effectively kills cancer cells, they do affect normal growing cells leading to many undesirable side effects. Hence there is need to develop effective as well as safe drug molecules to combat cancer, which is possible through phyto-research. The currently available plant-derived blockbuster drugs are the example for this. In view of this, an investigation was done to identify cytotoxic lead molecules from Hedyotis umbellata (Family Rubiaceae), a widely distributed weed in India. Materials and Methods: The methanolic extract of the whole plant of H. umbellata (MHU), prepared through Soxhlet extraction method was further fractionated with diethyl ether and n-butanol, successively. MHU, ether fraction (EMHU) and butanol fraction (BMHU) were lyophilized and were tested for the cytotoxic effect using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay against non-small cell lung cancer (NSCLC) A549 cell lines. The potentially active EMHU was subjected to chromatographic purification using normal-phase silica columns, in order to isolate the responsible bioactive compounds. The isolated pure compounds were tested for their cytotoxic effect by MTT assay against A549 cells. Compound-3, which was found to be most active, was characterized using IR, 1H- and 13C-NMR and MS analysis. The study was further extended to decipher the mechanism of action of cytotoxicity of compound-3 against A549 cells through various in vitro cellular models. Cell cycle analysis was done using flow cytometry following PI (Propidium Iodide) staining. Protein analysis was done using Western blot technique. Results: Among MHU, EMHU, and BMHU, the non-polar fraction EMHU demonstrated a significant dose-dependent cytotoxic effect with IC50 of 67.7μg/ml. Chromatography of EMHU yielded seven compounds. MTT assay of isolated compounds explored compound-3 as potentially active one, which inhibited the growth of A549 cells with IC50value of 14.2μM. Further, compound-3 was identified as cedrelopsin, a coumarin derivative having molecular weight of 260. Results of in vitro mechanistic studies explained that cedrelopsin induced cell cycle arrest at G2/M phase and down-regulated the expression of G2/M regulatory proteins such as cyclin B1, cdc2, and cdc25C, dose dependently. This is the first report that explores the cytotoxic mechanism of cedrelopsin. Conclusion: Thus a potential small lead molecule, cedrelopsin isolated from H. umbellata, showing antiproliferative effect mediated by G2/M arrest in A549 cells was discovered. The effect of cedrelopsin against other cancer cell lines followed by in vivo studies can be performed in future to develop a new drug candidate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A549" title="A549">A549</a>, <a href="https://publications.waset.org/abstracts/search?q=cedrelopsin" title=" cedrelopsin"> cedrelopsin</a>, <a href="https://publications.waset.org/abstracts/search?q=G2%2FM%20phase" title=" G2/M phase"> G2/M phase</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedyotis%20umbellata" title=" Hedyotis umbellata"> Hedyotis umbellata</a> </p> <a href="https://publications.waset.org/abstracts/75902/mtt-assay-guided-isolation-of-a-cytotoxic-lead-from-hedyotis-umbellata-and-its-mechanism-of-action-against-non-small-cell-lung-cancer-a549-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2510</span> Lexical Classification of Compounds in Berom: A Semantic Description of N-V Nominal Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pam%20Bitrus%20Marcus">Pam Bitrus Marcus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compounds in Berom, a Niger-Congo language that is spoken in parts of central Nigeria, have been understudied, and the semantics of N-V nominal compounds have not been sufficiently delineated. This study describes the lexical classification of compounds in Berom and, specifically, examines the semantics of nominal compounds with N-V constituents. The study relied on a data set of 200 compounds that were drawn from Bere Naha (a newsletter publication in Berom). Contrary to the nominalization process in defining the lexical class of compounds in languages, the study revealed that verbal and adjectival classes of compounds are also attested in Berom and N-V nominal compounds have an agentive or locative interpretation that is not solely determined by the meaning of the constituents of the compound but by the context of the usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=berom" title="berom">berom</a>, <a href="https://publications.waset.org/abstracts/search?q=berom%20compounds" title=" berom compounds"> berom compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=nominal%20compound" title=" nominal compound"> nominal compound</a>, <a href="https://publications.waset.org/abstracts/search?q=N-V%20compounds" title=" N-V compounds"> N-V compounds</a> </p> <a href="https://publications.waset.org/abstracts/171026/lexical-classification-of-compounds-in-berom-a-semantic-description-of-n-v-nominal-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2509</span> Xanthotoxin: A Plant Derived Furanocoumarin with Antipathogenic and Cytotoxic Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mehdi%20Razavi%20Khosroshahi">Seyed Mehdi Razavi Khosroshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years a great deal of efforts has been made to find natural derivative compounds to replace it's with synthetic drugs, herbicides or pesticides for management of human health and agroecosystem programs. This process can lead to a reduction in environmental harmful effects of synthetic chemicals. Xanthotoxin, as a furanocoumarin compound, found in some genera of the Apiaceae family of plants. The current work focuses on some xanthotoxin cytotoxicity and antipathogenic activities. The results indicated that xanthotoxin showed strong cytotoxic effects against LNCaP cell line with the IC₅₀ value of 0.207 mg/ml in a dose-dependent manner. After treatments of the cell line with 0.1 mg/ml of the compound, the viability of the cells was reached to zero. The current study revealed that xanthotoxin displayed strong antifungal activity against human or plant pathogen fungi, Aspergillus fumigatus, Aspegillusn flavus and Fusarum graminearum with minimum inhibitory concentration values of 52-68 µg/ml. The compound exhibited antibacterial effects on some Erwinia and Xanthomonas species of bacteria, as well <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xanthomonas" title="Xanthomonas">Xanthomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title=" cytotoxic"> cytotoxic</a>, <a href="https://publications.waset.org/abstracts/search?q=antipathogen" title=" antipathogen"> antipathogen</a>, <a href="https://publications.waset.org/abstracts/search?q=LNCaP" title=" LNCaP"> LNCaP</a>, <a href="https://publications.waset.org/abstracts/search?q=Aspergillus%20fumigatus" title=" Aspergillus fumigatus"> Aspergillus fumigatus</a>, <a href="https://publications.waset.org/abstracts/search?q=spegillusn%20flavus" title=" spegillusn flavus"> spegillusn flavus</a> </p> <a href="https://publications.waset.org/abstracts/96441/xanthotoxin-a-plant-derived-furanocoumarin-with-antipathogenic-and-cytotoxic-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2508</span> Freshwater Cyanobacterial Bioactive Insights: Planktothricoides raciorskii Compounds vs. Green Synthesized Silver Nanoparticles: Characterization, in vitro Cytotoxicity, and Antibacterial Exploration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujatha%20Edla">Sujatha Edla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: New compounds and possible uses for the bioactive substances produced by freshwater cyanobacteria are constantly being discovered through research. Certain molecules are hazardous to the environment and human health, but others have potential applications in industry, biotechnology, and pharmaceuticals. These discoveries advance our knowledge of the varied functions these microbes perform in different ecosystems. Cyanobacterial silver nanoparticles (AgNPs) have special qualities and possible therapeutic advantages, which make them very promising for a range of medicinal uses. Aim: In our study; the attention was focused on the analysis and characterization of bioactive compounds extracted from freshwater cyanobacteria Planktothricoides raciorskii and its comparative study on Cyanobacteria-mediated silver nanoparticles synthesized by cell-free extract of Planktothricoides raciorskii. Material and Methods: A variety of bioactive secondary metabolites have been extracted, purified, and identified from cyanobacterial species using column chromatography, FTIR, and GC-MS/MS chromatography techniques and evaluated for antibacterial and cytotoxic studies, where the Cyanobacterial silver nanoparticles (CSNPs) were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis and were further tested for antibacterial and cytotoxic efficiency. Results: The synthesis of CSNPs was confirmed through visible color change and shift of peaks at 430–445 nm by UV-Vis spectroscopy. The size of CSNPs was between 22 and 34 nm and oval-shaped which were confirmed by SEM and TEM analyses. The FTIR spectra showed a new peak at the range of 3,400–3,460 cm−1 compared to the control, confirming the reduction of silver nitrate. The antibacterial activity of both crude bioactive compound extract and CSNPs showed remarkable activity with Zone of inhibition against E. coli with 9.5mm and 10.2mm, 13mm and 14.5mm against S. paratyphi, 9.2mm and 9.8mm zone of inhibition against K. pneumonia by both crude extract and CSNPs, respectively. The cytotoxicity as evaluated by extracts of Planktothricoides raciorskii against MCF7-Human Breast Adenocarcinoma cell line and HepG2- Human Hepatocellular Carcinoma cell line employing MTT assay gave IC50 value of 47.18ug/ml, 110.81ug/ml against MCF7cell line and HepG2 cell line, respectively. The cytotoxic evaluation of Planktothricoides raciorskii CSNPs against the MCF7cell line was 43.37 ug/ml and 20.88 ug/ml against the HepG2 cell line. Our ongoing research in this field aims to uncover the full therapeutic potential of cyanobacterial silver nanoparticles and address any associated challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title="cyanobacteria">cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=silvernanoparticles" title=" silvernanoparticles"> silvernanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmaceuticals" title=" pharmaceuticals"> pharmaceuticals</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20compounds" title=" bioactive compounds"> bioactive compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic" title=" cytotoxic"> cytotoxic</a> </p> <a href="https://publications.waset.org/abstracts/182204/freshwater-cyanobacterial-bioactive-insights-planktothricoides-raciorskii-compounds-vs-green-synthesized-silver-nanoparticles-characterization-in-vitro-cytotoxicity-and-antibacterial-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2507</span> Cytotoxicity and Androgenic Potential of Antifungal Drug Substances on MDA-KB2 Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benchouala%20Amira">Benchouala Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojic%20Clement"> Bojic Clement</a>, <a href="https://publications.waset.org/abstracts/search?q=Poupin%20Pascal"> Poupin Pascal</a>, <a href="https://publications.waset.org/abstracts/search?q=Cossu%20Leguille-carole"> Cossu Leguille-carole</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to evaluate in vitro the cytotoxic and androgenic potential of several antifungal molecules (amphotericin B, econazole, ketoconazole and miconazole) on MDA-Kb2 cell lines. This biological model is an effective tool for the detection of endocrine disruptors because it responds well to the main agonist of the androgen receptor (testosterone) and also to an antagonist: flutamide. The cytotoxicity of each chemical compound tested was measured using an MTT assay (tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) which measures the activity of the reductase function of mitochondrial succinate dehydrogenase enzymes of cultured cells. This complementary cytotoxicity test is essential to ensure that the effects of reduction in luminescence intensity observed during androgenic tests are only attributable to the anti-androgenic action of the compounds tested and not to their possible cytotoxic properties. Tests of the androgenic activity of antifungals show that these compounds do not have the capacity to induce transcription of the luciferase gene. These compounds do not exert an androgenic effect on MDA-Kb2 cells in culture for the environmental concentrations tested. The addition of flutamide for the same tested concentrations of antifungal molecules reduces the luminescence induced by amphotericin B, econazole and miconazole, which is explained by a strong interaction of these molecules with flutamide which may have a greater toxic effect than when tested alone. The cytotoxicity test shows that econazole and ketoconazole can cause cell death at certain concentrations tested. This cell mortality is perhaps induced by a direct or indirect action on deoxyribonucleic acid (DNA), ribonucleic acid (RNA) or proteins necessary for cell division. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title="cytotoxicity">cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=androgenic%20potential" title=" androgenic potential"> androgenic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungals" title=" antifungals"> antifungals</a>, <a href="https://publications.waset.org/abstracts/search?q=MDA-Kb2" title=" MDA-Kb2"> MDA-Kb2</a> </p> <a href="https://publications.waset.org/abstracts/186088/cytotoxicity-and-androgenic-potential-of-antifungal-drug-substances-on-mda-kb2-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2506</span> Cytotoxic Drugs: Handling Practices and Clinical Manifestations among Hospital Staff </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boularas%20El-Alia">Boularas El-Alia</a>, <a href="https://publications.waset.org/abstracts/search?q=Arbi%20Raja"> Arbi Raja</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Bouiadjra%20Sara"> Bachir Bouiadjra Sara</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezk-Kallah%20Haciba"> Rezk-Kallah Haciba</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezkkallah%20Baghdad"> Rezkkallah Baghdad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives : To determine the handling practices of cytotoxic drugs and to describe clinical manifestations expressed by hospital personnel of Sidi Bel Abbes during the year 2014. Methods: Sectional descriptive study conducted in 3 center university hospital units (Hematology, Oncology and Urology) and Gynecology of EHS Sidi Bel Abbes. A questionnaire was administered to hospital workers regulary exposed to cytotoxic drugs. A work-place visit was performed to have an overview about working conditions. The Cytotoxic Contact Index (CCI) was calculated for each nurse on a period of 15 working days. Treatment of the results was done using SPSS software. Results: The survey reveals that 22 men and 58 women are exposed to cytotoxic drugs for an average of 7 years. Many symptoms such as ocular irritation (38,75%), throat irritation (56,25%), headache (68,75%), dizziness (43,75%), nausea (37,5%), metallic taste (30%), were reported with high frequency. Are noted in the offspring, 3 congenital anomalies,2 diaphragmatic hernia and a cleft palate. The Cytotoxic Contact Index (CCI) was higher than 3 among Oncology nurses and higher than 1 for most of the nurses of Hematology and Gynecology service. The wearing of personal protective clothing was not respected by all workers: (22/23) wear gloves and (20/23) wear a mask,(5/23) wear a cap, (2/23) wear glasses. Only 3 nurses have benefited from continuous training on handling cytotoxic drugs. Conclusion: This study shows a high occupational exposure risk to cytotoxic drugs among persons handling these drugs and the necessity to apply rigorously all measures related to personal protection awareness and training of personnel to minimize these exposure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20drugs" title="cytotoxic drugs">cytotoxic drugs</a>, <a href="https://publications.waset.org/abstracts/search?q=handling" title=" handling"> handling</a>, <a href="https://publications.waset.org/abstracts/search?q=clinical%20manifestations" title=" clinical manifestations"> clinical manifestations</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital%20staff" title=" hospital staff"> hospital staff</a> </p> <a href="https://publications.waset.org/abstracts/15321/cytotoxic-drugs-handling-practices-and-clinical-manifestations-among-hospital-staff" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2505</span> Screening of Potential Cytotoxic Activities of Some Medicinal Plants of Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Farooq%20Adil">Syed Farooq Adil</a>, <a href="https://publications.waset.org/abstracts/search?q=Merajuddinkhan"> Merajuddinkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mujeeb%20Khan"> Mujeeb Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Z.%20Alkhathlan"> Hamad Z. Alkhathlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytochemicals from plant extracts belong to an important source of natural products which have demonstrated excellent cytotoxic activities. However, plants of different origins exhibit diverse chemical compositions and bioactivities. Therefore, the discovery of plants based new anticancer agents from different parts of the world is always challenging. In this study, methanolic extracts of different parts of 11 plants from Saudi Arabia have been tested in vitro for their anticancer potential on human liver cancer cell line (HepG2). Particularly, for this study, plants from Asteraceae, Resedaceae, and Polygonaceae families were chosen on the basis of locally available ethnobotanical data and their medicinal properties. Among 12 tested extract samples, three samples obtained from Artemisia monosperma stem, Ochradenus baccatus aerial parts, and Pulicaria glutinosa stem have demonstrated interesting cytotoxic activities with a cell viability of 29.3%, 28.4% and 24.2%, respectively. Whereas, four plant extracts including Calendula arvensis aerial parts, Scorzonera musilii whole plant, A. monosperma leaves show moderate anticancer properties bearing a cell viability ranging from 11.9 to 16.7%. The remaining extracts have shown poor cytotoxic activities. Subsequently, GC-MS analysis of methanolic extracts of the four most active plants extracts such as C. comosum, O. baccatus, P. glutinosa and A. monosperma detected the presence of 41 phytomolecules. Among which 3-(4-hydroxyphenyl) propionitrile (1), 8,11-octadecadiynoic acid methyl ester (2), 6,7-dimethoxycoumarin (3), and 1-(2-hydroxyphenyl) ethenone (4) were found to be the lead compounds of C. comosum, O. baccatus P. glutinosa and A. monosperma, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title="medicinal plants">medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=asteraceae" title=" asteraceae"> asteraceae</a>, <a href="https://publications.waset.org/abstracts/search?q=polygonaceae" title=" polygonaceae"> polygonaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=hepg2" title=" hepg2"> hepg2</a> </p> <a href="https://publications.waset.org/abstracts/147969/screening-of-potential-cytotoxic-activities-of-some-medicinal-plants-of-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2504</span> In Vitro Antioxidant and Cytotoxic Activities Against Human Oral Cancer and Human Laryngeal Cancer of Limonia acidissima L. Bark Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kriyapa%20lairungruang">Kriyapa lairungruang</a>, <a href="https://publications.waset.org/abstracts/search?q=Arunporn%20Itharat"> Arunporn Itharat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limonia acidissima L. (LA) (Common name: wood apple, Thai name: ma-khwit) is a medicinal plant which has long been used in Thai traditional medicine. Its bark is used for treatment of diarrhea, abscess, wound healing and inflammation and it is also used in oral cancer. Thus, this research aimed to investigate antioxidant and cytotoxic activities of the LA bark extracts produced by various extraction methods. Different extraction procedures were used to extract LA bark for biological activity testing: boiling in water, maceration with 95% ethanol, maceration with 50% ethanol and water boiling of each the 95% and the 50% ethanolic residues. All extracts were tested for antioxidant activity using DPPH radical scavenging assay, cytotoxic activity against human laryngeal epidermoid carcinoma (HEp-2) cells and human oral epidermoid carcinoma (KB) cells using sulforhodamine B (SRB) assay. The results found that the 95% ethanolic extract of LA bark showed the highest antioxidant activity with EC50 values of 29.76±1.88 µg/ml. For cytotoxic activity, the 50% ethanolic extract showed the best cytotoxic activity against HEp-2 and KB cells with IC50 values of 9.55±1.68 and 18.90±0.86 µg/ml, respectively. This study demonstrated that the 95% ethanolic extract of LA bark showed moderate antioxidant activity and the 50% ethanolic extract provided potent cytotoxic activity against HEp-2 and KB cells. These results confirm the traditional use of LA for the treatment of oral cancer and laryngeal cancer, and also support its ongoing use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxic%20activity" title=" cytotoxic activity"> cytotoxic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Laryngeal%20epidermoid%20carcinoma" title=" Laryngeal epidermoid carcinoma"> Laryngeal epidermoid carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Limonia%20acidissima%20L." title=" Limonia acidissima L."> Limonia acidissima L.</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20epidermoid%20carcinoma" title=" oral epidermoid carcinoma"> oral epidermoid carcinoma</a> </p> <a href="https://publications.waset.org/abstracts/25184/in-vitro-antioxidant-and-cytotoxic-activities-against-human-oral-cancer-and-human-laryngeal-cancer-of-limonia-acidissima-l-bark-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2503</span> PNIPAAm-MAA Nanoparticles as Delivery Vehicles for Curcumin Against MCF-7 Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Tayefih">H. Tayefih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20farajzade%20ahari"> F. farajzade ahari</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Zarghami"> F. Zarghami</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Zeighamian"> V. Zeighamian</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Zarghami"> N. Zarghami</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Pilehvar-soltanahmadi"> Y. Pilehvar-soltanahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly (N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm–MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PNIPAAm-MAA" title="PNIPAAm-MAA">PNIPAAm-MAA</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/37723/pnipaam-maa-nanoparticles-as-delivery-vehicles-for-curcumin-against-mcf-7-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2502</span> Triggering Apoptosis to Uproot Breast Cancer: HPLC-MS/MS Profiling, in-vitro and in-silico Fascinating Results of Polyphenolics in Pomegranate Rind Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20M.%20Badr%20Eldin">Alaa M. Badr Eldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayar%20M.%20Shahen"> Mayar M. Shahen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20S.%20Sedeek"> Mohammed S. Sedeek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20I.%20Ezzat"> Marwa I. Ezzat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20M.%20ElSonbaty"> Sawsan M. ElSonbaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20A.%20Saad"> Muhammed A. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20S.%20Afifi"> Manal S. Afifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20M.%20Sabry"> Omar M. Sabry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using HPLC-MS/MS technique, 133 polyphenolic compounds were identified in the methanol extract of pomegranate rind (Punica granatum L.). In-vitro cytotoxic activity against breast cancer cell line MCF-7 was investigated, with an IC50 of 54 ug/ml. In-silico molecular docking using ellagic acid, gallagic acid, and Punicalagin as model compounds identified in pomegranate rind extract confirmed the intriguing anti-estrogenic action of the key polyphenolic components in pomegranate rind extract. Surprisingly, taxol showed low activity compared to pomegranate compounds as ERα antagonist and ERβ agonist. Pomegranate rind extract enhanced apoptosis of breast cancer cells through upregulation of the caspase-3 expression and downregulation of NF-κB transcription factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HPLC-MS%2FMS" title="HPLC-MS/MS">HPLC-MS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate%20rind" title=" pomegranate rind"> pomegranate rind</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=MCF-7" title=" MCF-7"> MCF-7</a>, <a href="https://publications.waset.org/abstracts/search?q=ER" title=" ER"> ER</a>, <a href="https://publications.waset.org/abstracts/search?q=caspase-3" title=" caspase-3"> caspase-3</a>, <a href="https://publications.waset.org/abstracts/search?q=NF-kB" title=" NF-kB"> NF-kB</a> </p> <a href="https://publications.waset.org/abstracts/163413/triggering-apoptosis-to-uproot-breast-cancer-hplc-msms-profiling-in-vitro-and-in-silico-fascinating-results-of-polyphenolics-in-pomegranate-rind-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2501</span> Hexahydropyrimidine-2,4-Diones: Synthesis and Cytotoxic Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Koksal">M. Koksal</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ozyazici"> T. Ozyazici</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Gurdal"> E. Gurdal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Yar%C4%B1m"> M. Yarım</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Demirpolat"> E. Demirpolat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Y.%20Aycan"> M. B. Y. Aycan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discovery of new drugs in cancer chemotherapy is still a major topic because of severe side effects, selectivity problems and resistance development potential of existing drugs. In recent years, combined anticancer therapies or multi-acting drugs are clinically preferred over traditional cytotoxic treatment, with the aim of avoiding resistance and toxic side effects. Arrangement of multi-acting targets can be carried out either by combination of several drugs with different mechanisms or by usage of a single chemical compound capable of regulating several targets of a disease with multiple factors. In literature, several pyrimidine and piperazine derivatives have been involved in the structure of many compounds which have been used as chemotherapeutic agents along with wide clinical applications. The aim of this study is to combine pyrimidine and piperazine core structures to research and develop novel piperazinylpyrimidine derivatives with selective cytotoxicity over cancer cells. In this study, a group of novel 6-fluorophenyl-3-[2-(substitutedpiperazinyl)ethyl] hexahydropyrimidine-2,4-dione derivatives designed to observe the desired anticancer activity due to pyrimidine and piperazine based scaffolds. Target compounds were obtained by the reaction of appropriate piperazine derivatives and 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione. The synthetic pathway of 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-dione was started with Rodionov reaction using aldehyde, malonic acid and ammonium acetate in ethanol. Isolated β-fluorophenyl-β-amino acids were treated with 2-chloroethylisocyanate in the presence of an aqueous sodium hydroxide solution at room temperature to yield the sodium salts of the corresponding ureido acids. By addition of a mineral acid, ureido acids were precipitated. Later, these ureido acids were refluxed in thionyl chloride to give the 6-(2/4-fluorophenyl)-3-(2-chloroethyl)hexahydropyrimidine-2,4-di-one which were furthermore treated with secondary amines. Structures of purified compounds were characterized with IR, 1H-NMR, 13C-NMR, mass spectroscopies and elemental analysis. All of the compounds gave satisfactory analytical and spectroscopic data, which were in full accordance with their depicted structures. In IR spectra of the compounds, N-H group was seen at 3230-3213 cm⁻¹. C-H was seen at 3100-2820 cm⁻¹ and C=O vibrational peaks were observed approximately at 1725 and 1665 cm⁻¹ in accordance with literature. In the NMR spectra of target compounds, the methylene protons of piperazine give two separate multiplet peaks around 3.5 and 4.5 ppm representing the successful N-alkylation of the structure. The cytotoxic activity of the synthesized compounds was investigated on human bronchial epithelial (BEAS 2B), lung (A549), colon adenocarcinoma (COLO205) and breast (MCF7) cell lines, by means of sulphorhodamine B (SRB) assays in triplicate. IC₅₀ values of the screened derivatives were found in range of 11.8-78 µM. This project was supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project no: 215S157). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title="cytotoxicity">cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=hexahydropyrimidine" title=" hexahydropyrimidine"> hexahydropyrimidine</a>, <a href="https://publications.waset.org/abstracts/search?q=piperazine" title=" piperazine"> piperazine</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphorhodamine%20B%20assay" title=" sulphorhodamine B assay "> sulphorhodamine B assay </a> </p> <a href="https://publications.waset.org/abstracts/83531/hexahydropyrimidine-24-diones-synthesis-and-cytotoxic-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cytotoxic%20compounds&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>