CINXE.COM

Differentialregning - Wikipedia, den frie encyklopædi

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="da" dir="ltr"> <head> <meta charset="UTF-8"> <title>Differentialregning - Wikipedia, den frie encyklopædi</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )dawikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","januar","februar","marts","april","maj","juni","juli","august","september","oktober","november","december"],"wgRequestId":"cb07c417-a817-4de5-b2ae-bca71794fbfe","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Differentialregning","wgTitle":"Differentialregning","wgCurRevisionId":11893244,"wgRevisionId":11893244,"wgArticleId":307796,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Kilder mangler (samlet liste)","Kilder mangler siden november 2020","Wikipedia artikler med GND autoritetsdata-ID","Wikipedia artikler med NDL autoritetsdata-ID","Wikipedia artikler med Den Store Danske autoritetsdata-ID","Sider der bruger udgået format af taget math","Differentialregning","Infinitesimalregning"],"wgPageViewLanguage":"da","wgPageContentLanguage":"da","wgPageContentModel":"wikitext","wgRelevantPageName":"Differentialregning", "wgRelevantArticleId":307796,"wgTempUserName":null,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"da","pageLanguageDir":"ltr","pageVariantFallbacks":"da"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q149999","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"], "GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgSiteNoticeId":"2.0"};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready","ext.dismissableSiteNotice.styles":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.NewSection","ext.gadget.ReferenceTooltips", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking","ext.dismissableSiteNotice"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=da&amp;modules=ext.cite.styles%7Cext.dismissableSiteNotice.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=da&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=da&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/7a/Graph_of_sliding_derivative_line.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/7/7a/Graph_of_sliding_derivative_line.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Differentialregning - Wikipedia, den frie encyklopædi"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//da.m.wikipedia.org/wiki/Differentialregning"> <link rel="alternate" type="application/x-wiki" title="Redigér" href="/w/index.php?title=Differentialregning&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (da)"> <link rel="EditURI" type="application/rsd+xml" href="//da.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://da.wikipedia.org/wiki/Differentialregning"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.da"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom-feed" href="/w/index.php?title=Speciel:Seneste_%C3%A6ndringer&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Differentialregning rootpage-Differentialregning skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Spring til indhold</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Websted"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Hovedmenu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Hovedmenu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Hovedmenu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">flyt til sidebjælken</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">skjul</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage" class="mw-list-item"><a href="/wiki/Forside" title="Besøg forsiden [z]" accesskey="z"><span>Forside</span></a></li><li id="n-kategorier" class="mw-list-item"><a href="/wiki/Wikipedia:Kategorier"><span>Kategorier</span></a></li><li id="n-Fremhævet-indhold" class="mw-list-item"><a href="/wiki/Wikipedia:Fremh%C3%A6vet_indhold"><span>Fremhævet indhold</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speciel:Tilf%C3%A6ldig_side" title="Gå til en tilfældig side [x]" accesskey="x"><span>Tilfældig side</span></a></li><li id="n-Tilfældige-artikler" class="mw-list-item"><a href="/wiki/Wikipedia:Tilf%C3%A6ldige_artikler"><span>Tilfældige artikler</span></a></li><li id="n-Aktuelt" class="mw-list-item"><a href="/wiki/Wikipedia:Aktuelle_begivenheder"><span>Aktuelt</span></a></li> </ul> </div> </div> <div id="p-deltagelse" class="vector-menu mw-portlet mw-portlet-deltagelse" > <div class="vector-menu-heading"> deltagelse </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-velkommen" class="mw-list-item"><a href="/wiki/Hj%C3%A6lp:Velkommen_til_Wikipedia"><span>Velkommen</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Forside" title="Om projektet, hvad du kan gøre, hvor tingene findes"><span>Skribentforside</span></a></li><li id="n-Landsbybrønden" class="mw-list-item"><a href="/wiki/Wikipedia:Landsbybr%C3%B8nden"><span>Landsbybrønden</span></a></li><li id="n-Projekter" class="mw-list-item"><a href="/wiki/Wikipedia:Projekter"><span>Projekter</span></a></li><li id="n-Portaler" class="mw-list-item"><a href="/wiki/Portal:Portaler"><span>Portaler</span></a></li><li id="n-Ønskede-artikler" class="mw-list-item"><a href="/wiki/Wikipedia:WikiProjekt_Efterspurgte_artikler"><span>Ønskede artikler</span></a></li><li id="n-Oprydning" class="mw-list-item"><a href="/wiki/Wikipedia:Oprydning"><span>Oprydning</span></a></li><li id="n-Kalender" class="mw-list-item"><a href="/wiki/Wikipedia:Kalender"><span>Kalender</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speciel:Seneste_%C3%A6ndringer" title="Listen over de seneste ændringer i wikien. [r]" accesskey="r"><span>Seneste ændringer</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Hj%C3%A6lp:Forside" title="Stedet hvor du finder hjælp"><span>Hjælp</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Forside" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="Den frie encyklopædi" src="/static/images/mobile/copyright/wikipedia-tagline-da.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speciel:S%C3%B8gning" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Søg på Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Søg</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Søg på Wikipedia" aria-label="Søg på Wikipedia" autocapitalize="sentences" title="Søg på Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciel:Søgning"> </div> <button class="cdx-button cdx-search-input__end-button">Søg</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personlige værktøjer"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Udseende"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Skift udseendet af sidens skriftstørrelse, -bredde og -farve" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Udseende" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Udseende</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_da.wikipedia.org&amp;uselang=da" class=""><span>Donation</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciel:Opret_konto&amp;returnto=Differentialregning" title="Du opfordres til at oprette en konto og logge på, men det er ikke obligatorisk" class=""><span>Opret konto</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speciel:Log_p%C3%A5&amp;returnto=Differentialregning" title="Du opfordres til at logge på, men det er ikke obligatorisk. [o]" accesskey="o" class=""><span>Log på</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out user-links-collapsible-item" title="Flere muligheder" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personlige værktøjer" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personlige værktøjer</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Brugermenu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_da.wikipedia.org&amp;uselang=da"><span>Donation</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciel:Opret_konto&amp;returnto=Differentialregning" title="Du opfordres til at oprette en konto og logge på, men det er ikke obligatorisk"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Opret konto</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speciel:Log_p%C3%A5&amp;returnto=Differentialregning" title="Du opfordres til at logge på, men det er ikke obligatorisk. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log på</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><div id="mw-dismissablenotice-anonplace"></div><script>(function(){var node=document.getElementById("mw-dismissablenotice-anonplace");if(node){node.outerHTML="\u003Cdiv class=\"mw-dismissable-notice\"\u003E\u003Cdiv class=\"mw-dismissable-notice-close\"\u003E[\u003Ca tabindex=\"0\" role=\"button\"\u003ELuk\u003C/a\u003E]\u003C/div\u003E\u003Cdiv class=\"mw-dismissable-notice-body\"\u003E\u003C!-- CentralNotice --\u003E\u003Cdiv id=\"localNotice\" data-nosnippet=\"\"\u003E\u003Cdiv class=\"sitenotice\" lang=\"da\" dir=\"ltr\"\u003E\u003Cp\u003EDu kan være med til at gøre Wikipedia bedre – \u003Ca href=\"/wiki/Hj%C3%A6lp:Du_kan_v%C3%A6re_med_til_at_g%C3%B8re_Wikipedia_bedre!\" title=\"Hjælp:Du kan være med til at gøre Wikipedia bedre!\"\u003Elæs her hvordan!\u003C/a\u003E\u003Cbr /\u003E \u003C/p\u003E\u003Cdiv class=\"vis-for-autopatrol\"\u003EDansk Wikipedia har en Discord-server, hvor du kan chatte. Se mere på \u003Ca href=\"/wiki/Wikipedia:Discord\" title=\"Wikipedia:Discord\"\u003EWikipedia:Discord\u003C/a\u003E\u003C/div\u003E\u003Cp\u003E\u003Ci\u003E\u003Csmall\u003E(\u003Ca href=\"/wiki/Hj%C3%A6lp:Sitenotice\" title=\"Hjælp:Sitenotice\"\u003ELæs her om sitenotice\u003C/a\u003E)\u003C/small\u003E\u003C/i\u003E\u003C/p\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E\u003C/div\u003E";}}());</script></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Websted"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Indhold" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Indhold</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">flyt til sidebjælken</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">skjul</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Indledning</div> </a> </li> <li id="toc-Differentialkvotient_i_et_punkt" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Differentialkvotient_i_et_punkt"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Differentialkvotient i et punkt</span> </div> </a> <button aria-controls="toc-Differentialkvotient_i_et_punkt-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Vis/skjul underafsnit Differentialkvotient i et punkt</span> </button> <ul id="toc-Differentialkvotient_i_et_punkt-sublist" class="vector-toc-list"> <li id="toc-Formel_definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Formel_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Formel definition</span> </div> </a> <ul id="toc-Formel_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fortolkning" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fortolkning"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Fortolkning</span> </div> </a> <ul id="toc-Fortolkning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Notation</span> </div> </a> <ul id="toc-Notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sprogbrug" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sprogbrug"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Sprogbrug</span> </div> </a> <ul id="toc-Sprogbrug-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Regneregler" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Regneregler"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Regneregler</span> </div> </a> <ul id="toc-Regneregler-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Matematik_Eksamen_&amp;_Opgave_eksempel" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Matematik_Eksamen_&amp;_Opgave_eksempel"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Matematik Eksamen &amp; Opgave eksempel</span> </div> </a> <ul id="toc-Matematik_Eksamen_&amp;_Opgave_eksempel-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Grafer,_tangenter_og_hældningstal" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Grafer,_tangenter_og_hældningstal"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Grafer, tangenter og hældningstal</span> </div> </a> <ul id="toc-Grafer,_tangenter_og_hældningstal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Anvendelse_i_funktionsanalyse" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Anvendelse_i_funktionsanalyse"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Anvendelse i funktionsanalyse</span> </div> </a> <ul id="toc-Anvendelse_i_funktionsanalyse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_til_integralregning" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Relation_til_integralregning"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Relation til integralregning</span> </div> </a> <ul id="toc-Relation_til_integralregning-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Partielle_afledede" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Partielle_afledede"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Partielle afledede</span> </div> </a> <ul id="toc-Partielle_afledede-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tretrinsreglen" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Tretrinsreglen"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Tretrinsreglen</span> </div> </a> <ul id="toc-Tretrinsreglen-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Det_approksimerende_førstegradspolynomium" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Det_approksimerende_førstegradspolynomium"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Det approksimerende førstegradspolynomium</span> </div> </a> <ul id="toc-Det_approksimerende_førstegradspolynomium-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computer_Algebra_System_(CAS)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Computer_Algebra_System_(CAS)"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Computer Algebra System (CAS)</span> </div> </a> <ul id="toc-Computer_Algebra_System_(CAS)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Se_også" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Se_også"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Se også</span> </div> </a> <ul id="toc-Se_også-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bøger" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bøger"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Bøger</span> </div> </a> <ul id="toc-Bøger-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referencer" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referencer"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Referencer</span> </div> </a> <ul id="toc-Referencer-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Indhold" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Vis/skjul indholdsfortegnelsen" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Vis/skjul indholdsfortegnelsen</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Differentialregning</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Gå til en artikel på et andet sprog. Tilgængelig på 68 sprog" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-68" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">68 sprog</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af badge-Q17437796 badge-featuredarticle mw-list-item" title="fremragende artikel"><a href="https://af.wikipedia.org/wiki/Differensiaalrekening" title="Differensiaalrekening – afrikaans" lang="af" hreflang="af" data-title="Differensiaalrekening" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Differentialrechnung" title="Differentialrechnung – schweizertysk" lang="gsw" hreflang="gsw" data-title="Differentialrechnung" data-language-autonym="Alemannisch" data-language-local-name="schweizertysk" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%81%D8%A7%D8%B6%D9%84" title="تفاضل – arabisk" lang="ar" hreflang="ar" data-title="تفاضل" data-language-autonym="العربية" data-language-local-name="arabisk" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%A7%D8%B4%D8%AA%D9%82%D8%A7%D9%82" title="اشتقاق – Egyptian Arabic" lang="arz" hreflang="arz" data-title="اشتقاق" data-language-autonym="مصرى" data-language-local-name="Egyptian Arabic" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%85%E0%A7%B1%E0%A6%95%E0%A6%B2%E0%A6%A8" title="অৱকলন – assamesisk" lang="as" hreflang="as" data-title="অৱকলন" data-language-autonym="অসমীয়া" data-language-local-name="assamesisk" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/C%C3%A1lculu_diferencial" title="Cálculu diferencial – asturisk" lang="ast" hreflang="ast" data-title="Cálculu diferencial" data-language-autonym="Asturianu" data-language-local-name="asturisk" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C_%D0%B8%D2%AB%D3%99%D0%BF%D0%BB%D3%99%D0%BC%D3%99" title="Дифференциаль иҫәпләмә – bashkir" lang="ba" hreflang="ba" data-title="Дифференциаль иҫәпләмә" data-language-autonym="Башҡортса" data-language-local-name="bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Differenzi%C3%A4urechnung" title="Differenziäurechnung – Bavarian" lang="bar" hreflang="bar" data-title="Differenziäurechnung" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%94%D1%8B%D1%84%D0%B5%D1%80%D1%8D%D0%BD%D1%86%D1%8B%D1%8F%D0%BB%D1%8C%D0%BD%D0%B0%D0%B5_%D0%B7%D0%BB%D1%96%D1%87%D1%8D%D0%BD%D0%BD%D0%B5" title="Дыферэнцыяльнае злічэнне – belarusisk" lang="be" hreflang="be" data-title="Дыферэнцыяльнае злічэнне" data-language-autonym="Беларуская" data-language-local-name="belarusisk" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%94%D1%8B%D1%84%D1%8D%D1%80%D1%8D%D0%BD%D1%86%D1%8B%D0%B9%D0%BD%D0%B0%D0%B5_%D0%B7%D1%8C%D0%BB%D1%96%D1%87%D1%8D%D0%BD%D1%8C%D0%BD%D0%B5" title="Дыфэрэнцыйнае зьлічэньне – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Дыфэрэнцыйнае зьлічэньне" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%85%E0%A6%A8%E0%A7%8D%E0%A6%A4%E0%A6%B0%E0%A7%80%E0%A6%95%E0%A6%B0%E0%A6%A3" title="অন্তরীকরণ – bengali" lang="bn" hreflang="bn" data-title="অন্তরীকরণ" data-language-autonym="বাংলা" data-language-local-name="bengali" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/C%C3%A0lcul_diferencial" title="Càlcul diferencial – catalansk" lang="ca" hreflang="ca" data-title="Càlcul diferencial" data-language-autonym="Català" data-language-local-name="catalansk" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Diferenci%C3%A1ln%C3%AD_po%C4%8Det" title="Diferenciální počet – tjekkisk" lang="cs" hreflang="cs" data-title="Diferenciální počet" data-language-autonym="Čeština" data-language-local-name="tjekkisk" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D0%BB%C4%83_%D1%88%D1%83%D1%82%D0%BBa%D0%B2" title="Дифференциаллă шутлaв – tjuvasjisk" lang="cv" hreflang="cv" data-title="Дифференциаллă шутлaв" data-language-autonym="Чӑвашла" data-language-local-name="tjuvasjisk" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Calcwlws_differol" title="Calcwlws differol – walisisk" lang="cy" hreflang="cy" data-title="Calcwlws differol" data-language-autonym="Cymraeg" data-language-local-name="walisisk" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437796 badge-featuredarticle mw-list-item" title="fremragende artikel"><a href="https://de.wikipedia.org/wiki/Differentialrechnung" title="Differentialrechnung – tysk" lang="de" hreflang="de" data-title="Differentialrechnung" data-language-autonym="Deutsch" data-language-local-name="tysk" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CE%B9%CE%B1%CF%86%CE%BF%CF%81%CE%B9%CE%BA%CF%8C%CF%82_%CE%BB%CE%BF%CE%B3%CE%B9%CF%83%CE%BC%CF%8C%CF%82" title="Διαφορικός λογισμός – græsk" lang="el" hreflang="el" data-title="Διαφορικός λογισμός" data-language-autonym="Ελληνικά" data-language-local-name="græsk" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Differential_calculus" title="Differential calculus – engelsk" lang="en" hreflang="en" data-title="Differential calculus" data-language-autonym="English" data-language-local-name="engelsk" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Diferenciala_kalkulo" title="Diferenciala kalkulo – esperanto" lang="eo" hreflang="eo" data-title="Diferenciala kalkulo" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/C%C3%A1lculo_diferencial" title="Cálculo diferencial – spansk" lang="es" hreflang="es" data-title="Cálculo diferencial" data-language-autonym="Español" data-language-local-name="spansk" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Diferentsiaalarvutus" title="Diferentsiaalarvutus – estisk" lang="et" hreflang="et" data-title="Diferentsiaalarvutus" data-language-autonym="Eesti" data-language-local-name="estisk" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Kalkulu_diferentzial" title="Kalkulu diferentzial – baskisk" lang="eu" hreflang="eu" data-title="Kalkulu diferentzial" data-language-autonym="Euskara" data-language-local-name="baskisk" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AD%D8%B3%D8%A7%D8%A8_%D8%AF%DB%8C%D9%81%D8%B1%D8%A7%D9%86%D8%B3%DB%8C%D9%84" title="حساب دیفرانسیل – persisk" lang="fa" hreflang="fa" data-title="حساب دیفرانسیل" data-language-autonym="فارسی" data-language-local-name="persisk" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Calcul_diff%C3%A9rentiel" title="Calcul différentiel – fransk" lang="fr" hreflang="fr" data-title="Calcul différentiel" data-language-autonym="Français" data-language-local-name="fransk" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Diferentiaalreegnang" title="Diferentiaalreegnang – nordfrisisk" lang="frr" hreflang="frr" data-title="Diferentiaalreegnang" data-language-autonym="Nordfriisk" data-language-local-name="nordfrisisk" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Calcalas_difre%C3%A1lach" title="Calcalas difreálach – irsk" lang="ga" hreflang="ga" data-title="Calcalas difreálach" data-language-autonym="Gaeilge" data-language-local-name="irsk" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/C%C3%A1lculo_diferencial" title="Cálculo diferencial – galicisk" lang="gl" hreflang="gl" data-title="Cálculo diferencial" data-language-autonym="Galego" data-language-local-name="galicisk" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-hak mw-list-item"><a href="https://hak.wikipedia.org/wiki/M%C3%AC-f%C3%BBn" title="Mì-fûn – hakka-kinesisk" lang="hak" hreflang="hak" data-title="Mì-fûn" data-language-autonym="客家語 / Hak-kâ-ngî" data-language-local-name="hakka-kinesisk" class="interlanguage-link-target"><span>客家語 / Hak-kâ-ngî</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%85%E0%A4%B5%E0%A4%95%E0%A4%B2_%E0%A4%97%E0%A4%A3%E0%A4%BF%E0%A4%A4" title="अवकल गणित – hindi" lang="hi" hreflang="hi" data-title="अवकल गणित" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Diferencijalni_ra%C4%8Dun" title="Diferencijalni račun – kroatisk" lang="hr" hreflang="hr" data-title="Diferencijalni račun" data-language-autonym="Hrvatski" data-language-local-name="kroatisk" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Differenci%C3%A1lsz%C3%A1m%C3%ADt%C3%A1s" title="Differenciálszámítás – ungarsk" lang="hu" hreflang="hu" data-title="Differenciálszámítás" data-language-autonym="Magyar" data-language-local-name="ungarsk" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B4%D5%AB%D6%86%D5%A5%D6%80%D5%A5%D5%B6%D6%81%D5%AB%D5%A1%D5%AC_%D5%B0%D5%A1%D5%B7%D5%AB%D5%BE" title="Դիֆերենցիալ հաշիվ – armensk" lang="hy" hreflang="hy" data-title="Դիֆերենցիալ հաշիվ" data-language-autonym="Հայերեն" data-language-local-name="armensk" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Kalkulus_diferensial" title="Kalkulus diferensial – indonesisk" lang="id" hreflang="id" data-title="Kalkulus diferensial" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonesisk" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is badge-Q70893996 mw-list-item" title=""><a href="https://is.wikipedia.org/wiki/Deildun" title="Deildun – islandsk" lang="is" hreflang="is" data-title="Deildun" data-language-autonym="Íslenska" data-language-local-name="islandsk" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E6%B3%95" title="微分法 – japansk" lang="ja" hreflang="ja" data-title="微分法" data-language-autonym="日本語" data-language-local-name="japansk" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%93%E1%83%98%E1%83%A4%E1%83%94%E1%83%A0%E1%83%94%E1%83%9C%E1%83%AA%E1%83%98%E1%83%90%E1%83%9A%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%90%E1%83%A6%E1%83%A0%E1%83%98%E1%83%AA%E1%83%AE%E1%83%95%E1%83%90" title="დიფერენციალური აღრიცხვა – georgisk" lang="ka" hreflang="ka" data-title="დიფერენციალური აღრიცხვა" data-language-autonym="ქართული" data-language-local-name="georgisk" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D0%B4%D1%8B%D2%9B_%D0%B5%D1%81%D0%B5%D0%BF%D1%82%D0%B5%D1%83" title="Дифференциалдық есептеу – kasakhisk" lang="kk" hreflang="kk" data-title="Дифференциалдық есептеу" data-language-autonym="Қазақша" data-language-local-name="kasakhisk" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%85%E0%B2%B5%E0%B2%95%E0%B2%B2%E0%B2%A8%E0%B2%B6%E0%B2%BE%E0%B2%B8%E0%B3%8D%E0%B2%A4%E0%B3%8D%E0%B2%B0" title="ಅವಕಲನಶಾಸ್ತ್ರ – kannada" lang="kn" hreflang="kn" data-title="ಅವಕಲನಶಾಸ್ತ್ರ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="kannada" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%AF%B8%EB%B6%84%ED%95%99" title="미분학 – koreansk" lang="ko" hreflang="ko" data-title="미분학" data-language-autonym="한국어" data-language-local-name="koreansk" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Calculus_differentialis" title="Calculus differentialis – latin" lang="la" hreflang="la" data-title="Calculus differentialis" data-language-autonym="Latina" data-language-local-name="latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-li mw-list-item"><a href="https://li.wikipedia.org/wiki/Differentiaalraekening" title="Differentiaalraekening – limburgsk" lang="li" hreflang="li" data-title="Differentiaalraekening" data-language-autonym="Limburgs" data-language-local-name="limburgsk" class="interlanguage-link-target"><span>Limburgs</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Diferencialinis_skai%C4%8Diavimas" title="Diferencialinis skaičiavimas – litauisk" lang="lt" hreflang="lt" data-title="Diferencialinis skaičiavimas" data-language-autonym="Lietuvių" data-language-local-name="litauisk" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Diferenci%C4%81lr%C4%93%C4%B7ini" title="Diferenciālrēķini – lettisk" lang="lv" hreflang="lv" data-title="Diferenciālrēķini" data-language-autonym="Latviešu" data-language-local-name="lettisk" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="fremragende artikel"><a href="https://mk.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%BE_%D1%81%D0%BC%D0%B5%D1%82%D0%B0%D1%9A%D0%B5" title="Диференцијално сметање – makedonsk" lang="mk" hreflang="mk" data-title="Диференцијално сметање" data-language-autonym="Македонски" data-language-local-name="makedonsk" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%AD%E0%A5%88%E0%A4%A6%E0%A4%BF%E0%A4%95_%E0%A4%95%E0%A4%B2%E0%A4%A8" title="भैदिक कलन – marathisk" lang="mr" hreflang="mr" data-title="भैदिक कलन" data-language-autonym="मराठी" data-language-local-name="marathisk" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Differentiaalrekening" title="Differentiaalrekening – nederlandsk" lang="nl" hreflang="nl" data-title="Differentiaalrekening" data-language-autonym="Nederlands" data-language-local-name="nederlandsk" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Differensialrekning" title="Differensialrekning – nynorsk" lang="nn" hreflang="nn" data-title="Differensialrekning" data-language-autonym="Norsk nynorsk" data-language-local-name="nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/C%C3%A0lcol_diferensial" title="Càlcol diferensial – Piedmontese" lang="pms" hreflang="pms" data-title="Càlcol diferensial" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/C%C3%A1lculo_diferencial" title="Cálculo diferencial – portugisisk" lang="pt" hreflang="pt" data-title="Cálculo diferencial" data-language-autonym="Português" data-language-local-name="portugisisk" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Calcul_diferen%C8%9Bial" title="Calcul diferențial – rumænsk" lang="ro" hreflang="ro" data-title="Calcul diferențial" data-language-autonym="Română" data-language-local-name="rumænsk" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D0%B8%D1%81%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5" title="Дифференциальное исчисление – russisk" lang="ru" hreflang="ru" data-title="Дифференциальное исчисление" data-language-autonym="Русский" data-language-local-name="russisk" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/C%C3%A0rculu_diffirinziali" title="Càrculu diffirinziali – siciliansk" lang="scn" hreflang="scn" data-title="Càrculu diffirinziali" data-language-autonym="Sicilianu" data-language-local-name="siciliansk" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%85%E0%B7%80%E0%B6%9A%E0%B6%BD%E0%B6%B1%E0%B6%BA" title="අවකලනය – singalesisk" lang="si" hreflang="si" data-title="අවකලනය" data-language-autonym="සිංහල" data-language-local-name="singalesisk" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Differential_calculus" title="Differential calculus – Simple English" lang="en-simple" hreflang="en-simple" data-title="Differential calculus" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Diferencijalni_ra%C4%8Dun" title="Diferencijalni račun – serbisk" lang="sr" hreflang="sr" data-title="Diferencijalni račun" data-language-autonym="Српски / srpski" data-language-local-name="serbisk" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Differentialkalkyl" title="Differentialkalkyl – svensk" lang="sv" hreflang="sv" data-title="Differentialkalkyl" data-language-autonym="Svenska" data-language-local-name="svensk" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%B5%E0%AE%95%E0%AF%88_%E0%AE%A8%E0%AF%81%E0%AE%A3%E0%AF%8D%E0%AE%95%E0%AE%A3%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D" title="வகை நுண்கணிதம் – tamil" lang="ta" hreflang="ta" data-title="வகை நுண்கணிதம்" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Kalkulus_na_diperensiyal" title="Kalkulus na diperensiyal – tagalog" lang="tl" hreflang="tl" data-title="Kalkulus na diperensiyal" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Diferansiyel_kalk%C3%BCl%C3%BCs" title="Diferansiyel kalkülüs – tyrkisk" lang="tr" hreflang="tr" data-title="Diferansiyel kalkülüs" data-language-autonym="Türkçe" data-language-local-name="tyrkisk" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C_%D0%B8%D1%81%D3%99%D0%BF%D0%BB%D3%99%D2%AF" title="Дифференциаль исәпләү – tatarisk" lang="tt" hreflang="tt" data-title="Дифференциаль исәпләү" data-language-autonym="Татарча / tatarça" data-language-local-name="tatarisk" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B8%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D1%96%D0%B0%D0%BB%D1%8C%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B5%D0%BD%D0%BD%D1%8F" title="Диференціальне числення – ukrainsk" lang="uk" hreflang="uk" data-title="Диференціальне числення" data-language-autonym="Українська" data-language-local-name="ukrainsk" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AA%D9%81%D8%B1%DB%8C%D9%82%DB%8C_%D8%AD%D8%B3%D8%A7%D8%A8%D8%A7%D9%86" title="تفریقی حسابان – urdu" lang="ur" hreflang="ur" data-title="تفریقی حسابان" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Differensial_hisob" title="Differensial hisob – usbekisk" lang="uz" hreflang="uz" data-title="Differensial hisob" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="usbekisk" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Vi_ph%C3%A2n" title="Vi phân – vietnamesisk" lang="vi" hreflang="vi" data-title="Vi phân" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamesisk" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E5%AD%A6" title="微分学 – wu-kinesisk" lang="wuu" hreflang="wuu" data-title="微分学" data-language-autonym="吴语" data-language-local-name="wu-kinesisk" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%BE%AE%E5%88%86%E5%AD%A6" title="微分学 – kinesisk" lang="zh" hreflang="zh" data-title="微分学" data-language-autonym="中文" data-language-local-name="kinesisk" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/B%C3%AE-hun" title="Bî-hun – min-kinesisk" lang="nan" hreflang="nan" data-title="Bî-hun" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="min-kinesisk" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%BE%AE%E5%88%86" title="微分 – kantonesisk" lang="yue" hreflang="yue" data-title="微分" data-language-autonym="粵語" data-language-local-name="kantonesisk" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q149999#sitelinks-wikipedia" title="Redigér sproglinks" class="wbc-editpage">Redigér links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Navnerum"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Differentialregning" title="Se indholdssiden [c]" accesskey="c"><span>Artikel</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Diskussion:Differentialregning" rel="discussion" title="Diskussion om indholdet på siden [t]" accesskey="t"><span>Diskussion</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Ændr sprogvariant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">dansk</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Visninger"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Differentialregning"><span>Læs</span></a></li><li id="ca-ve-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Differentialregning&amp;veaction=edit" title="Redigér denne side [v]" accesskey="v"><span>Redigér</span></a></li><li id="ca-edit" class="collapsible vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Differentialregning&amp;action=edit" title="Rediger kildekoden for denne side [e]" accesskey="e"><span>Rediger kildekode</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Differentialregning&amp;action=history" title="Tidligere versioner af denne side [h]" accesskey="h"><span>Se historik</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Sideværktøjer"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Værktøjer" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Værktøjer</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Værktøjer</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">flyt til sidebjælken</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">skjul</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Flere muligheder" > <div class="vector-menu-heading"> Handlinger </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Differentialregning"><span>Læs</span></a></li><li id="ca-more-ve-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Differentialregning&amp;veaction=edit" title="Redigér denne side [v]" accesskey="v"><span>Redigér</span></a></li><li id="ca-more-edit" class="collapsible vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Differentialregning&amp;action=edit" title="Rediger kildekoden for denne side [e]" accesskey="e"><span>Rediger kildekode</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Differentialregning&amp;action=history"><span>Se historik</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Generelt </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speciel:Hvad_linker_hertil/Differentialregning" title="Liste med alle sider som henviser hertil [j]" accesskey="j"><span>Hvad henviser hertil</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speciel:Relaterede_%C3%A6ndringer/Differentialregning" rel="nofollow" title="Seneste ændringer af sider som denne side henviser til [k]" accesskey="k"><span>Beslægtede ændringer</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=da&amp;campaign=dk" title="Upload filer [u]" accesskey="u"><span>Upload fil</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speciel:Specialsider" title="Liste over alle specialsider [q]" accesskey="q"><span>Specialsider</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Differentialregning&amp;oldid=11893244" title="Permanent link til denne version af denne side"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Differentialregning&amp;action=info" title="Yderligere oplysninger om denne side"><span>Sideinformation</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speciel:Citer&amp;page=Differentialregning&amp;id=11893244&amp;wpFormIdentifier=titleform" title="Information om, hvordan man kan citere denne side"><span>Referer til denne side</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speciel:UrlShortener&amp;url=https%3A%2F%2Fda.wikipedia.org%2Fwiki%2FDifferentialregning"><span>Hent forkortet URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speciel:QrCode&amp;url=https%3A%2F%2Fda.wikipedia.org%2Fwiki%2FDifferentialregning"><span>Download QR-kode</span></a></li> </ul> </div> </div> <div id="p-Organisation" class="vector-menu mw-portlet mw-portlet-Organisation" > <div class="vector-menu-heading"> Organisation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:Kontakt_Wikipedia"><span>Kontakt Wikipedia</span></a></li><li id="n-Wikimedia-Danmark" class="mw-list-item"><a href="https://dk.wikimedia.org/wiki/"><span>Wikimedia Danmark</span></a></li><li id="n-GLAM" class="mw-list-item"><a href="/wiki/Wikipedia:GLAM"><span>GLAM</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Udskriv/eksportér </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speciel:Bog&amp;bookcmd=book_creator&amp;referer=Differentialregning"><span>Lav en bog</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speciel:DownloadAsPdf&amp;page=Differentialregning&amp;action=show-download-screen"><span>Download som PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Differentialregning&amp;printable=yes" title="Printervenlig udgave af denne side [p]" accesskey="p"><span>Udskriftsvenlig udgave</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> I andre projekter </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Differential_calculus" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q149999" title="Link til tilknyttet emne i Wikidata [g]" accesskey="g"><span>Wikidata-element</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Sideværktøjer"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Udseende"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Udseende</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">flyt til sidebjælken</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">skjul</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">Fra Wikipedia, den frie encyklopædi</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="da" dir="ltr"><dl><dd><span typeof="mw:File"><a href="/wiki/Fil:Disambig_bordered_fade.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Disambig_bordered_fade.svg/19px-Disambig_bordered_fade.svg.png" decoding="async" width="19" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Disambig_bordered_fade.svg/29px-Disambig_bordered_fade.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Disambig_bordered_fade.svg/38px-Disambig_bordered_fade.svg.png 2x" data-file-width="236" data-file-height="185" /></a></span> <i>"Differentiering" omdirigeres hertil. For differentiering i forbindelse med undervisning, se <a href="/wiki/Undervisningsdifferentiering" title="Undervisningsdifferentiering">undervisningsdifferentiering</a>.</i></dd></dl> <figure typeof="mw:File/Thumb"><a href="/wiki/Fil:Graph_of_sliding_derivative_line.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Graph_of_sliding_derivative_line.gif/320px-Graph_of_sliding_derivative_line.gif" decoding="async" width="320" height="320" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/7a/Graph_of_sliding_derivative_line.gif 1.5x" data-file-width="400" data-file-height="400" /></a><figcaption>Den grønne, røde og sorte linje (<a href="/wiki/Tangent_(geometri)" title="Tangent (geometri)">tangent</a>) viser differentialkvotientens variation ved forskellige x-værdier for funktionen: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x\times \sin(x^{2})+1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>&#x00D7;<!-- × --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x\times \sin(x^{2})+1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbc29a4ba27bc01eb975d76de14e423f46cddd4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.738ex; height:3.176ex;" alt="{\displaystyle f(x)=x\times \sin(x^{2})+1}"></span>. Grøn positiv differentialkvotient, rød negativ og sort nul.</figcaption></figure> <p><b>Differentialregning</b> udgør sammen med <a href="/wiki/Integralregning" title="Integralregning">integralregning</a> den <a href="/wiki/Matematik" title="Matematik">matematiske</a> disciplin der hedder <a href="/wiki/Infinitesimalregning" title="Infinitesimalregning">infinitesimalregning</a>.<sup id="cite_ref-:1_1-0" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> Differentialregningen beskæftiger sig med, hvor meget en såkaldt <i>afhængig variabel</i> ændres, hvis der sker små ændringer i den variabel, den afhænger af, den <i>uafhængige variabel</i>. <a href="/w/index.php?title=Forhold_(matematik)&amp;action=edit&amp;redlink=1" class="new" title="Forhold (matematik) (ikke skrevet endnu)">Forholdet</a> mellem ændringerne i hhv. den afhængige og den uafhængige variabel kaldes <b>differentialkvotienten</b>, og spiller en central rolle i differentialregningen. </p><p>Et dagligdags eksempel er sammenhængen mellem bruttoløn og lønnen efter <a href="/wiki/Skat" title="Skat">skat</a>: Hvis bruttolønnen stiger med én <a href="/wiki/Krone_(m%C3%B8ntenhed)" title="Krone (møntenhed)">krone</a>, ændres lønnen efter skat med f.eks. 53 øre. Differentialkvotienten er i dette tilfælde 0,53. Matematisk vil man betragte nettolønnen som en <a href="/wiki/Funktion_(matematik)" title="Funktion (matematik)">funktion</a> af bruttolønnen, og differentialkvotienten svarer i dette tilfælde til <a href="/wiki/Marginalindkomst" title="Marginalindkomst">marginalindkomsten</a> (en krone minus <a href="/wiki/Marginalskat" title="Marginalskat">marginalskatten</a>) ved denne bruttoløn. </p><p>I eksemplet med lønnen bør man bemærke, at på grund af <a href="/wiki/Progressiv_beskatning" class="mw-redirect" title="Progressiv beskatning">progressionen</a> i bl.a. det <a href="/wiki/Danmark" title="Danmark">danske</a> skattesystem varierer marginalskatten: Har man i forvejen en lav løn, mærker man en større stigning i nettolønnen end hvis lønnen er større, dette kaldes <a href="/wiki/Progressiv_beskatning" class="mw-redirect" title="Progressiv beskatning">progressiv beskatning</a>. Med andre ord varierer differentialkvotienten med den uafhængige variabel (bruttolønnen), og er dermed selv en funktion af denne; en funktion der angiver hvor meget "glæde" man har af én krones lønforhøjelse. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Differentialkvotient_i_et_punkt">Differentialkvotient i et punkt</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=1" title="Redigér afsnit: Differentialkvotient i et punkt" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=1" title="Edit section&#039;s source code: Differentialkvotient i et punkt"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Formel_definition">Formel definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=2" title="Redigér afsnit: Formel definition" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=2" title="Edit section&#039;s source code: Formel definition"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Lad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> være en funktion og lad <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> være et punkt i funktionens definitionsmængde. </p><p>For at undersøge om funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er differentiabel i punktet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>, skal man undersøge om <i>differenskvotienten</i> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Delta f}{\Delta x}}={\frac {f(x_{0}+h)-f(x_{0})}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Delta f}{\Delta x}}={\frac {f(x_{0}+h)-f(x_{0})}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ade7eabaa2fdf02232db8887f4138aa070560cbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26ex; height:5.843ex;" alt="{\displaystyle {\frac {\Delta f}{\Delta x}}={\frac {f(x_{0}+h)-f(x_{0})}{h}}}"></span> </p><p>har en grænseværdi <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> gående mod <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> <sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>. </p><p>Hvis grænseværdien findes, så siges funktionen at være differentiabel i punktet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>. </p><p>Tallet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> kaldes for funktionens <i>differentialkvotient i punktet</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>. </p><p><br /> Hvis en funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er differentiabel i <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> med differentialkvotient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> skrives også: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})=a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})=a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1268141ab7082ca99d3262d9324814996b7ab298" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.527ex; height:3.009ex;" alt="{\displaystyle f&#039;(x_{0})=a}"></span>. </p><p>Funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f&#039;}"></span> som til ethvert punkt knytter den tilhørende differentialkvotient kaldes <i>den afledede funktion</i> af <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Fortolkning">Fortolkning</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=3" title="Redigér afsnit: Fortolkning" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=3" title="Edit section&#039;s source code: Fortolkning"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Da <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta f=f(x_{0}+h)-f(x_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>f</mi> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta f=f(x_{0}+h)-f(x_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6978dc32b4dcbf17e65d5af6793c07a98711d90a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.276ex; height:2.843ex;" alt="{\displaystyle \Delta f=f(x_{0}+h)-f(x_{0})}"></span> er ændringen i funktionsværdi, når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> vokser fra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> til <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}+h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}+h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee20b6df4e870eda3b9babb35fa8f79cd58f16a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.563ex; height:2.509ex;" alt="{\displaystyle x_{0}+h}"></span> kan differenskvotienten </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Delta f}{\Delta x}}={\frac {f(x_{0}+h)-f(x_{0})}{h}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>f</mi> </mrow> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mi>h</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Delta f}{\Delta x}}={\frac {f(x_{0}+h)-f(x_{0})}{h}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ade7eabaa2fdf02232db8887f4138aa070560cbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:26ex; height:5.843ex;" alt="{\displaystyle {\frac {\Delta f}{\Delta x}}={\frac {f(x_{0}+h)-f(x_{0})}{h}}}"></span> </p><p>tolkes som den gennemsnitlige ændring i funktionsværdi pr <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-enhed [svarer til gennemsnitshastighed]. </p><p>Differentialkvotienten fremkommer som grænseværdien for differenskvotienten når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span> går mod 0. </p><p>Differentialkvotienten kan derfor tolkes som den øjeblikkelige ændring i funktionsværdi pr <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-enhed [svarer til øjeblikshastighed]. </p><p><br /> Grafisk fortolkes differenskvotienten som hældningen på sekanten, som forbinder punkterne <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},f(x_{0}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},f(x_{0}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18f45486a7fce99328e062ba5719273f914100d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.699ex; height:2.843ex;" alt="{\displaystyle (x_{0},f(x_{0}))}"></span> og <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0}+h,f(x_{0}+h))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0}+h,f(x_{0}+h))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a6e91a7c70a6ff1baa5b59244e91aaff15e7686" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.058ex; height:2.843ex;" alt="{\displaystyle (x_{0}+h,f(x_{0}+h))}"></span>. </p><p>Differentialkvotienten fortolkes som hældningen på tangenten i punktet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},f(x_{0}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},f(x_{0}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18f45486a7fce99328e062ba5719273f914100d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.699ex; height:2.843ex;" alt="{\displaystyle (x_{0},f(x_{0}))}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Notation">Notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=4" title="Redigér afsnit: Notation" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=4" title="Edit section&#039;s source code: Notation"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Differentialregning som disciplin har mange år på bagen og matematikere i gennem tiden brugt forskellige notationer <sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>. </p><p>For den afledede funktion til <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> bruges i dag Leibnitz' notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f&#039;}"></span> eller <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {df}{dx}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {df}{dx}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5d4eb531911adb8362a989a2c6b9e10bd46c099" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:3.382ex; height:5.509ex;" alt="{\displaystyle {\frac {df}{dx}}}"></span> eller <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D_{x}f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D_{x}f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce6c417ae97aeac5e3a7326660ee584bd69e7d75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.375ex; height:2.509ex;" alt="{\displaystyle D_{x}f}"></span>. </p><p>Newtons prik-notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {f}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>f</mi> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\dot {f}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30c87207a865fc766fb126d736bbca2e75111a12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.699ex; height:3.176ex;" alt="{\displaystyle {\dot {f}}}"></span> bruges ikke længere i matematik, men har overlevet enkelte steder i fysiken. </p><p><br /> For differentialkvotienten for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> i punktet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> bruges notationerne: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x_{0})={\frac {df}{dx}}_{|x={x_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x_{0})={\frac {df}{dx}}_{|x={x_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88ecf4790861a553ee6af7b13b417957b365d653" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.359ex; height:6.009ex;" alt="{\displaystyle f&#039;(x_{0})={\frac {df}{dx}}_{|x={x_{0}}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Sprogbrug">Sprogbrug</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=5" title="Redigér afsnit: Sprogbrug" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=5" title="Edit section&#039;s source code: Sprogbrug"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>De fleste (men ikke alle) matematiske funktioner kan beskrives ved en <i>forskrift</i>; et regneudtryk der beregner funktionsværdien (også kaldet den <i>afhængige variabel</i>) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> ud fra værdien af den uafhængige variabel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>. Det at bestemme den afledede funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f&#039;}"></span> udfra <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> kaldes at <i>differentiere</i> funktionenen. Man bruger altså <i>differentiering</i> til at bestemme en funktions afledede. </p> <div class="mw-heading mw-heading3"><h3 id="Regneregler">Regneregler</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=6" title="Redigér afsnit: Regneregler" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=6" title="Edit section&#039;s source code: Regneregler"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="detail"><span><span typeof="mw:File"><span title="Uddybende"><img alt="Uddybende" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Searchtool.svg/15px-Searchtool.svg.png" decoding="async" width="15" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Searchtool.svg/23px-Searchtool.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/61/Searchtool.svg/30px-Searchtool.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span> <span>Uddybende artikel: <a href="/wiki/Regneregler_for_differentiation" title="Regneregler for differentiation">Regneregler for differentiation</a></span></span></div> <p>Ovenstående definition kan bruges til at "omregne" forskriften for en funktion, til forskriften for samme funktions afledede.<sup id="cite_ref-autogeneret2_4-0" class="reference"><a href="#cite_note-autogeneret2-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Man kan f.eks. påvise at: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/044da66a95949ed674a71562a3cb064888ac7548" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.727ex; height:2.843ex;" alt="{\displaystyle f(x)=k}"></span>, hvor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> er en konstant, har den afledede <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99d0a1b41cfebaf9ce720ec45fa5b14361711d43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.405ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)=0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=x\cdot k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=x\cdot k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c33db91fc32bda1f781a16b1a5860f1fbb239ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.736ex; height:2.843ex;" alt="{\displaystyle f(x)=x\cdot k}"></span>, hvor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> er en konstant, har den afledede <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96831f148921c2d0db37802934a22822af6d3df6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.454ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)=k}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=k\cdot x^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=k\cdot x^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa9624a631af8f361edd7e8b5e7cc584cbbf6946" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.955ex; height:2.843ex;" alt="{\displaystyle f(x)=k\cdot x^{n}}"></span> har den afledede <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=k\cdot n\cdot x^{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>n</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=k\cdot n\cdot x^{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48c5e344a05524025b8a653570ae3d1619316b00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.855ex; height:3.176ex;" alt="{\displaystyle f&#039;(x)=k\cdot n\cdot x^{n-1}}"></span>, og heraf</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)={\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)={\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ce585154e4780be88423541d65e57da942e543e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.682ex; height:5.176ex;" alt="{\displaystyle f(x)={\frac {1}{x}}}"></span> har den afledede <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=-{\frac {1}{x^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=-{\frac {1}{x^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/673968f6616cc56c28b642cc49350db6b41bae4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:13.271ex; height:5.509ex;" alt="{\displaystyle f&#039;(x)=-{\frac {1}{x^{2}}}}"></span></li> <li><a href="/wiki/Sinus_(matematisk_funktion)" class="mw-redirect" title="Sinus (matematisk funktion)">Sinus-funktionen</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a990a5545cac26c1c6821dca95d898bc80fe3a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.995ex; height:2.843ex;" alt="{\displaystyle \sin(x)}"></span> har den afledede <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin '(x)=\cos x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sin</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin '(x)=\cos x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9deafc503e1b9d05fda0a3b1456115ae962f1d36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.606ex; height:3.009ex;" alt="{\displaystyle \sin &#039;(x)=\cos x}"></span></li> <li><a href="/wiki/Cosinus" title="Cosinus">Cosinus-funktionen</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb9af7ed6f44822021b74bb82b431022c7fd66b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.25ex; height:2.843ex;" alt="{\displaystyle \cos(x)}"></span> har den afledede <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos '(x)=-\sin x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>cos</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos '(x)=-\sin x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1dcec1450bc1e61e01fe3e22f23da84b100817f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.801ex; height:3.009ex;" alt="{\displaystyle \cos &#039;(x)=-\sin x}"></span></li> <li><a href="/wiki/Tangens" title="Tangens">Tangens</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/398da5ded10e1ab022cfc8c3f4a4a87b46cd8c46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.499ex; height:2.843ex;" alt="{\displaystyle \tan(x)}"></span>, har den afledede <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan '(x)=1+\tan ^{2}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>tan</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>tan</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan '(x)=1+\tan ^{2}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90daf6e99dea880c82484ff93bad567c8a28762f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.837ex; height:3.176ex;" alt="{\displaystyle \tan &#039;(x)=1+\tan ^{2}(x)}"></span></li> <li><a href="/wiki/Den_naturlige_eksponentialfunktion" class="mw-redirect" title="Den naturlige eksponentialfunktion">Den naturlige eksponentialfunktion</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textrm {exp}}(x)=e^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>exp</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textrm {exp}}(x)=e^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2601b2a0ad575076c944ce4d89e893675d43ff82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.046ex; height:2.843ex;" alt="{\displaystyle {\textrm {exp}}(x)=e^{x}}"></span>, er sin egen afledede.</li> <li>Eksponentialfunktionen, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=a^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=a^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d8e0c87bf84722c5b9b35197ea8f97a683a4310" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.918ex; height:2.843ex;" alt="{\displaystyle f(x)=a^{x}}"></span> hvor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> er en konstant, har differentialkvotienten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=\ln(a)a^{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=\ln(a)a^{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/377c410609023a6d8500d07ec88d98d6296ddd75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.623ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)=\ln(a)a^{x}}"></span>, hvor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0de5ba4f372ede555d00035e70c50ed0b9625d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.939ex; height:2.176ex;" alt="{\displaystyle \ln }"></span> er den naturlige logaritmefunktion</li> <li>Den <a href="/wiki/Naturlig_logaritme" title="Naturlig logaritme">naturlige logaritme</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0df055b8e294310e6785701c1c67105e109191d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.078ex; height:2.843ex;" alt="{\displaystyle \ln(x)}"></span>, har differentialkvotienten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln '(x)={\frac {1}{x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>ln</mi> <mo>&#x2032;</mo> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln '(x)={\frac {1}{x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c2e1bb1dd908967c5ad9416903d39d6f9a7f9e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:11.027ex; height:5.176ex;" alt="{\displaystyle \ln &#039;(x)={\frac {1}{x}}}"></span></li></ul> <p>Funktioner der er <a href="/wiki/Sammensat_funktion" title="Sammensat funktion">sammensatte funktioner</a> samt funktioner der er summen, differensen, produktet eller kvotienten af to differentiable funktioner er selv differentiable (med visse, åbenlyse begrænsninger i definitionsmængderne). Differentialkvotienterne kan udregnes efter følgende regler:<sup id="cite_ref-:0_5-0" class="reference"><a href="#cite_note-:0-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f\circ g)'(x)=(f(g(x)))'=g'(x)\cdot f'(g(x))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2218;<!-- ∘ --></mo> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mo>&#x2032;</mo> </msup> <mo>=</mo> <msup> <mi>g</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f\circ g)'(x)=(f(g(x)))'=g'(x)\cdot f'(g(x))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a3f5340b916294d41442bd39f4cb884e7bb78d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.947ex; height:3.009ex;" alt="{\displaystyle (f\circ g)&#039;(x)=(f(g(x)))&#039;=g&#039;(x)\cdot f&#039;(g(x))}"></span> (<a href="/w/index.php?title=K%C3%A6dereglen&amp;action=edit&amp;redlink=1" class="new" title="Kædereglen (ikke skrevet endnu)">kædereglen</a>)<sup id="cite_ref-autogeneret1_6-0" class="reference"><a href="#cite_note-autogeneret1-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f+g)'(x)=f'(x)+g'(x){\frac {}{}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>g</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow /> <mrow /> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f+g)'(x)=f'(x)+g'(x){\frac {}{}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/805e88520b5ad8a9a11e98e85cf50ef2f7fc5516" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.729ex; height:4.009ex;" alt="{\displaystyle (f+g)&#039;(x)=f&#039;(x)+g&#039;(x){\frac {}{}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f-g)'(x)=f'(x)-g'(x){\frac {}{}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x2212;<!-- − --></mo> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>g</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow /> <mrow /> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f-g)'(x)=f'(x)-g'(x){\frac {}{}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59b1dc2bacd271a45192e90c51f974bc50a6b0c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.729ex; height:4.009ex;" alt="{\displaystyle (f-g)&#039;(x)=f&#039;(x)-g&#039;(x){\frac {}{}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (f\cdot g)'(x)=f'(x)\cdot g(x)+f(x)\cdot g'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>f</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <msup> <mo stretchy="false">)</mo> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>g</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (f\cdot g)'(x)=f'(x)\cdot g(x)+f(x)\cdot g'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e1551a93b9354158a0543dbe39a8cb602995f55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.762ex; height:3.009ex;" alt="{\displaystyle (f\cdot g)&#039;(x)=f&#039;(x)\cdot g(x)+f(x)\cdot g&#039;(x)}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\frac {f}{g}}\right)'(x)={\frac {f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>f</mi> <mi>g</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>g</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\frac {f}{g}}\right)'(x)={\frac {f'(x)\cdot g(x)-f(x)\cdot g'(x)}{(g(x))^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2eea81e79517af898ac6d68f3fa87216ea1f9f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:38.251ex; height:6.509ex;" alt="{\displaystyle \left({\frac {f}{g}}\right)&#039;(x)={\frac {f&#039;(x)\cdot g(x)-f(x)\cdot g&#039;(x)}{(g(x))^{2}}}}"></span></li></ul> <p>Disse "omregnings-regler"<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> kan alle <a href="/wiki/Bevis_(matematik)" title="Bevis (matematik)">bevises</a>. Se evt. <a href="/wiki/Matematiske_beviser" class="mw-redirect" title="Matematiske beviser">Matematiske beviser</a>. </p><p>Alle differentiable funktioner er <a href="/wiki/Kontinuert" class="mw-redirect" title="Kontinuert">kontinuerte</a>, hvorimod kontinuerte funktioner ikke nødvendigvis er differentiable. </p> <div class="mw-heading mw-heading2"><h2 id="Matematik_Eksamen_&amp;_Opgave_eksempel"><span id="Matematik_Eksamen_.26_Opgave_eksempel"></span>Matematik Eksamen &amp; Opgave eksempel</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=7" title="Redigér afsnit: Matematik Eksamen &amp; Opgave eksempel" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=7" title="Edit section&#039;s source code: Matematik Eksamen &amp; Opgave eksempel"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>I følgende opgave bliver der demonstreret, hvordan man kan håndtere en lignende opgave til en evt. matematik eksamen uden hjælpemidler. Du vil have en formelsamling til rådighed, hvor du kan slå regnereglerne for differentiation op. Eksempel neden under er "let", og noget du ikke kan komme ud for Mat B/A skriftlig eksamen. <b>En god huskeregel</b> er, at opgaverne uden hjælpemidler hvor du skal differentiere, langt de fleste gange skal du bruge én af reglerne for sammensatte funktoner. Derfor er det en god idé at træne forskellige og mere komplekse. </p><p><b>Opgave 1)</b> <i>En funktion f er givet ved:</i> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=2x^{3}-3x+sin(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=2x^{3}-3x+sin(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e6aed01a4b3b320b274c73b0f3f497586a40484" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.662ex; height:3.176ex;" alt="{\displaystyle f(x)=2x^{3}-3x+sin(x)}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=2*3x^{2}-3+cos(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <mo>&#x2217;<!-- ∗ --></mo> <mn>3</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo>+</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=2*3x^{2}-3+cos(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3176f6af7250eb71481b302181e394e35f0a1e13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.353ex; height:3.176ex;" alt="{\displaystyle f&#039;(x)=2*3x^{2}-3+cos(x)}"></span> </p><p>Svaret vil altså være: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)=6x^{2}-3+cos(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>6</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mo>+</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)=6x^{2}-3+cos(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67fae6f8d7d4c5ab24c48b573218b7851c094c70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.996ex; height:3.176ex;" alt="{\displaystyle f&#039;(x)=6x^{2}-3+cos(x)}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Grafer,_tangenter_og_hældningstal"><span id="Grafer.2C_tangenter_og_h.C3.A6ldningstal"></span>Grafer, tangenter og hældningstal</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=8" title="Redigér afsnit: Grafer, tangenter og hældningstal" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=8" title="Edit section&#039;s source code: Grafer, tangenter og hældningstal"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/Fil:Funktionsgraf_med_tangenter_og_differentialkvotient.jpg" class="mw-file-description" title="Graferne for en funktion f (øverst) og dens differentialkvotient f&#39;(x) (nederst)"><img alt="Graferne for en funktion f (øverst) og dens differentialkvotient f&#39;(x) (nederst)" src="//upload.wikimedia.org/wikipedia/commons/0/00/Funktionsgraf_med_tangenter_og_differentialkvotient.jpg" decoding="async" width="338" height="422" class="mw-file-element" data-file-width="338" data-file-height="422" /></a><figcaption>Graferne for en funktion f (øverst) og dens differentialkvotient f'(x) (nederst)</figcaption></figure> <p>På illustrationen til højre ses øverst <a href="/wiki/Graf" title="Graf">grafen</a> for en funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> (blå kurve): I forskellige punkter langs grafen (grønne pletter) er der indtegnet <a href="/wiki/Tangent_(geometri)" title="Tangent (geometri)">tangenter</a><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> til grafen (de røde linjestykker). <a href="/wiki/H%C3%A6ldningstal" class="mw-redirect" title="Hældningstal">Hældningstallet</a> for en tangent til grafen for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, tegnet i det punkt der svarer til en bestemt værdi af <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>, er lig med <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)}"></span>.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p>Den orange kurve nederst på illustrationen er grafen for differentialkvotienten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)}"></span> til funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>: Bemærk, at når <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er aftagende, er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>' negativ, og de steder hvor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er voksende, er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f&#039;}"></span> positiv. De steder hvor tangenterne til grafen for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> er vandrette, bliver <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/258eaada38956fb69b8cb1a2eef46bcb97d3126b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.005ex; height:2.843ex;" alt="{\displaystyle f&#039;}"></span> lig med nul. </p> <div class="mw-heading mw-heading2"><h2 id="Anvendelse_i_funktionsanalyse">Anvendelse i funktionsanalyse</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=9" title="Redigér afsnit: Anvendelse i funktionsanalyse" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=9" title="Edit section&#039;s source code: Anvendelse i funktionsanalyse"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span typeof="mw:File"><span><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Question_book-4.svg/19px-Question_book-4.svg.png" decoding="async" width="19" height="15" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Question_book-4.svg/29px-Question_book-4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Question_book-4.svg/38px-Question_book-4.svg.png 2x" data-file-width="262" data-file-height="204" /></span></span> <i>Der er for få eller ingen <a href="/wiki/Wikipedia:Kildeangivelser" title="Wikipedia:Kildeangivelser">kildehenvisninger</a> i denne artikel, <a href="/wiki/Wikipedia:Verificerbarhed" title="Wikipedia:Verificerbarhed">hvilket er et problem</a>. Du kan hjælpe ved at angive <a href="/wiki/Wikipedia:Kildeangivelser#Typer_af_kilder" title="Wikipedia:Kildeangivelser">troværdige kilder</a> til de påstande, som fremføres i artiklen.</i></dd></dl> <p>Ved at finde forskriften for den afledede af en reel funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)}"></span>, sætte denne lig med nul og løse den <a href="/wiki/Ligning" title="Ligning">ligning</a> der derved fremkommer, kan man finde de værdier af <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> hvor grafen for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span> "vender om",<sup id="cite_ref-autogeneret2_4-1" class="reference"><a href="#cite_note-autogeneret2-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> dvs. skifter fra at være voksende til at være aftagende eller omvendt. </p><p>Dog skal man være opmærksom på at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> f.eks. kan være stigende (hhv. faldende) indtil et vist punkt <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> hvor differentialkvotienten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)}"></span> er lig med nul, for derefter at stige (hhv. falde) igen. Dette kaldes en <i>vandret vendetangent</i> (eller et <i>saddelpunkt</i>)<sup id="cite_ref-:1_1-1" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> og punktet er dermed <i>ikke</i> et ekstremumspunkt.<sup id="cite_ref-autogeneret1_6-1" class="reference"><a href="#cite_note-autogeneret1-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>Alle de værdier af <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> hvor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)}"></span> er lig med nul, og som <i>ikke</i> er saddelpunkter, markerer et såkaldt <i>ekstremum</i>; her antager <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> den højeste eller laveste værdi, enten for hele funktionens <a href="/wiki/Definitionsm%C3%A6ngde" title="Definitionsmængde">definitionsmængde</a> (såkaldt globalt maksimum eller minimum), eller indenfor et vist område omkring det fundne <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> (lokalt maksimum eller minimum). Dette benyttes ved <a href="/wiki/Funktionsanalyse_(matematik)" title="Funktionsanalyse (matematik)">funktionsanalyse</a> til at bestemme <a href="/wiki/V%C3%A6rdim%C3%A6ngde" title="Værdimængde">værdimængden</a> for en given funktion. </p><p>Den ovenstående beskrivelse af en funktionsanalyse mht. ekstremumspunkter kaldes også at finde funktionens monotoniforhold. Til analysen kan tegnes en tilhørende monotonilinje, hvor funktionsværdien angives sammen med <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)}"></span>'s værdi. Ved at se på <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f'(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f'(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0cd7d7c75340e779d82658e19d1720ce84ab127" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.144ex; height:3.009ex;" alt="{\displaystyle f&#039;(x)}"></span>'s værdier afgøres herved om funktionen er voksende, aftagende eller konstant. </p> <div class="mw-heading mw-heading2"><h2 id="Relation_til_integralregning">Relation til integralregning</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=10" title="Redigér afsnit: Relation til integralregning" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=10" title="Edit section&#039;s source code: Relation til integralregning"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Differentiering er den omvendte operation af <a href="/wiki/Integration_(matematik)" class="mw-redirect" title="Integration (matematik)">integration</a>: Funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71a82805d469cdfa7856c11d6ee756acd1dc7174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.88ex; height:2.843ex;" alt="{\displaystyle F(x)}"></span> siges at være en <a href="/wiki/Stamfunktion" title="Stamfunktion">stamfunktion</a> til funktionen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, hvis differentialkvotienten af <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71a82805d469cdfa7856c11d6ee756acd1dc7174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.88ex; height:2.843ex;" alt="{\displaystyle F(x)}"></span> er <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, dvs.: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F'(x)=f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mo>&#x2032;</mo> </msup> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F'(x)=f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5457591f5410f4bfe3b9c9fa2e50ae665fa2822c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.154ex; height:3.009ex;" alt="{\displaystyle F&#039;(x)=f(x)}"></span>. </p><p>Vender man tilbage til skatteeksemplet i begyndelsen af artiklen, kunne man, hvis man kendte sin marginalindkomst for enhver given indtægt, beregne sin nettoindkomst ved at lægge marginalindkomsterne for hver tjent krone sammen. Dette er netop kernen i integration. Se også <a href="/wiki/Infinitesimalregningens_hoveds%C3%A6tning" title="Infinitesimalregningens hovedsætning">Infinitesimalregningens hovedsætning</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Partielle_afledede">Partielle afledede</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=11" title="Redigér afsnit: Partielle afledede" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=11" title="Edit section&#039;s source code: Partielle afledede"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Differentialkvotienten beskrevet ovenfor kan generaliseres til det tilfælde hvor en funktion har flere uafhængige variable, f.eks. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29473ed0c4e838ac9dbe074535e507166c0e9101" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.607ex; height:2.843ex;" alt="{\displaystyle f(x,y)}"></span>. Her definerer man de <i>partielle afledede</i> på samme måde som ovenfor, blot betragter man de andre uafhængige variable som konstanter under differentieringen. For at vise at man har brugt denne fremgangsmåde erstattes det infinitesimale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/845c817e348381a13f3fad5184169ce0e021c685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.546ex; height:2.176ex;" alt="{\displaystyle dx}"></span> med <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \partial x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \partial x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d448bd2e20cfc4a746bfde395324d8d527ca9e52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.648ex; height:2.176ex;" alt="{\displaystyle \partial x}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\partial f(x,y)}{\partial x}}=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x,y)-f(x,y)}{\Delta x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>+</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\partial f(x,y)}{\partial x}}=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x,y)-f(x,y)}{\Delta x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08097e2518bc50c5b9c8a8f77be0ad732c270a0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:40.017ex; height:6.009ex;" alt="{\displaystyle {\frac {\partial f(x,y)}{\partial x}}=\lim _{\Delta x\to 0}{\frac {f(x+\Delta x,y)-f(x,y)}{\Delta x}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Tretrinsreglen">Tretrinsreglen</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=12" title="Redigér afsnit: Tretrinsreglen" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=12" title="Edit section&#039;s source code: Tretrinsreglen"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Tretrinsreglen er en metode til at beregne en differentialkvotient ved<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>1) at opskrive en differenskvotient<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>2) omdanne differenskvotienten til en differentialkvotient </p><p>3) lade differentialkvotientens nævner gå mod nul.<sup id="cite_ref-:1_1-2" class="reference"><a href="#cite_note-:1-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Det_approksimerende_førstegradspolynomium"><span id="Det_approksimerende_f.C3.B8rstegradspolynomium"></span>Det approksimerende førstegradspolynomium</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=13" title="Redigér afsnit: Det approksimerende førstegradspolynomium" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=13" title="Edit section&#039;s source code: Det approksimerende førstegradspolynomium"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Det approksimerende førstegradspolynomium er betegnelsen for en matematisk <a href="/wiki/Matematisk_formel" title="Matematisk formel">formel</a>.<sup id="cite_ref-:0_5-1" class="reference"><a href="#cite_note-:0-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> Denne formel anvendes til én arbejdsgang at beregne hele forskriften for en tangent til en funktions graf.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Computer_Algebra_System_(CAS)"><span id="Computer_Algebra_System_.28CAS.29"></span>Computer Algebra System (CAS)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=14" title="Redigér afsnit: Computer Algebra System (CAS)" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=14" title="Edit section&#039;s source code: Computer Algebra System (CAS)"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Lommeregner" title="Lommeregner">Lommeregnere</a> og matematisk <a href="/wiki/Computerprogram" title="Computerprogram">software</a> med <a href="/wiki/Computer_Algebra_System" title="Computer Algebra System">CAS</a> kan beregne differentialkvotient: </p> <ul><li><a href="/wiki/Texas_Instruments" title="Texas Instruments">Texas Instruments</a> grafregnere <a href="/wiki/TI-92" title="TI-92">TI-92</a> og <a href="/wiki/TI-89" title="TI-89">TI-89</a> beregner differentialkvotient med kommandoen: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>, var) <sup id="cite_ref-:2_14-0" class="reference"><a href="#cite_note-:2-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></li> <li>Maplesoft <a href="/wiki/Maple" title="Maple">Maple</a> beregner differentialkvotient med kommandoen: diff(f(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>),<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>) <sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup></li> <li>Softwaren <a href="/wiki/Xcas" title="Xcas">Xcas</a> beregner differentialkvotient med kommandoen: diff(funktion,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>) <sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></li> <li>I <a href="/wiki/GeoGebra" title="GeoGebra">GeoGebra</a> benyttes kommandoen: Afledede(f(x),x)</li></ul> <div class="mw-heading mw-heading2"><h2 id="Se_også"><span id="Se_ogs.C3.A5"></span>Se også</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=15" title="Redigér afsnit: Se også" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=15" title="Edit section&#039;s source code: Se også"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/w/index.php?title=Implicit_differentiering&amp;action=edit&amp;redlink=1" class="new" title="Implicit differentiering (ikke skrevet endnu)">Implicit differentiering</a></li> <li><a href="/wiki/Integralregning" title="Integralregning">Integralregning</a></li> <li><a href="/wiki/Differentialligning" title="Differentialligning">Differentialligning</a></li> <li><a href="/w/index.php?title=Tretrins-reglen&amp;action=edit&amp;redlink=1" class="new" title="Tretrins-reglen (ikke skrevet endnu)">Tretrins-reglen</a> (se ovenfor)</li></ul> <div class="mw-heading mw-heading2"><h2 id="Bøger"><span id="B.C3.B8ger"></span>Bøger</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=16" title="Redigér afsnit: Bøger" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=16" title="Edit section&#039;s source code: Bøger"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Holth, Klaus m.fl. (1987): <i>Matematik Grundbog 1</i>. Vejle, Forlaget Trip. <a href="/wiki/Internationalt_Standardbognummer" title="Internationalt Standardbognummer">ISBN</a>&#160;<a href="/wiki/Speciel:ISBN-s%C3%B8gning/87-88049-18-3" title="Speciel:ISBN-søgning/87-88049-18-3">87-88049-18-3</a></li> <li>Jensen, Steffen og Sørensen, Karin (1989): Differentialregning: <i>En lærebog for matematisk gymnasium. Teori og redskab, 3</i>. København, Christian Ejlers Forlag. <a href="/wiki/Internationalt_Standardbognummer" title="Internationalt Standardbognummer">ISBN</a>&#160;<a href="/wiki/Speciel:ISBN-s%C3%B8gning/87-7241-557-6" title="Speciel:ISBN-søgning/87-7241-557-6">87-7241-557-6</a></li> <li>Jessen, Claus m.fl. (1995): <i>Differentialregning: gymnasiematematik, obligatorisk niveau. Matematik - tanke, sprog og redskab</i>. København, Gyldendal Undervisning. <a href="/wiki/Internationalt_Standardbognummer" title="Internationalt Standardbognummer">ISBN</a>&#160;<a href="/wiki/Speciel:ISBN-s%C3%B8gning/87-00-19936-2" title="Speciel:ISBN-søgning/87-00-19936-2">87-00-19936-2</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Referencer">Referencer</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Differentialregning&amp;veaction=edit&amp;section=17" title="Redigér afsnit: Referencer" class="mw-editsection-visualeditor"><span>redigér</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=Differentialregning&amp;action=edit&amp;section=17" title="Edit section&#039;s source code: Referencer"><span>rediger kildetekst</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r11780210">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-:1-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_1-0"><sup>a</sup></a> <a href="#cite_ref-:1_1-1"><sup>b</sup></a> <a href="#cite_ref-:1_1-2"><sup>c</sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://intranet.sctknud-gym.dk/lrere/HS/Noter/Differentialregning_Nspire.pdf">Differentialregning</a></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">^</a></span> <span class="reference-text"><i>Højniveaumatematik 2</i>, Thomas Hebsgaard og Hans Sloth, Trip Forlag</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">^</a></span> <span class="reference-text"><i>The History of Notations of the Calculus,</i> Florian Cajori, Annals of Mathematics , Sep., 1923, Second Series, Vol. 25, No. 1 (Sep., 1923), pp. 1-46 <a rel="nofollow" class="external free" href="https://www.jstor.org/stable/1967725">https://www.jstor.org/stable/1967725</a></span> </li> <li id="cite_note-autogeneret2-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-autogeneret2_4-0"><sup>a</sup></a> <a href="#cite_ref-autogeneret2_4-1"><sup>b</sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://denstoredanske.lex.dk/differentialregning">differentialregning | lex.dk – Den Store Danske</a></span> </li> <li id="cite_note-:0-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_5-0"><sup>a</sup></a> <a href="#cite_ref-:0_5-1"><sup>b</sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r11752076">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20200929155721/http://jyttemelin.dk/Eksamen/formelsamling%20uvm.pdf">"Arkiveret kopi"</a> <span class="cs1-format">(PDF)</span>. Arkiveret fra <a rel="nofollow" class="external text" href="http://www.jyttemelin.dk/Eksamen/formelsamling%20uvm.pdf">originalen</a> <span class="cs1-format">(PDF)</span> 29. september 2020<span class="reference-accessdate">. Hentet 21. maj 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Arkiveret+kopi&amp;rft_id=http%3A%2F%2Fwww.jyttemelin.dk%2FEksamen%2Fformelsamling%2520uvm.pdf&amp;rfr_id=info%3Asid%2Fda.wikipedia.org%3ADifferentialregning" class="Z3988"></span></span> </li> <li id="cite_note-autogeneret1-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-autogeneret1_6-0"><sup>a</sup></a> <a href="#cite_ref-autogeneret1_6-1"><sup>b</sup></a></span> <span class="reference-text"><a rel="nofollow" class="external free" href="http://olewitthansen.dk/Matematik/Differentialregning.pdf">http://olewitthansen.dk/Matematik/Differentialregning.pdf</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">^</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.imm.dtu.dk/~jerf/02609/Slides/Uge02_differentialregning.pdf">Differentialregning</a></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">^</a></span> <span class="reference-text"><a rel="nofollow" class="external free" href="https://www.matematikfysik.dk/mat/noter_tillaeg/oversigt_differentialregning_integralregning.pdf">https://www.matematikfysik.dk/mat/noter_tillaeg/oversigt_differentialregning_integralregning.pdf</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">^</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r11752076"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170410104101/http://kennethhansen.net/MatMyst/5-Differentialregning.pdf">"Diff-Ind.Doc"</a> <span class="cs1-format">(PDF)</span>. Arkiveret fra <a rel="nofollow" class="external text" href="http://www.kennethhansen.net/MatMyst/5-Differentialregning.pdf">originalen</a> <span class="cs1-format">(PDF)</span> 10. april 2017<span class="reference-accessdate">. Hentet 27. juni 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Diff-Ind.Doc&amp;rft_id=http%3A%2F%2Fwww.kennethhansen.net%2FMatMyst%2F5-Differentialregning.pdf&amp;rfr_id=info%3Asid%2Fda.wikipedia.org%3ADifferentialregning" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">^</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r11752076"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20200629075613/http://voff.dk/PDF-Vaerktoejskassen-S-U/Differentialregning-lektion-1-og-2.pdf">"Arkiveret kopi"</a> <span class="cs1-format">(PDF)</span>. Arkiveret fra <a rel="nofollow" class="external text" href="http://voff.dk/PDF-Vaerktoejskassen-S-U/Differentialregning-lektion-1-og-2.pdf">originalen</a> <span class="cs1-format">(PDF)</span> 29. juni 2020<span class="reference-accessdate">. Hentet 27. juni 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Arkiveret+kopi&amp;rft_id=http%3A%2F%2Fvoff.dk%2FPDF-Vaerktoejskassen-S-U%2FDifferentialregning-lektion-1-og-2.pdf&amp;rfr_id=info%3Asid%2Fda.wikipedia.org%3ADifferentialregning" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">^</a></span> <span class="reference-text"><a rel="nofollow" class="external free" href="http://www.mat1.dk/diffregn3del-101.pdf">http://www.mat1.dk/diffregn3del-101.pdf</a></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">^</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://mimimi.dk/MATAA/DifI.pdf">Buy</a></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><a href="#cite_ref-13">^</a></span> <span class="reference-text">Holth (1987) s. 163-4</span> </li> <li id="cite_note-:2-14"><span class="mw-cite-backlink"><a href="#cite_ref-:2_14-0">^</a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r11752076"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20191105000051/http://www.math.armstrong.edu/faculty/hollis/ti92/calclabs92.pdf">"Arkiveret kopi"</a> <span class="cs1-format">(PDF)</span>. Arkiveret fra <a rel="nofollow" class="external text" href="http://www.math.armstrong.edu/faculty/hollis/ti92/calclabs92.pdf">originalen</a> <span class="cs1-format">(PDF)</span> 5. november 2019<span class="reference-accessdate">. Hentet 21. maj 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Arkiveret+kopi&amp;rft_id=http%3A%2F%2Fwww.math.armstrong.edu%2Ffaculty%2Fhollis%2Fti92%2Fcalclabs92.pdf&amp;rfr_id=info%3Asid%2Fda.wikipedia.org%3ADifferentialregning" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><a href="#cite_ref-15">^</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.maplesoft.com/support/help/Maple/view.aspx?path=diff">diff or Diff - Maple Programming Help</a></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">^</a></span> <span class="reference-text"><a rel="nofollow" class="external free" href="http://www-fourier.ujf-grenoble.fr/~parisse/giac/cascmd_en.pdf">http://www-fourier.ujf-grenoble.fr/~parisse/giac/cascmd_en.pdf</a></span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r11759279">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r11752089">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Autoritetsdata" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Autoritetsdata" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Autoritetsdata" title="Autoritetsdata">Autoritetsdata</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Gemeinsame_Normdatei" title="Gemeinsame Normdatei">GND</a>: <span class="uid"><a rel="nofollow" class="external text" href="http://d-nb.info/gnd/4012252-9">4012252-9</a></span></li> <li><a href="/wiki/Nationale_parlamentsbibliotek" title="Nationale parlamentsbibliotek">NDL</a>: <span class="uid"><a rel="nofollow" class="external text" href="http://id.ndl.go.jp/auth/ndlna/00560650">00560650</a></span></li> <li><a href="/wiki/Tjekkisk_nationalbibliotek" title="Tjekkisk nationalbibliotek">NKC</a>: <span class="uid"><a rel="nofollow" class="external text" href="http://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph119442&amp;CON_LNG=ENG">ph119442</a></span></li> <li><a href="/wiki/Den_Store_Danske_Encyklop%C3%A6di" title="Den Store Danske Encyklopædi">DSD</a>: <span class="uid"><a rel="nofollow" class="external text" href="//denstoredanske.lex.dk/differentialregning">differentialregning</a></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐7c479b968‐29g82 Cached time: 20241117074826 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.311 seconds Real time usage: 0.495 seconds Preprocessor visited node count: 2264/1000000 Post‐expand include size: 14816/2097152 bytes Template argument size: 2374/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 27636/5000000 bytes Lua time usage: 0.120/10.000 seconds Lua memory usage: 3213161/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 259.754 1 -total 37.30% 96.885 1 Skabelon:Reflist 30.95% 80.402 1 Skabelon:Autoritetsdata 29.58% 76.831 4 Skabelon:Cite_web 21.41% 55.602 3 Skabelon:ISBN 6.41% 16.650 3 Skabelon:Catalog_lookup_link 4.78% 12.410 3 Skabelon:Error-small 4.02% 10.434 3 Skabelon:Small 2.16% 5.613 9 Skabelon:Yesno-no 2.01% 5.210 1 Skabelon:Kilder --> <!-- Saved in parser cache with key dawiki:pcache:idhash:307796-0!canonical and timestamp 20241117074826 and revision id 11893244. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Hentet fra "<a dir="ltr" href="https://da.wikipedia.org/w/index.php?title=Differentialregning&amp;oldid=11893244">https://da.wikipedia.org/w/index.php?title=Differentialregning&amp;oldid=11893244</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Speciel:Kategorier" title="Speciel:Kategorier">Kategorier</a>: <ul><li><a href="/wiki/Kategori:Differentialregning" title="Kategori:Differentialregning">Differentialregning</a></li><li><a href="/wiki/Kategori:Infinitesimalregning" title="Kategori:Infinitesimalregning">Infinitesimalregning</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Skjulte kategorier: <ul><li><a href="/wiki/Kategori:Kilder_mangler_(samlet_liste)" title="Kategori:Kilder mangler (samlet liste)">Kilder mangler (samlet liste)</a></li><li><a href="/wiki/Kategori:Kilder_mangler_siden_november_2020" title="Kategori:Kilder mangler siden november 2020">Kilder mangler siden november 2020</a></li><li><a href="/wiki/Kategori:Wikipedia_artikler_med_GND_autoritetsdata-ID" title="Kategori:Wikipedia artikler med GND autoritetsdata-ID">Wikipedia artikler med GND autoritetsdata-ID</a></li><li><a href="/wiki/Kategori:Wikipedia_artikler_med_NDL_autoritetsdata-ID" title="Kategori:Wikipedia artikler med NDL autoritetsdata-ID">Wikipedia artikler med NDL autoritetsdata-ID</a></li><li><a href="/wiki/Kategori:Wikipedia_artikler_med_Den_Store_Danske_autoritetsdata-ID" title="Kategori:Wikipedia artikler med Den Store Danske autoritetsdata-ID">Wikipedia artikler med Den Store Danske autoritetsdata-ID</a></li><li><a href="/wiki/Kategori:Sider_der_bruger_udg%C3%A5et_format_af_taget_math" title="Kategori:Sider der bruger udgået format af taget math">Sider der bruger udgået format af taget math</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Denne side blev senest ændret den 2. november 2024 kl. 08:12.</li> <li id="footer-info-copyright">Tekst er tilgængelig under <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.da">Creative Commons Navngivelse/Del på samme vilkår 4.0</a>; yderligere betingelser kan være gældende. Se <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/da">brugsbetingelserne</a> for flere oplysninger.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privatlivspolitik</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Om">Om Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Generelle_forbehold">Forbehold</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Udviklere</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/da.wikipedia.org">Statistik</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie-erklæring</a></li> <li id="footer-places-mobileview"><a href="//da.m.wikipedia.org/w/index.php?title=Differentialregning&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobilvisning</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-tc56n","wgBackendResponseTime":144,"wgPageParseReport":{"limitreport":{"cputime":"0.311","walltime":"0.495","ppvisitednodes":{"value":2264,"limit":1000000},"postexpandincludesize":{"value":14816,"limit":2097152},"templateargumentsize":{"value":2374,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":27636,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 259.754 1 -total"," 37.30% 96.885 1 Skabelon:Reflist"," 30.95% 80.402 1 Skabelon:Autoritetsdata"," 29.58% 76.831 4 Skabelon:Cite_web"," 21.41% 55.602 3 Skabelon:ISBN"," 6.41% 16.650 3 Skabelon:Catalog_lookup_link"," 4.78% 12.410 3 Skabelon:Error-small"," 4.02% 10.434 3 Skabelon:Small"," 2.16% 5.613 9 Skabelon:Yesno-no"," 2.01% 5.210 1 Skabelon:Kilder"]},"scribunto":{"limitreport-timeusage":{"value":"0.120","limit":"10.000"},"limitreport-memusage":{"value":3213161,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7c479b968-29g82","timestamp":"20241117074826","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Differentialregning","url":"https:\/\/da.wikipedia.org\/wiki\/Differentialregning","sameAs":"http:\/\/www.wikidata.org\/entity\/Q149999","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q149999","author":{"@type":"Organization","name":"Bidragsydere til Wikimedia-projekter"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-04-22T17:02:24Z","dateModified":"2024-11-02T07:12:45Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/7\/7a\/Graph_of_sliding_derivative_line.gif"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10