CINXE.COM

Mathematical Theories of Planetary Motions - Otto Dziobek - Google Books

<!DOCTYPE html><html><head><title>Mathematical Theories of Planetary Motions - Otto Dziobek - Google Books</title><link rel="stylesheet" href="/books/css/_a33f2a89320471e58c940b9287b9d4eb/kl_viewport_kennedy_full_bundle.css" type="text/css" /><link rel="stylesheet"href="https://fonts.googleapis.com/css2?family=Product+Sans:wght@400"><script src="/books/javascript/v2_a33f2a89320471e58c940b9287b9d4eb__en.js"></script><script>_OC_Hooks = ["_OC_Page", "_OC_SearchReload", "_OC_TocReload", "_OC_EmptyFunc", "_OC_SearchPage", "_OC_QuotePage" ];for (var _OC_i = 0; _OC_i < _OC_Hooks.length; _OC_i++) {eval("var " + _OC_Hooks[_OC_i] + ";");}function _OC_InitHooks () {for (var i = 0; i < _OC_Hooks.length; i++) {var func = arguments[i];eval( _OC_Hooks[i] + " = func;");}}</script><link rel="canonical" href="https://books.google.com/books/about/Mathematical_Theories_of_Planetary_Motio.html?id=O9RNAAAAMAAJ"/><meta property="og:url" content="https://books.google.com/books/about/Mathematical_Theories_of_Planetary_Motio.html?id=O9RNAAAAMAAJ"/><meta name="title" content="Mathematical Theories of Planetary Motions"/><meta name="description" content=""/><meta property="og:title" content="Mathematical Theories of Planetary Motions"/><meta property="og:type" content="book"/><meta property="og:site_name" content="Google Books"/><meta property="og:image" content="https://books.google.com.sg/books/content?id=O9RNAAAAMAAJ&amp;printsec=frontcover&amp;img=1&amp;zoom=1&amp;edge=curl&amp;imgtk=AFLRE71jm3FXEnsqyKx6GexmiHKa0dHV2bhDC4etYDOcn895bBWnVNH3LDQIVv-XQaz6K1fApBSzfNO2K5dEa8NVuds_M__C8rjsalmpHo8lL-QUajsuVIc49rEgxtKZlPlunRNXn5fz"/><link rel="image_src" href="https://books.google.com.sg/books/content?id=O9RNAAAAMAAJ&amp;printsec=frontcover&amp;img=1&amp;zoom=1&amp;edge=curl&amp;imgtk=AFLRE71jm3FXEnsqyKx6GexmiHKa0dHV2bhDC4etYDOcn895bBWnVNH3LDQIVv-XQaz6K1fApBSzfNO2K5dEa8NVuds_M__C8rjsalmpHo8lL-QUajsuVIc49rEgxtKZlPlunRNXn5fz"/><script></script><style>#gbar,#guser{font-size:13px;padding-top:1px !important;}#gbar{height:22px}#guser{padding-bottom:7px !important;text-align:right}.gbh,.gbd{border-top:1px solid #c9d7f1;font-size:1px}.gbh{height:0;position:absolute;top:24px;width:100%}@media all{.gb1{height:22px;margin-right:.5em;vertical-align:top}#gbar{float:left}}a.gb1,a.gb4{text-decoration:underline !important}a.gb1,a.gb4{color:#00c !important}.gbi .gb4{color:#dd8e27 !important}.gbf .gb4{color:#900 !important} #gbar { padding:.3em .6em !important;}</style></head><body class=""><div id=gbar><nobr><a target=_blank class=gb1 href="https://www.google.com.sg/search?tab=pw">Search</a> <a target=_blank class=gb1 href="https://www.google.com.sg/imghp?hl=en&tab=pi">Images</a> <a target=_blank class=gb1 href="https://maps.google.com.sg/maps?hl=en&tab=pl">Maps</a> <a target=_blank class=gb1 href="https://play.google.com/?hl=en&tab=p8">Play</a> <a target=_blank class=gb1 href="https://www.youtube.com/?tab=p1">YouTube</a> <a target=_blank class=gb1 href="https://news.google.com/?tab=pn">News</a> <a target=_blank class=gb1 href="https://mail.google.com/mail/?tab=pm">Gmail</a> <a target=_blank class=gb1 href="https://drive.google.com/?tab=po">Drive</a> <a target=_blank class=gb1 style="text-decoration:none" href="https://www.google.com.sg/intl/en/about/products?tab=ph"><u>More</u> &raquo;</a></nobr></div><div id=guser width=100%><nobr><span id=gbn class=gbi></span><span id=gbf class=gbf></span><span id=gbe></span><a target=_top id=gb_70 href="https://www.google.com/accounts/Login?service=print&continue=https://books.google.com.sg/books%3Fid%3DO9RNAAAAMAAJ%26printsec%3Dfrontcover%26dq%3Ddziobek%2Bmathematical%26source%3Dgbs_book_other_versions_r%26hl%3Den&hl=en&ec=GAZACg" class=gb4>Sign in</a></nobr></div><div class=gbh style=left:0></div><div class=gbh style=right:0></div><div role="alert" style="position: absolute; left: 0; right: 0;"><a href="https://books.google.com.sg/books?id=O9RNAAAAMAAJ&amp;printsec=frontcover&amp;dq=dziobek+mathematical&amp;source=gbs_book_other_versions_r&amp;hl=en&amp;output=html_text" title="Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader."><img border="0" src="//www.google.com/images/cleardot.gif"alt="Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader."></a></div><div class="kd-appbar"><h2 class="kd-appname"><a href="/books">Books</a></h2><div class="kd-buttonbar left" id="left-toolbar-buttons"><a id="appbar-view-print-sample-link" href="https://books.google.com.sg/books?id=O9RNAAAAMAAJ&amp;printsec=frontcover&amp;source=gbs_vpt_read"></a><a id="appbar-view-ebook-sample-link" href="https://play.google.com/books/reader?id=O9RNAAAAMAAJ&amp;source=gbs_vpt_read"></a><a id="appbar-patents-prior-art-finder-link" href=""></a><a id="appbar-patents-discuss-this-link" href="" data-is-grant=""></a><a id="appbar-read-patent-link" href=""></a><a id="appbar-download-pdf-link" href=""></a></div><div class="kd-buttonbar right" id="right-toolbar-buttons"></div></div><div style="display: none"><ol id="ofe-gear-menu-contents" class="gbmcc"><li class="gbe gbmtc"><a class="gbmt goog-menuitem-content" id="" href="https://www.google.com/accounts/Login?service=print&amp;continue=https://books.google.com.sg/books%3Fop%3Dlibrary&amp;hl=en">My library</a></li><li class="gbe gbmtc"><a class="gbmt goog-menuitem-content" id="" href="http://books.google.com.sg/support/topic/4359341?hl=en-SG">Help</a></li><li class="gbe gbmtc"><a class="gbmt goog-menuitem-content" id="" href="https://books.google.com.sg/advanced_book_search?q=dziobek+mathematical">Advanced Book Search</a></li><li class="gbe gbmtc"><a class="gbmt goog-menuitem-content" id="" href="https://books.google.com.sg/books/download/Mathematical_Theories_of_Planetary_Motio.epub?id=O9RNAAAAMAAJ&amp;output=epub">Download EPUB</a></li><li class="gbe gbmtc"><a class="gbmt goog-menuitem-content" id="" href="https://books.google.com.sg/books/download/Mathematical_Theories_of_Planetary_Motio.pdf?id=O9RNAAAAMAAJ&amp;output=pdf&amp;sig=ACfU3U10DxHLOmxT2c8JEs-xBou3yvJt9g">Download PDF</a></li><li class="gbe gbmtc"><a class="gbmt goog-menuitem-content" id="" href="https://books.google.com.sg/books?printsec=frontcover&amp;dq=dziobek+mathematical&amp;id=O9RNAAAAMAAJ&amp;output=text">Plain text</a></li></ol></div><div id="volume-main"><div id="volume-left"><div id=menu_container ><div id="menu_scroll_wrapper"><div id="menu_scroll" role="navigation"><div id="gb-get-book-container"><a href="https://play.google.com/store/books/details?id=O9RNAAAAMAAJ&amp;rdid=book-O9RNAAAAMAAJ&amp;rdot=1" id="gb-get-book-content">Read eBook</a></div><p id="gb-buy-options-trigger" class="gb-buy-options-link">Get this book in print</p><h3 class=about_title><a name="buy_anchor"></a></h3><div id=buy class=about_content><div id=buy_v><ul style="list-style-type: none; padding-left: 0; margin: 0;"><li><a style="white-space:normal" href="http://dogbert.abebooks.com/servlet/SearchResults?tn=Mathematical+Theories+Planetary+Motions" dir=ltr onMouseOver="this.href='http://dogbert.abebooks.com/servlet/SearchResults?tn\x3dMathematical+Theories+Planetary+Motions';return false" onMouseDown="this.href='/url?client\x3dca-google-gppd\x26format\x3dgoogleprint\x26num\x3d0\x26id\x3dO9RNAAAAMAAJ\x26q\x3dhttp://dogbert.abebooks.com/servlet/SearchResults%3Ftn%3DMathematical%2BTheories%2BPlanetary%2BMotions\x26usg\x3dAOvVaw0EqEyAUQqB0c7sENj2tx8V\x26source\x3dgbs_buy_r';return true"><span dir=ltr>AbeBooks</span></a></li><li><hr style="margin-right: 20%; color: #666;"></li><li><a style="white-space:normal" href="https://books.google.com.sg/url?id=O9RNAAAAMAAJ&amp;pg=PP7&amp;q=http://www.worldcat.org/oclc/1171191&amp;clientid=librarylink&amp;usg=AOvVaw3qJFai-lwhyo-xDiRANQDp&amp;source=gbs_buy_r"><span dir=ltr>Find in a library</span></a></li><li><a class="secondary" style="white-space:normal" href="https://books.google.com.sg/books?id=O9RNAAAAMAAJ&amp;sitesec=buy&amp;source=gbs_buy_r" id="get-all-sellers-link"><span dir=ltr>All sellers</span>&nbsp;&raquo;</a></li></ul></div></div><div class=menu id=menu><div class="menu_content" style="margin-bottom:6px"><div style="margin-bottom:4px"><div class="sidebarnav"><table border="0" cellpadding="0" cellspacing="0"><tr><td><div class="sidebarcover"><a href="https://books.google.com.sg/books?id=O9RNAAAAMAAJ&amp;printsec=frontcover" onclick="_OC_Page('PP7',this.href); return false;"><img src="https://books.google.com.sg/books/content?id=O9RNAAAAMAAJ&printsec=frontcover&img=1&zoom=5&edge=curl&imgtk=AFLRE70B0fxN_MMjI_siR3onr6RX1wQToLVbdkZ2mHnM3tyGKBJilbVs_RY86rWEdG5dzxnjg6MkSt_9u6aQunJMkV9qra1GLEV-zdaPyWh3eGex-9uuHNgCP5Y3Q_32AsdcS7GpV0BH" alt="Front Cover" title="Front Cover" height=80 border=1 id=summary-frontcover ></a></div></td><td></td></tr></table></div><div style="clear:both"></div></div><div id="volume-info-sidebar"><h1 class="gb-volume-title" dir=ltr>Mathematical Theories of Planetary Motions</h1><span class="addmd">By Otto Dziobek</span></div><div style="margin-bottom:3px"><form action=/books id=search_form style="margin:0px;padding:0px;" method=get> <input type=hidden name="id" value="O9RNAAAAMAAJ"><input type=hidden name="dq" value="dziobek mathematical"><table cellpadding=0 cellspacing=0 class="swv-table"><tr><td class="swv-td-search"><span><input id=search_form_input type=text maxlength=1024 class="text_flat swv-input-search" aria-label="Search in this book" name=q value="" title="Go" accesskey=i></span></td><td class="swv-td-space"><div>&nbsp;</div></td><td><input type=submit value="Go"></td></tr></table><script type="text/javascript">if (window['_OC_autoDir']) {_OC_autoDir('search_form_input');}</script></form></div><div><p><a id="sidebar-atb-link" href="https://books.google.com.sg/books?id=O9RNAAAAMAAJ&amp;dq=dziobek+mathematical&amp;source=gbs_navlinks_s"><span dir=ltr>About this book</span></a></p></div></div></div><div><div id="navbarContainer" class="gb-navbar"></div><script>_OC_InitNavbar({"child_node":[{"title":"My library","url":"https://books.google.com.sg/books?uid=114584440181414684107\u0026source=gbs_lp_bookshelf_list","id":"my_library","collapsed":true},{"title":"My History","url":"","id":"my_history","collapsed":true}],"highlighted_node_id":""});</script><a href="/intl/en/googlebooks/tos.html" target="_blank">Terms&nbsp;of&nbsp;Service</a></div></div></div></div></div><div id="volume-center"><div id="scroll_atb" role="main"><div id="toolbar_container"><div style="float:left;white-space:nowrap"><table cellpadding=0 cellspacing=0><tr><td id="l_toolbar"></td><td class=toolbar-pc-cell><table cellpadding=0 cellspacing=0><tr><td><script type="text/javascript">function isValidPageNum(s) {return (s.match("^([0-9])*$") ||s.toUpperCase().match("^M{0,4}(CM|CD|D?C{0,3})(XC|XL|L?X{0,3})(IX|IV|V?I{0,3})$") );}function onSubmit(thisForm) {if ( !isValidPageNum(thisForm.jtp.value) ) {var msg = '%1$s is not a page number. Please enter the page number to visit';msg = msg.replace("%1$s", "'" + thisForm.jtp.value + "' ");alert(msg);return false;}thisForm.submit();return true;}</script><form method=GET id="jtp_form" class="jump-form" onsubmit="return onSubmit(this)"><input type=hidden name="id" value="O9RNAAAAMAAJ"><input type=hidden name="dq" value="dziobek mathematical"><input name=jtp id=jtp class="jump-input" type=text size=4 aria-label="Page number" value="" maxlength=10></form></td><td class=arrow style="padding-right:2px"><a href="https://books.google.com.sg/books?id=O9RNAAAAMAAJ&amp;pg=PP6&amp;focus=viewport&amp;dq=dziobek+mathematical" onclick="_OC_EmptyFunc(this.href); return false;"><div class=pagination><div id=prev_btn alt="Previous Page" title="Previous Page" class="SPRITE_pagination_v2_left"></div></div></a></td><td class=arrow><a href="https://books.google.com.sg/books?id=O9RNAAAAMAAJ&amp;pg=PP8&amp;focus=viewport&amp;dq=dziobek+mathematical" onclick="_OC_EmptyFunc(this.href); return false;"><div class=pagination><div id=next_btn alt="Next Page" title="Next Page" class="SPRITE_pagination_v2_right"></div></div></a></td></tr></table></td><td>&nbsp;&nbsp;</td><td id=view_toolbar></td><td id=view_new></td></tr></table></div><div style="float:right"><table cellpadding=0 cellspacing=0><tr><td><a id=toggle_mode href="https://books.google.com.sg/books?printsec=frontcover&dq=dziobek+mathematical&id=O9RNAAAAMAAJ&output=text" class="link-bar-like goog-inline-block"><div class=toggle-mode-text>Plain text</div></a></td><td id="r_toolbar" style="white-space:nowrap"></td><td id=pdf_download_td><a id=pdf_download href="https://books.google.com.sg/books/download/Mathematical_Theories_of_Planetary_Motio.pdf?id=O9RNAAAAMAAJ&output=pdf&sig=ACfU3U10DxHLOmxT2c8JEs-xBou3yvJt9g" class="link-bar-like goog-inline-block"><div><span class="SPRITE_download_v2 pdf-icon goog-inline-block"></span><span class="link-bar-like-text goog-inline-block">PDF</span></div></a></td><td id=epub_download_td><a id=epub_download href="https://books.google.com.sg/books/download/Mathematical_Theories_of_Planetary_Motio.epub?id=O9RNAAAAMAAJ&output=epub" class="link-bar-like goog-inline-block"><div><span class="SPRITE_download_v2 pdf-icon goog-inline-block"></span><span class="link-bar-like-text goog-inline-block">EPUB</span></div></a></td></tr></table></div><div style="clear:both"></div></div><div id="search_bar"></div><div class="gback"><div id="viewport" class="viewport" tabindex="0"><a name="page" accesskey="c"></a><table class="viewport-table" id="container" align="center" cellpadding="0" cellspacing="0"><tr><td valign="top" align="center"><noscript><a href="https://books.google.com.sg/books?id=O9RNAAAAMAAJ&amp;pg=PP8&amp;focus=viewport&amp;dq=dziobek+mathematical" style="outline:none;background-color:none"><img class=html-div src="https://books.google.com.sg/books/content?id=O9RNAAAAMAAJ&amp;pg=PP7&amp;img=1&amp;zoom=3&amp;hl=en&amp;sig=ACfU3U123OUv5zaQT9V4R_2a-8yfkL5HVw" width=575 height=888 border=0 alt="Next Page" title="Next Page" style="padding:0"></a></noscript></td></tr></table></div></div><script>_OC_addFlags({Host:"https://books.google.com.sg/", IsBooksUnifiedLeftNavEnabled:1, IsZipitFolderCollectionEnabled:1, IsBrowsingHistoryEnabled:1, IsBooksRentalEnabled:1});_OC_Run({"page":[{"pid":"PP1","flags":2,"order":0,"h":839},{"pid":"PP2","flags":2,"order":1,"h":909},{"pid":"PP4","flags":2,"order":3,"h":882},{"pid":"PP5","flags":2,"order":4,"h":892},{"pid":"PP6","flags":2,"order":5,"h":881},{"pid":"PP7","flags":34,"order":6,"h":888},{"pid":"PP8","flags":2,"order":7,"h":882},{"pid":"PP9","flags":2,"order":8,"h":897},{"pid":"PP10","flags":2,"order":9,"h":882},{"pid":"PP11","flags":2,"order":10,"h":905},{"pid":"PP12","flags":2,"order":11,"h":874},{"pid":"PP13","flags":2,"order":12,"h":905},{"pid":"PP14","flags":2,"order":13,"h":887},{"pid":"PA1","flags":2,"order":14,"title":"1","h":901},{"pid":"PA2","flags":2,"order":15,"title":"2","h":870},{"pid":"PA3","flags":2,"order":16,"title":"3","h":886},{"pid":"PA4","flags":2,"order":17,"title":"4","h":877},{"pid":"PA5","flags":2,"order":18,"title":"5","h":894},{"pid":"PA6","flags":2,"order":19,"title":"6","h":875},{"pid":"PA7","flags":2,"order":20,"title":"7","h":877},{"pid":"PA8","flags":2,"order":21,"title":"8","h":889},{"pid":"PA9","flags":2,"order":22,"title":"9","h":897},{"pid":"PA10","flags":2,"order":23,"title":"10","h":877},{"pid":"PA11","flags":2,"order":24,"title":"11","h":882},{"pid":"PA12","flags":2,"order":25,"title":"12","h":878},{"pid":"PA13","flags":2,"order":26,"title":"13","h":881},{"pid":"PA14","flags":2,"order":27,"title":"14","h":882},{"pid":"PA15","flags":2,"order":28,"title":"15","h":876},{"pid":"PA16","flags":2,"order":29,"title":"16","h":871},{"pid":"PA17","flags":2,"order":30,"title":"17","h":904},{"pid":"PA18","flags":2,"order":31,"title":"18","h":866},{"pid":"PA19","flags":2,"order":32,"title":"19","h":901},{"pid":"PA20","flags":2,"order":33,"title":"20","h":892},{"pid":"PA21","flags":2,"order":34,"title":"21","h":889},{"pid":"PA22","flags":2,"order":35,"title":"22","h":874},{"pid":"PA23","flags":2,"order":36,"title":"23","h":885},{"pid":"PA24","flags":2,"order":37,"title":"24","h":871},{"pid":"PA25","flags":2,"order":38,"title":"25","h":892},{"pid":"PA26","flags":2,"order":39,"title":"26","h":869},{"pid":"PA27","flags":2,"order":40,"title":"27","h":883},{"pid":"PA28","flags":2,"order":41,"title":"28","h":876},{"pid":"PA29","flags":2,"order":42,"title":"29","h":887},{"pid":"PA30","flags":2,"order":43,"title":"30","h":880},{"pid":"PA31","flags":2,"order":44,"title":"31","h":902},{"pid":"PA32","flags":2,"order":45,"title":"32","h":891},{"pid":"PA33","flags":2,"order":46,"title":"33","h":889},{"pid":"PA34","flags":2,"order":47,"title":"34"},{"pid":"PA35","flags":2,"order":48,"title":"35","h":905},{"pid":"PA36","flags":2,"order":49,"title":"36","h":896},{"pid":"PA37","flags":2,"order":50,"title":"37","h":882},{"pid":"PA38","flags":2,"order":51,"title":"38","h":894},{"pid":"PA39","flags":2,"order":52,"title":"39","h":876},{"pid":"PA40","flags":2,"order":53,"title":"40","h":902},{"pid":"PA41","flags":2,"order":54,"title":"41","h":874},{"pid":"PA42","flags":2,"order":55,"title":"42","h":899},{"pid":"PA43","flags":2,"order":56,"title":"43","h":889},{"pid":"PA44","flags":2,"order":57,"title":"44","h":898},{"pid":"PA45","flags":2,"order":58,"title":"45","h":887},{"pid":"PA46","flags":2,"order":59,"title":"46","h":898},{"pid":"PA47","flags":2,"order":60,"title":"47","h":892},{"pid":"PA48","flags":2,"order":61,"title":"48","h":895},{"pid":"PA49","flags":2,"order":62,"title":"49","h":874},{"pid":"PA50","flags":2,"order":63,"title":"50","h":888},{"pid":"PA51","flags":2,"order":64,"title":"51","h":888},{"pid":"PA52","flags":2,"order":65,"title":"52","h":899},{"pid":"PA53","flags":2,"order":66,"title":"53","h":877},{"pid":"PA54","flags":2,"order":67,"title":"54","h":902},{"pid":"PA55","flags":2,"order":68,"title":"55","h":889},{"pid":"PA56","flags":2,"order":69,"title":"56","h":871},{"pid":"PA57","flags":2,"order":70,"title":"57","h":897},{"pid":"PA58","flags":2,"order":71,"title":"58","h":896},{"pid":"PA59","flags":2,"order":72,"title":"59","h":880},{"pid":"PA60","flags":2,"order":73,"title":"60","h":868},{"pid":"PA61","flags":2,"order":74,"title":"61","h":901},{"pid":"PA62","flags":2,"order":75,"title":"62","h":859},{"pid":"PA63","flags":2,"order":76,"title":"63","h":885},{"pid":"PA64","flags":2,"order":77,"title":"64","h":906},{"pid":"PA65","flags":2,"order":78,"title":"65","h":879},{"pid":"PA66","flags":2,"order":79,"title":"66","h":866},{"pid":"PA67","flags":2,"order":80,"title":"67","h":901},{"pid":"PA68","flags":2,"order":81,"title":"68","h":875},{"pid":"PA69","flags":2,"order":82,"title":"69","h":884},{"pid":"PA70","flags":2,"order":83,"title":"70","h":898},{"pid":"PA71","flags":2,"order":84,"title":"71","h":889},{"pid":"PA72","flags":2,"order":85,"title":"72","h":874},{"pid":"PA73","flags":2,"order":86,"title":"73","h":891},{"pid":"PA74","flags":2,"order":87,"title":"74","h":876},{"pid":"PA75","flags":2,"order":88,"title":"75","h":874},{"pid":"PA76","flags":2,"order":89,"title":"76","h":899},{"pid":"PA77","flags":2,"order":90,"title":"77","h":875},{"pid":"PA78","flags":2,"order":91,"title":"78","h":906},{"pid":"PA79","flags":2,"order":92,"title":"79","h":871},{"pid":"PA80","flags":2,"order":93,"title":"80","h":867},{"pid":"PA81","flags":2,"order":94,"title":"81","h":899},{"pid":"PA82","flags":2,"order":95,"title":"82","h":872},{"pid":"PA83","flags":2,"order":96,"title":"83","h":892},{"pid":"PA84","flags":2,"order":97,"title":"84","h":870},{"pid":"PA85","flags":2,"order":98,"title":"85","h":903},{"pid":"PA86","flags":2,"order":99,"title":"86","h":877},{"pid":"PA87","flags":2,"order":100,"title":"87","h":894},{"pid":"PA88","flags":2,"order":101,"title":"88","h":880},{"pid":"PA89","flags":2,"order":102,"title":"89","h":898},{"pid":"PA90","flags":2,"order":103,"title":"90","h":902},{"pid":"PA91","flags":2,"order":104,"title":"91","h":880},{"pid":"PA92","flags":2,"order":105,"title":"92","h":897},{"pid":"PA93","flags":2,"order":106,"title":"93","h":904},{"pid":"PA94","flags":2,"order":107,"title":"94","h":908},{"pid":"PA95","flags":2,"order":108,"title":"95","h":872},{"pid":"PA96","flags":2,"order":109,"title":"96","h":906},{"pid":"PA97","flags":2,"order":110,"title":"97","h":905},{"pid":"PA98","flags":2,"order":111,"title":"98","h":874},{"pid":"PA99","flags":2,"order":112,"title":"99","h":875},{"pid":"PA100","flags":2,"order":113,"title":"100","h":872},{"pid":"PA101","flags":2,"order":114,"title":"101","h":876},{"pid":"PA102","flags":2,"order":115,"title":"102","h":903},{"pid":"PA103","flags":2,"order":116,"title":"103","h":917},{"pid":"PA104","flags":2,"order":117,"title":"104","h":874},{"pid":"PA105","flags":2,"order":118,"title":"105","h":908},{"pid":"PA106","flags":2,"order":119,"title":"106","h":900},{"pid":"PA107","flags":2,"order":120,"title":"107","h":905},{"pid":"PA108","flags":2,"order":121,"title":"108","h":900},{"pid":"PA109","flags":2,"order":122,"title":"109","h":882},{"pid":"PA110","flags":2,"order":123,"title":"110","h":877},{"pid":"PA111","flags":2,"order":124,"title":"111","h":880},{"pid":"PA112","flags":2,"order":125,"title":"112","h":902},{"pid":"PA113","flags":2,"order":126,"title":"113","h":909},{"pid":"PA114","flags":2,"order":127,"title":"114","h":918},{"pid":"PA115","flags":2,"order":128,"title":"115","h":902},{"pid":"PA116","flags":2,"order":129,"title":"116","h":916},{"pid":"PA117","flags":2,"order":130,"title":"117","h":911},{"pid":"PA118","flags":2,"order":131,"title":"118","h":886},{"pid":"PA119","flags":2,"order":132,"title":"119","h":870},{"pid":"PA120","flags":2,"order":133,"title":"120","h":873},{"pid":"PA121","flags":2,"order":134,"title":"121","h":882},{"pid":"PA122","flags":2,"order":135,"title":"122","h":908},{"pid":"PA123","flags":2,"order":136,"title":"123","h":905},{"pid":"PA124","flags":2,"order":137,"title":"124","h":910},{"pid":"PA125","flags":2,"order":138,"title":"125","h":913},{"pid":"PA126","flags":2,"order":139,"title":"126","h":906},{"pid":"PA127","flags":2,"order":140,"title":"127","h":907},{"pid":"PA128","flags":2,"order":141,"title":"128","h":920},{"pid":"PA129","flags":2,"order":142,"title":"129","h":905},{"pid":"PA130","flags":2,"order":143,"title":"130","h":918},{"pid":"PA131","flags":2,"order":144,"title":"131","h":906},{"pid":"PA132","flags":2,"order":145,"title":"132","h":868},{"pid":"PA133","flags":2,"order":146,"title":"133","h":909},{"pid":"PA134","flags":2,"order":147,"title":"134","h":866},{"pid":"PA135","flags":2,"order":148,"title":"135","h":906},{"pid":"PA136","flags":2,"order":149,"title":"136","h":872},{"pid":"PA137","flags":2,"order":150,"title":"137","h":896},{"pid":"PA138","flags":2,"order":151,"title":"138","h":913},{"pid":"PA139","flags":2,"order":152,"title":"139","h":876},{"pid":"PA140","flags":2,"order":153,"title":"140","h":869},{"pid":"PA141","flags":2,"order":154,"title":"141","h":907},{"pid":"PA142","flags":2,"order":155,"title":"142","h":877},{"pid":"PA143","flags":2,"order":156,"title":"143","h":909},{"pid":"PA144","flags":2,"order":157,"title":"144","h":901},{"pid":"PA145","flags":2,"order":158,"title":"145","h":909},{"pid":"PA146","flags":2,"order":159,"title":"146","h":923},{"pid":"PA147","flags":2,"order":160,"title":"147","h":908},{"pid":"PA148","flags":2,"order":161,"title":"148","h":922},{"pid":"PA149","flags":2,"order":162,"title":"149","h":911},{"pid":"PA150","flags":2,"order":163,"title":"150","h":875},{"pid":"PA151","flags":2,"order":164,"title":"151","h":897},{"pid":"PA152","flags":2,"order":165,"title":"152","h":873},{"pid":"PA153","flags":2,"order":166,"title":"153","h":885},{"pid":"PA154","flags":2,"order":167,"title":"154","h":867},{"pid":"PA155","flags":2,"order":168,"title":"155","h":888},{"pid":"PA156","flags":2,"order":169,"title":"156","h":929},{"pid":"PA157","flags":2,"order":170,"title":"157","h":916},{"pid":"PA158","flags":2,"order":171,"title":"158","h":915},{"pid":"PA159","flags":2,"order":172,"title":"159","h":905},{"pid":"PA160","flags":2,"order":173,"title":"160","h":920},{"pid":"PA161","flags":2,"order":174,"title":"161","h":910},{"pid":"PA162","flags":2,"order":175,"title":"162","h":883},{"pid":"PA163","flags":2,"order":176,"title":"163","h":918},{"pid":"PA164","flags":2,"order":177,"title":"164","h":923},{"pid":"PA165","flags":2,"order":178,"title":"165","h":911},{"pid":"PA166","flags":2,"order":179,"title":"166","h":874},{"pid":"PA167","flags":2,"order":180,"title":"167","h":914},{"pid":"PA168","flags":2,"order":181,"title":"168","h":932},{"pid":"PA169","flags":2,"order":182,"title":"169","h":911},{"pid":"PA170","flags":2,"order":183,"title":"170","h":874},{"pid":"PA171","flags":2,"order":184,"title":"171","h":923},{"pid":"PA172","flags":2,"order":185,"title":"172","h":921},{"pid":"PA173","flags":2,"order":186,"title":"173","h":881},{"pid":"PA174","flags":2,"order":187,"title":"174","h":879},{"pid":"PA175","flags":2,"order":188,"title":"175","h":916},{"pid":"PA176","flags":2,"order":189,"title":"176","h":870},{"pid":"PA177","flags":2,"order":190,"title":"177","h":920},{"pid":"PA178","flags":2,"order":191,"title":"178","h":929},{"pid":"PA179","flags":2,"order":192,"title":"179","h":910},{"pid":"PA180","flags":2,"order":193,"title":"180","h":918},{"pid":"PA181","flags":2,"order":194,"title":"181","h":877},{"pid":"PA182","flags":2,"order":195,"title":"182","h":917},{"pid":"PA183","flags":2,"order":196,"title":"183","h":887},{"pid":"PA184","flags":2,"order":197,"title":"184","h":871},{"pid":"PA185","flags":2,"order":198,"title":"185","h":904},{"pid":"PA186","flags":2,"order":199,"title":"186","h":927},{"pid":"PA187","flags":2,"order":200,"title":"187","h":883},{"pid":"PA188","flags":2,"order":201,"title":"188","h":933},{"pid":"PA189","flags":2,"order":202,"title":"189","h":883},{"pid":"PA190","flags":2,"order":203,"title":"190","h":935},{"pid":"PA191","flags":2,"order":204,"title":"191","h":885},{"pid":"PA192","flags":2,"order":205,"title":"192","h":923},{"pid":"PA193","flags":2,"order":206,"title":"193","h":913},{"pid":"PA194","flags":2,"order":207,"title":"194","h":872},{"pid":"PA195","flags":2,"order":208,"title":"195","h":908},{"pid":"PA196","flags":2,"order":209,"title":"196","h":920},{"pid":"PA197","flags":2,"order":210,"title":"197","h":924},{"pid":"PA198","flags":2,"order":211,"title":"198","h":866},{"pid":"PA199","flags":2,"order":212,"title":"199","h":866},{"pid":"PA200","flags":2,"order":213,"title":"200","h":861},{"pid":"PA201","flags":2,"order":214,"title":"201","h":912},{"pid":"PA202","flags":2,"order":215,"title":"202","h":871},{"pid":"PA203","flags":2,"order":216,"title":"203","h":911},{"pid":"PA204","flags":2,"order":217,"title":"204","h":928},{"pid":"PA205","flags":2,"order":218,"title":"205","h":884},{"pid":"PA206","flags":2,"order":219,"title":"206","h":935},{"pid":"PA207","flags":2,"order":220,"title":"207","h":879},{"pid":"PA208","flags":2,"order":221,"title":"208","h":935},{"pid":"PA209","flags":2,"order":222,"title":"209","h":912},{"pid":"PA210","flags":2,"order":223,"title":"210","h":922},{"pid":"PA211","flags":2,"order":224,"title":"211","h":878},{"pid":"PA212","flags":2,"order":225,"title":"212","h":874},{"pid":"PA213","flags":2,"order":226,"title":"213","h":923},{"pid":"PA214","flags":2,"order":227,"title":"214","h":925},{"pid":"PA215","flags":2,"order":228,"title":"215","h":902},{"pid":"PA216","flags":2,"order":229,"title":"216","h":937},{"pid":"PA217","flags":2,"order":230,"title":"217","h":916},{"pid":"PA218","flags":2,"order":231,"title":"218","h":925},{"pid":"PA219","flags":2,"order":232,"title":"219","h":879},{"pid":"PA220","flags":2,"order":233,"title":"220","h":873},{"pid":"PA221","flags":2,"order":234,"title":"221","h":916},{"pid":"PA222","flags":2,"order":235,"title":"222","h":930},{"pid":"PA223","flags":2,"order":236,"title":"223","h":925},{"pid":"PA224","flags":2,"order":237,"title":"224","h":880},{"pid":"PA225","flags":2,"order":238,"title":"225","h":875},{"pid":"PA226","flags":2,"order":239,"title":"226","h":874},{"pid":"PA227","flags":2,"order":240,"title":"227","h":886},{"pid":"PA228","flags":2,"order":241,"title":"228","h":888},{"pid":"PA229","flags":2,"order":242,"title":"229","h":876},{"pid":"PA230","flags":2,"order":243,"title":"230","h":878},{"pid":"PA231","flags":2,"order":244,"title":"231","h":902},{"pid":"PA232","flags":2,"order":245,"title":"232","h":874},{"pid":"PA233","flags":2,"order":246,"title":"233"},{"pid":"PA234","flags":2,"order":247,"title":"234","h":877},{"pid":"PA235","flags":2,"order":248,"title":"235","h":916},{"pid":"PA236","flags":2,"order":249,"title":"236","h":934},{"pid":"PA237","flags":2,"order":250,"title":"237","h":881},{"pid":"PA238","flags":2,"order":251,"title":"238","h":944},{"pid":"PA239","flags":2,"order":252,"title":"239","h":932},{"pid":"PA240","flags":2,"order":253,"title":"240","h":931},{"pid":"PA241","flags":2,"order":254,"title":"241","h":921},{"pid":"PA242","flags":2,"order":255,"title":"242","h":939},{"pid":"PA243","flags":2,"order":256,"title":"243","h":907},{"pid":"PA244","flags":2,"order":257,"title":"244","h":895},{"pid":"PA245","flags":2,"order":258,"title":"245","h":904},{"pid":"PA246","flags":2,"order":259,"title":"246","h":916},{"pid":"PA247","flags":2,"order":260,"title":"247","h":908},{"pid":"PA248","flags":2,"order":261,"title":"248","h":942},{"pid":"PA249","flags":2,"order":262,"title":"249","h":914},{"pid":"PA250","flags":2,"order":263,"title":"250","h":942},{"pid":"PA251","flags":2,"order":264,"title":"251","h":907},{"pid":"PA252","flags":2,"order":265,"title":"252","h":939},{"pid":"PA253","flags":2,"order":266,"title":"253","h":889},{"pid":"PA254","flags":2,"order":267,"title":"254","h":947},{"pid":"PA255","flags":2,"order":268,"title":"255","h":909},{"pid":"PA256","flags":2,"order":269,"title":"256","h":938},{"pid":"PA257","flags":2,"order":270,"title":"257","h":904},{"pid":"PA258","flags":2,"order":271,"title":"258","h":946},{"pid":"PA259","flags":2,"order":272,"title":"259","h":899},{"pid":"PA260","flags":2,"order":273,"title":"260","h":929},{"pid":"PA261","flags":2,"order":274,"title":"261","h":899},{"pid":"PA262","flags":2,"order":275,"title":"262","h":888},{"pid":"PA263","flags":2,"order":276,"title":"263"},{"pid":"PA264","flags":2,"order":277,"title":"264"},{"pid":"PA265","flags":2,"order":278,"title":"265","h":876},{"pid":"PA266","flags":2,"order":279,"title":"266","h":919},{"pid":"PA267","flags":2,"order":280,"title":"267","h":897},{"pid":"PA268","flags":2,"order":281,"title":"268","h":912},{"pid":"PA269","flags":2,"order":282,"title":"269","h":878},{"pid":"PA270","flags":2,"order":283,"title":"270","h":888},{"pid":"PA271","flags":2,"order":284,"title":"271","h":904},{"pid":"PA272","flags":2,"order":285,"title":"272","h":902},{"pid":"PA273","flags":2,"order":286,"title":"273","h":867},{"pid":"PA274","flags":2,"order":287,"title":"274","h":925},{"pid":"PA275","flags":2,"order":288,"title":"275","h":867},{"pid":"PA276","flags":2,"order":289,"title":"276","h":883},{"pid":"PA277","flags":2,"order":290,"title":"277","h":880},{"pid":"PA278","flags":2,"order":291,"title":"278","h":892},{"pid":"PA279","flags":2,"order":292,"title":"279","h":875},{"pid":"PA280","flags":2,"order":293,"title":"280","h":894},{"pid":"PA281","flags":2,"order":294,"title":"281","h":860},{"pid":"PA282","flags":2,"order":295,"title":"282","h":876},{"pid":"PA283","flags":2,"order":296,"title":"283","h":891},{"pid":"PA284","flags":2,"order":297,"title":"284","h":887},{"pid":"PA285","flags":2,"order":298,"title":"285","h":890},{"pid":"PA286","flags":2,"order":299,"title":"286"},{"pid":"PA287","flags":2,"order":300,"title":"287"},{"pid":"PA288","flags":2,"order":301,"title":"288","h":892},{"pid":"PA289","flags":2,"order":302,"title":"289","h":875},{"pid":"PA290","flags":2,"order":303,"title":"290","h":878},{"pid":"PA291","flags":2,"order":304,"title":"291","h":910},{"pid":"PA292","flags":2,"order":305,"title":"292","h":909},{"pid":"PA293","flags":2,"order":306,"title":"293","h":894},{"pid":"PA294","flags":2,"order":307,"title":"294","h":897},{"pid":"PT2","flags":2,"order":309,"h":927},{"pid":"PT3","flags":2,"order":310},{"pid":"PT5","flags":2,"order":312,"h":891},{"pid":"PT6","flags":2,"order":313,"h":872},{"pid":"PT7","flags":2,"order":314,"h":900},{"pid":"PT8","flags":66,"order":315,"h":836}],"prefix":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026dq=dziobek+mathematical"},{"fullview":true,"page_width":575,"page_height":893,"font_height":0,"first_content_page":14,"disable_twopage":false,"initial_zoom_width_override":0,"show_print_pages_button":false,"title":"Mathematical Theories of Planetary Motions","subtitle":"","attribution":"By Otto Dziobek","additional_info":{"[JsonBookInfo]":{"BuyLinks":[{"Seller":"AbeBooks","Url":"http://dogbert.abebooks.com/servlet/SearchResults?tn=Mathematical+Theories+Planetary+Motions","TrackingUrl":"/url?client=ca-google-gppd\u0026format=googleprint\u0026num=0\u0026id=O9RNAAAAMAAJ\u0026q=http://dogbert.abebooks.com/servlet/SearchResults%3Ftn%3DMathematical%2BTheories%2BPlanetary%2BMotions\u0026usg=AOvVaw0EqEyAUQqB0c7sENj2tx8V"}],"AboutUrl":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ","PreviewUrl":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ","allowed_syndication_flags":{"allow_disabling_chrome":true},"TocLine":[{"Title":"FIRST DIVISION ","Pid":"PA1","PgNum":"1","Order":14},{"Title":"Elliptic Parabolic and Hyperbolic Orbits ","Pid":"PA12","PgNum":"12","Order":25},{"Title":"Solution of Keplers Equation Development of the Coordi ","Pid":"PA23","PgNum":"23","Order":36},{"Title":"Historical Notes on the Preceding Sections ","Pid":"PA37","PgNum":"37","Order":50},{"Title":"SECOND DIVISION ","Pid":"PA77","PgNum":"77","Order":90},{"Title":"Poissons and Lagranges Formulas ","Pid":"PA95","PgNum":"95","Order":108},{"Title":"The Canonical Constants for the Elliptic Elements of the Orbit ","Pid":"PA104","PgNum":"104","Order":117},{"Title":"Properties of the Involution Systems ","Pid":"PA113","PgNum":"113","Order":126},{"Title":"The Partial Differential Equation of Hamilton and Jacobi ","Pid":"PA120","PgNum":"120","Order":133},{"Title":"The Partial Differential Equation of Hamilton and Jacobi ","Pid":"PA132","PgNum":"132","Order":145},{"Title":"Historical Survey for the Second Division ","Pid":"PA140","PgNum":"140","Order":153},{"Title":"THEORY OF PERTURBATIONS ","Pid":"PA143","PgNum":"143","Order":156},{"Title":"Solution of the Differential Equations for the Absolute Pertur ","Pid":"PA153","PgNum":"153","Order":166},{"Title":"Other Formulas of the Absolute Perturbations ","Pid":"PA161","PgNum":"161","Order":174},{"Title":"Analytical Development of the Perturbing Function ","Pid":"PA167","PgNum":"167","Order":180},{"Title":"The Development of a₁22α₁ α½ cos d+a2² in a Trigono ","Pid":"PA186","PgNum":"186","Order":199},{"Title":"The Analytical Expressions for the Perturbations ","Pid":"PA196","PgNum":"196","Order":209},{"Title":"The Variation of Elements ","Pid":"PA203","PgNum":"203","Order":216},{"Title":"Approximate Integration of the Differential Equations for ","Pid":"PA209","PgNum":"209","Order":222},{"Title":"The Secular Variations of the Mean Longitude ","Pid":"PA227","PgNum":"227","Order":240},{"Title":"The Stability of the Solar System ","Pid":"PA233","PgNum":"233","Order":246},{"Title":"Terms of Long Period and the Cemmensurability of the Peri ","Pid":"PA241","PgNum":"241","Order":254},{"Title":"The Exactness of the Formulas for the Variation of the Ele ","Pid":"PA249","PgNum":"249","Order":262},{"Title":"The Invariability of the Major Axes ","Pid":"PA256","PgNum":"256","Order":269},{"Title":"The Form in which the Elements and Coordinates appear ","Pid":"PA262","PgNum":"262","Order":275},{"Title":"Brief Historical Review of the Theories of Perturbations ","Pid":"PA278","PgNum":"278","Order":291},{"Title":"Notes on the Tables ","Pid":"PA290","PgNum":"290","Order":303}]}},"table_of_contents_page_id":"PP11","max_resolution_image_width":800,"max_resolution_image_height":1242,"num_toc_pages":2,"quality_info":"We think this book has good quality.","volume_id":"O9RNAAAAMAAJ","is_ebook":true,"volumeresult":{"has_flowing_text":false,"has_scanned_text":true,"can_download_pdf":true,"can_download_epub":true,"is_pdf_drm_enabled":false,"is_epub_drm_enabled":false,"download_pdf_url":"https://books.google.com.sg/books/download/Mathematical_Theories_of_Planetary_Motio.pdf?id=O9RNAAAAMAAJ\u0026output=pdf\u0026sig=ACfU3U10DxHLOmxT2c8JEs-xBou3yvJt9g","download_epub_url":"https://books.google.com.sg/books/download/Mathematical_Theories_of_Planetary_Motio.epub?id=O9RNAAAAMAAJ\u0026output=epub"},"publisher":"Register Publishing Company","publication_date":"1892","subject":"Celestial mechanics","num_pages":294,"sample_url":"https://play.google.com/books/reader?id=O9RNAAAAMAAJ\u0026source=gbs_vpt_hover","my_library_url":"https://www.google.com/accounts/Login?service=print\u0026continue=https://books.google.com.sg/books%3Fop%3Dlibrary\u0026hl=en","is_magazine":false,"is_public_domain":true},{"enableClips":true,"enableUserFeedbackUI":true,"pseudocontinuous":true,"enableThumbnailViewport":true,"is_cobrand":false,"sign_in_url":"https://www.google.com/accounts/Login?service=print\u0026continue=https://books.google.com.sg/books%3Fid%3DO9RNAAAAMAAJ%26printsec%3Dfrontcover%26dq%3Ddziobek%2Bmathematical%26source%3Dgbs_book_other_versions_r%26hl%3Den\u0026hl=en","isEntityPageViewport":false,"showViewportOnboarding":false,"showViewportPlainTextOnboarding":false},{"page":[{"pid":"PP7","src":"https://books.google.com.sg/books/content?id=O9RNAAAAMAAJ\u0026pg=PP7\u0026img=1\u0026zoom=3\u0026hl=en\u0026sig=ACfU3U123OUv5zaQT9V4R_2a-8yfkL5HVw","highlights":[{"X":273,"Y":325,"W":70,"H":13},{"X":129,"Y":88,"W":167,"H":20}],"flags":34,"order":6,"uf":"https://books.google.com.sg/books_feedback?id=O9RNAAAAMAAJ\u0026spid=AFLRE72kCKoZ2MOdQ_vpgvbRAVyU-mijXRSCGlwSErP9YCaAMdIxX_tfmnEprlFcoydcTcziPvj2\u0026ftype=0","vq":"dziobek mathematical","snippet_src":"https://books.google.com.sg/books/content?id=O9RNAAAAMAAJ\u0026pg=PP7\u0026img=1\u0026pgis=1\u0026dq=dziobek+mathematical\u0026sig=ACfU3U3BFlurwp7JyLfoPtFvuOx8dWfNfA\u0026edge=0"}]},null,{"number_of_results":84,"search_results":[{"page_id":"PP9","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. PREFACE . The determination of the motions of the heavenly bodies is an import- ant problem in and for itself , and also on account of the influence it has exerted on the development of \u003cb\u003emathematics\u003c/b\u003e . It has engaged the\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PP9\u0026dq=dziobek+mathematical"},{"page_id":"PP11","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. TABLE OF CONTENTS . FIRST DIVISION . SOLUTION OF THE PROBLEM OF TWO BODIES . FORMATION OF THE GEN- ALGEBRAICAL ERAL INTEGRALS FOR THE PROBLEM OF ʼn BODIES . TRANSFORMATIONS OF THIS PROBLEM . PAGE . 1. Newton\u0026#39;s Law of\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PP11\u0026dq=dziobek+mathematical"},{"page_id":"PP13","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. TABLE OF CONTENTS . FIRST DIVISION . SOLUTION OF THE PROBLEM OF TWO BODIES , FORMATION OF THE GENERAL INTEGRALS FOR THE PROBLEM OF n BODIES . ALGEBRAICAL TRANSFORMATIONS OF THIS PROBLEM . PAGE . 1 12 19 1. Newton\u0026#39;s Law of\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PP13\u0026dq=dziobek+mathematical"},{"page_id":"PP14","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ERRATA . PAGE LINE 10 -6 , -7 FOR motus 11 +8 † 13 headline 17 66 PROBLEMS 66 READ Motus . * PROBLEM 66 21 . +5 91 21 +9 22 +11 fi 22 -4 to 24 +10 27 31 66 3 xz 31 +6 40 +19 M1 42 +15 0 = headline 91 ( x — a + √x ( −2a )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PP14\u0026dq=dziobek+mathematical"},{"page_id":"PA2","page_number":"2","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Since the two particles attract each other , the direction of action is along the line which joins them . The action of P2 on P , has the direction from P1 to P , and its direction cosines are 1 X2 1 2 XC1 Y2 2 r - Yı r Z2\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA2\u0026dq=dziobek+mathematical"},{"page_id":"PA10","page_number":"10","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. because ( 32a ) must give identically r2 = x2 + y2 + z2 . If p is the semi - parameter and e the eccentricity of a conic , its equation , when the origin is at the focus and the + axis is directed to the vertex nearest it\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA10\u0026dq=dziobek+mathematical"},{"page_id":"PA11","page_number":"11","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. the mean distance of the earth from the sun . The sector becomes in a sidereal year the entire area of the ellipse , or S == ab = πανα b2 Vā = πανα Np = = p . If the mean solar day is the unit of time , T is the number of\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA11\u0026dq=dziobek+mathematical"},{"page_id":"PA12","page_number":"12","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. 2. ELLIPTIC , PARABOLIC AND HYPERBOLIC ORBITS . Case I , e \u0026lt; 1 . Equation ( 30a ) , § 1 , represents in this case an ellipse . If the semi - axis major is represented by [ a ] , then [ a ] = c2 p 1 2 1 f2 Hence by ( 24 )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA12\u0026dq=dziobek+mathematical"},{"page_id":"PA15","page_number":"15","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. 1 II . r = 2 I. p = a cos2 y , Ρ 1 + e cos v \u0026quot; III . r = a ( 1 --- e cos E ) , IV . COS E = cos v + e 1+ e cos v COS E e , or cos v = 1 e cos E V. sin E COS E 1 e = = sin v 2 r ( 1 = sin v e ) = sin v VI . cos E = P. 1+ cos\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA15\u0026dq=dziobek+mathematical"},{"page_id":"PA20","page_number":"20","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. where is again the constant of integration . 2a We will now so select our time that when x = x 。, t = dx \u0026quot; dt to and the velocity , is negative . The planet is then approach- \u0026quot; ing the sun and ( 3 ) becomes dx dt 1 1 √2\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA20\u0026dq=dziobek+mathematical"},{"page_id":"PA24","page_number":"24","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. e3 e ( 4 ) f ( x ) = f ( y ) + — 4 ( y ) ƒ \u0026#39; ( y ) + \u0026quot; 1 3 2 2 ! e * a [ { ( y ) f \u0026#39; ( y ) ] 2 მყ Ə2 [ { + 3 ! ( y ) } 3ƒ \u0026#39; ( y ) ] dy2 + The question of the convergence of this series is one into which we shall not enter\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA24\u0026dq=dziobek+mathematical"},{"page_id":"PA25","page_number":"25","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. e cos E ) may be used . = cos x , and we get To get r , the formula r = a ( 1 In this case , in equation ( 4 ) , f ( x ) r e2 ( 7 ) e cos M + ( 1 α 2 cos 2 M ) e3 2 ! 22 ( 3 cos 3 M ( 42 cos 4M e1 3 ! 23 e5 4 ! 24 ( 53\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA25\u0026dq=dziobek+mathematical"},{"page_id":"PA27","page_number":"27","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. iE iv = iE + loge ( 1 — k [ e ] ̄¡E ) — loge ( 1 — k [ e ] i ) . - Since k \u0026lt; 1 and the modulus of [ e ] iE = 1 , these logarithms can be developed in series , and , passing finally to the trigono- metrical functions , we\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA27\u0026dq=dziobek+mathematical"},{"page_id":"PA28","page_number":"28","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. 1 1 = é cos E , 1 COS E = sin E = 1 = e √1 — e \u0026#39; , hence e 1 ( 12 ) = cos ( M + i No1 e2 ) 2 e 1 arc cos = M + i √1— e2 , or , = cos M cos ( i √1 — e2 ) = cos M [ e ] + [ e ] + VI — es + [ e ] + sin M sin ( i / 1— e3 )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA28\u0026dq=dziobek+mathematical"},{"page_id":"PA32","page_number":"32","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. since this integral is always smaller than 2m dE = 2T . Moreover , the roots of J ( x ) = 0 are all real , so that the curve y = J ( x ) is sinuous , like the curve y = sin x , with the difference that the waves for the\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA32\u0026dq=dziobek+mathematical"},{"page_id":"PA33","page_number":"33","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. and , for n \u0026gt; 0 , An = 1 2π Ja π ( 1 e cos E ) cos nM dM - 1 π e cos E ) sin n M n 2π 11 ае ηπ 0 2π sin n ( E 247 2π ae 1 n πC sin nM sin E dE e sin E ) sin E dE 1 cos [ ( n - 1 ) E ne sin E ] dE a e n 2π = ae Hence n 1 2π\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA33\u0026dq=dziobek+mathematical"},{"page_id":"PA36","page_number":"36","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Terms of the same form can be obtained for 7 , so that in x only the form given in ( 24 ) can be found . With the aid of ( 22 ) and ( 23 ) , we can at once write out the terms for which [ ^ ] : = α [ ] 1 . They are ( 25 ) a\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA36\u0026dq=dziobek+mathematical"},{"page_id":"PA38","page_number":"38","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. extraordinary degree of learning . This circumstance , together with the religious respect paid in those days to authority , permitted the Almagest to appear as undeniable truth , and any explanation was right or wrong\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA38\u0026dq=dziobek+mathematical"},{"page_id":"PA43","page_number":"43","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. It should be noted that the kinetic energy , and therefore , some velocity , can become infinite , according to ( 14 ) , only when V is infinite , or when one or more distances of the points = 0 . In that case , however\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA43\u0026dq=dziobek+mathematical"},{"page_id":"PA45","page_number":"45","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. To equation ( 17 ) Lagrange gave a form which admits of a highly interesting conclusion concerning the stability of the system . Introducing into ( 4 ) the primed coordinates , and multiplying the equations in order by x\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA45\u0026dq=dziobek+mathematical"},{"page_id":"PA48","page_number":"48","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. plane , and it becomes the invariable plane of the system . This is approximately the case with the solar system . = - If C C C = 0 , every plane is invariable . This would be the case , for instance , if all the points\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA48\u0026dq=dziobek+mathematical"},{"page_id":"PA49","page_number":"49","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. d2x1 dt2 d2x d2 = dt2 dt2 X1 m1 + 3 r1 1 av m1 dx1 X3 m2 3 M3 etc. 3 Introducing finally , Ra = 1 m2 V- x x x 1 + Y λ Y1 +22 21 m1 1 = V Σ m μ ሳን . 3 X 2 X 2 + y 2 Y 2 + z2Z2 3 m2 + z2zμ 3 ru x x x μ + Y z Y μ + zz . Zμ\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA49\u0026dq=dziobek+mathematical"},{"page_id":"PA50","page_number":"50","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ( 30 ) dy Σαχ Ση dz 2mx 2m ) = C , dt Σ m ( x − y da ) + k ( ≥ m x 2 m dt dt Ση dx Σmy Σmaa ) = C2 , dt dy dt - 1 k Μ + Σm \u0026#39; and 2 2 m dx ́dy ́dz \u0026gt; * [ @ ] + @@ D + CD ] 2 dt dt dy dt 2 dt + 1⁄2 [ ( ± m da ) 2 + ( ≥ m du )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA50\u0026dq=dziobek+mathematical"},{"page_id":"PA54","page_number":"54","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. first order only , instead of the second , and this is more con- venient for many transformations . Equations ( 1 ) retain their form if , instead of the given con- ditions , others are introduced by orthogonal\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA54\u0026dq=dziobek+mathematical"},{"page_id":"PA59","page_number":"59","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ( 28 ) dt + · [ ş d3 [ 3,3 ] dP3 d3 [ 2,2 ] dt3 dP : — Q. ] m , ru 1 3 r31 1 dt3 dt Q3 ] 3 m3 r12 Besides the integral ( 27 ) , the equations ( 25 ) have another , a combination of the surface integrals , found by Lagrange\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA59\u0026dq=dziobek+mathematical"},{"page_id":"PA61","page_number":"61","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. and only one more relation is needed . Putting η1 tan y = 1 we get ( 34 ) dy = admind_vitri ) ( dỗi + di ) — ( d , tnn ) 2 12 23 € 12 + 712 2 - 2 dr23 123 VICTACTICI 123 12 dt dt The right - hand member is , from the\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA61\u0026dq=dziobek+mathematical"},{"page_id":"PA71","page_number":"71","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. in which r1 , r1⁄2 , r are constant and u alone is variable . Intro- ducing these quantities into ( 25 ) , § 7 , we get x2 ( uu ) du du и dt dt A , 1,2 = P + p 3 dt2 И u3 3 1 Here P is what P in ( 26 ) becomes when r1 , T2\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA71\u0026dq=dziobek+mathematical"},{"page_id":"PA75","page_number":"75","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. in the formation of equation ( 34 ) for the determination of p ; this was especially creditable to him because the theory of determinants was then in its infancy . Beyond this point he turned his investigation in the\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA75\u0026dq=dziobek+mathematical"},{"page_id":"PA76","page_number":"76","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. noteworthy transformations of the problem of three bodies . Bertrand and Bour ( Mémoire sur le problème des trois corps , Journal de l\u0026#39;école polytechnique , 1856 , p . 35 ) have brought the reduced problem of the eighth\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA76\u0026dq=dziobek+mathematical"},{"page_id":"PA82","page_number":"82","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. i = ni \u0026#39; = n - \u0026gt; i = 1\u0026#39;1 i = ni \u0026#39; = n მ ¢ მს др.да да др . a2ƒ до дф i = ni \u0026#39; = n⋅ деф df მს d2 ¢ of du i = 1 i = 1 i = ni \u0026#39; = n + + Σ i = 1 i = 1 да да др . др i = 1 i = 1 and , as Their alge- The four double\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA82\u0026dq=dziobek+mathematical"},{"page_id":"PA86","page_number":"86","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. as the converse of the other . Lagrange , although he mentions Poisson\u0026#39;s formula , seems to have overlooked this relationship . In order to determine this relationship , we shall collect some proportions in determinants for\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA86\u0026dq=dziobek+mathematical"},{"page_id":"PA94","page_number":"94","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ( 10 ) дх дх dx = Οπ дл DE \u0026#39; ди θα ди ( 0 % ) ==== It is somewhat more difficult to form the derivatives with respect to e . ( 11 ) we obtain , ( 12 ) From the equations [ == a ( cos E ― e ) 7 = a1e sin E sin E an 1- e cos\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA94\u0026dq=dziobek+mathematical"},{"page_id":"PA96","page_number":"96","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. a1 = a = e agΞΩ a1 = i = a 0 , 0 , [ a , 2 ] , 0 , e 0 , 0 , [ e , 2 ] , 0 , [ e , ] , 0 [ α , π ] , [ α , ε ] 7C Ω ( 19 ) F = - [ a , 2 ] , [ e , 2 ] , 0 , [ 2 , i ] , 0 , 0 i 0 , 0 , [ 2 , i ] , 0 ,\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA96\u0026dq=dziobek+mathematical"},{"page_id":"PA101","page_number":"101","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. partial differential equations between 2n functions of 2n vari- ables , certain fixed conditions must be satisfied . These condi- tions are here satisfied and in such a manner that the solution possesses the greatest\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA101\u0026dq=dziobek+mathematical"},{"page_id":"PA102","page_number":"102","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. and the others can be so selected as to be independent of 7 . For , if we put comes ( 13 ) да Οτ = 0 , the differential equation 0 = ( a , H \u0026#39; ) be- - да 0 = ( a , H ) + ǝt \u0026#39; This equation is consistent , since its\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA102\u0026dq=dziobek+mathematical"},{"page_id":"PA104","page_number":"104","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Therefore , if b , taken as a function of P1 , satisfies no differ- ential equation of the ( 2n - 2 ) th or lower order which contains a and b only in its coefficients , we get from ( 19 ) ( 2n - 2 ) new integrals which\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA104\u0026dq=dziobek+mathematical"},{"page_id":"PA111","page_number":"111","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. of any two functions a ,, a2 of p , q , remains unchanged in form , when p , q , are subjected to a canonical substitution . What precedes is a preparation for our problem , the com- plete integration of the partial\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA111\u0026dq=dziobek+mathematical"},{"page_id":"PA116","page_number":"116","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. and apply to it the so - called contact transformation of p , q , into new variables Pi , Qi , ( 2 ) P ( P1 , ... In ) , ... P ; = P ; ( P1 , ... Pn , 91 , . Qi = Qi ( P1 , . . . Pn , Y1 , ... In ) , Q1 , ... Qu ) , ( 3 ) P\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA116\u0026dq=dziobek+mathematical"},{"page_id":"PA120","page_number":"120","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. 16 . THE PARTIAL DIFFERENTIAL EQUATION OF HAMILTON AND JACOBI . In the integration of the systems ( 1 ) dp , OH дн dq - дн dp ; \u0026#39; ( i = 1 , 2 , ... n ) dt Əqi dt 2n constants , a1 , a , ... a ,, P1 , P2 , ... P are\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA120\u0026dq=dziobek+mathematical"},{"page_id":"PA122","page_number":"122","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. But the second member of this is = 0 , since it is the total deriv- a w , that is of a constant with respect to the time . ative of Hence даб ( 9 ) alat w + H :) 0 : да The equations ( 7 ) and ( 9 ) show that ( 8 ) is a\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA122\u0026dq=dziobek+mathematical"},{"page_id":"PA123","page_number":"123","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. with respect to a parameter a ,, it follows , since it is contained only in W , that ( aw да : a w a 0 and hence , by ( 13 ) , at д a ( aw ) да at + др at = да др እ д მ 1 ; ( 8 ) др or Hence , the expressions , ( 14 ) d a\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA123\u0026dq=dziobek+mathematical"},{"page_id":"PA126","page_number":"126","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Hence the substitution , which changes W into V , need not be taken into consideration , and we get the following final result : If there is a system of total differential equations ( 16 ) dp : dt дн dqi дн - = 9 dqi dt dpi\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA126\u0026dq=dziobek+mathematical"},{"page_id":"PA130","page_number":"130","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ( 2T - h ) dt = 2 Tdt - h ( t - t \u0026#39; ) = V - h ( t - t \u0026#39; ) . = √ ( 2r With the limitations now made , U + T ) dt = 8 V —s [ h ( t — t \u0026#39; ) ] • f ( U + r ) t / = Σ av av av -x : + dy ; + 87Zi θα dyi dzi av av dy ! sy ! + əzi\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA130\u0026dq=dziobek+mathematical"},{"page_id":"PA134","page_number":"134","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. 2 2 2 2 ( or ) 2 + ( or ) \u0026#39; + ( or ) \u0026#39; = ( or ) 2 + ( or ) \u0026quot; дх ду др др 2 ( r + r ) 2 +2 avav ( ( r + r2 ) _ 1 ( ~ + ~ ) 2 — p2 ) . Or Op Therefore the equation ( 4 ) takes the form ( 7 ) h = Əv Əv p2 — ( r + r2 ) 2- dr ap\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA134\u0026dq=dziobek+mathematical"},{"page_id":"PA136","page_number":"136","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Since it vanishes for x = x , y = y \u0026#39; , z = z \u0026#39; , it appears that ( 13 ) is the action of the system from the initial to the final configura- tions , and it is in the desired form . The time required by the planet to\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA136\u0026dq=dziobek+mathematical"},{"page_id":"PA139","page_number":"139","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. getting the notable equations ( 17 ) and ( 18 ) from those §1 . This example shows how a general theory may throw a new and sur- prising light on an old and special problem . Jacobi has shown that the partial differential\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA139\u0026dq=dziobek+mathematical"},{"page_id":"PA140","page_number":"140","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ( 20 ) 2n V - No1 S \u0026#39; . Hence it appears , that while the area described by the radius vector from the sun is proportional to the time the area described by the radius vector from the other focus is propor- tional to the\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA140\u0026dq=dziobek+mathematical"},{"page_id":"PA141","page_number":"141","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. lytical mechanics with a new principle , —that of varying action . He introduced the idea of the action as the integral of the kinetic energy with respect to the time from one configuration to another , proposing it as a\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA141\u0026dq=dziobek+mathematical"},{"page_id":"PA142","page_number":"142","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. canonical system . The method which has been given , for changing a given system of constants into a canonical system , is due to Bour . Many \u003cb\u003emathematicians\u003c/b\u003e , by their labors , have perfected and generalized Jacobi\u0026#39;s ideas\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA142\u0026dq=dziobek+mathematical"},{"page_id":"PA148","page_number":"148","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Since the mass of the earth is somewhat more than eighty times that of the moon , the approximation on neglecting ò rises 2 1 from the order ( 40 ) 1 to the order 2 . 400 1 = 1 80 12,800,000 * In what follows , by the\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA148\u0026dq=dziobek+mathematical"},{"page_id":"PA149","page_number":"149","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Series ( 1 ) converges so long as ( t - to ) does not exceed a cer- tain limiting value . This follows from Cauchy\u0026#39;s investigation on the convergence of those series which represent functions . defined by differential\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA149\u0026dq=dziobek+mathematical"},{"page_id":"PA158","page_number":"158","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. FOR OR да dt , dt , ... де The form under which the perturbations now appear are called . special , in so far as they are reckoned from a definite instant to . These special perturbations were included in the ideas of the\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA158\u0026dq=dziobek+mathematical"},{"page_id":"PA160","page_number":"160","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. turbations are to be used . We can , however , according to the rule for differentiation under the sign of integration , first inte- grate with respect to t and then differentiate with respect to the elements a , e\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA160\u0026dq=dziobek+mathematical"},{"page_id":"PA162","page_number":"162","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. doz ( 4 ) and dt dx = A + B dt dy dt \u0026#39; d2dz ( 5 ) dt2 d2x d\u0026#39;y dA dx = A + B + dB dy + dt2 х dt2 dt dt dt dt y dA dx dB dy = —A − Bμ + Αμ dt dt + Finally by substituting ( 2 ) and ( 5 ) in ( 1 ) , we get ( 6 ) and from ( 3 )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA162\u0026dq=dziobek+mathematical"},{"page_id":"PA164","page_number":"164","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ( 16 ) OR W = a да -2n ford R dt , θε d2P μ . P + W . dt2 equation ( 15 ) becomes ( 17 ) This equation is of the same form as ( 1 ) and is to be inte- grated in the same manner . ( 18 ) Thus we get Wdt t p_ Jawa_z fywa P\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA164\u0026dq=dziobek+mathematical"},{"page_id":"PA170","page_number":"170","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ( 11 ) in which r1 = ( a + bcos V + ccos W ) — , 12 a = r2 + r122 , b = -2r1r2cos J , c = -2rr , sin2 J. If , as we shall assume , r , is always greater than r2 , or r always greater than r1 , then since a is greater than\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA170\u0026dq=dziobek+mathematical"},{"page_id":"PA172","page_number":"172","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ( 20 ) Z 3z2 8 Aλ ^^ = { } ( 11 ) — ~ ~ ~ , r2 ( 3 ^ — \u0026#39; ) + 3 ~ r‚2r22 [ 2 ( 5 ^ ) + ( 5 ^ ~ 2 ) ] B = 2 5z3 16 · · r ̧3r ̧3 [ 9 ( 7 ^ ~ 1 ) + ( 7 ^ −3 ) ] + ... 3z2 · B` = \u0026quot; ~ \u0026quot; , \u0026quot; 2 ( 3 ^ ) — 3 = r2r ,\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA172\u0026dq=dziobek+mathematical"},{"page_id":"PA177","page_number":"177","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. where a , 71 , 72 run through all positive numbers including 0 , which satisfy the relation ( 40 ) . If g is odd we can put g − 2a = 2x + 1 = 71 + 829 where x may have all values from 0 to 1 ( 9-1 ) . Therefore x = ( g\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA177\u0026dq=dziobek+mathematical"},{"page_id":"PA178","page_number":"178","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. number for which they are zero . If we represent the number of the latter by Tg , then . 8 , = ( Sg + Tg ) . 2 If g is odd , Tg = 0 , for 7 , and 1⁄2 can not be even at the same time as must be the case when 4 , 1 , 2 are\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA178\u0026dq=dziobek+mathematical"},{"page_id":"PA182","page_number":"182","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. in ascending powers of these quantities . If these are all intro- duced into the above product and this again in the term ( 46 ) , the development of the perturbing function finally receives the following form : ( 49 )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA182\u0026dq=dziobek+mathematical"},{"page_id":"PA183","page_number":"183","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. where , in general , Ик except for k = 0 , for which From these we find 2k ( k2 + 2 ) 3 u = 1 . s 。= 1 , s2 = 12 , 890 , Sε = 444 , 81 = 2 , 83 = 30 , s = 222 , s1 = 858 . If Leverrier had selected the complete expeditious\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA183\u0026dq=dziobek+mathematical"},{"page_id":"PA184","page_number":"184","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. velocities . We have also the following six partial differential equations OF OF + OF OF OF OF = ayı 0 , + = 0 , dy2 JZ1 + öz 2 = 0 , Oz2 х1х2 OF OF OF OF X1 dyi Y 1 J x 1 +22 дх + X2 JY 2 · Y 2 DX 2 = = 0 , ( 51 ) OF OF OF\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA184\u0026dq=dziobek+mathematical"},{"page_id":"PA186","page_number":"186","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. The numerical computation of these coefficients can be per- formed in two ways . On the one hand , after Liouville , ( Sur le calcul des inégalités périodiques , Jour . de \u003cb\u003eMath\u003c/b\u003e . I , 1836 ) , we may expand the double\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA186\u0026dq=dziobek+mathematical"},{"page_id":"PA190","page_number":"190","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Since , by ( 2 ) , the coefficient in braces remains unchanged when i is exchanged with i , we must have ( 12 ) or , by ( 10 ) , ( 13 ) - ( ( 8—2 ) 1 ) = α ̧ α1⁄2 [ k ( s1 ) — ( s \u0026#39; — 1 ) —- ( s \u0026#39; + 1 ) ] , ( ( 8-2 )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA190\u0026dq=dziobek+mathematical"},{"page_id":"PA201","page_number":"201","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ( 18 ) ( 3y1 ) = Σ [ ( K ; 1 ) sin ( 4 + 51 ) + e , ( K ? ) sin ( + 71 ) + e1 ( K ; 3 ) sin ( +23 , −-- ~ 1 ) + e ( K ) sin ( +2 ) + e ( K ) sin ( + 252—2 ) ] , ( 19 ) ( ôz1 ) = Σ [ ¿ , ( K , ® ) sin ( 4 + 51—21 )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA201\u0026dq=dziobek+mathematical"},{"page_id":"PA202","page_number":"202","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. denoted by a ,, ... They give another term { 8x , to ox1 , as follows : { dx } = 3n1 2a дх дх ( a , ε ) , { 51 } t + ( α , εξαι } + ... OH 051 The constants can be taken entirely arbitrarily . Laplace puts 2a1 [ OR1 ] { 5 }\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA202\u0026dq=dziobek+mathematical"},{"page_id":"PA204","page_number":"204","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. depend on the coordinates and velocities in the manner given in § 2. Whatever instant selected , the same values for the elements would always result . The actual state of the case is , that we get different elements for\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA204\u0026dq=dziobek+mathematical"},{"page_id":"PA205","page_number":"205","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. The component velocities also contain the time as before , that is ( 2 ) ( 3 ) dx дх = = x \u0026#39; = n , Θε дх dt Ot From ( 1 ) and ( 2 ) it follows that dx da dx de 0 + + Ja dt de dt dy da dy de 0 = + + da dt de dt dz da dz de 0\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA205\u0026dq=dziobek+mathematical"},{"page_id":"PA218","page_number":"218","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. 0 = 41,1 1 ( [ 1 , 1 ] —91 ) + α2 , 1 [ 2,1 ] + α3,1 [ 3 , 1 ] + ... + an , 1 [ n , 1 ] , and likewise , ( 20 ) 0 = ,, [ 1,2 ] + a2 , 1 ( [ 2,2 ] —g1 ) + α ,, 1 [ 3,2 ] + ... 0 = a ,, [ 1,\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA218\u0026dq=dziobek+mathematical"},{"page_id":"PA229","page_number":"229","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. %% also proportional to them . On the other hand , they are of the second order with reference to K and K \u0026#39; and , as numerical com- putation shows , they are so small that they may be neglected . While these terms may be\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA229\u0026dq=dziobek+mathematical"},{"page_id":"PA233","page_number":"233","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. get the effects of the secular terms of the perturbing function , while the theory of absolute perturbations is applied only to its periodic terms . It is remakable that this combination of the two methods was used earlier\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA233\u0026dq=dziobek+mathematical"},{"page_id":"PA240","page_number":"240","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. regarded as secular - secular terms . Hence the equations and dK \u0026#39; dt - dK dt = 0 0 are not fulfilled and this is entirely correct . In fact , these two equations are not generally correct ; the invaria- ble plane should be\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA240\u0026dq=dziobek+mathematical"},{"page_id":"PA241","page_number":"241","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. introduced into the expressions for the coordinates , the follow- ing general schematic representation of the coordinates : ( 26 ) ( 27 ) x = ΣK cos L , y = ΣK sin L , z = ΣK\u0026#39;sin L \u0026#39; . The K\u0026#39;s and K\u0026#39;s are coefficients\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA241\u0026dq=dziobek+mathematical"},{"page_id":"PA250","page_number":"250","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. = dt a [ 5 ] ́da1_d [ a ] d ( a , ) dt = + dt dt d ( ar ) _d [ a ] + © ( a ; ) [ n ] + [ a ] [ n ] + d ( a1 ) [ n ] + ... @ [ 5 ] + Jo ( a ) d [ a ] , d ( a1 ) d [ e ] [ a ] dt [ e ] dt + + + @ [ 5 ] dt d ( a )\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA250\u0026dq=dziobek+mathematical"},{"page_id":"PA251","page_number":"251","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ond member of the first equation ( 8 ) , § 28 , if the secular values are used for the elements . This amounts to the following : Let the perturbing function R1 be expressed in terms of the elements , or ( 4 ) R = R ( a1\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA251\u0026dq=dziobek+mathematical"},{"page_id":"PA258","page_number":"258","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Let ( 5 ) ( 6 ) 1 m2 ( √ ( x , — x2 ) 2 + ( y 1 — y2 ) 2 + ( 21 — 22 ) 2 1 -- √ ( x1 — x2 ) 2 + ( yı — Y2 ) 2 + ( ≈1 — Z2 ) 2 = X 1 X 2 + Y 1 Y 2 + 21 22 3 Σ ( Psin + cos ) , X1 X2 + Y1 Y2 + Z , Z2 = ( p sin + cos ¿ ) . The\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA258\u0026dq=dziobek+mathematical"},{"page_id":"PA262","page_number":"262","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. Therewith the proof is completed that da dt can contain no sec- ular term even when the second powers of the masses are taken into account , and we can now , with greater emphasis than in $ 30 , state the proposition\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA262\u0026dq=dziobek+mathematical"},{"page_id":"PA264","page_number":"264","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. they are not included in the purpose of this work which is devo- ted solely to the study of motions resulting from gravitation . Yet , with this limitation , the doctrine of the eternal stability of the solar system is very\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA264\u0026dq=dziobek+mathematical"},{"page_id":"PA265","page_number":"265","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. by means of certain circumstances , -the smallness of the per- turbing masses , and the smallness of the eccentricities and inclinations . If this represents the facts , is it because it expresses a \u003cb\u003emathematical\u003c/b\u003e law , and\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA265\u0026dq=dziobek+mathematical"},{"page_id":"PA272","page_number":"272","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. + tsΣΣmx [ ( a , ON \u0026#39; a ON dc ; OK G\u0026#39;sin ( H - H \u0026#39; ) an \u0026#39; an + ( b , c , b ; on ) kg\u0026#39;sin ( h — n \u0026#39; ) ] . Since [ 3 , 0 ] is constant , the terms multiplied by t must vanish and the above must reduce to the constant term\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA272\u0026dq=dziobek+mathematical"},{"page_id":"PA281","page_number":"281","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ually displaced it , though curiously enough , not in its purity , but wonderfully mixed with the first theory . It was seen that the secular terms must eventually cause great changes in the ele- ments , but instead of\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA281\u0026dq=dziobek+mathematical"},{"page_id":"PA283","page_number":"283","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. ter accelerated . On the other hand , Lambert had found that in modern times the opposite is the case . Laplace saw that the explanation of this apparent contradiction of the law of the invariability of motions was to be\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA283\u0026dq=dziobek+mathematical"},{"page_id":"PA292","page_number":"292","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. The sixth table gives the course of the Earth\u0026#39;s elements for a period of 200,000 years . ELEMENTS OF THE ORBITS OF THE MAJOR PLANETS . I. Epoch . Planet . Mean Eccentric- Distance . ity . Mean Moon . P Paris . Mean\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA292\u0026dq=dziobek+mathematical"},{"page_id":"PA294","page_number":"294","snippet_text":"Otto \u003cb\u003eDziobek\u003c/b\u003e. V. 91 = = 0.692870 Y = 0 92 = 2.842232 72 = - 0.756015 93 = 3.780294 Y3 =3.106931 94 = 22.500087 - Y4 = — 25.952538 96 = 5.2989 Yo = =4,795350 . 965 = 7.5747 Y6 = 7.067951 97 = = 17.1527 Yy = -17.468102 9. = 17.8633 Y\u0026nbsp;...","page_url":"https://books.google.com.sg/books?id=O9RNAAAAMAAJ\u0026pg=PA294\u0026dq=dziobek+mathematical"}],"search_query_escaped":"dziobek mathematical"},{});</script></div></div></div><script>(function() {var href = window.location.href;if (href.indexOf('?') !== -1) {var parameters = href.split('?')[1].split('&');for (var i = 0; i < parameters.length; i++) {var param = parameters[i].split('=');if (param[0] == 'focus') {var elem = document.getElementById(param[1]);if (elem) {elem.focus();}}}}})();</script>

Pages: 1 2 3 4 5 6 7 8 9 10