CINXE.COM
Muharem Avdispahić | University of Sarajevo - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Muharem Avdispahić | University of Sarajevo - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="HXyx5r5fzcv0Wmpz+h2FXBF3z2+LvOqm77vpc1dvOUvkVO7W8iyM4xaAPaaeqkSsZrIF7ABGEbGlt+TH0Z2I3w==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-1c712297ae3ac71207193b1bae0ecf1aae125886850f62c9c0139dd867630797.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="muharem avdispahić" /> <meta name="description" content="Muharem Avdispahić, University of Sarajevo: 22 Followers, 1 Following, 169 Research papers. Research interests: Pure Mathematics, Fourier Analysis, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '49879c2402910372f4abc62630a427bbe033d190'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"112 million","monthly_visitor_count":112794806,"monthly_visitor_count_in_millions":112,"user_count":277171794,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732441482000); window.Aedu.timeDifference = new Date().getTime() - 1732441482000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-296162c7af6fd81dcdd76f1a94f1fad04fb5f647401337d136fe8b68742170b1.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-8d53a22151f33ab413d88fa1c02f979c3f8706d470fc1bced09852c72a9f3454.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-f8fe82512740391f81c9e8cc48220144024b425b359b08194e316f4de070b9e8.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://unsa-ba.academia.edu/Avdispahic" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-9601d1cc3d68aa07c0a9901d03d3611aec04cc07d2a2039718ebef4ad4d148ca.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic","photo":"https://0.academia-photos.com/43632767/161354503/151075793/s65_muharem.avdispahic_.jpeg","has_photo":true,"department":{"id":125674,"name":"Department of mathematics (Odsjek za matematiku)","url":"https://unsa-ba.academia.edu/Departments/Department_of_mathematics_Odsjek_za_matematiku_/Documents","university":{"id":3641,"name":"University of Sarajevo","url":"https://unsa-ba.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58906,"name":"Fourier Analysis","url":"https://www.academia.edu/Documents/in/Fourier_Analysis"},{"id":301,"name":"Number Theory","url":"https://www.academia.edu/Documents/in/Number_Theory"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://unsa-ba.academia.edu/Avdispahic","location":"/Avdispahic","scheme":"https","host":"unsa-ba.academia.edu","port":null,"pathname":"/Avdispahic","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-b1b6f8e4-fadb-4e80-95ec-4b1090b7e43a"></div> <div id="ProfileCheckPaperUpdate-react-component-b1b6f8e4-fadb-4e80-95ec-4b1090b7e43a"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Muharem Avdispahić" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/43632767/161354503/151075793/s200_muharem.avdispahic_.jpeg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Muharem Avdispahić</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://unsa-ba.academia.edu/">University of Sarajevo</a>, <a class="u-tcGrayDarker" href="https://unsa-ba.academia.edu/Departments/Department_of_mathematics_Odsjek_za_matematiku_/Documents">Department of mathematics (Odsjek za matematiku)</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Muharem" data-follow-user-id="43632767" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="43632767"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">22</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><a href="/Avdispahic/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data">301</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="43632767" href="https://www.academia.edu/Documents/in/Pure_Mathematics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://unsa-ba.academia.edu/Avdispahic","location":"/Avdispahic","scheme":"https","host":"unsa-ba.academia.edu","port":null,"pathname":"/Avdispahic","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Pure Mathematics"]}" data-trace="false" data-dom-id="Pill-react-component-22915c25-447e-45f3-b67f-e6547b3b9c20"></div> <div id="Pill-react-component-22915c25-447e-45f3-b67f-e6547b3b9c20"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="43632767" href="https://www.academia.edu/Documents/in/Fourier_Analysis"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Fourier Analysis"]}" data-trace="false" data-dom-id="Pill-react-component-7b645494-4d1d-44da-9184-d9fd538a8c7c"></div> <div id="Pill-react-component-7b645494-4d1d-44da-9184-d9fd538a8c7c"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="43632767" href="https://www.academia.edu/Documents/in/Number_Theory"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Number Theory"]}" data-trace="false" data-dom-id="Pill-react-component-d6fd1296-5bd0-4c4b-9610-318bc0d137c2"></div> <div id="Pill-react-component-d6fd1296-5bd0-4c4b-9610-318bc0d137c2"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Muharem Avdispahić</h3></div><div class="js-work-strip profile--work_container" data-work-id="124046730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124046730/On_maximal_operators_on_k_spheres_in_Z_n"><img alt="Research paper thumbnail of On maximal operators on k-spheres in Z^n" class="work-thumbnail" src="https://attachments.academia-assets.com/118444390/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124046730/On_maximal_operators_on_k_spheres_in_Z_n">On maximal operators on k-spheres in Z^n</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b01114047a1725c70a3931b29f589cc2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118444390,"asset_id":124046730,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118444390/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124046730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124046730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124046730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124046730]").text(description); $(".js-view-count[data-work-id=124046730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124046730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124046730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124046730, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b01114047a1725c70a3931b29f589cc2" } } $('.js-work-strip[data-work-id=124046730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124046730,"title":"On maximal operators on k-spheres in Z^n","translated_title":"","metadata":{"publisher":"American Mathematical Society","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124046730/On_maximal_operators_on_k_spheres_in_Z_n","translated_internal_url":"","created_at":"2024-09-20T23:16:40.719-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118444390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118444390/thumbnails/1.jpg","file_name":"S0002-9939-06-08458-9.pdf","download_url":"https://www.academia.edu/attachments/118444390/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_maximal_operators_on_k_spheres_in_Z_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118444390/S0002-9939-06-08458-9-libre.pdf?1727335016=\u0026response-content-disposition=attachment%3B+filename%3DOn_maximal_operators_on_k_spheres_in_Z_n.pdf\u0026Expires=1732445081\u0026Signature=c1QWdeU7~neX97EJX6wUcSzd8rwqbrHZDzcjOGSsyKEnyyKW4a2sEj1SVnLVyOGn917v3mn5iWPX8nwnUZgJaYp3oXH5034mG8kr5mnPFr-umTKD51RreYRemWF33JxY0HnQQJ0j9Ut3yQ1NhT4IE7hyEmChaZOXcVtEFpY29J30wJ6SQSvxS2ytNIYRULeGt8w3DT6iQo42k6GtDOWmo0BJE2xZC2MR-aWVYbEFiC2YM7ZGq-cKvEot2XI~ig3ThizSUGtsQQ6OAbkk13NWRkS5NOA7izvhzrbNddQvYdc5Z8tGN9kXJMT5m12ctXGZEeWn~dLjFbk6zrmJOxR1OA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_maximal_operators_on_k_spheres_in_Z_n","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":118444390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118444390/thumbnails/1.jpg","file_name":"S0002-9939-06-08458-9.pdf","download_url":"https://www.academia.edu/attachments/118444390/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_maximal_operators_on_k_spheres_in_Z_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118444390/S0002-9939-06-08458-9-libre.pdf?1727335016=\u0026response-content-disposition=attachment%3B+filename%3DOn_maximal_operators_on_k_spheres_in_Z_n.pdf\u0026Expires=1732445081\u0026Signature=c1QWdeU7~neX97EJX6wUcSzd8rwqbrHZDzcjOGSsyKEnyyKW4a2sEj1SVnLVyOGn917v3mn5iWPX8nwnUZgJaYp3oXH5034mG8kr5mnPFr-umTKD51RreYRemWF33JxY0HnQQJ0j9Ut3yQ1NhT4IE7hyEmChaZOXcVtEFpY29J30wJ6SQSvxS2ytNIYRULeGt8w3DT6iQo42k6GtDOWmo0BJE2xZC2MR-aWVYbEFiC2YM7ZGq-cKvEot2XI~ig3ThizSUGtsQQ6OAbkk13NWRkS5NOA7izvhzrbNddQvYdc5Z8tGN9kXJMT5m12ctXGZEeWn~dLjFbk6zrmJOxR1OA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":976192,"name":"Spheres","url":"https://www.academia.edu/Documents/in/Spheres"}],"urls":[{"id":44761890,"url":"https://dialnet.unirioja.es/servlet/articulo?codigo=2072575"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124046718"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124046718/On_Effective_Upper_Bound_for_Huber_s_Constant"><img alt="Research paper thumbnail of On Effective Upper Bound for Huber’s Constant" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124046718/On_Effective_Upper_Bound_for_Huber_s_Constant">On Effective Upper Bound for Huber’s Constant</a></div><div class="wp-workCard_item"><span>Results in mathematics</span><span>, Jun 14, 2024</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We determine an effective upper bound for Huber&amp;#39;s constant in the prime geodesic theorem ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We determine an effective upper bound for Huber&amp;#39;s constant in the prime geodesic theorem on cofinite Fuchsian groups in the previously uncovered case of orbifolds on which the length of the shortest prime geodesic does not exceed 4/3. Huber&amp;#39;s constant is relevant for obtaining effective, numerically computable, bounds for various analytic quantities which appear in the Arakelov theory of algebraic curves. The result is illustrated by finding an upper bound for this constant on (2,3,7) triangle group. We also calculate an effective upper bound for Faltings&amp;#39;s delta function on the Klein quartic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124046718"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124046718"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124046718; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124046718]").text(description); $(".js-view-count[data-work-id=124046718]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124046718; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124046718']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124046718, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124046718]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124046718,"title":"On Effective Upper Bound for Huber’s Constant","translated_title":"","metadata":{"abstract":"We determine an effective upper bound for Huber\u0026amp;#39;s constant in the prime geodesic theorem on cofinite Fuchsian groups in the previously uncovered case of orbifolds on which the length of the shortest prime geodesic does not exceed 4/3. Huber\u0026amp;#39;s constant is relevant for obtaining effective, numerically computable, bounds for various analytic quantities which appear in the Arakelov theory of algebraic curves. The result is illustrated by finding an upper bound for this constant on (2,3,7) triangle group. We also calculate an effective upper bound for Faltings\u0026amp;#39;s delta function on the Klein quartic.","publication_date":{"day":14,"month":6,"year":2024,"errors":{}},"publication_name":"Results in mathematics"},"translated_abstract":"We determine an effective upper bound for Huber\u0026amp;#39;s constant in the prime geodesic theorem on cofinite Fuchsian groups in the previously uncovered case of orbifolds on which the length of the shortest prime geodesic does not exceed 4/3. Huber\u0026amp;#39;s constant is relevant for obtaining effective, numerically computable, bounds for various analytic quantities which appear in the Arakelov theory of algebraic curves. The result is illustrated by finding an upper bound for this constant on (2,3,7) triangle group. We also calculate an effective upper bound for Faltings\u0026amp;#39;s delta function on the Klein quartic.","internal_url":"https://www.academia.edu/124046718/On_Effective_Upper_Bound_for_Huber_s_Constant","translated_internal_url":"","created_at":"2024-09-20T23:15:24.084-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Effective_Upper_Bound_for_Huber_s_Constant","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":44761884,"url":"https://doi.org/10.1007/s00025-024-02211-6"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313858"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313858/Gallagherian_PGT_on_PSL_2_mathbb_Z_"><img alt="Research paper thumbnail of Gallagherian $PGT$ on $PSL(2,\mathbb{Z})$" class="work-thumbnail" src="https://attachments.academia-assets.com/113970624/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313858/Gallagherian_PGT_on_PSL_2_mathbb_Z_">Gallagherian $PGT$ on $PSL(2,\mathbb{Z})$</a></div><div class="wp-workCard_item"><span>Functiones et Approximatio Commentarii Mathematici</span><span>, Jun 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24af56a29d8c5dbfbfc2e5f3ea07f043" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970624,"asset_id":118313858,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970624/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313858"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313858"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313858; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313858]").text(description); $(".js-view-count[data-work-id=118313858]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313858; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313858']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313858, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24af56a29d8c5dbfbfc2e5f3ea07f043" } } $('.js-work-strip[data-work-id=118313858]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313858,"title":"Gallagherian $PGT$ on $PSL(2,\\mathbb{Z})$","translated_title":"","metadata":{"publisher":"Adam Mickiewicz University","publication_date":{"day":1,"month":6,"year":2018,"errors":{}},"publication_name":"Functiones et Approximatio Commentarii Mathematici"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313858/Gallagherian_PGT_on_PSL_2_mathbb_Z_","translated_internal_url":"","created_at":"2024-04-30T01:31:08.274-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970624,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970624/thumbnails/1.jpg","file_name":"1703.pdf","download_url":"https://www.academia.edu/attachments/113970624/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gallagherian_PGT_on_PSL_2_mathbb_Z.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970624/1703-libre.pdf?1714469951=\u0026response-content-disposition=attachment%3B+filename%3DGallagherian_PGT_on_PSL_2_mathbb_Z.pdf\u0026Expires=1732445081\u0026Signature=CCW34cI1ABgBTi~l4od~s1k1daYWHbHnGc1hByBH2aS2i7VqZnnWV-Ys5gBCU0Yg72AqPq82iT9YJgPo-AYbf76CM8j1iwaprD8gsZcvtW3-FIMDX5RsuM7A-AJBlxWg~CzyOOaR8WsvQDa6vYF4QBOmn6HlnxryAUhy4o--tT2~U3Q1K2IfrAn9o6t2uoJGA50Q1sthw0oe7L~c83SMf8wFDP8MZuRmwS8RHaGzoyJba8DUDoc5ZKEeEErAQz-YUc-b9JXjWxhJd4u02p6YOe8PSi-FeclJRFXX8hzw1eKiwhAJa3LVbONBgDHvpaMyKK0NgLLgrj3ciYx3JwX5Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gallagherian_PGT_on_PSL_2_mathbb_Z_","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970624,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970624/thumbnails/1.jpg","file_name":"1703.pdf","download_url":"https://www.academia.edu/attachments/113970624/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gallagherian_PGT_on_PSL_2_mathbb_Z.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970624/1703-libre.pdf?1714469951=\u0026response-content-disposition=attachment%3B+filename%3DGallagherian_PGT_on_PSL_2_mathbb_Z.pdf\u0026Expires=1732445081\u0026Signature=CCW34cI1ABgBTi~l4od~s1k1daYWHbHnGc1hByBH2aS2i7VqZnnWV-Ys5gBCU0Yg72AqPq82iT9YJgPo-AYbf76CM8j1iwaprD8gsZcvtW3-FIMDX5RsuM7A-AJBlxWg~CzyOOaR8WsvQDa6vYF4QBOmn6HlnxryAUhy4o--tT2~U3Q1K2IfrAn9o6t2uoJGA50Q1sthw0oe7L~c83SMf8wFDP8MZuRmwS8RHaGzoyJba8DUDoc5ZKEeEErAQz-YUc-b9JXjWxhJd4u02p6YOe8PSi-FeclJRFXX8hzw1eKiwhAJa3LVbONBgDHvpaMyKK0NgLLgrj3ciYx3JwX5Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":138342,"name":"PSL","url":"https://www.academia.edu/Documents/in/PSL"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[{"id":41519922,"url":"http://arxiv.org/pdf/1703.00165"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313853/Strong_boundedness_strong_convergence_and_generalized_variation"><img alt="Research paper thumbnail of Strong boundedness, strong convergence and generalized variation" class="work-thumbnail" src="https://attachments.academia-assets.com/113970621/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313853/Strong_boundedness_strong_convergence_and_generalized_variation">Strong boundedness, strong convergence and generalized variation</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Apr 18, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b6a9e0ec5ce635a1d2d18fb572b10b79" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970621,"asset_id":118313853,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970621/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313853]").text(description); $(".js-view-count[data-work-id=118313853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313853, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b6a9e0ec5ce635a1d2d18fb572b10b79" } } $('.js-work-strip[data-work-id=118313853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313853,"title":"Strong boundedness, strong convergence and generalized variation","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":18,"month":4,"year":2017,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313853/Strong_boundedness_strong_convergence_and_generalized_variation","translated_internal_url":"","created_at":"2024-04-30T01:31:01.563-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970621/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970621/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970621/1612-libre.pdf?1714469956=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445081\u0026Signature=HakyVSKgG8P6rxlUDinl7be1kv64oIQmSvqMDhw0WC0PVHK7nfCszlEpax481WHaG~knmq9K9Tcq2aEH11kPTeOjgodx0OFC~wPrhkH43C-r~IPLKEPpSpEUNlbwUXOMlTB-eXBLzd1mxbvan~TabTO~ypsli03N3-Ta6AN93n8eW9pxakY4VC4qKcWHgi36PNo-ynTMERWlmJEOT~wBzHG37T0M6rrxidlVpe6yqR9~NbXQBxBdWAKKHp-np0RNZ73xeMpaL8G2cFmJ8QqAbfTkr3H8TkQP2rox6236rnJOMoVPNzfh5KujNN6xtESbQLvnqRUZtoq6PFpSnyrgVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Strong_boundedness_strong_convergence_and_generalized_variation","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970621/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970621/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970621/1612-libre.pdf?1714469956=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445081\u0026Signature=HakyVSKgG8P6rxlUDinl7be1kv64oIQmSvqMDhw0WC0PVHK7nfCszlEpax481WHaG~knmq9K9Tcq2aEH11kPTeOjgodx0OFC~wPrhkH43C-r~IPLKEPpSpEUNlbwUXOMlTB-eXBLzd1mxbvan~TabTO~ypsli03N3-Ta6AN93n8eW9pxakY4VC4qKcWHgi36PNo-ynTMERWlmJEOT~wBzHG37T0M6rrxidlVpe6yqR9~NbXQBxBdWAKKHp-np0RNZ73xeMpaL8G2cFmJ8QqAbfTkr3H8TkQP2rox6236rnJOMoVPNzfh5KujNN6xtESbQLvnqRUZtoq6PFpSnyrgVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":2911400,"name":"Trigonometric Functions","url":"https://www.academia.edu/Documents/in/Trigonometric_Functions"},{"id":3753192,"name":"trigonometric series","url":"https://www.academia.edu/Documents/in/trigonometric_series"}],"urls":[{"id":41519921,"url":"http://arxiv.org/pdf/1612.06250"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313852"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313852/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds"><img alt="Research paper thumbnail of On the prime geodesic theorem for hyperbolic 3-manifolds" class="work-thumbnail" src="https://attachments.academia-assets.com/113970612/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313852/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds">On the prime geodesic theorem for hyperbolic 3-manifolds</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, May 16, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc5ed198dd95616bcf4ae0e512c853c1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970612,"asset_id":118313852,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970612/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313852"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313852"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313852; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313852]").text(description); $(".js-view-count[data-work-id=118313852]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313852; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313852']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313852, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc5ed198dd95616bcf4ae0e512c853c1" } } $('.js-work-strip[data-work-id=118313852]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313852,"title":"On the prime geodesic theorem for hyperbolic 3-manifolds","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":16,"month":5,"year":2017,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313852/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds","translated_internal_url":"","created_at":"2024-04-30T01:30:59.017-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970612/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970612/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970612/1705-libre.pdf?1714469954=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445081\u0026Signature=CRaeOC5oMFVNaMN~gQ8plBnd7xB7qp~lu7whxUw7CEOGEV59aBXSrYHUavJPvcqLE0dAqzuKAjNQNKCQHekbvKaZQJcpjoVR11Pb4wiirZvQvYKx19R5h02qXrrSBDjOI2IwzIlr8Or4KqqH4IQd0OdLmg4nQGbeaqcooxof4UGV3a-SgP1O1FQrRIqEyhyosfbvkQdxjdXOyDPabey6lnGhgkQHOTT7kUvRqWQtd1exLU6x78mCIn28KvYxAqJD0UU1u1ei7iAJQyAGbNiFoa0HSRixHLGq5h0Esy7vSH6ZzLekQR5JSCGfXyo5AC4KQi3y8xLPFi65t8kayseT8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970612/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970612/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970612/1705-libre.pdf?1714469954=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445081\u0026Signature=CRaeOC5oMFVNaMN~gQ8plBnd7xB7qp~lu7whxUw7CEOGEV59aBXSrYHUavJPvcqLE0dAqzuKAjNQNKCQHekbvKaZQJcpjoVR11Pb4wiirZvQvYKx19R5h02qXrrSBDjOI2IwzIlr8Or4KqqH4IQd0OdLmg4nQGbeaqcooxof4UGV3a-SgP1O1FQrRIqEyhyosfbvkQdxjdXOyDPabey6lnGhgkQHOTT7kUvRqWQtd1exLU6x78mCIn28KvYxAqJD0UU1u1ei7iAJQyAGbNiFoa0HSRixHLGq5h0Esy7vSH6ZzLekQR5JSCGfXyo5AC4KQi3y8xLPFi65t8kayseT8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113970613,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970613/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970613/download_file","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970613/1705-libre.pdf?1714469954=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445081\u0026Signature=OKSsEwbwaltgkYAX7aaHzTXf34mNBtFmsoxDkytYZjeJb4E6Sgm4h9AaBFEIgs7EURMWJuy9xFqqCdXxyC6F44JE~-OfIoVpc9Wrqx0QEaqtNJY4DKfdobq-j1CxVo8dmWbe1pGqQoVQxxiMT8UaErzTi1Kzo64r0e0vi6O1-2h4-w7QGgN4fh1Vc9v9rSnEXEvt2jRHvfrMV1HcOPjeuPgh2mYh3ekrB7f1fD~ig8rCvMbXFzSkP5MHcOdwR-MH9jLJeFK3xs1HFgytmOVLddYzpfr1oKcNFIN05d34T8HOCpZHjSYkWNeBRGoeAudsQC6QUW~SuT5L5GaB7-S25g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":41519919,"url":"http://arxiv.org/pdf/1705.05626"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313851/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/114162062/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313851/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups">On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Oct 30, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b2e13f8759f1e959bc9dfa5997e2ad3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":114162062,"asset_id":118313851,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/114162062/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313851]").text(description); $(".js-view-count[data-work-id=118313851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313851, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b2e13f8759f1e959bc9dfa5997e2ad3" } } $('.js-work-strip[data-work-id=118313851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313851,"title":"On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":30,"month":10,"year":2010,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313851/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2024-04-30T01:30:55.931-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":114162062,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114162062/thumbnails/1.jpg","file_name":"s10474-010-0023-920240505-1-hdjyjq.pdf","download_url":"https://www.academia.edu/attachments/114162062/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Lebesgue_test_for_convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114162062/s10474-010-0023-920240505-1-hdjyjq-libre.pdf?1714899916=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Lebesgue_test_for_convergence_of.pdf\u0026Expires=1732445081\u0026Signature=a6m6GMYJs0BK74M5cDwt8SjRmQ2xF4Sx6QXHDUSqUsHMlQW-tUOH~aan1REq0DFSGihYIpcHnCB4lzAe6DTfmtx9rcJ0ZUeOSnE7p3W0B9Ev-h0jp2dh9ZVWpL035vyAjT3OIDlHFooYMMCvcYOLgrrk4qpFwzqr-72MPO~kL-Ilwf~~xQxktW6VnaV98zJPB1QGM5vhimITLNIfsPca8XUpJv55R1EIUOliifc2KVKt2vzZ9eX5dFUoS9l0Fi~0oohWUo1QjOU~OgBiyVnPaOG-4LET9-1YlreRc48x5OjBoPfugZeGYxLZoWhpw72RZxclAuaZQcbCFmR14EpGuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":114162062,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114162062/thumbnails/1.jpg","file_name":"s10474-010-0023-920240505-1-hdjyjq.pdf","download_url":"https://www.academia.edu/attachments/114162062/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Lebesgue_test_for_convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114162062/s10474-010-0023-920240505-1-hdjyjq-libre.pdf?1714899916=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Lebesgue_test_for_convergence_of.pdf\u0026Expires=1732445081\u0026Signature=a6m6GMYJs0BK74M5cDwt8SjRmQ2xF4Sx6QXHDUSqUsHMlQW-tUOH~aan1REq0DFSGihYIpcHnCB4lzAe6DTfmtx9rcJ0ZUeOSnE7p3W0B9Ev-h0jp2dh9ZVWpL035vyAjT3OIDlHFooYMMCvcYOLgrrk4qpFwzqr-72MPO~kL-Ilwf~~xQxktW6VnaV98zJPB1QGM5vhimITLNIfsPca8XUpJv55R1EIUOliifc2KVKt2vzZ9eX5dFUoS9l0Fi~0oohWUo1QjOU~OgBiyVnPaOG-4LET9-1YlreRc48x5OjBoPfugZeGYxLZoWhpw72RZxclAuaZQcbCFmR14EpGuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":41519918,"url":"https://doi.org/10.1007/s10474-010-0023-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313847"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118313847/Effective_bounds_for_Huber_s_constant_and_Faltings_s_delta_function"><img alt="Research paper thumbnail of Effective bounds for Huber’s constant and Faltings’s delta function" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118313847/Effective_bounds_for_Huber_s_constant_and_Faltings_s_delta_function">Effective bounds for Huber’s constant and Faltings’s delta function</a></div><div class="wp-workCard_item"><span>Mathematics of Computation</span><span>, Mar 24, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic theorem on cofinite Fuchsian groups of the first kind, we refine the constants therein. The newly obtained effective upper bound for Huber’s constant is in the modular surface case approximately 74000 74000 -times smaller than the previously claimed one. The degree of reduction in the case of an upper bound for Faltings’s delta function ranges from 10 8 10^{8} to 10 16 10^{16} .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313847"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313847"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313847; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313847]").text(description); $(".js-view-count[data-work-id=118313847]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313847; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313847']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313847, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118313847]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313847,"title":"Effective bounds for Huber’s constant and Faltings’s delta function","translated_title":"","metadata":{"abstract":"By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic theorem on cofinite Fuchsian groups of the first kind, we refine the constants therein. The newly obtained effective upper bound for Huber’s constant is in the modular surface case approximately 74000 74000 -times smaller than the previously claimed one. The degree of reduction in the case of an upper bound for Faltings’s delta function ranges from 10 8 10^{8} to 10 16 10^{16} .","publisher":"American Mathematical Society","publication_date":{"day":24,"month":3,"year":2021,"errors":{}},"publication_name":"Mathematics of Computation"},"translated_abstract":"By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic theorem on cofinite Fuchsian groups of the first kind, we refine the constants therein. The newly obtained effective upper bound for Huber’s constant is in the modular surface case approximately 74000 74000 -times smaller than the previously claimed one. The degree of reduction in the case of an upper bound for Faltings’s delta function ranges from 10 8 10^{8} to 10 16 10^{16} .","internal_url":"https://www.academia.edu/118313847/Effective_bounds_for_Huber_s_constant_and_Faltings_s_delta_function","translated_internal_url":"","created_at":"2024-04-30T01:30:51.840-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effective_bounds_for_Huber_s_constant_and_Faltings_s_delta_function","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[{"id":41519917,"url":"https://doi.org/10.1090/mcom/3631"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313844"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118313844/Fej%C3%A9rs_theorem_for_the_classesV_p"><img alt="Research paper thumbnail of Fejér's theorem for the classesV p" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118313844/Fej%C3%A9rs_theorem_for_the_classesV_p">Fejér's theorem for the classesV p</a></div><div class="wp-workCard_item"><span>Rendiconti Del Circolo Matematico Di Palermo</span><span>, 1986</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313844"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313844"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313844; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313844]").text(description); $(".js-view-count[data-work-id=118313844]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313844; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313844']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313844, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118313844]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313844,"title":"Fejér's theorem for the classesV p","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Rendiconti Del Circolo Matematico Di Palermo"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313844/Fej%C3%A9rs_theorem_for_the_classesV_p","translated_internal_url":"","created_at":"2024-04-30T01:30:48.548-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fejérs_theorem_for_the_classesV_p","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"}],"urls":[{"id":41519915,"url":"https://doi.org/10.1007/bf02844044"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313839"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313839/On_the_classes_Lambda_rm_BV_and_rm_V_nu_"><img alt="Research paper thumbnail of On the classes $\Lambda {\rm BV}$ and ${\rm V}[\nu]$" class="work-thumbnail" src="https://attachments.academia-assets.com/113970666/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313839/On_the_classes_Lambda_rm_BV_and_rm_V_nu_">On the classes $\Lambda {\rm BV}$ and ${\rm V}[\nu]$</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1985</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="894141d58d262f81cb01b05cad04c31f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970666,"asset_id":118313839,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970666/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313839"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313839"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313839; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313839]").text(description); $(".js-view-count[data-work-id=118313839]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313839; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313839']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313839, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "894141d58d262f81cb01b05cad04c31f" } } $('.js-work-strip[data-work-id=118313839]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313839,"title":"On the classes $\\Lambda {\\rm BV}$ and ${\\rm V}[\\nu]$","translated_title":"","metadata":{"publisher":"American Mathematical Society","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313839/On_the_classes_Lambda_rm_BV_and_rm_V_nu_","translated_internal_url":"","created_at":"2024-04-30T01:30:45.134-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970666,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970666/thumbnails/1.jpg","file_name":"S0002-9939-1985-0801329-7.pdf","download_url":"https://www.academia.edu/attachments/113970666/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_classes_Lambda_rm_BV_and_rm_V_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970666/S0002-9939-1985-0801329-7-libre.pdf?1714469942=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_classes_Lambda_rm_BV_and_rm_V_nu.pdf\u0026Expires=1732445081\u0026Signature=Tiiu~1opPHhnvUNRCcwHh5FBR~H~~No3dtsgbtz9ulc-mGujpSlk-x36uS2M~5~oH0gaUjCm7-RUGnoSwCfRVnGqmchi4aZnyg9kqQUrx12lqpUqNVudDTTtUr5HOw2IZmnoQ3bxqA7oZCD6xBdLtiR40eT7Gec-CjNeGUy58kBHQhEOZ5DigyS8R9tpbq4fsLzoBqcvMcrKsQfQaN3TzJ5HxiDb95DfULVTRUIMXWxD5Dou0awwS~ZyImTP4nmkyffDZGY~tuaYw-KVJAttuJSm-O8J8e-26MN6e4B4ZJSXje9SZEcrHDcdw9Ty7AdNogd1Am9T9Ylf7vql~~PSbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_classes_Lambda_rm_BV_and_rm_V_nu_","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970666,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970666/thumbnails/1.jpg","file_name":"S0002-9939-1985-0801329-7.pdf","download_url":"https://www.academia.edu/attachments/113970666/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_classes_Lambda_rm_BV_and_rm_V_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970666/S0002-9939-1985-0801329-7-libre.pdf?1714469942=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_classes_Lambda_rm_BV_and_rm_V_nu.pdf\u0026Expires=1732445081\u0026Signature=Tiiu~1opPHhnvUNRCcwHh5FBR~H~~No3dtsgbtz9ulc-mGujpSlk-x36uS2M~5~oH0gaUjCm7-RUGnoSwCfRVnGqmchi4aZnyg9kqQUrx12lqpUqNVudDTTtUr5HOw2IZmnoQ3bxqA7oZCD6xBdLtiR40eT7Gec-CjNeGUy58kBHQhEOZ5DigyS8R9tpbq4fsLzoBqcvMcrKsQfQaN3TzJ5HxiDb95DfULVTRUIMXWxD5Dou0awwS~ZyImTP4nmkyffDZGY~tuaYw-KVJAttuJSm-O8J8e-26MN6e4B4ZJSXje9SZEcrHDcdw9Ty7AdNogd1Am9T9Ylf7vql~~PSbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"}],"urls":[{"id":41519913,"url":"https://doi.org/10.1090/s0002-9939-1985-0801329-7"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313826"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313826/On_maximal_operators_on_k_spheres_in_Zn"><img alt="Research paper thumbnail of On maximal operators on 𝑘-spheres in ℤⁿ" class="work-thumbnail" src="https://attachments.academia-assets.com/113970665/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313826/On_maximal_operators_on_k_spheres_in_Zn">On maximal operators on 𝑘-spheres in ℤⁿ</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, Jan 17, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="856bef51e0ec6d201f2cd657df434614" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970665,"asset_id":118313826,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970665/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313826"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313826"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313826; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313826]").text(description); $(".js-view-count[data-work-id=118313826]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313826; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313826']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313826, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "856bef51e0ec6d201f2cd657df434614" } } $('.js-work-strip[data-work-id=118313826]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313826,"title":"On maximal operators on 𝑘-spheres in ℤⁿ","translated_title":"","metadata":{"publisher":"American Mathematical Society","publication_date":{"day":17,"month":1,"year":2006,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313826/On_maximal_operators_on_k_spheres_in_Zn","translated_internal_url":"","created_at":"2024-04-30T01:30:33.617-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970665,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970665/thumbnails/1.jpg","file_name":"S0002-9939-06-08458-9.pdf","download_url":"https://www.academia.edu/attachments/113970665/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_maximal_operators_on_k_spheres_in_Zn.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970665/S0002-9939-06-08458-9-libre.pdf?1714469942=\u0026response-content-disposition=attachment%3B+filename%3DOn_maximal_operators_on_k_spheres_in_Zn.pdf\u0026Expires=1732445081\u0026Signature=MJN0V3kc0yhE~NcKZN99wJ8-Pbm5DaYgYJgS9vCX3-zjwpvKTkKhahhXBmFeZAvY~ZZMtjdp9kKgg2XpaIu4SvFu5cgIXOwuea~Wv3PNBnxtLMjuW5edfaM5Mzu-A~EWuDQ5ol-FWcUNL7z~mav28sBZdtUndcJomaD5QsZnMlNCffoBGwB739vp8TktkdhwTbjT0F89D5aERp8ildItu3x10mDlhRNkEFVN2IQV-fH~vLrS7NhQhA7OO1nP~twP~kyvmYqNScC5M22MFkrbFreIAVMTaO0FGIwbILiw85x4L~hl1LoeDBz4V3SjxeZYnKrebdXVmiHq6c1GaeBqmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_maximal_operators_on_k_spheres_in_Zn","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970665,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970665/thumbnails/1.jpg","file_name":"S0002-9939-06-08458-9.pdf","download_url":"https://www.academia.edu/attachments/113970665/download_file?st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_maximal_operators_on_k_spheres_in_Zn.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970665/S0002-9939-06-08458-9-libre.pdf?1714469942=\u0026response-content-disposition=attachment%3B+filename%3DOn_maximal_operators_on_k_spheres_in_Zn.pdf\u0026Expires=1732445081\u0026Signature=MJN0V3kc0yhE~NcKZN99wJ8-Pbm5DaYgYJgS9vCX3-zjwpvKTkKhahhXBmFeZAvY~ZZMtjdp9kKgg2XpaIu4SvFu5cgIXOwuea~Wv3PNBnxtLMjuW5edfaM5Mzu-A~EWuDQ5ol-FWcUNL7z~mav28sBZdtUndcJomaD5QsZnMlNCffoBGwB739vp8TktkdhwTbjT0F89D5aERp8ildItu3x10mDlhRNkEFVN2IQV-fH~vLrS7NhQhA7OO1nP~twP~kyvmYqNScC5M22MFkrbFreIAVMTaO0FGIwbILiw85x4L~hl1LoeDBz4V3SjxeZYnKrebdXVmiHq6c1GaeBqmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"}],"urls":[{"id":41519910,"url":"https://doi.org/10.1090/s0002-9939-06-08458-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313821"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313821/Errata_and_addendum_to_On_the_prime_geodesic_theorem_for_hyperbolic_manifolds_Math_Nachr_b_291_b_2018_no_14_15_2160_2167"><img alt="Research paper thumbnail of Errata and addendum to “On the prime geodesic theorem for hyperbolic ‐manifolds” Math. Nachr.<b>291</b>(2018), no. 14–15, 2160–2167" class="work-thumbnail" src="https://attachments.academia-assets.com/113970656/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313821/Errata_and_addendum_to_On_the_prime_geodesic_theorem_for_hyperbolic_manifolds_Math_Nachr_b_291_b_2018_no_14_15_2160_2167">Errata and addendum to “On the prime geodesic theorem for hyperbolic ‐manifolds” Math. Nachr.<b>291</b>(2018), no. 14–15, 2160–2167</a></div><div class="wp-workCard_item"><span>Mathematische Nachrichten</span><span>, Dec 19, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="38940f25b7d4cb965a3051bbb75a847d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970656,"asset_id":118313821,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970656/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313821"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313821"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313821; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313821]").text(description); $(".js-view-count[data-work-id=118313821]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313821; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313821']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313821, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "38940f25b7d4cb965a3051bbb75a847d" } } $('.js-work-strip[data-work-id=118313821]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313821,"title":"Errata and addendum to “On the prime geodesic theorem for hyperbolic ‐manifolds” Math. Nachr.\u003cb\u003e291\u003c/b\u003e(2018), no. 14–15, 2160–2167","translated_title":"","metadata":{"publisher":"Wiley","publication_date":{"day":19,"month":12,"year":2018,"errors":{}},"publication_name":"Mathematische Nachrichten"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313821/Errata_and_addendum_to_On_the_prime_geodesic_theorem_for_hyperbolic_manifolds_Math_Nachr_b_291_b_2018_no_14_15_2160_2167","translated_internal_url":"","created_at":"2024-04-30T01:30:30.727-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970656,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970656/thumbnails/1.jpg","file_name":"mana.20180046720240430-1-nx75uv.pdf","download_url":"https://www.academia.edu/attachments/113970656/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Errata_and_addendum_to_On_the_prime_geod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970656/mana.20180046720240430-1-nx75uv-libre.pdf?1714469948=\u0026response-content-disposition=attachment%3B+filename%3DErrata_and_addendum_to_On_the_prime_geod.pdf\u0026Expires=1732445081\u0026Signature=SoDEA8uL1TM7CrEAnhkttsvzxnTt5KchIWCm2-jLgaXcP46b0nqqBc9UQd9yIdKHaoknFxHmBvYDLwlzRe~-Uqz5XLk95327Svx1Rs6iCdReWc-GcIy75OAb59P4XQhG6olJWjlWepj2aF-ytcQWoCXlqfwTDFRCutYcAuauXAccxxoB6Z-XOT-uLcHlFJlmYemiDvbcKT2O2HuGbr96CdTeWoEbYFg1uAPCbAaaCWqN7zyJERW7rvRdr0dudpx78436qS3LvhO6iYsQ-wmjb5lM7f48sBeAeEciy9A78x0MRw3HOvrc8hFaDNgkc0upbqurfcS7sfPvcV1AhBMukw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Errata_and_addendum_to_On_the_prime_geodesic_theorem_for_hyperbolic_manifolds_Math_Nachr_b_291_b_2018_no_14_15_2160_2167","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970656,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970656/thumbnails/1.jpg","file_name":"mana.20180046720240430-1-nx75uv.pdf","download_url":"https://www.academia.edu/attachments/113970656/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Errata_and_addendum_to_On_the_prime_geod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970656/mana.20180046720240430-1-nx75uv-libre.pdf?1714469948=\u0026response-content-disposition=attachment%3B+filename%3DErrata_and_addendum_to_On_the_prime_geod.pdf\u0026Expires=1732445081\u0026Signature=SoDEA8uL1TM7CrEAnhkttsvzxnTt5KchIWCm2-jLgaXcP46b0nqqBc9UQd9yIdKHaoknFxHmBvYDLwlzRe~-Uqz5XLk95327Svx1Rs6iCdReWc-GcIy75OAb59P4XQhG6olJWjlWepj2aF-ytcQWoCXlqfwTDFRCutYcAuauXAccxxoB6Z-XOT-uLcHlFJlmYemiDvbcKT2O2HuGbr96CdTeWoEbYFg1uAPCbAaaCWqN7zyJERW7rvRdr0dudpx78436qS3LvhO6iYsQ-wmjb5lM7f48sBeAeEciy9A78x0MRw3HOvrc8hFaDNgkc0upbqurfcS7sfPvcV1AhBMukw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":102046,"name":"Addendum","url":"https://www.academia.edu/Documents/in/Addendum"}],"urls":[{"id":41519900,"url":"https://doi.org/10.1002/mana.201800467"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313813"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313813/Euler_constants_for_a_Fuchsian_group_of_the_first_kind"><img alt="Research paper thumbnail of Euler constants for a Fuchsian group of the first kind" class="work-thumbnail" src="https://attachments.academia-assets.com/113970558/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313813/Euler_constants_for_a_Fuchsian_group_of_the_first_kind">Euler constants for a Fuchsian group of the first kind</a></div><div class="wp-workCard_item"><span>Acta Arithmetica</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ced848f0797ac0d80576ee6bc47393f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970558,"asset_id":118313813,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970558/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313813"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313813"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313813; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313813]").text(description); $(".js-view-count[data-work-id=118313813]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313813; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313813']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313813, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ced848f0797ac0d80576ee6bc47393f0" } } $('.js-work-strip[data-work-id=118313813]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313813,"title":"Euler constants for a Fuchsian group of the first kind","translated_title":"","metadata":{"publisher":"Polish Academy of Sciences","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Acta Arithmetica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313813/Euler_constants_for_a_Fuchsian_group_of_the_first_kind","translated_internal_url":"","created_at":"2024-04-30T01:30:28.216-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970558,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970558/thumbnails/1.jpg","file_name":"83963.pdf","download_url":"https://www.academia.edu/attachments/113970558/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Euler_constants_for_a_Fuchsian_group_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970558/83963-libre.pdf?1714469966=\u0026response-content-disposition=attachment%3B+filename%3DEuler_constants_for_a_Fuchsian_group_of.pdf\u0026Expires=1732445082\u0026Signature=a-Iy~x4sCgHNUtfKrX9JdGX0jB2Plro50H1yEh4KnKYimD5cZAGKXzztX8ACvDzR7kbvAEkJNOmsi4VsremiDQw13U3z25EqeeDsHm2WlMz66-BTPPKDtizoollvLANe-cV4bB6mZHSzFCWxfJa9QksQqVqeWI~oqepnbB8DR2ytY9mGkpvoBfhxfiyswTb0RYy2QUf6VHdJVES5VBGsXUeNz~cXRT8fVUpRv1jZtyZZ9zTHi5y1fpaKKT6YOM0j2oFgS87N7hqWh1pTGDjqb0ksNp5bDSrP~Ni9ft0KPVQQR0klv5ESxfSkY-jDTk0jxE8yLmayD3u7Jhan~WT2XQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Euler_constants_for_a_Fuchsian_group_of_the_first_kind","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970558,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970558/thumbnails/1.jpg","file_name":"83963.pdf","download_url":"https://www.academia.edu/attachments/113970558/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Euler_constants_for_a_Fuchsian_group_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970558/83963-libre.pdf?1714469966=\u0026response-content-disposition=attachment%3B+filename%3DEuler_constants_for_a_Fuchsian_group_of.pdf\u0026Expires=1732445082\u0026Signature=a-Iy~x4sCgHNUtfKrX9JdGX0jB2Plro50H1yEh4KnKYimD5cZAGKXzztX8ACvDzR7kbvAEkJNOmsi4VsremiDQw13U3z25EqeeDsHm2WlMz66-BTPPKDtizoollvLANe-cV4bB6mZHSzFCWxfJa9QksQqVqeWI~oqepnbB8DR2ytY9mGkpvoBfhxfiyswTb0RYy2QUf6VHdJVES5VBGsXUeNz~cXRT8fVUpRv1jZtyZZ9zTHi5y1fpaKKT6YOM0j2oFgS87N7hqWh1pTGDjqb0ksNp5bDSrP~Ni9ft0KPVQQR0klv5ESxfSkY-jDTk0jxE8yLmayD3u7Jhan~WT2XQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":563459,"name":"Fuchsian group","url":"https://www.academia.edu/Documents/in/Fuchsian_group"}],"urls":[{"id":41519896,"url":"https://www.impan.pl/shop/publication/transaction/download/product/83963?download.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313799"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313799/Prime_geodesic_theorem_for_the_modular_surface"><img alt="Research paper thumbnail of Prime geodesic theorem for the modular surface" class="work-thumbnail" src="https://attachments.academia-assets.com/113970551/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313799/Prime_geodesic_theorem_for_the_modular_surface">Prime geodesic theorem for the modular surface</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Feb 6, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99f87070d712d1fd57a18c97f5fb5c9a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970551,"asset_id":118313799,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970551/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313799"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313799"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313799; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313799]").text(description); $(".js-view-count[data-work-id=118313799]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313799; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313799']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313799, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99f87070d712d1fd57a18c97f5fb5c9a" } } $('.js-work-strip[data-work-id=118313799]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313799,"title":"Prime geodesic theorem for the modular surface","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":6,"month":2,"year":2017,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313799/Prime_geodesic_theorem_for_the_modular_surface","translated_internal_url":"","created_at":"2024-04-30T01:30:25.635-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970551/thumbnails/1.jpg","file_name":"1702.pdf","download_url":"https://www.academia.edu/attachments/113970551/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Prime_geodesic_theorem_for_the_modular_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970551/1702-libre.pdf?1714469966=\u0026response-content-disposition=attachment%3B+filename%3DPrime_geodesic_theorem_for_the_modular_s.pdf\u0026Expires=1732445082\u0026Signature=X0RcopL9seDOghxOAku9A138R3lJ~P6Q9OJJAaazJDWIqs4beSJKA~Gw22hXBAd1PLh-rDtzPI43wUdqpdYzBzGZN7bKS7SqinrZ7OnM1Pg~uJ5p8nOnoEBfwsLbB7WfHm6bAsril7bgJ~mJLUuRD7Z3np7mTt4o-rYScINvP1DJkbROXDr0S6Kziq3yKbBgeBVfG8gJKarMNXj3RcXcQZm4oo3l1d~GbA0Risxs4qPTrqAhmgDiLnQeAbZe7EeCnv66fizbi8xl60o5Y8NjuzlcXDzTM~glKebPrKeqio211NRUQOnir18xv15HkFB4IsaldVXPT2o6IVPJPrjQUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Prime_geodesic_theorem_for_the_modular_surface","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970551/thumbnails/1.jpg","file_name":"1702.pdf","download_url":"https://www.academia.edu/attachments/113970551/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Prime_geodesic_theorem_for_the_modular_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970551/1702-libre.pdf?1714469966=\u0026response-content-disposition=attachment%3B+filename%3DPrime_geodesic_theorem_for_the_modular_s.pdf\u0026Expires=1732445082\u0026Signature=X0RcopL9seDOghxOAku9A138R3lJ~P6Q9OJJAaazJDWIqs4beSJKA~Gw22hXBAd1PLh-rDtzPI43wUdqpdYzBzGZN7bKS7SqinrZ7OnM1Pg~uJ5p8nOnoEBfwsLbB7WfHm6bAsril7bgJ~mJLUuRD7Z3np7mTt4o-rYScINvP1DJkbROXDr0S6Kziq3yKbBgeBVfG8gJKarMNXj3RcXcQZm4oo3l1d~GbA0Risxs4qPTrqAhmgDiLnQeAbZe7EeCnv66fizbi8xl60o5Y8NjuzlcXDzTM~glKebPrKeqio211NRUQOnir18xv15HkFB4IsaldVXPT2o6IVPJPrjQUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":1107332,"name":"Modular Design","url":"https://www.academia.edu/Documents/in/Modular_Design"}],"urls":[{"id":41519887,"url":"http://arxiv.org/pdf/1702.01699"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313783"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313783/Criteria_for_absolute_and_strong_convergence_of_Fourier_series"><img alt="Research paper thumbnail of Criteria for absolute and strong convergence of Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/113970641/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313783/Criteria_for_absolute_and_strong_convergence_of_Fourier_series">Criteria for absolute and strong convergence of Fourier series</a></div><div class="wp-workCard_item"><span>Czechoslovak Mathematical Journal</span><span>, 1987</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0f4f71ab8bc954ed8f5ed3aa6896b3b0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970641,"asset_id":118313783,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970641/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313783"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313783"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313783; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313783]").text(description); $(".js-view-count[data-work-id=118313783]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313783; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313783']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313783, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0f4f71ab8bc954ed8f5ed3aa6896b3b0" } } $('.js-work-strip[data-work-id=118313783]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313783,"title":"Criteria for absolute and strong convergence of Fourier series","translated_title":"","metadata":{"publisher":"Institute of Mathematics of the Czech Academy of Sciences","publication_date":{"day":null,"month":null,"year":1987,"errors":{}},"publication_name":"Czechoslovak Mathematical Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313783/Criteria_for_absolute_and_strong_convergence_of_Fourier_series","translated_internal_url":"","created_at":"2024-04-30T01:30:19.374-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970641/thumbnails/1.jpg","file_name":"CzechMathJ_37-1987-4_6.pdf","download_url":"https://www.academia.edu/attachments/113970641/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Criteria_for_absolute_and_strong_converg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970641/CzechMathJ_37-1987-4_6-libre.pdf?1714469946=\u0026response-content-disposition=attachment%3B+filename%3DCriteria_for_absolute_and_strong_converg.pdf\u0026Expires=1732445082\u0026Signature=Bwseqy0OTwHFBrheuou38ksDaz-X2eAWLcjspBc3WpLXOxA~7HeehG3eOWvPnmXcWeH4CM7yQq9BmZDRWkxBl2Zv95InYCeLRdRAqNeftGcZm99vkd8Vi-BCarRH2TjK84V~zROSpqPQcyo1hrf2mXUGE0Jv~j0GWORL-0tbQXpg9sAaLd~AYHexnX1FuLBBFrBZTV-BMdsc9ppQqQV7nYuaQQU6T5VEB48oBTRoOIJwMboMtXaGSj8xe5IFbzQFQ~Ex7Vw-BBtjffgIMW6aTgpISmTKk-sgsggif5tNeeGt3oh5wsLGIEFIaR7qsHL7XZOKXmVNxaMmWxWilXIrwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Criteria_for_absolute_and_strong_convergence_of_Fourier_series","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970641/thumbnails/1.jpg","file_name":"CzechMathJ_37-1987-4_6.pdf","download_url":"https://www.academia.edu/attachments/113970641/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Criteria_for_absolute_and_strong_converg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970641/CzechMathJ_37-1987-4_6-libre.pdf?1714469946=\u0026response-content-disposition=attachment%3B+filename%3DCriteria_for_absolute_and_strong_converg.pdf\u0026Expires=1732445082\u0026Signature=Bwseqy0OTwHFBrheuou38ksDaz-X2eAWLcjspBc3WpLXOxA~7HeehG3eOWvPnmXcWeH4CM7yQq9BmZDRWkxBl2Zv95InYCeLRdRAqNeftGcZm99vkd8Vi-BCarRH2TjK84V~zROSpqPQcyo1hrf2mXUGE0Jv~j0GWORL-0tbQXpg9sAaLd~AYHexnX1FuLBBFrBZTV-BMdsc9ppQqQV7nYuaQQU6T5VEB48oBTRoOIJwMboMtXaGSj8xe5IFbzQFQ~Ex7Vw-BBtjffgIMW6aTgpISmTKk-sgsggif5tNeeGt3oh5wsLGIEFIaR7qsHL7XZOKXmVNxaMmWxWilXIrwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":41519878,"url":"https://doi.org/10.21136/cmj.1987.102182"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313775"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313775/Fourier_multiplier_theorem_for_atomic_Hardy_spaces_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of Fourier multiplier theorem for atomic Hardy spaces on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/113970638/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313775/Fourier_multiplier_theorem_for_atomic_Hardy_spaces_on_unbounded_Vilenkin_groups">Fourier multiplier theorem for atomic Hardy spaces on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Journal of Mathematical Analysis and Applications</span><span>, Mar 1, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dae0946469ab221e9b4662d213bc7b5b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970638,"asset_id":118313775,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970638/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313775"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313775"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313775; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313775]").text(description); $(".js-view-count[data-work-id=118313775]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313775; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313775']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313775, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dae0946469ab221e9b4662d213bc7b5b" } } $('.js-work-strip[data-work-id=118313775]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313775,"title":"Fourier multiplier theorem for atomic Hardy spaces on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":3,"year":2010,"errors":{}},"publication_name":"Journal of Mathematical Analysis and Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313775/Fourier_multiplier_theorem_for_atomic_Hardy_spaces_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2024-04-30T01:30:12.835-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970638,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970638/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMjI0N3gwOTAwNzc4MQ__.pdf","download_url":"https://www.academia.edu/attachments/113970638/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fourier_multiplier_theorem_for_atomic_Ha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970638/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMjI0N3gwOTAwNzc4MQ__-libre.pdf?1714469947=\u0026response-content-disposition=attachment%3B+filename%3DFourier_multiplier_theorem_for_atomic_Ha.pdf\u0026Expires=1732445082\u0026Signature=MXcQQZqIYu92MMWsbBXsCSfQ6lfbNEGWttXuOQdIki51tsQVXShjhx1Kj8hWieJFf4ctq3rHGdw~Y7ARs2C9yHdRMOt5sN60HgqP3-VJUfUuQTm-sQCiwBKYIo1Md63CAZUJuGIRhC0f-Kt7ODv75aRhpIhBYz-vtYvPxZr2EjFm1rmyXhDRwIbQNC1qDqhyfl6isXQK5K9WsMs5dpCOPAXs-lS47mvl0HylZ5Jv7R-Oww6sbdu0bMECPfK-bJQa9cBu0wKTg2A9jYWdJ8FtsaLILRf1xSZ~WHb3UUHgqjl-wHInSRbf1UMoPlAB6vvqjOBsUI4AMIwsgXyjXl6wMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fourier_multiplier_theorem_for_atomic_Hardy_spaces_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970638,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970638/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMjI0N3gwOTAwNzc4MQ__.pdf","download_url":"https://www.academia.edu/attachments/113970638/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fourier_multiplier_theorem_for_atomic_Ha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970638/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMjI0N3gwOTAwNzc4MQ__-libre.pdf?1714469947=\u0026response-content-disposition=attachment%3B+filename%3DFourier_multiplier_theorem_for_atomic_Ha.pdf\u0026Expires=1732445082\u0026Signature=MXcQQZqIYu92MMWsbBXsCSfQ6lfbNEGWttXuOQdIki51tsQVXShjhx1Kj8hWieJFf4ctq3rHGdw~Y7ARs2C9yHdRMOt5sN60HgqP3-VJUfUuQTm-sQCiwBKYIo1Md63CAZUJuGIRhC0f-Kt7ODv75aRhpIhBYz-vtYvPxZr2EjFm1rmyXhDRwIbQNC1qDqhyfl6isXQK5K9WsMs5dpCOPAXs-lS47mvl0HylZ5Jv7R-Oww6sbdu0bMECPfK-bJQa9cBu0wKTg2A9jYWdJ8FtsaLILRf1xSZ~WHb3UUHgqjl-wHInSRbf1UMoPlAB6vvqjOBsUI4AMIwsgXyjXl6wMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":390056,"name":"Fourier transform","url":"https://www.academia.edu/Documents/in/Fourier_transform"},{"id":518958,"name":"Mathematical Analysis and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis_and_Applications"},{"id":613709,"name":"Locally Compact Groups","url":"https://www.academia.edu/Documents/in/Locally_Compact_Groups"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":41519873,"url":"https://doi.org/10.1016/j.jmaa.2009.09.037"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313769/On_Koyama_s_refinement_of_the_prime_geodesic_theorem"><img alt="Research paper thumbnail of On Koyama’s refinement of the prime geodesic theorem" class="work-thumbnail" src="https://attachments.academia-assets.com/113970622/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313769/On_Koyama_s_refinement_of_the_prime_geodesic_theorem">On Koyama’s refinement of the prime geodesic theorem</a></div><div class="wp-workCard_item"><span>Proceedings of the Japan Academy. Series A, Mathematical sciences</span><span>, Mar 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9941c42b2857789fbbd683ab69490c24" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970622,"asset_id":118313769,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970622/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313769]").text(description); $(".js-view-count[data-work-id=118313769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313769, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9941c42b2857789fbbd683ab69490c24" } } $('.js-work-strip[data-work-id=118313769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313769,"title":"On Koyama’s refinement of the prime geodesic theorem","translated_title":"","metadata":{"publisher":"Institute of Mathematical Statistics","publication_date":{"day":1,"month":3,"year":2018,"errors":{}},"publication_name":"Proceedings of the Japan Academy. Series A, Mathematical sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313769/On_Koyama_s_refinement_of_the_prime_geodesic_theorem","translated_internal_url":"","created_at":"2024-04-30T01:30:04.336-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970622/thumbnails/1.jpg","file_name":"1701.pdf","download_url":"https://www.academia.edu/attachments/113970622/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Koyama_s_refinement_of_the_prime_geod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970622/1701-libre.pdf?1714469952=\u0026response-content-disposition=attachment%3B+filename%3DOn_Koyama_s_refinement_of_the_prime_geod.pdf\u0026Expires=1732445082\u0026Signature=U2DESaC-lfIkgGn7VvWnafEA66vt14TqQ0kT~0Z4DrXFkk-3rwxR~wrMjeK3dYe9lF8cCMYiilOp5266ndqVF0HaZWP0EcWE~JQlV1~lnZxzFO2YzjDAq18c9s90EdhgCKXGom9OxpZoz9XK69tSnBx2k0pZBG-mQHu5byk7GW7A7gExJYu5GbR0S3dL4cXmlujMdPwvsTs1u5iCKUgz0HwqVzJSthiK8ONzKuf8QLxFM95DPEqlon5Ak6y98M8YJB9MBTfksePJgUoqDMYppQzsszIW3j7kN8tZgQusXGysverTGrwiGczwjweeWZYnFD3DlTYLaAgf3Hdk5tJ~Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Koyama_s_refinement_of_the_prime_geodesic_theorem","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970622/thumbnails/1.jpg","file_name":"1701.pdf","download_url":"https://www.academia.edu/attachments/113970622/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Koyama_s_refinement_of_the_prime_geod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970622/1701-libre.pdf?1714469952=\u0026response-content-disposition=attachment%3B+filename%3DOn_Koyama_s_refinement_of_the_prime_geod.pdf\u0026Expires=1732445082\u0026Signature=U2DESaC-lfIkgGn7VvWnafEA66vt14TqQ0kT~0Z4DrXFkk-3rwxR~wrMjeK3dYe9lF8cCMYiilOp5266ndqVF0HaZWP0EcWE~JQlV1~lnZxzFO2YzjDAq18c9s90EdhgCKXGom9OxpZoz9XK69tSnBx2k0pZBG-mQHu5byk7GW7A7gExJYu5GbR0S3dL4cXmlujMdPwvsTs1u5iCKUgz0HwqVzJSthiK8ONzKuf8QLxFM95DPEqlon5Ak6y98M8YJB9MBTfksePJgUoqDMYppQzsszIW3j7kN8tZgQusXGysverTGrwiGczwjweeWZYnFD3DlTYLaAgf3Hdk5tJ~Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":229028,"name":"riemann Hypothesis","url":"https://www.academia.edu/Documents/in/riemann_Hypothesis"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":41519870,"url":"https://doi.org/10.3792/pjaa.94.21"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313760"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313760/Gallagherian_PGT_on_PSL_2_mathbb_Z_"><img alt="Research paper thumbnail of Gallagherian $PGT$ on $PSL(2,\mathbb{Z})$" class="work-thumbnail" src="https://attachments.academia-assets.com/113970519/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313760/Gallagherian_PGT_on_PSL_2_mathbb_Z_">Gallagherian $PGT$ on $PSL(2,\mathbb{Z})$</a></div><div class="wp-workCard_item"><span>Functiones et Approximatio Commentarii Mathematici</span><span>, Jun 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1898fd35c0679bf81aa8275d6efeac61" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970519,"asset_id":118313760,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970519/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313760"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313760"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313760; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313760]").text(description); $(".js-view-count[data-work-id=118313760]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313760; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313760']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313760, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1898fd35c0679bf81aa8275d6efeac61" } } $('.js-work-strip[data-work-id=118313760]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313760,"title":"Gallagherian $PGT$ on $PSL(2,\\mathbb{Z})$","translated_title":"","metadata":{"publisher":"Adam Mickiewicz University","publication_date":{"day":1,"month":6,"year":2018,"errors":{}},"publication_name":"Functiones et Approximatio Commentarii Mathematici"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313760/Gallagherian_PGT_on_PSL_2_mathbb_Z_","translated_internal_url":"","created_at":"2024-04-30T01:30:02.508-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970519,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970519/thumbnails/1.jpg","file_name":"1703.pdf","download_url":"https://www.academia.edu/attachments/113970519/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gallagherian_PGT_on_PSL_2_mathbb_Z.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970519/1703-libre.pdf?1714469975=\u0026response-content-disposition=attachment%3B+filename%3DGallagherian_PGT_on_PSL_2_mathbb_Z.pdf\u0026Expires=1732445082\u0026Signature=bMtMkuudjJxmk7ON2cfNy~vVnCPD-3wy2ujviHp-DULd1K26jbppDMu-xIkZEK8ieDtAompeOlR-RHwAELLMpetz8sKZnG-dnwFUvqtPVlW8xDT1lDuShNw09QMdcUoSGTPjeaKrxk5NiRony8v3hOnmO~579LZAatgI7YYgKdBkJx-WwVHHEiwHKkNuNpmqfiJNui9nrJjknjJ~hX6pYOUz~-nBHu19HnNG-PAr2c-yOVUqJ7LrvBaPNPzR~~MZsf36Ly9h65f7M-eXTdDy9~ekDvzrIlZyNLB4BmZEBd6jIF-1OBZS8eL7juHbfubXWbnUo~c1lTRBeO28VKkodw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gallagherian_PGT_on_PSL_2_mathbb_Z_","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970519,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970519/thumbnails/1.jpg","file_name":"1703.pdf","download_url":"https://www.academia.edu/attachments/113970519/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gallagherian_PGT_on_PSL_2_mathbb_Z.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970519/1703-libre.pdf?1714469975=\u0026response-content-disposition=attachment%3B+filename%3DGallagherian_PGT_on_PSL_2_mathbb_Z.pdf\u0026Expires=1732445082\u0026Signature=bMtMkuudjJxmk7ON2cfNy~vVnCPD-3wy2ujviHp-DULd1K26jbppDMu-xIkZEK8ieDtAompeOlR-RHwAELLMpetz8sKZnG-dnwFUvqtPVlW8xDT1lDuShNw09QMdcUoSGTPjeaKrxk5NiRony8v3hOnmO~579LZAatgI7YYgKdBkJx-WwVHHEiwHKkNuNpmqfiJNui9nrJjknjJ~hX6pYOUz~-nBHu19HnNG-PAr2c-yOVUqJ7LrvBaPNPzR~~MZsf36Ly9h65f7M-eXTdDy9~ekDvzrIlZyNLB4BmZEBd6jIF-1OBZS8eL7juHbfubXWbnUo~c1lTRBeO28VKkodw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":138342,"name":"PSL","url":"https://www.academia.edu/Documents/in/PSL"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[{"id":41519863,"url":"http://arxiv.org/pdf/1703.00165"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313757"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313757/Strong_boundedness_strong_convergence_and_generalized_variation"><img alt="Research paper thumbnail of Strong boundedness, strong convergence and generalized variation" class="work-thumbnail" src="https://attachments.academia-assets.com/113970518/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313757/Strong_boundedness_strong_convergence_and_generalized_variation">Strong boundedness, strong convergence and generalized variation</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Apr 18, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4e0af3e4e118e6a150da4dc899b98d5a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970518,"asset_id":118313757,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970518/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313757"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313757"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313757; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313757]").text(description); $(".js-view-count[data-work-id=118313757]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313757; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313757']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313757, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4e0af3e4e118e6a150da4dc899b98d5a" } } $('.js-work-strip[data-work-id=118313757]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313757,"title":"Strong boundedness, strong convergence and generalized variation","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":18,"month":4,"year":2017,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313757/Strong_boundedness_strong_convergence_and_generalized_variation","translated_internal_url":"","created_at":"2024-04-30T01:30:01.905-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970518,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970518/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970518/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970518/1612-libre.pdf?1714469980=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445082\u0026Signature=f5thbvdhwdls8bRW2x8xcY-DXhQdLpnCD7EqZVFeNdHpZVkt7yJeCLZXBqgGOd~gMQ2fZ4yxQR-fla-6Vcg7-Cc5CYYtIRFxjyFyEY0Bavgn8PmVP66PA0o657xmENGKfZp1Cv9U23fOz-Cjqox8fgVe9~x2ztoXsUkt6aowuwaeoVZ1BUoYfTGvBv0S51Z-Pjta~51N2~i7DCd4T8Eq4Dl-WvWDEqGIfiyAxM9J1tp0v-WzVr5mmQtnYyoUiOfJ~6EW9Gj3~CgvlPJwDBDLzVu3R~-2DHCViqqWFijzqatPta0lUP5afN~PoNEBuqk9vVwsfY3JqXwNi-U9pq5TlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Strong_boundedness_strong_convergence_and_generalized_variation","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970518,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970518/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970518/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970518/1612-libre.pdf?1714469980=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445082\u0026Signature=f5thbvdhwdls8bRW2x8xcY-DXhQdLpnCD7EqZVFeNdHpZVkt7yJeCLZXBqgGOd~gMQ2fZ4yxQR-fla-6Vcg7-Cc5CYYtIRFxjyFyEY0Bavgn8PmVP66PA0o657xmENGKfZp1Cv9U23fOz-Cjqox8fgVe9~x2ztoXsUkt6aowuwaeoVZ1BUoYfTGvBv0S51Z-Pjta~51N2~i7DCd4T8Eq4Dl-WvWDEqGIfiyAxM9J1tp0v-WzVr5mmQtnYyoUiOfJ~6EW9Gj3~CgvlPJwDBDLzVu3R~-2DHCViqqWFijzqatPta0lUP5afN~PoNEBuqk9vVwsfY3JqXwNi-U9pq5TlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113970517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970517/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970517/download_file","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970517/1612-libre.pdf?1714469974=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445082\u0026Signature=dtpntg76-bif5AxyORyNPjj7FJVCgMrWPcpE3BqTZNa5PQ1FfCWRNurR2J~eoAk4tDmyayGZtXORUksU7Cn20NoP4cCROeUXq5alUBrygDgBNyzyA56nQswNjq22zbSo7d-ASfxWGzaZ0ehWDxJmgWW8nytIoGuvkp4iZ8Ke-20N4ZsTuFrHWsYBVqZd3C31RrY4fhoRfJ9mtxHDnmR4bekkMRbRV6SPp0UuHwSksu0dtje9o0xMaFRnvfNYaKOeHhGze6o2x53TJpBP3QW11ZmT~4wmvtiVtr4kOt~0uxzSgq7FPx51HXvRiExkdd4f32FKBcteOHN0FzOP2a2ibw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":2911400,"name":"Trigonometric Functions","url":"https://www.academia.edu/Documents/in/Trigonometric_Functions"},{"id":3753192,"name":"trigonometric series","url":"https://www.academia.edu/Documents/in/trigonometric_series"}],"urls":[{"id":41519861,"url":"http://arxiv.org/pdf/1612.06250"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313755"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313755/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds"><img alt="Research paper thumbnail of On the prime geodesic theorem for hyperbolic 3-manifolds" class="work-thumbnail" src="https://attachments.academia-assets.com/113970514/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313755/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds">On the prime geodesic theorem for hyperbolic 3-manifolds</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, May 16, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d07ed16eabda046f6b04dad50a7dc1b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970514,"asset_id":118313755,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970514/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313755"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313755"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313755; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313755]").text(description); $(".js-view-count[data-work-id=118313755]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313755; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313755']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313755, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d07ed16eabda046f6b04dad50a7dc1b" } } $('.js-work-strip[data-work-id=118313755]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313755,"title":"On the prime geodesic theorem for hyperbolic 3-manifolds","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":16,"month":5,"year":2017,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313755/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds","translated_internal_url":"","created_at":"2024-04-30T01:30:01.082-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970514,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970514/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970514/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970514/1705-libre.pdf?1714469979=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445082\u0026Signature=IRRscMoKMEvn1wpw4Ica0653Va8rjjOhIBl~lXIr4IaqVqZu9BJWSjqH9YYgY~dLLmpN6R-Kj8l-5T8mckloNUUS6Xndu4vmIVSMH3pWZ8SvOQv-qQyocV3UYWvxrGR8obqz-7wg1AQcsS0fYv93PulKHMDejI-jX02PiYFDEQh7wriYCgbn~JmMV6qelpxBr4UTrvBp~wGchY5yhiTqgblpmo6s4XULDnJcZgXevqrcDU4GHyjOD4NYMF20TtDw4jACITIQnvn4pWYusqzn3xwcPN3em~0T7obUSX2yyD0bFnWDDU2VfPX0cZgJMAH4U8udrD9iniAzIEe0onjg~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970514,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970514/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970514/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970514/1705-libre.pdf?1714469979=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445082\u0026Signature=IRRscMoKMEvn1wpw4Ica0653Va8rjjOhIBl~lXIr4IaqVqZu9BJWSjqH9YYgY~dLLmpN6R-Kj8l-5T8mckloNUUS6Xndu4vmIVSMH3pWZ8SvOQv-qQyocV3UYWvxrGR8obqz-7wg1AQcsS0fYv93PulKHMDejI-jX02PiYFDEQh7wriYCgbn~JmMV6qelpxBr4UTrvBp~wGchY5yhiTqgblpmo6s4XULDnJcZgXevqrcDU4GHyjOD4NYMF20TtDw4jACITIQnvn4pWYusqzn3xwcPN3em~0T7obUSX2yyD0bFnWDDU2VfPX0cZgJMAH4U8udrD9iniAzIEe0onjg~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":1447726,"name":"Hurst Exponent","url":"https://www.academia.edu/Documents/in/Hurst_Exponent"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":41519859,"url":"http://arxiv.org/pdf/1705.05626"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313752"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313752/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/114162061/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313752/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups">On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Oct 30, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8491c574779088368bcbfde9f27c3679" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":114162061,"asset_id":118313752,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/114162061/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313752"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313752"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313752; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313752]").text(description); $(".js-view-count[data-work-id=118313752]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313752; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313752']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313752, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8491c574779088368bcbfde9f27c3679" } } $('.js-work-strip[data-work-id=118313752]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313752,"title":"On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":30,"month":10,"year":2010,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313752/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2024-04-30T01:30:00.196-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":114162061,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114162061/thumbnails/1.jpg","file_name":"s10474-010-0023-920240505-1-cq3jb7.pdf","download_url":"https://www.academia.edu/attachments/114162061/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Lebesgue_test_for_convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114162061/s10474-010-0023-920240505-1-cq3jb7-libre.pdf?1714899914=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Lebesgue_test_for_convergence_of.pdf\u0026Expires=1732445082\u0026Signature=GvtEhjM3XykfyCaxZm-56x-Q4UvV7-pQscRe9XQKLeWIO582-spMn7Q0fOaG5Qb7yd1MXCaVyofog57mtr-dV-RKfsiIbOX2caoCkvHXXgqSDqepEoL396gOjlFwGj4kYh5uiZM-XRfuEFEDBZhDGsZs2ZEmu6rpVvka4VxbmyvvUHlBcIzYYJZjMujR~UPNYoQuN0lbjjR5gw9IpWwG~X8T16Z48fAhGK6yItRfchityJ8dIFMJDcIbTOBr3ILXGT96iNMfY3-HGKAyT9J4jo580A-~sq3jRJpNZPyR9KuNC~xhtypk~FzMRG-fBRHPaNsv7nYvzfSUxP9woCMOaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":114162061,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114162061/thumbnails/1.jpg","file_name":"s10474-010-0023-920240505-1-cq3jb7.pdf","download_url":"https://www.academia.edu/attachments/114162061/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Lebesgue_test_for_convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114162061/s10474-010-0023-920240505-1-cq3jb7-libre.pdf?1714899914=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Lebesgue_test_for_convergence_of.pdf\u0026Expires=1732445082\u0026Signature=GvtEhjM3XykfyCaxZm-56x-Q4UvV7-pQscRe9XQKLeWIO582-spMn7Q0fOaG5Qb7yd1MXCaVyofog57mtr-dV-RKfsiIbOX2caoCkvHXXgqSDqepEoL396gOjlFwGj4kYh5uiZM-XRfuEFEDBZhDGsZs2ZEmu6rpVvka4VxbmyvvUHlBcIzYYJZjMujR~UPNYoQuN0lbjjR5gw9IpWwG~X8T16Z48fAhGK6yItRfchityJ8dIFMJDcIbTOBr3ILXGT96iNMfY3-HGKAyT9J4jo580A-~sq3jRJpNZPyR9KuNC~xhtypk~FzMRG-fBRHPaNsv7nYvzfSUxP9woCMOaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":41519857,"url":"https://doi.org/10.1007/s10474-010-0023-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="4653848" id="papers"><div class="js-work-strip profile--work_container" data-work-id="124046730"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/124046730/On_maximal_operators_on_k_spheres_in_Z_n"><img alt="Research paper thumbnail of On maximal operators on k-spheres in Z^n" class="work-thumbnail" src="https://attachments.academia-assets.com/118444390/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/124046730/On_maximal_operators_on_k_spheres_in_Z_n">On maximal operators on k-spheres in Z^n</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b01114047a1725c70a3931b29f589cc2" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":118444390,"asset_id":124046730,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/118444390/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124046730"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124046730"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124046730; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124046730]").text(description); $(".js-view-count[data-work-id=124046730]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124046730; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124046730']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124046730, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b01114047a1725c70a3931b29f589cc2" } } $('.js-work-strip[data-work-id=124046730]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124046730,"title":"On maximal operators on k-spheres in Z^n","translated_title":"","metadata":{"publisher":"American Mathematical Society","publication_date":{"day":null,"month":null,"year":2006,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/124046730/On_maximal_operators_on_k_spheres_in_Z_n","translated_internal_url":"","created_at":"2024-09-20T23:16:40.719-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":118444390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118444390/thumbnails/1.jpg","file_name":"S0002-9939-06-08458-9.pdf","download_url":"https://www.academia.edu/attachments/118444390/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_maximal_operators_on_k_spheres_in_Z_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118444390/S0002-9939-06-08458-9-libre.pdf?1727335016=\u0026response-content-disposition=attachment%3B+filename%3DOn_maximal_operators_on_k_spheres_in_Z_n.pdf\u0026Expires=1732445081\u0026Signature=c1QWdeU7~neX97EJX6wUcSzd8rwqbrHZDzcjOGSsyKEnyyKW4a2sEj1SVnLVyOGn917v3mn5iWPX8nwnUZgJaYp3oXH5034mG8kr5mnPFr-umTKD51RreYRemWF33JxY0HnQQJ0j9Ut3yQ1NhT4IE7hyEmChaZOXcVtEFpY29J30wJ6SQSvxS2ytNIYRULeGt8w3DT6iQo42k6GtDOWmo0BJE2xZC2MR-aWVYbEFiC2YM7ZGq-cKvEot2XI~ig3ThizSUGtsQQ6OAbkk13NWRkS5NOA7izvhzrbNddQvYdc5Z8tGN9kXJMT5m12ctXGZEeWn~dLjFbk6zrmJOxR1OA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_maximal_operators_on_k_spheres_in_Z_n","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":118444390,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/118444390/thumbnails/1.jpg","file_name":"S0002-9939-06-08458-9.pdf","download_url":"https://www.academia.edu/attachments/118444390/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_maximal_operators_on_k_spheres_in_Z_n.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/118444390/S0002-9939-06-08458-9-libre.pdf?1727335016=\u0026response-content-disposition=attachment%3B+filename%3DOn_maximal_operators_on_k_spheres_in_Z_n.pdf\u0026Expires=1732445081\u0026Signature=c1QWdeU7~neX97EJX6wUcSzd8rwqbrHZDzcjOGSsyKEnyyKW4a2sEj1SVnLVyOGn917v3mn5iWPX8nwnUZgJaYp3oXH5034mG8kr5mnPFr-umTKD51RreYRemWF33JxY0HnQQJ0j9Ut3yQ1NhT4IE7hyEmChaZOXcVtEFpY29J30wJ6SQSvxS2ytNIYRULeGt8w3DT6iQo42k6GtDOWmo0BJE2xZC2MR-aWVYbEFiC2YM7ZGq-cKvEot2XI~ig3ThizSUGtsQQ6OAbkk13NWRkS5NOA7izvhzrbNddQvYdc5Z8tGN9kXJMT5m12ctXGZEeWn~dLjFbk6zrmJOxR1OA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":976192,"name":"Spheres","url":"https://www.academia.edu/Documents/in/Spheres"}],"urls":[{"id":44761890,"url":"https://dialnet.unirioja.es/servlet/articulo?codigo=2072575"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="124046718"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/124046718/On_Effective_Upper_Bound_for_Huber_s_Constant"><img alt="Research paper thumbnail of On Effective Upper Bound for Huber’s Constant" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/124046718/On_Effective_Upper_Bound_for_Huber_s_Constant">On Effective Upper Bound for Huber’s Constant</a></div><div class="wp-workCard_item"><span>Results in mathematics</span><span>, Jun 14, 2024</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We determine an effective upper bound for Huber&amp;#39;s constant in the prime geodesic theorem ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We determine an effective upper bound for Huber&amp;#39;s constant in the prime geodesic theorem on cofinite Fuchsian groups in the previously uncovered case of orbifolds on which the length of the shortest prime geodesic does not exceed 4/3. Huber&amp;#39;s constant is relevant for obtaining effective, numerically computable, bounds for various analytic quantities which appear in the Arakelov theory of algebraic curves. The result is illustrated by finding an upper bound for this constant on (2,3,7) triangle group. We also calculate an effective upper bound for Faltings&amp;#39;s delta function on the Klein quartic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="124046718"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="124046718"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 124046718; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=124046718]").text(description); $(".js-view-count[data-work-id=124046718]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 124046718; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='124046718']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 124046718, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=124046718]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":124046718,"title":"On Effective Upper Bound for Huber’s Constant","translated_title":"","metadata":{"abstract":"We determine an effective upper bound for Huber\u0026amp;#39;s constant in the prime geodesic theorem on cofinite Fuchsian groups in the previously uncovered case of orbifolds on which the length of the shortest prime geodesic does not exceed 4/3. Huber\u0026amp;#39;s constant is relevant for obtaining effective, numerically computable, bounds for various analytic quantities which appear in the Arakelov theory of algebraic curves. The result is illustrated by finding an upper bound for this constant on (2,3,7) triangle group. We also calculate an effective upper bound for Faltings\u0026amp;#39;s delta function on the Klein quartic.","publication_date":{"day":14,"month":6,"year":2024,"errors":{}},"publication_name":"Results in mathematics"},"translated_abstract":"We determine an effective upper bound for Huber\u0026amp;#39;s constant in the prime geodesic theorem on cofinite Fuchsian groups in the previously uncovered case of orbifolds on which the length of the shortest prime geodesic does not exceed 4/3. Huber\u0026amp;#39;s constant is relevant for obtaining effective, numerically computable, bounds for various analytic quantities which appear in the Arakelov theory of algebraic curves. The result is illustrated by finding an upper bound for this constant on (2,3,7) triangle group. We also calculate an effective upper bound for Faltings\u0026amp;#39;s delta function on the Klein quartic.","internal_url":"https://www.academia.edu/124046718/On_Effective_Upper_Bound_for_Huber_s_Constant","translated_internal_url":"","created_at":"2024-09-20T23:15:24.084-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Effective_Upper_Bound_for_Huber_s_Constant","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"}],"urls":[{"id":44761884,"url":"https://doi.org/10.1007/s00025-024-02211-6"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313858"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313858/Gallagherian_PGT_on_PSL_2_mathbb_Z_"><img alt="Research paper thumbnail of Gallagherian $PGT$ on $PSL(2,\mathbb{Z})$" class="work-thumbnail" src="https://attachments.academia-assets.com/113970624/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313858/Gallagherian_PGT_on_PSL_2_mathbb_Z_">Gallagherian $PGT$ on $PSL(2,\mathbb{Z})$</a></div><div class="wp-workCard_item"><span>Functiones et Approximatio Commentarii Mathematici</span><span>, Jun 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="24af56a29d8c5dbfbfc2e5f3ea07f043" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970624,"asset_id":118313858,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970624/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313858"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313858"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313858; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313858]").text(description); $(".js-view-count[data-work-id=118313858]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313858; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313858']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313858, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "24af56a29d8c5dbfbfc2e5f3ea07f043" } } $('.js-work-strip[data-work-id=118313858]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313858,"title":"Gallagherian $PGT$ on $PSL(2,\\mathbb{Z})$","translated_title":"","metadata":{"publisher":"Adam Mickiewicz University","publication_date":{"day":1,"month":6,"year":2018,"errors":{}},"publication_name":"Functiones et Approximatio Commentarii Mathematici"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313858/Gallagherian_PGT_on_PSL_2_mathbb_Z_","translated_internal_url":"","created_at":"2024-04-30T01:31:08.274-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970624,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970624/thumbnails/1.jpg","file_name":"1703.pdf","download_url":"https://www.academia.edu/attachments/113970624/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gallagherian_PGT_on_PSL_2_mathbb_Z.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970624/1703-libre.pdf?1714469951=\u0026response-content-disposition=attachment%3B+filename%3DGallagherian_PGT_on_PSL_2_mathbb_Z.pdf\u0026Expires=1732445081\u0026Signature=CCW34cI1ABgBTi~l4od~s1k1daYWHbHnGc1hByBH2aS2i7VqZnnWV-Ys5gBCU0Yg72AqPq82iT9YJgPo-AYbf76CM8j1iwaprD8gsZcvtW3-FIMDX5RsuM7A-AJBlxWg~CzyOOaR8WsvQDa6vYF4QBOmn6HlnxryAUhy4o--tT2~U3Q1K2IfrAn9o6t2uoJGA50Q1sthw0oe7L~c83SMf8wFDP8MZuRmwS8RHaGzoyJba8DUDoc5ZKEeEErAQz-YUc-b9JXjWxhJd4u02p6YOe8PSi-FeclJRFXX8hzw1eKiwhAJa3LVbONBgDHvpaMyKK0NgLLgrj3ciYx3JwX5Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gallagherian_PGT_on_PSL_2_mathbb_Z_","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970624,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970624/thumbnails/1.jpg","file_name":"1703.pdf","download_url":"https://www.academia.edu/attachments/113970624/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gallagherian_PGT_on_PSL_2_mathbb_Z.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970624/1703-libre.pdf?1714469951=\u0026response-content-disposition=attachment%3B+filename%3DGallagherian_PGT_on_PSL_2_mathbb_Z.pdf\u0026Expires=1732445081\u0026Signature=CCW34cI1ABgBTi~l4od~s1k1daYWHbHnGc1hByBH2aS2i7VqZnnWV-Ys5gBCU0Yg72AqPq82iT9YJgPo-AYbf76CM8j1iwaprD8gsZcvtW3-FIMDX5RsuM7A-AJBlxWg~CzyOOaR8WsvQDa6vYF4QBOmn6HlnxryAUhy4o--tT2~U3Q1K2IfrAn9o6t2uoJGA50Q1sthw0oe7L~c83SMf8wFDP8MZuRmwS8RHaGzoyJba8DUDoc5ZKEeEErAQz-YUc-b9JXjWxhJd4u02p6YOe8PSi-FeclJRFXX8hzw1eKiwhAJa3LVbONBgDHvpaMyKK0NgLLgrj3ciYx3JwX5Hw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":138342,"name":"PSL","url":"https://www.academia.edu/Documents/in/PSL"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[{"id":41519922,"url":"http://arxiv.org/pdf/1703.00165"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313853"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313853/Strong_boundedness_strong_convergence_and_generalized_variation"><img alt="Research paper thumbnail of Strong boundedness, strong convergence and generalized variation" class="work-thumbnail" src="https://attachments.academia-assets.com/113970621/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313853/Strong_boundedness_strong_convergence_and_generalized_variation">Strong boundedness, strong convergence and generalized variation</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Apr 18, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b6a9e0ec5ce635a1d2d18fb572b10b79" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970621,"asset_id":118313853,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970621/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313853"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313853"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313853; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313853]").text(description); $(".js-view-count[data-work-id=118313853]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313853; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313853']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313853, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b6a9e0ec5ce635a1d2d18fb572b10b79" } } $('.js-work-strip[data-work-id=118313853]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313853,"title":"Strong boundedness, strong convergence and generalized variation","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":18,"month":4,"year":2017,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313853/Strong_boundedness_strong_convergence_and_generalized_variation","translated_internal_url":"","created_at":"2024-04-30T01:31:01.563-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970621/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970621/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970621/1612-libre.pdf?1714469956=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445081\u0026Signature=HakyVSKgG8P6rxlUDinl7be1kv64oIQmSvqMDhw0WC0PVHK7nfCszlEpax481WHaG~knmq9K9Tcq2aEH11kPTeOjgodx0OFC~wPrhkH43C-r~IPLKEPpSpEUNlbwUXOMlTB-eXBLzd1mxbvan~TabTO~ypsli03N3-Ta6AN93n8eW9pxakY4VC4qKcWHgi36PNo-ynTMERWlmJEOT~wBzHG37T0M6rrxidlVpe6yqR9~NbXQBxBdWAKKHp-np0RNZ73xeMpaL8G2cFmJ8QqAbfTkr3H8TkQP2rox6236rnJOMoVPNzfh5KujNN6xtESbQLvnqRUZtoq6PFpSnyrgVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Strong_boundedness_strong_convergence_and_generalized_variation","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970621,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970621/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970621/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970621/1612-libre.pdf?1714469956=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445081\u0026Signature=HakyVSKgG8P6rxlUDinl7be1kv64oIQmSvqMDhw0WC0PVHK7nfCszlEpax481WHaG~knmq9K9Tcq2aEH11kPTeOjgodx0OFC~wPrhkH43C-r~IPLKEPpSpEUNlbwUXOMlTB-eXBLzd1mxbvan~TabTO~ypsli03N3-Ta6AN93n8eW9pxakY4VC4qKcWHgi36PNo-ynTMERWlmJEOT~wBzHG37T0M6rrxidlVpe6yqR9~NbXQBxBdWAKKHp-np0RNZ73xeMpaL8G2cFmJ8QqAbfTkr3H8TkQP2rox6236rnJOMoVPNzfh5KujNN6xtESbQLvnqRUZtoq6PFpSnyrgVQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":2911400,"name":"Trigonometric Functions","url":"https://www.academia.edu/Documents/in/Trigonometric_Functions"},{"id":3753192,"name":"trigonometric series","url":"https://www.academia.edu/Documents/in/trigonometric_series"}],"urls":[{"id":41519921,"url":"http://arxiv.org/pdf/1612.06250"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313852"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313852/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds"><img alt="Research paper thumbnail of On the prime geodesic theorem for hyperbolic 3-manifolds" class="work-thumbnail" src="https://attachments.academia-assets.com/113970612/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313852/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds">On the prime geodesic theorem for hyperbolic 3-manifolds</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, May 16, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dc5ed198dd95616bcf4ae0e512c853c1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970612,"asset_id":118313852,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970612/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313852"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313852"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313852; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313852]").text(description); $(".js-view-count[data-work-id=118313852]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313852; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313852']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313852, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dc5ed198dd95616bcf4ae0e512c853c1" } } $('.js-work-strip[data-work-id=118313852]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313852,"title":"On the prime geodesic theorem for hyperbolic 3-manifolds","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":16,"month":5,"year":2017,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313852/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds","translated_internal_url":"","created_at":"2024-04-30T01:30:59.017-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970612/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970612/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970612/1705-libre.pdf?1714469954=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445081\u0026Signature=CRaeOC5oMFVNaMN~gQ8plBnd7xB7qp~lu7whxUw7CEOGEV59aBXSrYHUavJPvcqLE0dAqzuKAjNQNKCQHekbvKaZQJcpjoVR11Pb4wiirZvQvYKx19R5h02qXrrSBDjOI2IwzIlr8Or4KqqH4IQd0OdLmg4nQGbeaqcooxof4UGV3a-SgP1O1FQrRIqEyhyosfbvkQdxjdXOyDPabey6lnGhgkQHOTT7kUvRqWQtd1exLU6x78mCIn28KvYxAqJD0UU1u1ei7iAJQyAGbNiFoa0HSRixHLGq5h0Esy7vSH6ZzLekQR5JSCGfXyo5AC4KQi3y8xLPFi65t8kayseT8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970612,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970612/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970612/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970612/1705-libre.pdf?1714469954=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445081\u0026Signature=CRaeOC5oMFVNaMN~gQ8plBnd7xB7qp~lu7whxUw7CEOGEV59aBXSrYHUavJPvcqLE0dAqzuKAjNQNKCQHekbvKaZQJcpjoVR11Pb4wiirZvQvYKx19R5h02qXrrSBDjOI2IwzIlr8Or4KqqH4IQd0OdLmg4nQGbeaqcooxof4UGV3a-SgP1O1FQrRIqEyhyosfbvkQdxjdXOyDPabey6lnGhgkQHOTT7kUvRqWQtd1exLU6x78mCIn28KvYxAqJD0UU1u1ei7iAJQyAGbNiFoa0HSRixHLGq5h0Esy7vSH6ZzLekQR5JSCGfXyo5AC4KQi3y8xLPFi65t8kayseT8Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113970613,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970613/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970613/download_file","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970613/1705-libre.pdf?1714469954=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445081\u0026Signature=OKSsEwbwaltgkYAX7aaHzTXf34mNBtFmsoxDkytYZjeJb4E6Sgm4h9AaBFEIgs7EURMWJuy9xFqqCdXxyC6F44JE~-OfIoVpc9Wrqx0QEaqtNJY4DKfdobq-j1CxVo8dmWbe1pGqQoVQxxiMT8UaErzTi1Kzo64r0e0vi6O1-2h4-w7QGgN4fh1Vc9v9rSnEXEvt2jRHvfrMV1HcOPjeuPgh2mYh3ekrB7f1fD~ig8rCvMbXFzSkP5MHcOdwR-MH9jLJeFK3xs1HFgytmOVLddYzpfr1oKcNFIN05d34T8HOCpZHjSYkWNeBRGoeAudsQC6QUW~SuT5L5GaB7-S25g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":41519919,"url":"http://arxiv.org/pdf/1705.05626"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313851"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313851/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/114162062/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313851/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups">On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Oct 30, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7b2e13f8759f1e959bc9dfa5997e2ad3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":114162062,"asset_id":118313851,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/114162062/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313851"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313851"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313851; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313851]").text(description); $(".js-view-count[data-work-id=118313851]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313851; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313851']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313851, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7b2e13f8759f1e959bc9dfa5997e2ad3" } } $('.js-work-strip[data-work-id=118313851]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313851,"title":"On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":30,"month":10,"year":2010,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313851/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2024-04-30T01:30:55.931-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":114162062,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114162062/thumbnails/1.jpg","file_name":"s10474-010-0023-920240505-1-hdjyjq.pdf","download_url":"https://www.academia.edu/attachments/114162062/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Lebesgue_test_for_convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114162062/s10474-010-0023-920240505-1-hdjyjq-libre.pdf?1714899916=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Lebesgue_test_for_convergence_of.pdf\u0026Expires=1732445081\u0026Signature=a6m6GMYJs0BK74M5cDwt8SjRmQ2xF4Sx6QXHDUSqUsHMlQW-tUOH~aan1REq0DFSGihYIpcHnCB4lzAe6DTfmtx9rcJ0ZUeOSnE7p3W0B9Ev-h0jp2dh9ZVWpL035vyAjT3OIDlHFooYMMCvcYOLgrrk4qpFwzqr-72MPO~kL-Ilwf~~xQxktW6VnaV98zJPB1QGM5vhimITLNIfsPca8XUpJv55R1EIUOliifc2KVKt2vzZ9eX5dFUoS9l0Fi~0oohWUo1QjOU~OgBiyVnPaOG-4LET9-1YlreRc48x5OjBoPfugZeGYxLZoWhpw72RZxclAuaZQcbCFmR14EpGuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":114162062,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114162062/thumbnails/1.jpg","file_name":"s10474-010-0023-920240505-1-hdjyjq.pdf","download_url":"https://www.academia.edu/attachments/114162062/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Lebesgue_test_for_convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114162062/s10474-010-0023-920240505-1-hdjyjq-libre.pdf?1714899916=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Lebesgue_test_for_convergence_of.pdf\u0026Expires=1732445081\u0026Signature=a6m6GMYJs0BK74M5cDwt8SjRmQ2xF4Sx6QXHDUSqUsHMlQW-tUOH~aan1REq0DFSGihYIpcHnCB4lzAe6DTfmtx9rcJ0ZUeOSnE7p3W0B9Ev-h0jp2dh9ZVWpL035vyAjT3OIDlHFooYMMCvcYOLgrrk4qpFwzqr-72MPO~kL-Ilwf~~xQxktW6VnaV98zJPB1QGM5vhimITLNIfsPca8XUpJv55R1EIUOliifc2KVKt2vzZ9eX5dFUoS9l0Fi~0oohWUo1QjOU~OgBiyVnPaOG-4LET9-1YlreRc48x5OjBoPfugZeGYxLZoWhpw72RZxclAuaZQcbCFmR14EpGuw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":41519918,"url":"https://doi.org/10.1007/s10474-010-0023-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313847"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118313847/Effective_bounds_for_Huber_s_constant_and_Faltings_s_delta_function"><img alt="Research paper thumbnail of Effective bounds for Huber’s constant and Faltings’s delta function" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118313847/Effective_bounds_for_Huber_s_constant_and_Faltings_s_delta_function">Effective bounds for Huber’s constant and Faltings’s delta function</a></div><div class="wp-workCard_item"><span>Mathematics of Computation</span><span>, Mar 24, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic t...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic theorem on cofinite Fuchsian groups of the first kind, we refine the constants therein. The newly obtained effective upper bound for Huber’s constant is in the modular surface case approximately 74000 74000 -times smaller than the previously claimed one. The degree of reduction in the case of an upper bound for Faltings’s delta function ranges from 10 8 10^{8} to 10 16 10^{16} .</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313847"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313847"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313847; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313847]").text(description); $(".js-view-count[data-work-id=118313847]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313847; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313847']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313847, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118313847]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313847,"title":"Effective bounds for Huber’s constant and Faltings’s delta function","translated_title":"","metadata":{"abstract":"By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic theorem on cofinite Fuchsian groups of the first kind, we refine the constants therein. The newly obtained effective upper bound for Huber’s constant is in the modular surface case approximately 74000 74000 -times smaller than the previously claimed one. The degree of reduction in the case of an upper bound for Faltings’s delta function ranges from 10 8 10^{8} to 10 16 10^{16} .","publisher":"American Mathematical Society","publication_date":{"day":24,"month":3,"year":2021,"errors":{}},"publication_name":"Mathematics of Computation"},"translated_abstract":"By a closer inspection of the Friedman-Jorgenson-Kramer algorithm related to the prime geodesic theorem on cofinite Fuchsian groups of the first kind, we refine the constants therein. The newly obtained effective upper bound for Huber’s constant is in the modular surface case approximately 74000 74000 -times smaller than the previously claimed one. The degree of reduction in the case of an upper bound for Faltings’s delta function ranges from 10 8 10^{8} to 10 16 10^{16} .","internal_url":"https://www.academia.edu/118313847/Effective_bounds_for_Huber_s_constant_and_Faltings_s_delta_function","translated_internal_url":"","created_at":"2024-04-30T01:30:51.840-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Effective_bounds_for_Huber_s_constant_and_Faltings_s_delta_function","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[{"id":41519917,"url":"https://doi.org/10.1090/mcom/3631"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313844"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/118313844/Fej%C3%A9rs_theorem_for_the_classesV_p"><img alt="Research paper thumbnail of Fejér's theorem for the classesV p" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/118313844/Fej%C3%A9rs_theorem_for_the_classesV_p">Fejér's theorem for the classesV p</a></div><div class="wp-workCard_item"><span>Rendiconti Del Circolo Matematico Di Palermo</span><span>, 1986</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313844"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313844"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313844; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313844]").text(description); $(".js-view-count[data-work-id=118313844]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313844; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313844']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313844, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=118313844]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313844,"title":"Fejér's theorem for the classesV p","translated_title":"","metadata":{"publisher":"Springer Science+Business Media","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Rendiconti Del Circolo Matematico Di Palermo"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313844/Fej%C3%A9rs_theorem_for_the_classesV_p","translated_internal_url":"","created_at":"2024-04-30T01:30:48.548-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fejérs_theorem_for_the_classesV_p","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":5436,"name":"Combinatorics","url":"https://www.academia.edu/Documents/in/Combinatorics"}],"urls":[{"id":41519915,"url":"https://doi.org/10.1007/bf02844044"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313839"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313839/On_the_classes_Lambda_rm_BV_and_rm_V_nu_"><img alt="Research paper thumbnail of On the classes $\Lambda {\rm BV}$ and ${\rm V}[\nu]$" class="work-thumbnail" src="https://attachments.academia-assets.com/113970666/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313839/On_the_classes_Lambda_rm_BV_and_rm_V_nu_">On the classes $\Lambda {\rm BV}$ and ${\rm V}[\nu]$</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, 1985</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="894141d58d262f81cb01b05cad04c31f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970666,"asset_id":118313839,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970666/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313839"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313839"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313839; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313839]").text(description); $(".js-view-count[data-work-id=118313839]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313839; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313839']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313839, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "894141d58d262f81cb01b05cad04c31f" } } $('.js-work-strip[data-work-id=118313839]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313839,"title":"On the classes $\\Lambda {\\rm BV}$ and ${\\rm V}[\\nu]$","translated_title":"","metadata":{"publisher":"American Mathematical Society","publication_date":{"day":null,"month":null,"year":1985,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313839/On_the_classes_Lambda_rm_BV_and_rm_V_nu_","translated_internal_url":"","created_at":"2024-04-30T01:30:45.134-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970666,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970666/thumbnails/1.jpg","file_name":"S0002-9939-1985-0801329-7.pdf","download_url":"https://www.academia.edu/attachments/113970666/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_classes_Lambda_rm_BV_and_rm_V_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970666/S0002-9939-1985-0801329-7-libre.pdf?1714469942=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_classes_Lambda_rm_BV_and_rm_V_nu.pdf\u0026Expires=1732445081\u0026Signature=Tiiu~1opPHhnvUNRCcwHh5FBR~H~~No3dtsgbtz9ulc-mGujpSlk-x36uS2M~5~oH0gaUjCm7-RUGnoSwCfRVnGqmchi4aZnyg9kqQUrx12lqpUqNVudDTTtUr5HOw2IZmnoQ3bxqA7oZCD6xBdLtiR40eT7Gec-CjNeGUy58kBHQhEOZ5DigyS8R9tpbq4fsLzoBqcvMcrKsQfQaN3TzJ5HxiDb95DfULVTRUIMXWxD5Dou0awwS~ZyImTP4nmkyffDZGY~tuaYw-KVJAttuJSm-O8J8e-26MN6e4B4ZJSXje9SZEcrHDcdw9Ty7AdNogd1Am9T9Ylf7vql~~PSbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_classes_Lambda_rm_BV_and_rm_V_nu_","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970666,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970666/thumbnails/1.jpg","file_name":"S0002-9939-1985-0801329-7.pdf","download_url":"https://www.academia.edu/attachments/113970666/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_classes_Lambda_rm_BV_and_rm_V_nu.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970666/S0002-9939-1985-0801329-7-libre.pdf?1714469942=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_classes_Lambda_rm_BV_and_rm_V_nu.pdf\u0026Expires=1732445081\u0026Signature=Tiiu~1opPHhnvUNRCcwHh5FBR~H~~No3dtsgbtz9ulc-mGujpSlk-x36uS2M~5~oH0gaUjCm7-RUGnoSwCfRVnGqmchi4aZnyg9kqQUrx12lqpUqNVudDTTtUr5HOw2IZmnoQ3bxqA7oZCD6xBdLtiR40eT7Gec-CjNeGUy58kBHQhEOZ5DigyS8R9tpbq4fsLzoBqcvMcrKsQfQaN3TzJ5HxiDb95DfULVTRUIMXWxD5Dou0awwS~ZyImTP4nmkyffDZGY~tuaYw-KVJAttuJSm-O8J8e-26MN6e4B4ZJSXje9SZEcrHDcdw9Ty7AdNogd1Am9T9Ylf7vql~~PSbg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"}],"urls":[{"id":41519913,"url":"https://doi.org/10.1090/s0002-9939-1985-0801329-7"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313826"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313826/On_maximal_operators_on_k_spheres_in_Zn"><img alt="Research paper thumbnail of On maximal operators on 𝑘-spheres in ℤⁿ" class="work-thumbnail" src="https://attachments.academia-assets.com/113970665/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313826/On_maximal_operators_on_k_spheres_in_Zn">On maximal operators on 𝑘-spheres in ℤⁿ</a></div><div class="wp-workCard_item"><span>Proceedings of the American Mathematical Society</span><span>, Jan 17, 2006</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="856bef51e0ec6d201f2cd657df434614" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970665,"asset_id":118313826,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970665/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313826"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313826"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313826; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313826]").text(description); $(".js-view-count[data-work-id=118313826]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313826; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313826']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313826, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "856bef51e0ec6d201f2cd657df434614" } } $('.js-work-strip[data-work-id=118313826]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313826,"title":"On maximal operators on 𝑘-spheres in ℤⁿ","translated_title":"","metadata":{"publisher":"American Mathematical Society","publication_date":{"day":17,"month":1,"year":2006,"errors":{}},"publication_name":"Proceedings of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313826/On_maximal_operators_on_k_spheres_in_Zn","translated_internal_url":"","created_at":"2024-04-30T01:30:33.617-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970665,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970665/thumbnails/1.jpg","file_name":"S0002-9939-06-08458-9.pdf","download_url":"https://www.academia.edu/attachments/113970665/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_maximal_operators_on_k_spheres_in_Zn.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970665/S0002-9939-06-08458-9-libre.pdf?1714469942=\u0026response-content-disposition=attachment%3B+filename%3DOn_maximal_operators_on_k_spheres_in_Zn.pdf\u0026Expires=1732445081\u0026Signature=MJN0V3kc0yhE~NcKZN99wJ8-Pbm5DaYgYJgS9vCX3-zjwpvKTkKhahhXBmFeZAvY~ZZMtjdp9kKgg2XpaIu4SvFu5cgIXOwuea~Wv3PNBnxtLMjuW5edfaM5Mzu-A~EWuDQ5ol-FWcUNL7z~mav28sBZdtUndcJomaD5QsZnMlNCffoBGwB739vp8TktkdhwTbjT0F89D5aERp8ildItu3x10mDlhRNkEFVN2IQV-fH~vLrS7NhQhA7OO1nP~twP~kyvmYqNScC5M22MFkrbFreIAVMTaO0FGIwbILiw85x4L~hl1LoeDBz4V3SjxeZYnKrebdXVmiHq6c1GaeBqmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_maximal_operators_on_k_spheres_in_Zn","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970665,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970665/thumbnails/1.jpg","file_name":"S0002-9939-06-08458-9.pdf","download_url":"https://www.academia.edu/attachments/113970665/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4MSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_maximal_operators_on_k_spheres_in_Zn.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970665/S0002-9939-06-08458-9-libre.pdf?1714469942=\u0026response-content-disposition=attachment%3B+filename%3DOn_maximal_operators_on_k_spheres_in_Zn.pdf\u0026Expires=1732445081\u0026Signature=MJN0V3kc0yhE~NcKZN99wJ8-Pbm5DaYgYJgS9vCX3-zjwpvKTkKhahhXBmFeZAvY~ZZMtjdp9kKgg2XpaIu4SvFu5cgIXOwuea~Wv3PNBnxtLMjuW5edfaM5Mzu-A~EWuDQ5ol-FWcUNL7z~mav28sBZdtUndcJomaD5QsZnMlNCffoBGwB739vp8TktkdhwTbjT0F89D5aERp8ildItu3x10mDlhRNkEFVN2IQV-fH~vLrS7NhQhA7OO1nP~twP~kyvmYqNScC5M22MFkrbFreIAVMTaO0FGIwbILiw85x4L~hl1LoeDBz4V3SjxeZYnKrebdXVmiHq6c1GaeBqmw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":26817,"name":"Algorithm","url":"https://www.academia.edu/Documents/in/Algorithm"},{"id":38072,"name":"Annotation","url":"https://www.academia.edu/Documents/in/Annotation"}],"urls":[{"id":41519910,"url":"https://doi.org/10.1090/s0002-9939-06-08458-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313821"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313821/Errata_and_addendum_to_On_the_prime_geodesic_theorem_for_hyperbolic_manifolds_Math_Nachr_b_291_b_2018_no_14_15_2160_2167"><img alt="Research paper thumbnail of Errata and addendum to “On the prime geodesic theorem for hyperbolic ‐manifolds” Math. Nachr.<b>291</b>(2018), no. 14–15, 2160–2167" class="work-thumbnail" src="https://attachments.academia-assets.com/113970656/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313821/Errata_and_addendum_to_On_the_prime_geodesic_theorem_for_hyperbolic_manifolds_Math_Nachr_b_291_b_2018_no_14_15_2160_2167">Errata and addendum to “On the prime geodesic theorem for hyperbolic ‐manifolds” Math. Nachr.<b>291</b>(2018), no. 14–15, 2160–2167</a></div><div class="wp-workCard_item"><span>Mathematische Nachrichten</span><span>, Dec 19, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="38940f25b7d4cb965a3051bbb75a847d" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970656,"asset_id":118313821,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970656/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313821"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313821"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313821; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313821]").text(description); $(".js-view-count[data-work-id=118313821]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313821; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313821']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313821, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "38940f25b7d4cb965a3051bbb75a847d" } } $('.js-work-strip[data-work-id=118313821]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313821,"title":"Errata and addendum to “On the prime geodesic theorem for hyperbolic ‐manifolds” Math. Nachr.\u003cb\u003e291\u003c/b\u003e(2018), no. 14–15, 2160–2167","translated_title":"","metadata":{"publisher":"Wiley","publication_date":{"day":19,"month":12,"year":2018,"errors":{}},"publication_name":"Mathematische Nachrichten"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313821/Errata_and_addendum_to_On_the_prime_geodesic_theorem_for_hyperbolic_manifolds_Math_Nachr_b_291_b_2018_no_14_15_2160_2167","translated_internal_url":"","created_at":"2024-04-30T01:30:30.727-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970656,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970656/thumbnails/1.jpg","file_name":"mana.20180046720240430-1-nx75uv.pdf","download_url":"https://www.academia.edu/attachments/113970656/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Errata_and_addendum_to_On_the_prime_geod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970656/mana.20180046720240430-1-nx75uv-libre.pdf?1714469948=\u0026response-content-disposition=attachment%3B+filename%3DErrata_and_addendum_to_On_the_prime_geod.pdf\u0026Expires=1732445081\u0026Signature=SoDEA8uL1TM7CrEAnhkttsvzxnTt5KchIWCm2-jLgaXcP46b0nqqBc9UQd9yIdKHaoknFxHmBvYDLwlzRe~-Uqz5XLk95327Svx1Rs6iCdReWc-GcIy75OAb59P4XQhG6olJWjlWepj2aF-ytcQWoCXlqfwTDFRCutYcAuauXAccxxoB6Z-XOT-uLcHlFJlmYemiDvbcKT2O2HuGbr96CdTeWoEbYFg1uAPCbAaaCWqN7zyJERW7rvRdr0dudpx78436qS3LvhO6iYsQ-wmjb5lM7f48sBeAeEciy9A78x0MRw3HOvrc8hFaDNgkc0upbqurfcS7sfPvcV1AhBMukw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Errata_and_addendum_to_On_the_prime_geodesic_theorem_for_hyperbolic_manifolds_Math_Nachr_b_291_b_2018_no_14_15_2160_2167","translated_slug":"","page_count":3,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970656,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970656/thumbnails/1.jpg","file_name":"mana.20180046720240430-1-nx75uv.pdf","download_url":"https://www.academia.edu/attachments/113970656/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Errata_and_addendum_to_On_the_prime_geod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970656/mana.20180046720240430-1-nx75uv-libre.pdf?1714469948=\u0026response-content-disposition=attachment%3B+filename%3DErrata_and_addendum_to_On_the_prime_geod.pdf\u0026Expires=1732445081\u0026Signature=SoDEA8uL1TM7CrEAnhkttsvzxnTt5KchIWCm2-jLgaXcP46b0nqqBc9UQd9yIdKHaoknFxHmBvYDLwlzRe~-Uqz5XLk95327Svx1Rs6iCdReWc-GcIy75OAb59P4XQhG6olJWjlWepj2aF-ytcQWoCXlqfwTDFRCutYcAuauXAccxxoB6Z-XOT-uLcHlFJlmYemiDvbcKT2O2HuGbr96CdTeWoEbYFg1uAPCbAaaCWqN7zyJERW7rvRdr0dudpx78436qS3LvhO6iYsQ-wmjb5lM7f48sBeAeEciy9A78x0MRw3HOvrc8hFaDNgkc0upbqurfcS7sfPvcV1AhBMukw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":102046,"name":"Addendum","url":"https://www.academia.edu/Documents/in/Addendum"}],"urls":[{"id":41519900,"url":"https://doi.org/10.1002/mana.201800467"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313813"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313813/Euler_constants_for_a_Fuchsian_group_of_the_first_kind"><img alt="Research paper thumbnail of Euler constants for a Fuchsian group of the first kind" class="work-thumbnail" src="https://attachments.academia-assets.com/113970558/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313813/Euler_constants_for_a_Fuchsian_group_of_the_first_kind">Euler constants for a Fuchsian group of the first kind</a></div><div class="wp-workCard_item"><span>Acta Arithmetica</span><span>, 2008</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ced848f0797ac0d80576ee6bc47393f0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970558,"asset_id":118313813,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970558/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313813"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313813"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313813; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313813]").text(description); $(".js-view-count[data-work-id=118313813]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313813; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313813']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313813, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ced848f0797ac0d80576ee6bc47393f0" } } $('.js-work-strip[data-work-id=118313813]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313813,"title":"Euler constants for a Fuchsian group of the first kind","translated_title":"","metadata":{"publisher":"Polish Academy of Sciences","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"Acta Arithmetica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313813/Euler_constants_for_a_Fuchsian_group_of_the_first_kind","translated_internal_url":"","created_at":"2024-04-30T01:30:28.216-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970558,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970558/thumbnails/1.jpg","file_name":"83963.pdf","download_url":"https://www.academia.edu/attachments/113970558/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Euler_constants_for_a_Fuchsian_group_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970558/83963-libre.pdf?1714469966=\u0026response-content-disposition=attachment%3B+filename%3DEuler_constants_for_a_Fuchsian_group_of.pdf\u0026Expires=1732445082\u0026Signature=a-Iy~x4sCgHNUtfKrX9JdGX0jB2Plro50H1yEh4KnKYimD5cZAGKXzztX8ACvDzR7kbvAEkJNOmsi4VsremiDQw13U3z25EqeeDsHm2WlMz66-BTPPKDtizoollvLANe-cV4bB6mZHSzFCWxfJa9QksQqVqeWI~oqepnbB8DR2ytY9mGkpvoBfhxfiyswTb0RYy2QUf6VHdJVES5VBGsXUeNz~cXRT8fVUpRv1jZtyZZ9zTHi5y1fpaKKT6YOM0j2oFgS87N7hqWh1pTGDjqb0ksNp5bDSrP~Ni9ft0KPVQQR0klv5ESxfSkY-jDTk0jxE8yLmayD3u7Jhan~WT2XQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Euler_constants_for_a_Fuchsian_group_of_the_first_kind","translated_slug":"","page_count":19,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970558,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970558/thumbnails/1.jpg","file_name":"83963.pdf","download_url":"https://www.academia.edu/attachments/113970558/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Euler_constants_for_a_Fuchsian_group_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970558/83963-libre.pdf?1714469966=\u0026response-content-disposition=attachment%3B+filename%3DEuler_constants_for_a_Fuchsian_group_of.pdf\u0026Expires=1732445082\u0026Signature=a-Iy~x4sCgHNUtfKrX9JdGX0jB2Plro50H1yEh4KnKYimD5cZAGKXzztX8ACvDzR7kbvAEkJNOmsi4VsremiDQw13U3z25EqeeDsHm2WlMz66-BTPPKDtizoollvLANe-cV4bB6mZHSzFCWxfJa9QksQqVqeWI~oqepnbB8DR2ytY9mGkpvoBfhxfiyswTb0RYy2QUf6VHdJVES5VBGsXUeNz~cXRT8fVUpRv1jZtyZZ9zTHi5y1fpaKKT6YOM0j2oFgS87N7hqWh1pTGDjqb0ksNp5bDSrP~Ni9ft0KPVQQR0klv5ESxfSkY-jDTk0jxE8yLmayD3u7Jhan~WT2XQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":563459,"name":"Fuchsian group","url":"https://www.academia.edu/Documents/in/Fuchsian_group"}],"urls":[{"id":41519896,"url":"https://www.impan.pl/shop/publication/transaction/download/product/83963?download.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313799"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313799/Prime_geodesic_theorem_for_the_modular_surface"><img alt="Research paper thumbnail of Prime geodesic theorem for the modular surface" class="work-thumbnail" src="https://attachments.academia-assets.com/113970551/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313799/Prime_geodesic_theorem_for_the_modular_surface">Prime geodesic theorem for the modular surface</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, Feb 6, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="99f87070d712d1fd57a18c97f5fb5c9a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970551,"asset_id":118313799,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970551/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313799"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313799"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313799; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313799]").text(description); $(".js-view-count[data-work-id=118313799]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313799; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313799']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313799, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "99f87070d712d1fd57a18c97f5fb5c9a" } } $('.js-work-strip[data-work-id=118313799]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313799,"title":"Prime geodesic theorem for the modular surface","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":6,"month":2,"year":2017,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313799/Prime_geodesic_theorem_for_the_modular_surface","translated_internal_url":"","created_at":"2024-04-30T01:30:25.635-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970551/thumbnails/1.jpg","file_name":"1702.pdf","download_url":"https://www.academia.edu/attachments/113970551/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Prime_geodesic_theorem_for_the_modular_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970551/1702-libre.pdf?1714469966=\u0026response-content-disposition=attachment%3B+filename%3DPrime_geodesic_theorem_for_the_modular_s.pdf\u0026Expires=1732445082\u0026Signature=X0RcopL9seDOghxOAku9A138R3lJ~P6Q9OJJAaazJDWIqs4beSJKA~Gw22hXBAd1PLh-rDtzPI43wUdqpdYzBzGZN7bKS7SqinrZ7OnM1Pg~uJ5p8nOnoEBfwsLbB7WfHm6bAsril7bgJ~mJLUuRD7Z3np7mTt4o-rYScINvP1DJkbROXDr0S6Kziq3yKbBgeBVfG8gJKarMNXj3RcXcQZm4oo3l1d~GbA0Risxs4qPTrqAhmgDiLnQeAbZe7EeCnv66fizbi8xl60o5Y8NjuzlcXDzTM~glKebPrKeqio211NRUQOnir18xv15HkFB4IsaldVXPT2o6IVPJPrjQUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Prime_geodesic_theorem_for_the_modular_surface","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970551,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970551/thumbnails/1.jpg","file_name":"1702.pdf","download_url":"https://www.academia.edu/attachments/113970551/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Prime_geodesic_theorem_for_the_modular_s.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970551/1702-libre.pdf?1714469966=\u0026response-content-disposition=attachment%3B+filename%3DPrime_geodesic_theorem_for_the_modular_s.pdf\u0026Expires=1732445082\u0026Signature=X0RcopL9seDOghxOAku9A138R3lJ~P6Q9OJJAaazJDWIqs4beSJKA~Gw22hXBAd1PLh-rDtzPI43wUdqpdYzBzGZN7bKS7SqinrZ7OnM1Pg~uJ5p8nOnoEBfwsLbB7WfHm6bAsril7bgJ~mJLUuRD7Z3np7mTt4o-rYScINvP1DJkbROXDr0S6Kziq3yKbBgeBVfG8gJKarMNXj3RcXcQZm4oo3l1d~GbA0Risxs4qPTrqAhmgDiLnQeAbZe7EeCnv66fizbi8xl60o5Y8NjuzlcXDzTM~glKebPrKeqio211NRUQOnir18xv15HkFB4IsaldVXPT2o6IVPJPrjQUA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":1107332,"name":"Modular Design","url":"https://www.academia.edu/Documents/in/Modular_Design"}],"urls":[{"id":41519887,"url":"http://arxiv.org/pdf/1702.01699"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313783"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313783/Criteria_for_absolute_and_strong_convergence_of_Fourier_series"><img alt="Research paper thumbnail of Criteria for absolute and strong convergence of Fourier series" class="work-thumbnail" src="https://attachments.academia-assets.com/113970641/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313783/Criteria_for_absolute_and_strong_convergence_of_Fourier_series">Criteria for absolute and strong convergence of Fourier series</a></div><div class="wp-workCard_item"><span>Czechoslovak Mathematical Journal</span><span>, 1987</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0f4f71ab8bc954ed8f5ed3aa6896b3b0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970641,"asset_id":118313783,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970641/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313783"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313783"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313783; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313783]").text(description); $(".js-view-count[data-work-id=118313783]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313783; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313783']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313783, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0f4f71ab8bc954ed8f5ed3aa6896b3b0" } } $('.js-work-strip[data-work-id=118313783]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313783,"title":"Criteria for absolute and strong convergence of Fourier series","translated_title":"","metadata":{"publisher":"Institute of Mathematics of the Czech Academy of Sciences","publication_date":{"day":null,"month":null,"year":1987,"errors":{}},"publication_name":"Czechoslovak Mathematical Journal"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313783/Criteria_for_absolute_and_strong_convergence_of_Fourier_series","translated_internal_url":"","created_at":"2024-04-30T01:30:19.374-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970641/thumbnails/1.jpg","file_name":"CzechMathJ_37-1987-4_6.pdf","download_url":"https://www.academia.edu/attachments/113970641/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Criteria_for_absolute_and_strong_converg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970641/CzechMathJ_37-1987-4_6-libre.pdf?1714469946=\u0026response-content-disposition=attachment%3B+filename%3DCriteria_for_absolute_and_strong_converg.pdf\u0026Expires=1732445082\u0026Signature=Bwseqy0OTwHFBrheuou38ksDaz-X2eAWLcjspBc3WpLXOxA~7HeehG3eOWvPnmXcWeH4CM7yQq9BmZDRWkxBl2Zv95InYCeLRdRAqNeftGcZm99vkd8Vi-BCarRH2TjK84V~zROSpqPQcyo1hrf2mXUGE0Jv~j0GWORL-0tbQXpg9sAaLd~AYHexnX1FuLBBFrBZTV-BMdsc9ppQqQV7nYuaQQU6T5VEB48oBTRoOIJwMboMtXaGSj8xe5IFbzQFQ~Ex7Vw-BBtjffgIMW6aTgpISmTKk-sgsggif5tNeeGt3oh5wsLGIEFIaR7qsHL7XZOKXmVNxaMmWxWilXIrwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Criteria_for_absolute_and_strong_convergence_of_Fourier_series","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970641,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970641/thumbnails/1.jpg","file_name":"CzechMathJ_37-1987-4_6.pdf","download_url":"https://www.academia.edu/attachments/113970641/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Criteria_for_absolute_and_strong_converg.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970641/CzechMathJ_37-1987-4_6-libre.pdf?1714469946=\u0026response-content-disposition=attachment%3B+filename%3DCriteria_for_absolute_and_strong_converg.pdf\u0026Expires=1732445082\u0026Signature=Bwseqy0OTwHFBrheuou38ksDaz-X2eAWLcjspBc3WpLXOxA~7HeehG3eOWvPnmXcWeH4CM7yQq9BmZDRWkxBl2Zv95InYCeLRdRAqNeftGcZm99vkd8Vi-BCarRH2TjK84V~zROSpqPQcyo1hrf2mXUGE0Jv~j0GWORL-0tbQXpg9sAaLd~AYHexnX1FuLBBFrBZTV-BMdsc9ppQqQV7nYuaQQU6T5VEB48oBTRoOIJwMboMtXaGSj8xe5IFbzQFQ~Ex7Vw-BBtjffgIMW6aTgpISmTKk-sgsggif5tNeeGt3oh5wsLGIEFIaR7qsHL7XZOKXmVNxaMmWxWilXIrwg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":41519878,"url":"https://doi.org/10.21136/cmj.1987.102182"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313775"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313775/Fourier_multiplier_theorem_for_atomic_Hardy_spaces_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of Fourier multiplier theorem for atomic Hardy spaces on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/113970638/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313775/Fourier_multiplier_theorem_for_atomic_Hardy_spaces_on_unbounded_Vilenkin_groups">Fourier multiplier theorem for atomic Hardy spaces on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Journal of Mathematical Analysis and Applications</span><span>, Mar 1, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dae0946469ab221e9b4662d213bc7b5b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970638,"asset_id":118313775,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970638/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313775"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313775"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313775; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313775]").text(description); $(".js-view-count[data-work-id=118313775]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313775; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313775']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313775, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dae0946469ab221e9b4662d213bc7b5b" } } $('.js-work-strip[data-work-id=118313775]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313775,"title":"Fourier multiplier theorem for atomic Hardy spaces on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Elsevier BV","publication_date":{"day":1,"month":3,"year":2010,"errors":{}},"publication_name":"Journal of Mathematical Analysis and Applications"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313775/Fourier_multiplier_theorem_for_atomic_Hardy_spaces_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2024-04-30T01:30:12.835-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970638,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970638/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMjI0N3gwOTAwNzc4MQ__.pdf","download_url":"https://www.academia.edu/attachments/113970638/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fourier_multiplier_theorem_for_atomic_Ha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970638/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMjI0N3gwOTAwNzc4MQ__-libre.pdf?1714469947=\u0026response-content-disposition=attachment%3B+filename%3DFourier_multiplier_theorem_for_atomic_Ha.pdf\u0026Expires=1732445082\u0026Signature=MXcQQZqIYu92MMWsbBXsCSfQ6lfbNEGWttXuOQdIki51tsQVXShjhx1Kj8hWieJFf4ctq3rHGdw~Y7ARs2C9yHdRMOt5sN60HgqP3-VJUfUuQTm-sQCiwBKYIo1Md63CAZUJuGIRhC0f-Kt7ODv75aRhpIhBYz-vtYvPxZr2EjFm1rmyXhDRwIbQNC1qDqhyfl6isXQK5K9WsMs5dpCOPAXs-lS47mvl0HylZ5Jv7R-Oww6sbdu0bMECPfK-bJQa9cBu0wKTg2A9jYWdJ8FtsaLILRf1xSZ~WHb3UUHgqjl-wHInSRbf1UMoPlAB6vvqjOBsUI4AMIwsgXyjXl6wMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fourier_multiplier_theorem_for_atomic_Hardy_spaces_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970638,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970638/thumbnails/1.jpg","file_name":"aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMjI0N3gwOTAwNzc4MQ__.pdf","download_url":"https://www.academia.edu/attachments/113970638/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fourier_multiplier_theorem_for_atomic_Ha.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970638/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDAyMjI0N3gwOTAwNzc4MQ__-libre.pdf?1714469947=\u0026response-content-disposition=attachment%3B+filename%3DFourier_multiplier_theorem_for_atomic_Ha.pdf\u0026Expires=1732445082\u0026Signature=MXcQQZqIYu92MMWsbBXsCSfQ6lfbNEGWttXuOQdIki51tsQVXShjhx1Kj8hWieJFf4ctq3rHGdw~Y7ARs2C9yHdRMOt5sN60HgqP3-VJUfUuQTm-sQCiwBKYIo1Md63CAZUJuGIRhC0f-Kt7ODv75aRhpIhBYz-vtYvPxZr2EjFm1rmyXhDRwIbQNC1qDqhyfl6isXQK5K9WsMs5dpCOPAXs-lS47mvl0HylZ5Jv7R-Oww6sbdu0bMECPfK-bJQa9cBu0wKTg2A9jYWdJ8FtsaLILRf1xSZ~WHb3UUHgqjl-wHInSRbf1UMoPlAB6vvqjOBsUI4AMIwsgXyjXl6wMQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":305,"name":"Applied Mathematics","url":"https://www.academia.edu/Documents/in/Applied_Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":390056,"name":"Fourier transform","url":"https://www.academia.edu/Documents/in/Fourier_transform"},{"id":518958,"name":"Mathematical Analysis and Applications","url":"https://www.academia.edu/Documents/in/Mathematical_Analysis_and_Applications"},{"id":613709,"name":"Locally Compact Groups","url":"https://www.academia.edu/Documents/in/Locally_Compact_Groups"},{"id":1237788,"name":"Electrical And Electronic Engineering","url":"https://www.academia.edu/Documents/in/Electrical_And_Electronic_Engineering"}],"urls":[{"id":41519873,"url":"https://doi.org/10.1016/j.jmaa.2009.09.037"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313769"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313769/On_Koyama_s_refinement_of_the_prime_geodesic_theorem"><img alt="Research paper thumbnail of On Koyama’s refinement of the prime geodesic theorem" class="work-thumbnail" src="https://attachments.academia-assets.com/113970622/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313769/On_Koyama_s_refinement_of_the_prime_geodesic_theorem">On Koyama’s refinement of the prime geodesic theorem</a></div><div class="wp-workCard_item"><span>Proceedings of the Japan Academy. Series A, Mathematical sciences</span><span>, Mar 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9941c42b2857789fbbd683ab69490c24" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970622,"asset_id":118313769,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970622/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313769"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313769"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313769; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313769]").text(description); $(".js-view-count[data-work-id=118313769]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313769; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313769']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313769, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9941c42b2857789fbbd683ab69490c24" } } $('.js-work-strip[data-work-id=118313769]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313769,"title":"On Koyama’s refinement of the prime geodesic theorem","translated_title":"","metadata":{"publisher":"Institute of Mathematical Statistics","publication_date":{"day":1,"month":3,"year":2018,"errors":{}},"publication_name":"Proceedings of the Japan Academy. Series A, Mathematical sciences"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313769/On_Koyama_s_refinement_of_the_prime_geodesic_theorem","translated_internal_url":"","created_at":"2024-04-30T01:30:04.336-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970622/thumbnails/1.jpg","file_name":"1701.pdf","download_url":"https://www.academia.edu/attachments/113970622/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Koyama_s_refinement_of_the_prime_geod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970622/1701-libre.pdf?1714469952=\u0026response-content-disposition=attachment%3B+filename%3DOn_Koyama_s_refinement_of_the_prime_geod.pdf\u0026Expires=1732445082\u0026Signature=U2DESaC-lfIkgGn7VvWnafEA66vt14TqQ0kT~0Z4DrXFkk-3rwxR~wrMjeK3dYe9lF8cCMYiilOp5266ndqVF0HaZWP0EcWE~JQlV1~lnZxzFO2YzjDAq18c9s90EdhgCKXGom9OxpZoz9XK69tSnBx2k0pZBG-mQHu5byk7GW7A7gExJYu5GbR0S3dL4cXmlujMdPwvsTs1u5iCKUgz0HwqVzJSthiK8ONzKuf8QLxFM95DPEqlon5Ak6y98M8YJB9MBTfksePJgUoqDMYppQzsszIW3j7kN8tZgQusXGysverTGrwiGczwjweeWZYnFD3DlTYLaAgf3Hdk5tJ~Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_Koyama_s_refinement_of_the_prime_geodesic_theorem","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970622/thumbnails/1.jpg","file_name":"1701.pdf","download_url":"https://www.academia.edu/attachments/113970622/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_Koyama_s_refinement_of_the_prime_geod.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970622/1701-libre.pdf?1714469952=\u0026response-content-disposition=attachment%3B+filename%3DOn_Koyama_s_refinement_of_the_prime_geod.pdf\u0026Expires=1732445082\u0026Signature=U2DESaC-lfIkgGn7VvWnafEA66vt14TqQ0kT~0Z4DrXFkk-3rwxR~wrMjeK3dYe9lF8cCMYiilOp5266ndqVF0HaZWP0EcWE~JQlV1~lnZxzFO2YzjDAq18c9s90EdhgCKXGom9OxpZoz9XK69tSnBx2k0pZBG-mQHu5byk7GW7A7gExJYu5GbR0S3dL4cXmlujMdPwvsTs1u5iCKUgz0HwqVzJSthiK8ONzKuf8QLxFM95DPEqlon5Ak6y98M8YJB9MBTfksePJgUoqDMYppQzsszIW3j7kN8tZgQusXGysverTGrwiGczwjweeWZYnFD3DlTYLaAgf3Hdk5tJ~Mg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":229028,"name":"riemann Hypothesis","url":"https://www.academia.edu/Documents/in/riemann_Hypothesis"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":41519870,"url":"https://doi.org/10.3792/pjaa.94.21"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313760"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313760/Gallagherian_PGT_on_PSL_2_mathbb_Z_"><img alt="Research paper thumbnail of Gallagherian $PGT$ on $PSL(2,\mathbb{Z})$" class="work-thumbnail" src="https://attachments.academia-assets.com/113970519/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313760/Gallagherian_PGT_on_PSL_2_mathbb_Z_">Gallagherian $PGT$ on $PSL(2,\mathbb{Z})$</a></div><div class="wp-workCard_item"><span>Functiones et Approximatio Commentarii Mathematici</span><span>, Jun 1, 2018</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1898fd35c0679bf81aa8275d6efeac61" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970519,"asset_id":118313760,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970519/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313760"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313760"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313760; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313760]").text(description); $(".js-view-count[data-work-id=118313760]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313760; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313760']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313760, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1898fd35c0679bf81aa8275d6efeac61" } } $('.js-work-strip[data-work-id=118313760]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313760,"title":"Gallagherian $PGT$ on $PSL(2,\\mathbb{Z})$","translated_title":"","metadata":{"publisher":"Adam Mickiewicz University","publication_date":{"day":1,"month":6,"year":2018,"errors":{}},"publication_name":"Functiones et Approximatio Commentarii Mathematici"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313760/Gallagherian_PGT_on_PSL_2_mathbb_Z_","translated_internal_url":"","created_at":"2024-04-30T01:30:02.508-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970519,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970519/thumbnails/1.jpg","file_name":"1703.pdf","download_url":"https://www.academia.edu/attachments/113970519/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gallagherian_PGT_on_PSL_2_mathbb_Z.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970519/1703-libre.pdf?1714469975=\u0026response-content-disposition=attachment%3B+filename%3DGallagherian_PGT_on_PSL_2_mathbb_Z.pdf\u0026Expires=1732445082\u0026Signature=bMtMkuudjJxmk7ON2cfNy~vVnCPD-3wy2ujviHp-DULd1K26jbppDMu-xIkZEK8ieDtAompeOlR-RHwAELLMpetz8sKZnG-dnwFUvqtPVlW8xDT1lDuShNw09QMdcUoSGTPjeaKrxk5NiRony8v3hOnmO~579LZAatgI7YYgKdBkJx-WwVHHEiwHKkNuNpmqfiJNui9nrJjknjJ~hX6pYOUz~-nBHu19HnNG-PAr2c-yOVUqJ7LrvBaPNPzR~~MZsf36Ly9h65f7M-eXTdDy9~ekDvzrIlZyNLB4BmZEBd6jIF-1OBZS8eL7juHbfubXWbnUo~c1lTRBeO28VKkodw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Gallagherian_PGT_on_PSL_2_mathbb_Z_","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970519,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970519/thumbnails/1.jpg","file_name":"1703.pdf","download_url":"https://www.academia.edu/attachments/113970519/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Gallagherian_PGT_on_PSL_2_mathbb_Z.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970519/1703-libre.pdf?1714469975=\u0026response-content-disposition=attachment%3B+filename%3DGallagherian_PGT_on_PSL_2_mathbb_Z.pdf\u0026Expires=1732445082\u0026Signature=bMtMkuudjJxmk7ON2cfNy~vVnCPD-3wy2ujviHp-DULd1K26jbppDMu-xIkZEK8ieDtAompeOlR-RHwAELLMpetz8sKZnG-dnwFUvqtPVlW8xDT1lDuShNw09QMdcUoSGTPjeaKrxk5NiRony8v3hOnmO~579LZAatgI7YYgKdBkJx-WwVHHEiwHKkNuNpmqfiJNui9nrJjknjJ~hX6pYOUz~-nBHu19HnNG-PAr2c-yOVUqJ7LrvBaPNPzR~~MZsf36Ly9h65f7M-eXTdDy9~ekDvzrIlZyNLB4BmZEBd6jIF-1OBZS8eL7juHbfubXWbnUo~c1lTRBeO28VKkodw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":138342,"name":"PSL","url":"https://www.academia.edu/Documents/in/PSL"},{"id":556845,"name":"Numerical Analysis and Computational Mathematics","url":"https://www.academia.edu/Documents/in/Numerical_Analysis_and_Computational_Mathematics"}],"urls":[{"id":41519863,"url":"http://arxiv.org/pdf/1703.00165"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313757"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313757/Strong_boundedness_strong_convergence_and_generalized_variation"><img alt="Research paper thumbnail of Strong boundedness, strong convergence and generalized variation" class="work-thumbnail" src="https://attachments.academia-assets.com/113970518/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313757/Strong_boundedness_strong_convergence_and_generalized_variation">Strong boundedness, strong convergence and generalized variation</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Apr 18, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4e0af3e4e118e6a150da4dc899b98d5a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970518,"asset_id":118313757,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970518/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313757"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313757"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313757; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313757]").text(description); $(".js-view-count[data-work-id=118313757]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313757; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313757']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313757, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4e0af3e4e118e6a150da4dc899b98d5a" } } $('.js-work-strip[data-work-id=118313757]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313757,"title":"Strong boundedness, strong convergence and generalized variation","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":18,"month":4,"year":2017,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313757/Strong_boundedness_strong_convergence_and_generalized_variation","translated_internal_url":"","created_at":"2024-04-30T01:30:01.905-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970518,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970518/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970518/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970518/1612-libre.pdf?1714469980=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445082\u0026Signature=f5thbvdhwdls8bRW2x8xcY-DXhQdLpnCD7EqZVFeNdHpZVkt7yJeCLZXBqgGOd~gMQ2fZ4yxQR-fla-6Vcg7-Cc5CYYtIRFxjyFyEY0Bavgn8PmVP66PA0o657xmENGKfZp1Cv9U23fOz-Cjqox8fgVe9~x2ztoXsUkt6aowuwaeoVZ1BUoYfTGvBv0S51Z-Pjta~51N2~i7DCd4T8Eq4Dl-WvWDEqGIfiyAxM9J1tp0v-WzVr5mmQtnYyoUiOfJ~6EW9Gj3~CgvlPJwDBDLzVu3R~-2DHCViqqWFijzqatPta0lUP5afN~PoNEBuqk9vVwsfY3JqXwNi-U9pq5TlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Strong_boundedness_strong_convergence_and_generalized_variation","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970518,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970518/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970518/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970518/1612-libre.pdf?1714469980=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445082\u0026Signature=f5thbvdhwdls8bRW2x8xcY-DXhQdLpnCD7EqZVFeNdHpZVkt7yJeCLZXBqgGOd~gMQ2fZ4yxQR-fla-6Vcg7-Cc5CYYtIRFxjyFyEY0Bavgn8PmVP66PA0o657xmENGKfZp1Cv9U23fOz-Cjqox8fgVe9~x2ztoXsUkt6aowuwaeoVZ1BUoYfTGvBv0S51Z-Pjta~51N2~i7DCd4T8Eq4Dl-WvWDEqGIfiyAxM9J1tp0v-WzVr5mmQtnYyoUiOfJ~6EW9Gj3~CgvlPJwDBDLzVu3R~-2DHCViqqWFijzqatPta0lUP5afN~PoNEBuqk9vVwsfY3JqXwNi-U9pq5TlQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":113970517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970517/thumbnails/1.jpg","file_name":"1612.pdf","download_url":"https://www.academia.edu/attachments/113970517/download_file","bulk_download_file_name":"Strong_boundedness_strong_convergence_an.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970517/1612-libre.pdf?1714469974=\u0026response-content-disposition=attachment%3B+filename%3DStrong_boundedness_strong_convergence_an.pdf\u0026Expires=1732445082\u0026Signature=dtpntg76-bif5AxyORyNPjj7FJVCgMrWPcpE3BqTZNa5PQ1FfCWRNurR2J~eoAk4tDmyayGZtXORUksU7Cn20NoP4cCROeUXq5alUBrygDgBNyzyA56nQswNjq22zbSo7d-ASfxWGzaZ0ehWDxJmgWW8nytIoGuvkp4iZ8Ke-20N4ZsTuFrHWsYBVqZd3C31RrY4fhoRfJ9mtxHDnmR4bekkMRbRV6SPp0UuHwSksu0dtje9o0xMaFRnvfNYaKOeHhGze6o2x53TJpBP3QW11ZmT~4wmvtiVtr4kOt~0uxzSgq7FPx51HXvRiExkdd4f32FKBcteOHN0FzOP2a2ibw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":91401,"name":"Bounded Variation","url":"https://www.academia.edu/Documents/in/Bounded_Variation"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"},{"id":2911400,"name":"Trigonometric Functions","url":"https://www.academia.edu/Documents/in/Trigonometric_Functions"},{"id":3753192,"name":"trigonometric series","url":"https://www.academia.edu/Documents/in/trigonometric_series"}],"urls":[{"id":41519861,"url":"http://arxiv.org/pdf/1612.06250"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313755"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313755/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds"><img alt="Research paper thumbnail of On the prime geodesic theorem for hyperbolic 3-manifolds" class="work-thumbnail" src="https://attachments.academia-assets.com/113970514/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313755/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds">On the prime geodesic theorem for hyperbolic 3-manifolds</a></div><div class="wp-workCard_item"><span>arXiv (Cornell University)</span><span>, May 16, 2017</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4d07ed16eabda046f6b04dad50a7dc1b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":113970514,"asset_id":118313755,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/113970514/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313755"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313755"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313755; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313755]").text(description); $(".js-view-count[data-work-id=118313755]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313755; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313755']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313755, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4d07ed16eabda046f6b04dad50a7dc1b" } } $('.js-work-strip[data-work-id=118313755]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313755,"title":"On the prime geodesic theorem for hyperbolic 3-manifolds","translated_title":"","metadata":{"publisher":"Cornell University","publication_date":{"day":16,"month":5,"year":2017,"errors":{}},"publication_name":"arXiv (Cornell University)"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313755/On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds","translated_internal_url":"","created_at":"2024-04-30T01:30:01.082-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":113970514,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970514/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970514/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970514/1705-libre.pdf?1714469979=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445082\u0026Signature=IRRscMoKMEvn1wpw4Ica0653Va8rjjOhIBl~lXIr4IaqVqZu9BJWSjqH9YYgY~dLLmpN6R-Kj8l-5T8mckloNUUS6Xndu4vmIVSMH3pWZ8SvOQv-qQyocV3UYWvxrGR8obqz-7wg1AQcsS0fYv93PulKHMDejI-jX02PiYFDEQh7wriYCgbn~JmMV6qelpxBr4UTrvBp~wGchY5yhiTqgblpmo6s4XULDnJcZgXevqrcDU4GHyjOD4NYMF20TtDw4jACITIQnvn4pWYusqzn3xwcPN3em~0T7obUSX2yyD0bFnWDDU2VfPX0cZgJMAH4U8udrD9iniAzIEe0onjg~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_prime_geodesic_theorem_for_hyperbolic_3_manifolds","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":113970514,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/113970514/thumbnails/1.jpg","file_name":"1705.pdf","download_url":"https://www.academia.edu/attachments/113970514/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_prime_geodesic_theorem_for_hyperb.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/113970514/1705-libre.pdf?1714469979=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_prime_geodesic_theorem_for_hyperb.pdf\u0026Expires=1732445082\u0026Signature=IRRscMoKMEvn1wpw4Ica0653Va8rjjOhIBl~lXIr4IaqVqZu9BJWSjqH9YYgY~dLLmpN6R-Kj8l-5T8mckloNUUS6Xndu4vmIVSMH3pWZ8SvOQv-qQyocV3UYWvxrGR8obqz-7wg1AQcsS0fYv93PulKHMDejI-jX02PiYFDEQh7wriYCgbn~JmMV6qelpxBr4UTrvBp~wGchY5yhiTqgblpmo6s4XULDnJcZgXevqrcDU4GHyjOD4NYMF20TtDw4jACITIQnvn4pWYusqzn3xwcPN3em~0T7obUSX2yyD0bFnWDDU2VfPX0cZgJMAH4U8udrD9iniAzIEe0onjg~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":58917,"name":"Geodesic","url":"https://www.academia.edu/Documents/in/Geodesic"},{"id":1447726,"name":"Hurst Exponent","url":"https://www.academia.edu/Documents/in/Hurst_Exponent"},{"id":3292545,"name":"Logarithm","url":"https://www.academia.edu/Documents/in/Logarithm"}],"urls":[{"id":41519859,"url":"http://arxiv.org/pdf/1705.05626"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="118313752"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/118313752/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups"><img alt="Research paper thumbnail of On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups" class="work-thumbnail" src="https://attachments.academia-assets.com/114162061/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/118313752/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups">On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups</a></div><div class="wp-workCard_item"><span>Acta Mathematica Hungarica</span><span>, Oct 30, 2010</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8491c574779088368bcbfde9f27c3679" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":114162061,"asset_id":118313752,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/114162061/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="118313752"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="118313752"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 118313752; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=118313752]").text(description); $(".js-view-count[data-work-id=118313752]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 118313752; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='118313752']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 118313752, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8491c574779088368bcbfde9f27c3679" } } $('.js-work-strip[data-work-id=118313752]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":118313752,"title":"On the Lebesgue test for convergence of Fourier series on unbounded Vilenkin groups","translated_title":"","metadata":{"publisher":"Springer Nature","publication_date":{"day":30,"month":10,"year":2010,"errors":{}},"publication_name":"Acta Mathematica Hungarica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/118313752/On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups","translated_internal_url":"","created_at":"2024-04-30T01:30:00.196-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":43632767,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":114162061,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114162061/thumbnails/1.jpg","file_name":"s10474-010-0023-920240505-1-cq3jb7.pdf","download_url":"https://www.academia.edu/attachments/114162061/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Lebesgue_test_for_convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114162061/s10474-010-0023-920240505-1-cq3jb7-libre.pdf?1714899914=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Lebesgue_test_for_convergence_of.pdf\u0026Expires=1732445082\u0026Signature=GvtEhjM3XykfyCaxZm-56x-Q4UvV7-pQscRe9XQKLeWIO582-spMn7Q0fOaG5Qb7yd1MXCaVyofog57mtr-dV-RKfsiIbOX2caoCkvHXXgqSDqepEoL396gOjlFwGj4kYh5uiZM-XRfuEFEDBZhDGsZs2ZEmu6rpVvka4VxbmyvvUHlBcIzYYJZjMujR~UPNYoQuN0lbjjR5gw9IpWwG~X8T16Z48fAhGK6yItRfchityJ8dIFMJDcIbTOBr3ILXGT96iNMfY3-HGKAyT9J4jo580A-~sq3jRJpNZPyR9KuNC~xhtypk~FzMRG-fBRHPaNsv7nYvzfSUxP9woCMOaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"On_the_Lebesgue_test_for_convergence_of_Fourier_series_on_unbounded_Vilenkin_groups","translated_slug":"","page_count":12,"language":"en","content_type":"Work","owner":{"id":43632767,"first_name":"Muharem","middle_initials":"","last_name":"Avdispahić","page_name":"Avdispahic","domain_name":"unsa-ba","created_at":"2016-02-21T08:31:05.410-08:00","display_name":"Muharem Avdispahić","url":"https://unsa-ba.academia.edu/Avdispahic"},"attachments":[{"id":114162061,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/114162061/thumbnails/1.jpg","file_name":"s10474-010-0023-920240505-1-cq3jb7.pdf","download_url":"https://www.academia.edu/attachments/114162061/download_file?st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&st=MTczMjQ0MTQ4Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"On_the_Lebesgue_test_for_convergence_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/114162061/s10474-010-0023-920240505-1-cq3jb7-libre.pdf?1714899914=\u0026response-content-disposition=attachment%3B+filename%3DOn_the_Lebesgue_test_for_convergence_of.pdf\u0026Expires=1732445082\u0026Signature=GvtEhjM3XykfyCaxZm-56x-Q4UvV7-pQscRe9XQKLeWIO582-spMn7Q0fOaG5Qb7yd1MXCaVyofog57mtr-dV-RKfsiIbOX2caoCkvHXXgqSDqepEoL396gOjlFwGj4kYh5uiZM-XRfuEFEDBZhDGsZs2ZEmu6rpVvka4VxbmyvvUHlBcIzYYJZjMujR~UPNYoQuN0lbjjR5gw9IpWwG~X8T16Z48fAhGK6yItRfchityJ8dIFMJDcIbTOBr3ILXGT96iNMfY3-HGKAyT9J4jo580A-~sq3jRJpNZPyR9KuNC~xhtypk~FzMRG-fBRHPaNsv7nYvzfSUxP9woCMOaQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":1228829,"name":"Fourier Series","url":"https://www.academia.edu/Documents/in/Fourier_Series"}],"urls":[{"id":41519857,"url":"https://doi.org/10.1007/s10474-010-0023-9"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "69e3010ad6ed339936ce3f982d65196bc58d5817f26a9c2bae5a1d39bf888ab6", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="s0EopaIH1mReMO7/1O9GpuLqyNRlMc50FqsmBhpFltNKaXeV7nSXTLzquSqwWIdWlS8CV+7LNWNcpyuynLcnRw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://unsa-ba.academia.edu/Avdispahic" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Ejkb8aorLT2fNIoqYo8eQYHFWQPZZjwgQEJQwf89lVXrEUTB5lhsFX3u3f8GON+x9gCTgFKcxzcKTl11ec8kwQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>