CINXE.COM
Search results for: Bacillus magisterium
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Bacillus magisterium</title> <meta name="description" content="Search results for: Bacillus magisterium"> <meta name="keywords" content="Bacillus magisterium"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Bacillus magisterium" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Bacillus magisterium"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 333</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Bacillus magisterium</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Effect of Inoculation with Consortia of Plant-Growth Promoting Bacteria on Biomass Production of the Halophyte Salicornia ramosissima</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Jo%C3%A3o%20Ferreira">Maria João Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Sierra-Garcia"> Natalia Sierra-Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Cremades"> Javier Cremades</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Ant%C3%B3nio"> Carla António</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20M.%20Rodrigues"> Ana M. Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20Silva"> Helena Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%82ngela%20Cunha"> Ângela Cunha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salicornia ramosissima, a halophyte that grows naturally in coastal areas of the northern hemisphere, is often considered the most promising halophyte candidate for extensive crop cultivation and saline agriculture practices. The expanding interest in this plant surpasses its use as gourmet food and includes their potential application as a source of bioactive compounds for the pharmaceutical industry. Despite growing well in saline soils, sustainable and ecologically friendly techniques to enhance crop production and the nutritional value of this plant are still needed. The root microbiome of S. ramosissima proved to be a source of taxonomically diverse plant growth-promoting bacteria (PGPB). Halotolerant strains of Bacillus, Salinicola, Pseudomonas, and Brevibacterium, among other genera, exhibit a broad spectrum of plant-growth promotion traits [e.g., 3-indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, siderophores, phosphate solubilization, Nitrogen fixation] and express a wide range of extracellular enzyme activities. In this work, three plant growth-promoting bacteria strains (Brevibacterium casei EB3, Pseudomonas oryzihabitans RL18, and Bacillus aryabhattai SP20) isolated from the rhizosphere and the endosphere of S. ramosissima roots from different saltmarshes along the Portuguese coast were inoculated in S. ramosissima seeds. Plants germinated from inoculated seeds were grown for three months in pots filled with a mixture of perlite and estuarine sediment (1:1) in greenhouse conditions and later transferred to a growth chamber, where they were maintained two months with controlled photoperiod, temperature, and humidity. Pots were placed on trays containing the irrigation solution (Hoagland’s solution 20% added with 10‰ marine salt). Before reaching the flowering stage, plants were collected, and the fresh and dry weight of aerial parts was determined. Non-inoculated seeds were used as a negative control. Selected dried stems from the most promising treatments were later analyzed by GC-TOF-MS for primary metabolite composition. The efficiency of inoculation and persistence of the inoculum was assessed by Next Generation Sequencing. Inoculations with single strain EB3 and co-inoculations with EB3+RL18 and EB3+RL18+SP20 (All treatment) resulted in significantly higher biomass production (fresh and dry weight) compared to non-inoculated plants. Considering fresh weight alone, inoculation with isolates SP20 and RL18 also caused a significant positive effect. Combined inoculation with the consortia SP20+EB3 or SP20+RL18 did not significantly improve biomass production. The analysis of the profile of primary metabolites will provide clues on the mechanisms by which the growth-enhancement effect of the inoculants operates in the plants. These results sustain promising prospects for the use of rhizospheric and endophytic PGPB as biofertilizers, reducing environmental impacts and operational costs of agrochemicals and contributing to the sustainability and cost-effectiveness of saline agriculture. Acknowledgments: This work was supported by project Rhizomis PTDC/BIA-MIC/29736/2017 financed by Fundação para a Ciência e Tecnologia (FCT) through the Regional Operational Program of the Center (02/SAICT/2017) with FEDER funds (European Regional Development Fund, FNR, and OE) and by FCT through CESAM (UIDP/50017/2020 + UIDB/50017/2020), LAQV-REQUIMTE (UIDB/50006/2020). We also acknowledge FCT/FSE for the financial support to Maria João Ferreira through a PhD grant (PD/BD/150363/2019). We are grateful to Horta dos Peixinhos for their help and support during sampling and seed collection. We also thank Glória Pinto for her collaboration providing us the use of the growth chambers during the final months of the experiment and Enrique Mateos-Naranjo and Jennifer Mesa-Marín of the Departamento de Biología Vegetal y Ecología, the University of Sevilla for their advice regarding the growth of salicornia plants in greenhouse conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halophytes" title="halophytes">halophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=PGPB" title=" PGPB"> PGPB</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere%20engineering" title=" rhizosphere engineering"> rhizosphere engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=biofertilizers" title=" biofertilizers"> biofertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20metabolite%20profiling" title=" primary metabolite profiling"> primary metabolite profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20inoculation" title=" plant inoculation"> plant inoculation</a>, <a href="https://publications.waset.org/abstracts/search?q=Salicornia%20ramosissima" title=" Salicornia ramosissima"> Salicornia ramosissima</a> </p> <a href="https://publications.waset.org/abstracts/142419/effect-of-inoculation-with-consortia-of-plant-growth-promoting-bacteria-on-biomass-production-of-the-halophyte-salicornia-ramosissima" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anza-Vhudziki%20Mboyi">Anza-Vhudziki Mboyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilunga%20Kamika"> Ilunga Kamika</a>, <a href="https://publications.waset.org/abstracts/search?q=Maggy%20Momba"> Maggy Momba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand%20%28COD%29%20and%20nanomaterials" title=" chemical oxygen demand (COD) and nanomaterials"> chemical oxygen demand (COD) and nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=consortium" title=" consortium"> consortium</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=protozoan" title=" protozoan"> protozoan</a> </p> <a href="https://publications.waset.org/abstracts/72175/the-ability-of-consortium-wastewater-protozoan-and-bacterial-species-to-remove-chemical-oxygen-demand-in-the-presence-of-nanomaterials-under-varying-ph-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Technological Development of a Biostimulant Bioproduct for Fruit Seedlings: An Engineering Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andres%20Diaz%20Garcia">Andres Diaz Garcia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The successful technological development of any bioproduct, including those of the biostimulant type, requires to adequately completion of a series of stages allied to different disciplines that are related to microbiological, engineering, pharmaceutical chemistry, legal and market components, among others. Engineering as a discipline has a key contribution in different aspects of fermentation processes such as the design and optimization of culture media, the standardization of operating conditions within the bioreactor and the scaling of the production process of the active ingredient that it will be used in unit operations downstream. However, all aspects mentioned must take into account many biological factors of the microorganism such as the growth rate, the level of assimilation to various organic and inorganic sources and the mechanisms of action associated with its biological activity. This paper focuses on the practical experience within the Colombian Corporation for Agricultural Research (Agrosavia), which led to the development of a biostimulant bioproduct based on native rhizobacteria Bacillus amyloliquefaciens, oriented mainly to plant growth promotion in cape gooseberry nurseries and fruit crops in Colombia, and the challenges that were overcome from the expertise in the area of engineering. Through the application of strategies and engineering tools, a culture medium was optimized to obtain concentrations higher than 1E09 CFU (colony form units)/ml in liquid fermentation, the process of biomass production was standardized and a scale-up strategy was generated based on geometric (H/D of bioreactor relationships), and operational criteria based on a minimum dissolved oxygen concentration and that took into account the differences in the capacity of control of the process in the laboratory and pilot scales. Currently, the bioproduct obtained through this technological process is in stages of registration in Colombia for cape gooseberry fruits for export. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20engineering" title="biochemical engineering">biochemical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20fermentation" title=" liquid fermentation"> liquid fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20promoting" title=" plant growth promoting"> plant growth promoting</a>, <a href="https://publications.waset.org/abstracts/search?q=scale-up%20process" title=" scale-up process"> scale-up process</a> </p> <a href="https://publications.waset.org/abstracts/100704/technological-development-of-a-biostimulant-bioproduct-for-fruit-seedlings-an-engineering-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Identification and Characterization of Oil-Degrading Bacteria from Crude Oil-Contaminated Desert Soil in Northeastern Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Aladwan">Mohammad Aladwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Adelia%20Skripova"> Adelia Skripova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioremediation aspects of crude oil-polluted fields can be achieved by isolation and identification of bacterial species from oil-contaminated soil in order to choose the most active isolates and increase the strength of others. In this study, oil-degrading bacteria were isolated and identified from oil-contaminated soil samples in northeastern Jordan. The bacterial growth count (CFU/g) was between 1.06×10⁵ and 0.75×10⁹. Eighty-two bacterial isolates were characterized by their morphology and biochemical tests. The identified bacterial genera included: Klebsiella, Staphylococcus, Citrobacter, Lactobacillus, Alcaligenes, Pseudomonas, Hafnia, Micrococcus, Rhodococcus, Serratia, Enterobacter, Bacillus, Salmonella, Mycobacterium, Corynebacterium, and Acetobacter. Molecular identification of a universal primer 16S rDNA gene was used to identify four bacterial isolates: Microbacterium esteraromaticum strain L20, Pseudomonas stutzeri strain 13636M, Klebsilla pneumoniae, and uncultured Klebsilla sp., known as new strains. Our results indicate that their specific oil-degrading bacteria isolates might have a high strength of oil degradation from oil-contaminated sites. Staphylococcus intermedius (75%), Corynebacterium xerosis (75%), and Pseudomonas fluorescens (50%) showed a high growth rate on different types of hydrocarbons, such as crude oil, toluene, naphthalene, and hexane. In addition, monooxygenase and catechol 2,3-dioxygenase were detected in 17 bacterial isolates, indicating their superior hydrocarbon degradation potential. Total petroleum hydrocarbons were analyzed using gas chromatography for soil samples. Soil samples M5, M7, and M8 showed the highest levels (43,645, 47,805, and 45,991 ppm, respectively), and M4 had the lowest level (7,514 ppm). All soil samples were analyzed for heavy metal contamination (Cu, Cd, Mn, Zn, and Pb). Site M7 contains the highest levels of Cu, Mn, and Pb, while Site M8 contains the highest levels of Mn and Zn. In the future, these isolates of bacteria can be used for the cleanup of oil-contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rDNA%20gene" title=" 16S rDNA gene"> 16S rDNA gene</a>, <a href="https://publications.waset.org/abstracts/search?q=oil-degrading%20bacteria" title=" oil-degrading bacteria"> oil-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/155484/identification-and-characterization-of-oil-degrading-bacteria-from-crude-oil-contaminated-desert-soil-in-northeastern-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Antimicrobial Activity of Endophytes on some Selected Clinical Isolates (Escherichia coli, Staphylococcus aureus, Salmonella Typhi, Bacillus subtilis, Klebsiella pneumoniae, Aspergillus fumigatus, Pseudomomonas aeruginosa and Penicillium chryysogenum)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawang%20D.%20N.">Dawang D. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dasat%20G.%20S."> Dasat G. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nden%20D."> Nden D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endophyte means “in the plant” are referred to all microorganisms that live in the internal tissues of stems, petioles, roots and leaves of plants causing no apparent symptoms of disease. Secondary metabolites from fungal endophytes have an enormous potential applications as antioxidant, antimicrobial, anticancer and antidiabeties. Thus, this study aimed to determine the antimicrobial activity of these metabolites against some clinical isolates. The fungi were subjected to fermentation medium and the metabolites were extracted using ethyl acetate. The fungal extracts showed both antibacterial and antifungal activities with maximum zone of inhibition diameter of 10.5mm against Aspergillus fumigatus. Staphylococcus aureus was inhibited by all the five crude extracts with inhibition zone diameter of 4mm. Endophytic fungal crude extract2 (EDF2) exhibited antimicrobial effect against all the test organisms used, EDF4 was active against all test organisms except on Penicillium chrysogenum and Klebsiella pneumoniae. Antibacterial standard of ciprofloxacin which is 15mm is comparable to the effect of endophytic extract of EDF1 and EDF2. Klebsiella pneumoniae was resistant to EDF4 and EDF5. EDF3 showed a wide range of antimicrobial activity against all the test organisms used. The highest inhibition zone diameter of 10.50mm recorded against Aspergillus fumigatus is comparable to antifungal standard of fluconazole (15.5mm). The result of this study suggests that endophytic fungi associated with the roots of Irish potato could be a promising source of novel bioactive compounds of pharmaceutical and industrial importance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endophyte" title="endophyte">endophyte</a>, <a href="https://publications.waset.org/abstracts/search?q=fungal%20extract" title=" fungal extract"> fungal extract</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a> </p> <a href="https://publications.waset.org/abstracts/161317/antimicrobial-activity-of-endophytes-on-some-selected-clinical-isolates-escherichia-coli-staphylococcus-aureus-salmonella-typhi-bacillus-subtilis-klebsiella-pneumoniae-aspergillus-fumigatus-pseudomomonas-aeruginosa-and-penicillium-chryysogenum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Achievements of Healthcare Services Vis-À-Vis the Millennium Development Goals Targets: Evidence from Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeeda%20Batool">Saeeda Batool</a>, <a href="https://publications.waset.org/abstracts/search?q=Ather%20Maqsood%20Ahmed"> Ather Maqsood Ahmed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the impact of public healthcare facilities and socio-economic circumstances on the status of child health in Pakistan. The complete analysis is carried out in correspondence with fourth and sixth millennium development goals. Further, the health variables chosen are also inherited from targeted indicators of the mentioned goals (MDGs). Trends in the Human Opportunity Index (HOI) for both health inequalities and coverage are analyzed using the Pakistan Social and Living Standards Measurement (PLSM) data set for 2001-02 to 2012-13 at the national and provincial level. To reveal the relative importance of each circumstance in achieving the targeted values for child health, Shorrocks decomposition is applied on HOI. The annual point average growth rate of HOI is used to simulate the time period for the achievement of target set by MDGs and universal access also. The results indicate an improvement in HOI for a reduction in child mortality rates from 52.1% in 2001-02 to 67.3% in 2012-13, which confirms the availability of healthcare opportunities to a larger segment of society. Similarly, immunization against measles and other diseases such as Diphtheria, Polio, Bacillus Calmette-Guerin (BCG), and Hepatitis has also registered an improvement from 51.6% to 69.9% during the period of study at the national level. On a positive note, no gender disparity has been found for child health indicators and that health outcome is mostly affected by the parental and geographical features and availability of health infrastructure. However, the study finds that this achievement has been uneven across provinces. Pakistan is not only lagging behind in achieving its health goals, disappointingly with the current rate of health care provision, but it will take many additional years to achieve its targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20circumstances" title="socio-economic circumstances">socio-economic circumstances</a>, <a href="https://publications.waset.org/abstracts/search?q=unmet%20MDGs" title=" unmet MDGs"> unmet MDGs</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20healthcare%20services" title=" public healthcare services"> public healthcare services</a>, <a href="https://publications.waset.org/abstracts/search?q=child%20and%20infant%20mortality" title=" child and infant mortality"> child and infant mortality</a> </p> <a href="https://publications.waset.org/abstracts/70678/achievements-of-healthcare-services-vis-a-vis-the-millennium-development-goals-targets-evidence-from-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Use of an Insecticidal-Iridovirus Kinase towards the Development of Aphid-Resistant Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saranya%20Ganapathy">Saranya Ganapathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Megha%20N.%20Parajulee"> Megha N. Parajulee</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20San%20Francisco"> Michael San Francisco</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Zhang"> Hong Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insect pests are a serious threat to agricultural productivity. Use of chemical pesticides, the predominant control method thus far, has resulted in environmental damage, pest resurgence, and negative effects on non-target species. Genetically modified (GM) crops offer a promising alternative, and Bacillus thuringiensis endotoxin genes have played a major role in this respect. However, to overcome insect tolerance issues and to broaden the target range, it is critical to identify alternative-insecticidal toxins working through novel mechanisms. Our research group has identified a kinase from Chilo iridescent virus (CIV; Family Iridoviridae) that has insecticidal activity and designated it as ISTK (Iridovirus Serine/Threonine Kinase). A 35 kDa truncated form of ISTK, designated iridoptin, was obtained during expression and purification of ISTK in the yeast system. This yeast-expressed CIV toxin induced 50% mortality in cotton aphids and 100% mortality in green peach aphids (GPA). Optimized viral genes (o-ISTK and o-IRI) were stably transformed into the model plant, Arabidopsis. PCR analysis of genomic DNA confirmed the presence of the gene insert (oISTK/oIRI) in selected transgenic lines. The further screening was performed to identify the PCR positive lines that showed expression of respective toxins at the polypeptide level using Western blot analysis. The stable lines expressing either of these two toxins induced moderate to very high mortality in GPAs and significantly affected GPA development and fecundity. The aphicidal potential of these transgenic Arabidopsis lines will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chilo%20iridescent%20virus" title="Chilo iridescent virus">Chilo iridescent virus</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20toxin" title=" insecticidal toxin"> insecticidal toxin</a>, <a href="https://publications.waset.org/abstracts/search?q=iridoviruses" title=" iridoviruses"> iridoviruses</a>, <a href="https://publications.waset.org/abstracts/search?q=plant-incorporated%20protectants" title=" plant-incorporated protectants"> plant-incorporated protectants</a>, <a href="https://publications.waset.org/abstracts/search?q=serine%2Fthreonine%20kinase" title=" serine/threonine kinase"> serine/threonine kinase</a> </p> <a href="https://publications.waset.org/abstracts/33526/use-of-an-insecticidal-iridovirus-kinase-towards-the-development-of-aphid-resistant-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Development and Evaluation of Dehydrated Soups with Frog Meat by Freeze Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S%C3%ADlvia%20Pereira%20Mello">Sílvia Pereira Mello</a>, <a href="https://publications.waset.org/abstracts/search?q=Eliane%20Rodrigues"> Eliane Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20de%20Lourdes%20Andrade"> Maria de Lourdes Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Pereira"> Marcelo Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Giselle%20Dias"> Giselle Dias</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Seixas%20Filho"> Jose Seixas Filho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frog meat is a highly digestible food and its use is recommended in diets aimed at fighting cholesterol, obesity, and arterial hypertension, as well as for treating gastrointestinal disorders. In this study, the soups were developed with frog meat in addition to other ingredients which did not present allergenic potential. The carcasses of the thawed frogs went through bleaching and deboning, and other ingredients (vegetables and condiments) were then added to the separated meat. After the process of cooking, the soups were cooled and later on frozen at -40° C for 3 hours and then taken to the LS 3000 B lyophilizer for 24 hours. The soups were submitted to microbiological analysis: enumeration of total coliforms and Bacillus cereus; identification of coagulase positive Staphylococcus; isolation and identification of Salmonella spp.; and physical-chemical analysis; application of micro-Kjeldahl method for protein, Soxhlet method for lipids, use of a heating chamber at 105ºC for moisture, incineration method (500-550°C) for ash, and Decagon's Pawkit equipment for determining water activity. Acceptance test was performed with 50 elderly people, all between 60 and 85 years of age. The degree of acceptance was demonstrated using a seven points structured hedonic scale in which the taster expressed their impression towards the product. Results of the microbiological analysis showed that all samples met the standards established by the National Health Surveillance Agency of Brazil (ANVISA). Results of the acceptance test indicated that all the soups were accepted considering overall impression and intended consumption. In addition to its excellent nutritional quality, the dehydrated soups made with frog meat are presented as a solution for consumers due to convenience in preparation, consumption and storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriological%20quality" title="bacteriological quality">bacteriological quality</a>, <a href="https://publications.waset.org/abstracts/search?q=lithobates%20catesbeianus" title=" lithobates catesbeianus"> lithobates catesbeianus</a>, <a href="https://publications.waset.org/abstracts/search?q=instant%20soup" title=" instant soup"> instant soup</a>, <a href="https://publications.waset.org/abstracts/search?q=proximate%20composition" title=" proximate composition"> proximate composition</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20analysis" title=" sensory analysis"> sensory analysis</a> </p> <a href="https://publications.waset.org/abstracts/130236/development-and-evaluation-of-dehydrated-soups-with-frog-meat-by-freeze-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Catered Lunch Suspected Outbreak in a Garment Factory, Sleman District, Yogyakarta, Indonesia, 2017</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rieski%20Prihastuti">Rieski Prihastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Meliana%20Depo"> Meliana Depo</a>, <a href="https://publications.waset.org/abstracts/search?q=Trisno%20A.%20Wibowo"> Trisno A. Wibowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Misinem"> Misinem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On October 19, 2017, Yogyakarta Islamic Hospital reported 38 garment employees with nausea, vomiting, headache, abdominal pain, and diarrhea after they had lunch on October 18, 2017, to Sleman District Health Office. Objectives of this study were to ensure the outbreak and identify source and route of transmission. Case-control study was conducted to analyze food items that caused the outbreak. A case was defined as a person who got symptoms such as abdominal pain, diarrhea, nausea with/without vomiting, fever, and headache after they had lunch on October 18, 2017. Samples included leftover lunch box, vomit, tap water and drinking water had been sent to the laboratory. Data were analyzed descriptively as frequency table and analyzed by using chi-square in bivariate analysis. All of 196 garment employee was included in this study. The common symptoms of this outbreak were abdominal pain (84.4%), diarrhea (72.8%), nausea (61.6%), headache (52.8%), vomiting (12.8%), and fever (6.4%) with median incubation period 13 hours (range 1-34 hours). Highest attack rate and odds ratio was found in grilled chicken (Attack Rate 58,49%) with Odds Ratio 11,023 (Confidence Interval 95% 1.383 - 87.859; p value 0,005). Almost all samples showed mold, except drinking water. Based on its sign and symptoms, also incubation period, diarrheal Bacillus cereus and Clostridium perfringens were suspected to be the causative agent of the outbreak. Limitation of this study was improper sample handling and no sample of food handler and stools in the food caterer. Outbreak investigation training needed to be given to the hospital worker, and monitoring should be done to the food caterer to prevent another outbreak. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disease%20outbreak" title="disease outbreak">disease outbreak</a>, <a href="https://publications.waset.org/abstracts/search?q=foodborne%20disease" title=" foodborne disease"> foodborne disease</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20poisoning" title=" food poisoning"> food poisoning</a>, <a href="https://publications.waset.org/abstracts/search?q=outbreak" title=" outbreak"> outbreak</a> </p> <a href="https://publications.waset.org/abstracts/91998/catered-lunch-suspected-outbreak-in-a-garment-factory-sleman-district-yogyakarta-indonesia-2017" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Biocontrol Potential of Growth Promoting Rhizobacteria against Root Rot of Chili and Enhancement of Plant Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiran%20Nawaz">Kiran Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Waheed%20Anwar"> Waheed Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sehrish%20Iftikhar"> Sehrish Iftikhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nasir%20Subhani"> Muhammad Nasir Subhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ali%20Shahid"> Ahmad Ali Shahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant growth promoting rhizobacteria (PGPR) have been extensively studied and applied for the biocontrol of many soilborne diseases. These rhizobacteria are very efficient against root rot and many other foliar diseases associated with solanaceous plants. These bacteria may inhibit the growth of various pathogens through direct inhibition of target pathogens or indirectly by the initiation of systemic resistance (ISR) which is active all over the complete plant. In the present study, 20 different rhizobacterial isolates were recovered from the root zone of healthy chili plants. All soil samples were collected from various chili-growing areas in Punjab. All isolated rhizobacteria species were evaluated in vitro and in vivo against Phytophthora capsici. Different species of Bacillus and Pseudomonas were tested for the antifungal activity against P. capsici the causal organism of Root rot disease in different crops together with chili. Dual culture and distance culture bioassay were carried out to study the antifungal potential of volatile and diffusible metabolites secreted from rhizobacteria. After seven days of incubation at 22°C, growth inhibition rate was recorded. Growth inhibition rate depended greatly on the tested bacteria and screening methods used. For diffusible metabolites, inhibition rate was 35-62% and 20-45% for volatile metabolites. The screening assay for plant growth promoting and disease inhibition potential of chili associated PGPR indicated 42-100% reduction in disease severity and considerable enhancement in roots fresh weight by 55-87%, aerial parts fresh weight by 35-65% and plant height by 65-76% as compared to untreated control and pathogen-inoculated plants. Pseudomonas flourescene, B. thuringiensis, and B. subtilis were found to be the most efficient isolates in inhibiting P. capsici radial growth, increase plant growth and suppress disease severity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizobacteria" title="rhizobacteria">rhizobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=chili" title=" chili"> chili</a>, <a href="https://publications.waset.org/abstracts/search?q=phytophthora" title=" phytophthora"> phytophthora</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20rot" title=" root rot"> root rot</a> </p> <a href="https://publications.waset.org/abstracts/66513/biocontrol-potential-of-growth-promoting-rhizobacteria-against-root-rot-of-chili-and-enhancement-of-plant-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Antimicrobial, Antioxidant and Cytotoxic Activities of Cleoma viscosa Linn. Crude Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suttijit%20Sriwatcharakul">Suttijit Sriwatcharakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bioactivity studies from the weed ethanolic crude extracts from leaf, stem, pod and root of wild spider flower; Cleoma viscosa Linn. were analyzed for the growth inhibition of 6 bacterial species; Salmonella typhimurium TISTR 5562, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus TISTR 1466, Streptococcus epidermidis ATCC 1228, Escherichia coli DMST 4212 and Bacillus subtilis ATCC 6633 with initial concentration crude extract of 50 mg/ml. The agar well diffusion results found that the extracts inhibit only gram positive bacteria species; S. aureus, S. epidermidis and B. subtilis. The minimum inhibition concentration study with gram positive strains revealed that leaf crude extract give the best result of the lowest concentration compared with other plant parts to inhibit the growth of S. aureus, S. epidermidis and B. subtilis at 0.78, 0.39 and lower than 0.39 mg/ml, respectively. The determination of total phenolic compounds in the crude extracts exhibited the highest phenolic content was 10.41 mg GAE/g dry weight in leaf crude extract. Analyzed the efficacy of free radical scavenging by using DPPH radical scavenging assay with all crude extracts showed value of IC50 of leaf, stem, pod and root crude extracts were 8.32, 12.26, 21.62 and 35.99 mg/ml, respectively. Studied cytotoxicity of crude extracts on human breast adenocarcinoma cell line by MTT assay found that pod extract had the most cytotoxicity CC50 value, 32.41 µg/ml. Antioxidant activity and cytotoxicity of crude extracts exhibited that the more increase of extract concentration, the more activities indicated. According to the bioactivities results, the leaf crude extract of Cleoma viscosa Linn. is the most interesting plant part for further work to search the beneficial of this weed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Cleoma%20viscosa%20Linn." title=" Cleoma viscosa Linn."> Cleoma viscosa Linn.</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity%20test" title=" cytotoxicity test"> cytotoxicity test</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20compound" title=" total phenolic compound"> total phenolic compound</a> </p> <a href="https://publications.waset.org/abstracts/52855/antimicrobial-antioxidant-and-cytotoxic-activities-of-cleoma-viscosa-linn-crude-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Developing Novel Bacterial Primase (DnaG) Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanakr%20Bhattarai">Shanakr Bhattarai</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20S.%20Tiwari"> V. S. Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Barak%20Akabayov"> Barak Akabayov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plummeting number of infections and death is due to the development of drug-resistant bacteria. In addition, the number of approved antibiotic drugs by the Food and Drug Administration (FDA) is insufficient. Therefore, developing new drugs and finding novel targets for central metabolic pathways in bacteria is urgently needed. One of the promising targets is DNA replication machinery which consists of many essential proteins and enzymes. DnaG primase is an essential enzyme and a central part of the DNA replication machinery. DnaG primase synthesizes short RNA primers that initiate the Okazaki fragments by the lagging strand DNA polymerase. Therefore, it is reasonable to assume that inhibition of primase activity will stall DNA replication and prevent bacterial proliferation. We did the expression and purification of eight different bacterial DnaGs (Mycobacterium tuberculosis(Mtb), Bacillus anthracis (Ba), Mycobacterium smegmatis (Msmeg), Francisella tularencis (Ft), Vibrio cholerae (Vc) and Yersinia pestis (Yp), Staphylococcus aureus(Saureus), Escherichia coli(Ecoli)) followed by the radioactive activity assay. After obtaining the pure and active protein DnaG, we synthesized the inhibitors for them. The inhibitors were divided into five different groups, each containing five molecules, and the cocktail inhibition assay was performed against each DnaGs. The groups of molecules inhibiting the DnaGs were further tested with individual molecules belonging to inhibiting groups. Each molecule showing inhibition was titrated against the corresponding DnaGs to find IC50. We got a molecule(VS167) that acted as broad inhibitors, inhibiting all eight DnaGs. Molecules VS180 and VS186 inhibited seven DnaGs (except Saureus). Similarly, two molecules(VS 173, VS176) inhibited five DnaGs (Mtb, Ba, Ft, Yp, Ecoli). VS261 inhibited four DnaGs (Mtb, Ba, Ft, Vc). MS50 inhibited Ba and Vc DnaGs. And some of the inhibitors inhibited only one DnaGs. Thus we found the broad and specific inhibitors for different bacterial DnaGs, and their Structure-activity analysis(SAR) was done. Further, We tried to explain the similarities among the enzyme DnaGs from different bacteria based on their inhibition pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20replication" title="DNA replication">DNA replication</a>, <a href="https://publications.waset.org/abstracts/search?q=DnaG" title=" DnaG"> DnaG</a>, <a href="https://publications.waset.org/abstracts/search?q=okazaki%20fragments" title=" okazaki fragments"> okazaki fragments</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20drugs" title=" antibiotic drugs"> antibiotic drugs</a> </p> <a href="https://publications.waset.org/abstracts/167648/developing-novel-bacterial-primase-dnag-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> One Health Approach: The Importance of Improving the Identification of Waterborne Bacteria in Austrian Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aurora%20Gitto">Aurora Gitto</a>, <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Proksch"> Philipp Proksch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of various microorganisms (bacteria, fungi) in surface water and groundwater represents an important issue for human health worldwide. The matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) has emerged as a promising and reliable tool for bacteria identification in clinical diagnostic microbiology and environmental strains thanks to an ionization technique that uses a laser energy absorbing matrix to create ions from large molecules with minimal fragmentation. The study aims first to conceptualise and set up library information and create a comprehensive database of MALDI-TOF-MS spectra from environmental water samples. The samples were analysed over a year (2021-2022) using membrane filtration methodology (0.45 μm and 0.22 μm) and then isolated on R2A agar for a period of 5 days and Yeast extract agar growing at 22 °C up to 4 days and 37 °C for 48 hours. The undetected organisms by MALDI-TOF-MS were analysed by PCR and then sequenced. The information obtained by the sequencing was further implemented in the MALDI-TOF-MS library. Among the culturable bacteria, the results show how the incubator temperature affects the growth of some genera instead of others, as demonstrated by Pseudomonas sp., which grows at 22 °C, compared to Bacillus sp., which is abundant at 37 °C. The bacteria community shows a variation in composition also between the media used, as demonstrated with R2A agar which has been defined by a higher presence of organisms not detected compared to YEA. Interesting is the variability of the Genus over one year of sampling and how the seasonality impacts the bacteria community; in fact, in some sampling locations, we observed how the composition changed, moving from winter to spring and summer. In conclusion, the bacteria community in groundwater and river bank filtration represents important information that needs to be added to the library to simplify future water quality analysis but mainly to prevent potential risks to human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title="water quality">water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=MALDI-TOF-MS" title=" MALDI-TOF-MS"> MALDI-TOF-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=library" title=" library"> library</a> </p> <a href="https://publications.waset.org/abstracts/166306/one-health-approach-the-importance-of-improving-the-identification-of-waterborne-bacteria-in-austrian-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Identification of the Antimicrobial Effect of Liquorice Extracts on Gram-Positive Bacteria: Determination of Minimum Inhibitory Concentration and Mechanism of Action Using a luxABCDE Reporter Strain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madiha%20El%20Awamie">Madiha El Awamie</a>, <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Rees"> Catherine Rees</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural preservatives have been used as alternatives to traditional chemical preservatives; however, a limited number have been commercially developed and many remain to be investigated as sources of safer and effective antimicrobials. In this study, we have been investigating the antimicrobial activity of an extract of <em>Glycyrrhiza glabra</em> (liquorice) that was provided as a waste material from the production of liquorice flavourings for the food industry, and to investigate if this retained the expected antimicrobial activity so it could be used as a natural preservative. Antibacterial activity of liquorice extract was screened for evidence of growth inhibition against eight species of Gram-negative and Gram-positive bacteria, including <em>Listeria monocytogenes, Listeria innocua, Staphylococcus aureus, Enterococcus faecalis</em> and <em>Bacillus subtilis</em>. The Gram-negative bacteria tested include <em>Pseudomonas aeruginosa, Escherichia coli </em>and<em> Salmonella typhimurium</em> but none of these were affected by the extract. In contrast, for all of the Gram-positive bacteria tested, growth was inhibited as monitored using optical density. However parallel studies using viable count indicated that the cells were not killed meaning that the extract was bacteriostatic rather than bacteriocidal. The Minimum Inhibitory Concentration [MIC] and Minimum Bactericidal Concentration [MBC] of the extract was also determined and a concentration of 50 µg ml<sup>-1</sup> was found to have a strong bacteriostatic effect on Gram-positive bacteria. Microscopic analysis indicated that there were changes in cell shape suggesting the cell wall was affected. In addition, the use of a reporter strain of <em>Listeria</em> transformed with the bioluminescence genes <em>luxABCDE</em> indicated that cell energy levels were reduced when treated with either 12.5 or 50 µg ml<sup>-1</sup> of the extract, with the reduction in light output being proportional to the concentration of the extract used. Together these results suggest that the extract is inhibiting the growth of Gram-positive bacteria only by damaging the cell wall and/or membrane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bioluminescence" title=" bioluminescence"> bioluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Glycyrrhiza%20glabra" title=" Glycyrrhiza glabra"> Glycyrrhiza glabra</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20preservative" title=" natural preservative"> natural preservative</a> </p> <a href="https://publications.waset.org/abstracts/48797/identification-of-the-antimicrobial-effect-of-liquorice-extracts-on-gram-positive-bacteria-determination-of-minimum-inhibitory-concentration-and-mechanism-of-action-using-a-luxabcde-reporter-strain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> The Antibacterial and Anticancer Activity of Marine Actinomycete Strain HP411 Isolated in the Northern Coast of Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huyen%20T.%20Pham">Huyen T. Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Nhue%20P.%20Nguyen"> Nhue P. Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tien%20Q.%20Phi"> Tien Q. Phi</a>, <a href="https://publications.waset.org/abstracts/search?q=Phuong%20T.%20Dang"> Phuong T. Dang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hy%20G.%20Le"> Hy G. Le</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the marine environmental conditions are extremely different from the other ones, so that marine actinomycetes might produce novel bioactive compounds. Therefore, actinomycete strains were screened from marine water and sediment samples collected from the coastal areas of Northern Vietnam. Ninety-nine actinomycete strains were obtained on starch-casein agar media by dilution technique, only seven strains, named HP112, HP12, HP411, HPN11, HP 11, HPT13 and HPX12, showed significant antibacterial activity against both gram-positive and gram-negative bacteria (Bacillus subtilis ATCC 6633, Staphylococcus epidemidis ATCC 12228, Escherichia coli ATCC 11105). Further studies were carried out with the most active HP411strain against Candida albicans ATCC 10231. This strain could grow rapidly on starch casein agar and other media with high salt containing 7-10% NaCl at 28-30oC. Spore-chain of HP411 showed an elongated and circular shape with 10 to 30 spores/chain. Identification of the strain was carried out by employing the taxonomical studies including the 16S rRNA sequence. Based on phylogenetic and phenotypic evidence it is proposed that HP411 to be belongs to species Streptomyces variabilis. The potent of the crude extract of fermentation broth of HP411that are effective against wide range of pathogens: both gram-positive, gram-negative and fungi. Further studies revealed that the crude extract HP411 could obtain the anticancer activity for cancer cell lines: Hep-G2 (liver cancer cell line); RD (cardiac and skeletal muscle letters cell line); FL (membrane of the uterus cancer cell line). However, the actinomycetes from marine ecosystem will be useful for the discovery of new drugs in the furture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20actinomycetes" title="marine actinomycetes">marine actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer" title=" anticancer"> anticancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Streptomyces%20variabilis" title=" Streptomyces variabilis"> Streptomyces variabilis</a> </p> <a href="https://publications.waset.org/abstracts/16783/the-antibacterial-and-anticancer-activity-of-marine-actinomycete-strain-hp411-isolated-in-the-northern-coast-of-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Prevalence and Antibiotic Resistance of Bacteria Isolated from Farmers’ Market Fruits and Vegetables Collected from Frostburg and Cumberland Areas in Maryland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumudini%20Apsara%20Munasinghe">Kumudini Apsara Munasinghe</a>, <a href="https://publications.waset.org/abstracts/search?q=Devin%20Gregory%20Lissau"> Devin Gregory Lissau</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Thomas%20Wade"> Ryan Thomas Wade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh fruits and vegetables are rich in vitamins, minerals, and fibers and help maintain a healthy weight over high-calorie food. Eating fruits and vegetables protects us from free radicals produced by metabolic reactions and safeguards us from cardiovascular disease and cancer. However, there has been an increased concern about foodborne diseases tied to contaminated farmers’ market produce. In addition, very little information is available about the contribution of eating raw fruits and vegetables to human exposure to antibiotic-resistant bacteria. This research aims to identify bacteria isolated from farmers’ market fruits and vegetables and understand their antibiotic resistance. Vegetables and fruits were collected from farmers’ markets around Frostburg and Cumberland areas in Maryland and transported to the microbiology lab at Frostburg State University for the isolation of bacteria. Bacteria were extracted from tomatoes, cucumber, strawberry, and lettuce using Tryptic soy broth overnight at 37°C, and Tryptic Soy agar was used for the streak plate technique to isolate bacteria. Pure cultures were used to identify bacteria using biochemical reactions after conducting Gram staining technique. The research used many biochemical reactions, including Mannitol Salt agar, MacConkey agar, and Eosin Methylene blue agar, for identification. Antibiotic sensitivity was tested for many different types of antibiotics, including amoxicillin, penicillin, tetracycline, ampicillin, and erythromycin. Most prevalent bacteria in the isolates were Staphylococcus, Bacillus, Micrococcus, Enterococcus, Enterobacter, Citrobacter, and other bacteria from the family Enterobacteriaceae. The data obtained from this research will be useful to educate and train farmers and individuals involved in post-harvest processes such as transportation and selling in farmers’ markets. Further results for bacterial antibiotic resistance will be obtained, and unculturable bacteria will be identified by next-generation DNA sequencing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers%20markets" title=" farmers markets"> farmers markets</a>, <a href="https://publications.waset.org/abstracts/search?q=fruits" title=" fruits"> fruits</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a> </p> <a href="https://publications.waset.org/abstracts/176594/prevalence-and-antibiotic-resistance-of-bacteria-isolated-from-farmers-market-fruits-and-vegetables-collected-from-frostburg-and-cumberland-areas-in-maryland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Sustainable Agriculture Practices Using Bacterial-mediated Alleviation of Salinity Stress in Crop Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Trigui">Mohamed Trigui</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Masmoudi"> Fatma Masmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Imen%20Zouari"> Imen Zouari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Massive utilizations of chemical fertilizer and chemical pesticides in agriculture sector to improve the farming productivity have created increasing environmental damages. Then, agriculture must become sustainable, focusing on production systems that respect the environment and help to reduce climate change. Isolation and microbial identification of new bacterial strains from naturally saline habitats and compost extracts could be a prominent way in pest management and crop production under saline conditions. In this study, potential mechanisms involved in plant growth promotion and suppressive activity against fungal diseases of a compost extract produced from poultry manure/olive husk compost and halotolerant and halophilic bacterial strains under saline stress were investigated. On the basis of the antimicrobial tests, different strains isolated from Sfax solar saltern (Tunisia) and from compost extracts were selected and tested for their plant growth promoting traits, such as siderophores production, nitrogen fixation, phosphate solubilization and the production of extracellular hydrolytic enzymes (protease and lipase) under in-vitro conditions. Among 450 isolated bacterial strains, 16 isolates showed potent antifungal activity against the tested plant pathogenic fungi. Their identification based on 16S rRNA gene sequence revealed they belonged to different species. Some of these strains were also characterized for their plant growth promoting capacities. Obtained results showed the ability of four strains belonging to Bacillus genesis to ameliorate germination rate and root elongation compared to the untreated positive controls. Combinatorial capacity of halotolerant bacteria with antimicrobial activity and plant growth promoting traits could be promising sources of interesting bioactive substances under saline stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abiotic%20stress" title="abiotic stress">abiotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title=" biofertilizer"> biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=biotic%20stress" title=" biotic stress"> biotic stress</a>, <a href="https://publications.waset.org/abstracts/search?q=compost%20extract" title=" compost extract"> compost extract</a>, <a href="https://publications.waset.org/abstracts/search?q=halobacteria" title=" halobacteria"> halobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20promoting%20%28PGP%29" title=" plant growth promoting (PGP)"> plant growth promoting (PGP)</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility" title=" soil fertility"> soil fertility</a> </p> <a href="https://publications.waset.org/abstracts/166274/sustainable-agriculture-practices-using-bacterial-mediated-alleviation-of-salinity-stress-in-crop-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Direct Fed Microbes: A Better Approach to Maximize Utilization of Roughages in Tropical Ruminants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Adeel%20Arshad">Muhammad Adeel Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaukat%20Ali%20Bhatti"> Shaukat Ali Bhatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiz-ul%20Hassan"> Faiz-ul Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manipulating microbial ecosystem in the rumen is considered as an important strategy to optimize production efficiency in ruminants. In the past, antibiotics and synthetic chemical compounds have been used for the manipulation of rumen fermentation. However, since the non-therapeutic use of antibiotics has been banned, efforts are being focused to search out safe alternative products. In tropics, crop residues and forage grazing are major dietary sources for ruminants. Poor digestibility and utilization of these feedstuffs by animals is a limiting factor to exploit the full potential of ruminants in this area. Hence, there is a need to enhance the utilization of these available feeding resources. One of the potential strategies in this regard is the use of direct-fed microbes. Bacteria and fungi are mostly used as direct-fed microbes to improve animal health and productivity. Commonly used bacterial species include lactic acid-producing and utilizing bacteria (Lactobacillus, Streptococcus, Enterococcus, Bifidobacterium, and Bacillus) and fungal species of yeast are Saccharomyces and Aspergillus. Direct-fed microbes modulate microbial balance in the gastrointestinal tract through the competitive exclusion of pathogenic species and favoring beneficial microbes. Improvement in weight gain and feed efficiency has been observed as a result of feeding direct-fed bacteria. The use of fungi as a direct-fed microbe may prevent excessive production of lactate and harmful oxygen in the rumen leading to better feed digestibility. However, the mechanistic mode of action for bacterial or fungal direct-fed microbes has not been established yet. Various reports have confirmed an increase in dry matter intake, milk yield, and milk contents in response to the administration of direct-fed microbes. However, the application of a direct-fed microbe has shown variable responses mainly attributed to dosages and strains of microbes. Nonetheless, it is concluded that the inclusion of direct-fed microbes may mediate the rumen ecosystem to manage lactic acid production and utilization in both clinical and sub-acute rumen acidosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbes" title="microbes">microbes</a>, <a href="https://publications.waset.org/abstracts/search?q=roughages" title=" roughages"> roughages</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen" title=" rumen"> rumen</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20efficiency" title=" feed efficiency"> feed efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/115319/direct-fed-microbes-a-better-approach-to-maximize-utilization-of-roughages-in-tropical-ruminants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Synergistic Effect of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi to Enhance Wheat Grain Yield, Biofortification and Soil Health: A Field Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radheshyam%20Yadav">Radheshyam Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramakrishna%20%20Wusirika"> Ramakrishna Wusirika</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant Growth Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal (AM) Fungi are ubiquitous in soil and often very critical for crop yield and agriculture sustainability, and this has motivated the agricultural practices to support and promote PGPB and AM Fungi in agriculture. PGPB can be involved in a range of processes that affect Nitrogen (N) and Phosphorus (P) transformations in soil and thus influence nutrient availability and uptake to the plants. A field study with two wheat cultivars, HD-3086, and HD-2967 was performed in Malwa region, Bathinda of Punjab, India, to evaluate the effect of native and non-native PGPB alone and in combination with AM fungi as an inoculant on wheat grain yield, nutrient uptake and soil health parameters (dehydrogenase, urease, β‐glucosidase). Our results showed that despite an early insignificant increase in shoot length, plants treated with PGPB (Bacillus sp.) and AM Fungi led to a significant increase in shoot growth at maturity, aboveground biomass, nitrogen (45% - 40%) and phosphorus (40% - 34%) content in wheat grains relative to untreated control plants. Similarly, enhanced grain yield and nutrients uptake i.e. copper (27.15% - 36.25%) iron (43% - 53%) and zinc (44% - 47%) was recorded in PGPB and AM Fungi treated plants relative to untreated control. Overall, inoculation with native PGPB alone and in combination with AM Fungi provided benefits to enhance grain yield, wheat biofortification, and improved soil fertility, despite this effect varied depending on different PGPB isolates and wheat cultivars. These field study results provide evidence of the benefits of agricultural practices involving native PGPB and AM Fungi to the plants. These native strains and AM Fungi increased accumulations of copper, iron, and zinc in wheat grains, enhanced grain yield, and soil fertility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AM%20Fungi" title="AM Fungi">AM Fungi</a>, <a href="https://publications.waset.org/abstracts/search?q=biofortification" title=" biofortification"> biofortification</a>, <a href="https://publications.waset.org/abstracts/search?q=PGPB" title=" PGPB"> PGPB</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20microbial%20enzymes" title=" soil microbial enzymes "> soil microbial enzymes </a> </p> <a href="https://publications.waset.org/abstracts/122089/synergistic-effect-of-plant-growth-promoting-bacteria-and-arbuscular-mycorrhizal-fungi-to-enhance-wheat-grain-yield-biofortification-and-soil-health-a-field-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> An Attenuated Quadruple Gene Mutant of Mycobacterium tuberculosis Imparts Protection against Tuberculosis in Guinea Pigs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shubhita%20Mathur">Shubhita Mathur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritika%20Kar%20Bahal"> Ritika Kar Bahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Chauhan"> Priyanka Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20K.%20Tyagi"> Anil K. Tyagi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycobacterium tuberculosis, the causative agent of human tuberculosis, is a major cause of mortality. Bacillus Calmette-Guérin (BCG), the only licensed vaccine available for protection against tuberculosis confers highly variable protection ranging from 0%-80%. Thus, novel vaccine strains need to be evaluated for their potential as a vaccine against tuberculosis. We had previously constructed a triple gene mutant of M. tuberculosis (MtbΔmms), having deletions in genes encoding for phosphatases mptpA, mptpB, and sapM that are involved in host-pathogen interaction. Though vaccination with Mtb∆mms strain induced protection in the lungs of guinea pigs, the mutant strain was not able to control the hematogenous spread of the challenge strain to the spleens. Additionally, inoculation with Mtb∆mms resulted in some pathological damage to the spleens in the early phase of infection. In order to overcome the pathology caused by MtbΔmms in the spleens of guinea pigs and also to control the dissemination of the challenge strain, MtbΔmms was genetically modified by disrupting bioA gene to generate MtbΔmmsb strain. Further, in vivo attenuation of MtbΔmmsb was evaluated, and its protective efficacy was assessed against virulent M. tuberculosis challenge in guinea pigs. Our study demonstrates that Mtb∆mmsb mutant was highly attenuated for growth and virulence in guinea pigs. Vaccination with Mtb∆mmsb mutant generated significant protection in comparison to sham-immunized animals at 4 and 12 weeks post-infection in lungs and spleens of the infected animals. Our findings provide evidence that deletion of genes involved in signal transduction and biotin biosynthesis severely attenuates the pathogen and the single immunization with the auxotroph was able to provide significant protection as compared to sham-immunized animals. The protection imparted by Mtb∆mmsb fell short in comparison to the protection observed in BCG-immunized animals. This study nevertheless indicates the importance of attenuated multiple gene deletion mutants of M. tuberculosis in generating protection against tuberculosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mycobacterium%20tuberculosis" title="Mycobacterium tuberculosis">Mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=BCG" title=" BCG"> BCG</a>, <a href="https://publications.waset.org/abstracts/search?q=Mtb%CE%94mmsb" title=" MtbΔmmsb"> MtbΔmmsb</a>, <a href="https://publications.waset.org/abstracts/search?q=bioA" title=" bioA"> bioA</a>, <a href="https://publications.waset.org/abstracts/search?q=guinea%20pigs" title=" guinea pigs"> guinea pigs</a> </p> <a href="https://publications.waset.org/abstracts/109444/an-attenuated-quadruple-gene-mutant-of-mycobacterium-tuberculosis-imparts-protection-against-tuberculosis-in-guinea-pigs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Isolation, Characterization and Screening of Antimicrobial Producing Actinomycetes from Sediments of Persian Gulf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Alijani">H. Alijani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jabari"> M. Jabari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Matroodi"> S. Matroodi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Zolqarnein"> H. Zolqarnein</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sharafi"> A. Sharafi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Zamani"> I. Zamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Actinomycetes, Gram-positive bacteria, are interesting as a main producer of secondary metabolites and are important industrially and pharmaceutically. The marine environment is a potential source for new actinomycetes, which can provide novel bioactive compounds and industrially important enzymes. The aims of this study were to isolate and identify novel actinomycetes from Persian Gulf sediments and screen these isolates for the production of secondary metabolites, especially antibiotics, Using phylogenetic (16S rRNA gene sequence), morphological and biochemical analyses. 15 different actinomycete strains from Persian Gulf sediments at a depth of 5-10 m were identified. DNA extraction was done using Cinnapure DNA Kit. PCR amplification of 16S rDNA gene was performed using F27 and R1492 primers. Phylogenetic tree analysis was performed using the MEGA 6 software. Most of the isolated strains belong to the genus namely Streptomyces (14), followed by Nocardiopsis (1). Antibacterial assay of the isolates supernatant was performed using a standard disc diffusion assay with replication (n=3). The results of disk diffusion assay showed that most active strain against Proteus volgaris and Bacillus cereus was AMJ1 (16.46±0.2mm and 13.78±0.2mm, respectively), against Salmonella sp. AMJ7 was the most effective strain (10.13±0.2mm), and AMJ1 and AHA5 showed more inhibitory activity against Escherichia coli (8.04±0.02 mm and 8.2±0.03 ). The AMJ6 strain showed best antibacterial activity against Klebsiella sp. (8.03±0.02mm). Antifungal activity of AMJ2 showed that it was most active strain against complex (16.05±0.02mm) and against Aspergillus flavus strain AMJ1 was most active strain (16.4±0.2mm) and highest antifungal activity against Trichophyton mentagrophytes, Microsporum gyp serum and Candida albicans, were shown by AHA1 (21.03±0.02mm), AHA3 and AHA7 (18±0.03mm), AMJ6 (21.03±0.2mm) respectively. Our results revealed that the marine actinomycetes of Persian Gulf sediments were potent source of novel antibiotics and bioactive compounds and indicated that the antimicrobial metabolites were extracellular. Most of the secondary metabolites and antibiotics are extracellular in nature and extracellular products of actinomycetes show potent antimicrobial activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20actinomycetes" title=" marine actinomycetes"> marine actinomycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20Gulf" title=" Persian Gulf "> Persian Gulf </a> </p> <a href="https://publications.waset.org/abstracts/37532/isolation-characterization-and-screening-of-antimicrobial-producing-actinomycetes-from-sediments-of-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Facile Surfactant-Assisted Green Synthesis of Stable Biogenic Gold Nanoparticles with Potential Antibacterial Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sneha%20Singh">Sneha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhimanyu%20%20Dev"> Abhimanyu Dev</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20%20Nigam"> Vinod Nigam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major issue which decides the impending use of gold nanoparticles (AuNPs) in nanobiotechnological applications is their particle size and stability. Often the AuNPs obtained biomimetically are considered useless owing to their instability in the aqueous medium and thereby limiting the widespread acceptance of this facile green synthesis procedure. So, the use of nontoxic surfactants is warranted to stabilize the biogenic nanoparticles (NPs). But does the surfactant only play a role in stabilizing by being adsorbed to the NPs surface or can it have any other significant contribution in synthesis process and controlling their size as well as shape? Keeping this idea in mind, AuNPs were synthesized by using surfactant treated (lechate) and untreated (cell lysate supernatant) Bacillus licheniformis cell extract. The cell extracts mediated reduction of chloroauric acid (HAuCl 4) in the presence of non-ionic surfactant, Tween 20 (TW20), and its effect on the AuNPs stability was studied. Interestingly, the surfactant used in the study served as potential alternative to harvest cellular enzymes involved in bioreduction process in a hassle free condition. The surfactants ability to solubilize/leach membrane proteins and simultaneously stabilizing the AuNPs could have advantage from process point of view as it will reduce the time and economics involve in the nanofabrication of biogenic NPs. The synthesis was substantiated with UV-Vis spectroscopy, Dynamic light scattering study, FTIR spectroscopy, and Transmission electron microscopy. The Zeta potential of AuNPs solutions was measured routinely to corroborate the stability observations recorded visually. Highly stable, ultra-small AuNPs of 2.6 nm size were obtained from the study. Further, the biological efficacy of the obtained AuNPs as potential antibacterial agent was evaluated against Bacilllus subtilis, Pseudomonas aeruginosa, and Escherichia coli by observing the zone of inhibition. This potential of AuNPs of size < 3 nm as antibacterial agent could pave way for development of new antimicrobials and overcoming the problems of antibiotics resistance <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreduction" title=" bioreduction"> bioreduction</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a> </p> <a href="https://publications.waset.org/abstracts/64369/facile-surfactant-assisted-green-synthesis-of-stable-biogenic-gold-nanoparticles-with-potential-antibacterial-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> In vitro Antioxidant, Anticancer Properties and Probiotic Characteristics of Selected Lactic Acid Bacteria Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Shehata">M. G. Shehata</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20El%20Sohaimy"> S. A. El Sohaimy</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20M.%20Abu-Serie"> Marwa M. Abu-Serie</a>, <a href="https://publications.waset.org/abstracts/search?q=Nourhan%20M.%20Abd%20El-Aziz"> Nourhan M. Abd El-Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Probiotic strains can potentially be used as bio-preservatives and functional food supplement. Eight lactic acid bacteria strains (LAB) Lactobacillus brevis NRRL B-4527; Streptococcus thermophilus BLM 58; Pediococcusacidilactici ATCC 8042; Lactobacillus rhamnosus CCUG 1452; Lactobacillus curvatus ATCC 51436; Lactococcuslactis sub sp. lactisDSM 20481; Lactobacillus plantarum DMSZ 20079 and Lactobacillus plantarumTF103 were selected to screen the antioxidant, anticancer potential and probiotic properties. LAB strains exhibited good probiotic, antioxidant properties and showed antagonistic activity against food-borne pathogenic (Bacillus subtilis DB 100 host; Candida albicans ATCCMYA-2876; Clostridium botulinum ATCC 3584; Escherichia coli BA 12296; Klebsiellapneumoniae ATCC12296; Salmonella senftenberg ATCC 8400 and Staphylococcus aureus NCTC 10788). Further, in vitro probiotic properties of eight strains displayed excellent acid tolerance, bile tolerance, simulated gastrointestinal juice tolerance, in vitro adhesion ability for HT-29 cell line. The antioxidant effect of intracellular and cell-free extract of lactic acid bacteria strains was evaluated by various antioxidant assays, namely, resistance to hydrogen peroxide, DPPH radical scavenging, ABTS radical scavenging, and hydroxyl radical scavenging (HRS). The results showed that intracellular and cell-free supernatant of S. Thermophilus BLM 58, L. lactissubsp.lactis DSM 20481, P. acidilactici ATCC 8042, L. brevis NRRL B-4527 strains possess excellent antioxidant capacity. The intracellular of S. Thermophilus BLM 58 and P. acidilactici ATCC 8042 also showed excellent anticancer activity against Caco-2, MCF-7, HepG-2, and PC-3. Antioxidative property of selected lactic acid bacteria strains would be useful in the functional food manufacturing industry. They could beneficially affect the consumer by providing dietary source of antioxidants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticancer%20activity" title="anticancer activity">anticancer activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20food" title=" functional food"> functional food</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=probiotic" title=" probiotic"> probiotic</a> </p> <a href="https://publications.waset.org/abstracts/78318/in-vitro-antioxidant-anticancer-properties-and-probiotic-characteristics-of-selected-lactic-acid-bacteria-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Remediation of Oil and Gas Exploration and Production (O&G E&P) Wastes Using Soil-Poultry Dropping Amendment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ofonime%20U.%20M.%20John">Ofonime U. M. John</a>, <a href="https://publications.waset.org/abstracts/search?q=Justina%20I.%20R.%20Udotong"> Justina I. R. Udotong</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20O.%20Nwaugo"> Victor O. Nwaugo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ime%20R.%20Udotong"> Ime R. Udotong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oily wastes from oil and gas exploration and production (O&G E&P) activities were remediated for twelve weeks using Soil-Poultry dropping amendment. Culture-dependent microbiological, chemical and enzymatic techniques were employed to assess the efficacy of remediation process. Microbiological activities of the remediated wastes showed increased hydrocarbonoclastic microbial populations with increased remediation time; 2.7±0.1 x 105cfu/g to 8.3 ± 0.04 x106cfu/g for hydrocarbon utilizing bacteria, 1.7 ± 0.2 x103cfu/g to 6.0 ± 0.01 x 104cfu/g for hydrocarbon utilizing fungi and 2.2 ± 0.1 x 102cfu/g to 6.7 ± 0.1 x 103cfu/g for hydrocarbon utilizing actinomycetes. Bacteria associated with the remediated wastes after the remediation period included the genera Bacillus, Psuedomonas, Beijerinckia, Acinetobacter, Alcaligenes and Serratia. Fungal isolates included species of Penicillium, Aspergillus and Cladosporium, while the Actinomycetes included species of Rhodococcus, Nocardia and Streptomyces. Slight fluctuations in pH values between 6.5± 0.2 and 7.1 ± 0.08 were recorded throughout the process, while total petroleum hydrocarbon (TPH) content decreased from 89, 900 ± 0.03mg/kg to 425 ± 0.1 mg/kg after twelve weeks of remediation. The polycyclic aromatic hydrocarbon (PAH) levels decreased with increased remediation time; naphthalene, flourene, pheneanthrene, anthracene, pyrene, chrysene and benzo(b)flouranthene showed decreased values < 0.01 after twelve weeks of remediation. Enzyme activities revealed increased dehydrogenase and urease activities with increased remediation time and decreased phenol oxidase activity with increased remediation period. There was a positive linear correlation between densities of hydrocarbonoclastic microbes and dehydrogenase activity. On the contrary, phenol oxidase and urease activities showed negative correlation with microbial population. Results of this study confirmed that remediation of oily wastes using soil-poultry dropping amendment can result in eco-friendly O&G E&P wastes. It also indicates that urease and phenol oxidase activities can be reliable indices/tools to monitor PAH levels and rates of petroleum hydrocarbon degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dehydrogenase%20activity" title="dehydrogenase activity">dehydrogenase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=oily%20wastes" title=" oily wastes"> oily wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-poultry%20dropping%20amendment" title=" soil-poultry dropping amendment"> soil-poultry dropping amendment</a> </p> <a href="https://publications.waset.org/abstracts/24504/remediation-of-oil-and-gas-exploration-and-production-og-ep-wastes-using-soil-poultry-dropping-amendment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Early Onset Neonatal Sepsis Pathogens in Malaysian Hospitals: Determining Empiric Antibiotic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazedah%20Ain%20Ibrahim">Nazedah Ain Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mansor%20Manan"> Mohamed Mansor Manan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Treatment of suspected early onset neonatal sepsis (EONS) in Neonatal Intensive Care Unit (NICU) is essential. However, information regarding EONS pathogens may vary between regions. Global perspectives showed Group B Streptococcal (GBS) as the most common causative pathogens, but the widespread use of intrapartum antibiotics has changed the pathogens pattern towards gram negative microorganisms, especially E. coli. Objective of this study is to describe the pathogens isolated, to assess current treatment and risk of EONS. Records of 899 neonates born in three General Hospitals between 2009 until 2012 were retrospectively reviewed. The inclusion criteria were neonates with blood culture taken prior to empiric antibiotics administration and within 72 hours of life. Of the study group, a total of 734 (82%) cases had documented blood culture that met the inclusion criteria. Proven EONS (as confirmed by positive blood culture) was found in 22 (3%) neonates. The majority was isolated with gram positive organisms, 17 (2.3%). In addition, other common gram positive organism isolated were Coagulase negative staphylococci (7) followed by Bacillus sp. (5) and Streptococcus pneumonia (2), and only one case isolated with GBS, Streptococcus spp. and Enterococcus sp. Meanwhile, only five cases of gram negative organisms [Stenotropomonas (xantho) maltophi (1), Haemophilus influenza (1), Spingomonas paucimobilis (1), Enterobacter gergoviae (1) and E. coli (1)] were isolated. A total of 286 (39%) cases were exposed to intrapartum antibiotics and of those, 157 (21.4%) were administered prior to delivery. All grams positive and most gram negative organisms showed sensitivity to the tested antibiotics. Only two rare gram negative organisms showed total resistant. Male, surfactant, caesarean delivery and prolonged rapture of membrane >18hours were a possible risk of proven EONS. Although proven EONS remains uncommon in Malaysia, nonetheless, the effect of intrapartum antibiotics still required continuous surveillance. However, by analyzing isolated pathogens it can be used as treatment guidance in managing suspected EONS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20onset%20neonatal%20sepsis" title="early onset neonatal sepsis">early onset neonatal sepsis</a>, <a href="https://publications.waset.org/abstracts/search?q=neonates" title=" neonates"> neonates</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=gram%20positive" title=" gram positive"> gram positive</a>, <a href="https://publications.waset.org/abstracts/search?q=gram%20negative" title=" gram negative "> gram negative </a> </p> <a href="https://publications.waset.org/abstracts/8788/early-onset-neonatal-sepsis-pathogens-in-malaysian-hospitals-determining-empiric-antibiotic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> The Evaluation of Antioxidant and Antimicrobial Activities of Essential Oil and Aqueous, Methanol, Ethanol, Ethyl Acetate and Acetone Extract of Hypericum scabrum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Heshmati">A. Heshmati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y%20Alikhani"> M. Y Alikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Godarzi"> M. T. Godarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Sadeghimanesh"> M. R. Sadeghimanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Herbal essential oil and extracts are a good source of natural antioxidants and antimicrobial compounds. <em>Hypericum </em>is one of the potential sources of these compounds. In this study, the antioxidant and antimicrobial activity of essential oil and aqueous, methanol, ethanol, ethyl acetate and acetone extract of <em>Hypericum scabrum</em> was assessed. Flowers of <em>Hypericum scabrum </em>were collected from the surrounding mountains of Hamadan province and after drying in the shade, the essential oil of the plant was extracted by Clevenger and water, methanol, ethanol, ethyl acetate and acetone extract was obtained by maceration method. Essential oil compounds were identified using the GC-Mass. The Folin-Ciocalteau and aluminum chloride (AlCl<sub>3</sub>) colorimetric method was used to measure the amount of phenolic acid and flavonoids, respectively. Antioxidant activity was evaluated using DPPH and FRAP. The minimum inhibitory concentration (MIC) and the minimum bacterial/fungicide concentration (MBC/MFC) of essential oil and extracts were evaluated against <em>Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa, Salmonella typhimurium, Aspergillus flavus and Candida albicans</em>. The essential oil yield of was 0.35%, the lowest and highest extract yield was related to ethyl acetate and water extract. The most component of essential oil was α-Pinene (46.35%). The methanol extracts had the highest phenolic acid (95.65 ± 4.72 µg galic acid equivalent/g dry plant) and flavonoids (25.39 ± 2.73 µg quercetin equivalent/g dry plant). The percentage of DPPH radical inhibition showed positive correlation with concentrations of essential oil or extract. The methanol and ethanol extract had the highest DDPH radical inhibitory. Essential oil and extracts of <em>Hypericum</em> had antimicrobial activity against the microorganisms studied in this research. The MIC and MBC values for essential oils were in the range of 25-25.6 and 25-50 μg/mL, respectively. For the extracts, these values were 1.5625-100 and 3.125-100 μg/mL, respectively. Methanol extracts had the highest antimicrobial activity. Essential oil and extract of <em>Hypericum scabrum,</em> especially methanol extract, have proper antimicrobial and antioxidant activity, and it can be used to control the oxidation and inhibit the growth of pathogenic and spoilage microorganisms. In addition, it can be used as a substitute for synthetic antioxidant and antimicrobial compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title="antimicrobial">antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=extract" title=" extract"> extract</a>, <a href="https://publications.waset.org/abstracts/search?q=hypericum" title=" hypericum"> hypericum</a> </p> <a href="https://publications.waset.org/abstracts/85956/the-evaluation-of-antioxidant-and-antimicrobial-activities-of-essential-oil-and-aqueous-methanol-ethanol-ethyl-acetate-and-acetone-extract-of-hypericum-scabrum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Microbiological Examination and Antimicrobial Susceptibility of Microorganisms Isolated from Salt Mining Site in Ebonyi State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anyimc">Anyimc</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Aneke"> C. J. Aneke</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Orji"> J. O. Orji</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Nworie"> O. Nworie</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20C.%20C.%20Egbule"> U. C. C. Egbule </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microbial examination and antimicrobial susceptibility profile of microorganism isolated from the salt mining site in Ebonyi state were evaluated in the present study using a standard microbiological technique. A total of 300 samples were randomly collected in three sample groups (A, B, and C) of 100 each. Isolation, Identification and characterization of organization present on the soil samples were determined by culturing, gram-staining and biochemical technique. The result showed the following organisms were isolated with their frequency as follow: Bacillus species (37.3%) and Staphylococcus species(23.5%) had the highest frequency in the whole Sample group A and B while Klebsiella specie (15.7%), Pseudomonas species(13.7%), and Erwinia species (9.8%) had the least. Rhizopus species (42.0%) and Aspergillus species (26.0%) were the highest fungi isolated, followed by Penicillum species (20.0%) while Mucor species (4.0%), and Fusarium species (8.0%) recorded the least. Sample group C showed high microbial population of all the microbial isolates when compared to sample group A and B. Disc diffusion method was used to determine the susceptibility of isolated bacteria to various antibiotics (oxfloxacin, pefloxacin, ciprorex, augumentin, gentamycin, ciproflox, septrin, ampicillin), while agar well diffusion method was used to determine the susceptibility of isolated fungi to some antifungal drugs (metronidazole, ketoconazole, itraconazole fluconazole). The antibacterial activity of the antibiotics used showed that ciproflux has the best inhibitory effect on all the test bacteria. Ketoconazole showed the highest inhibitory effect on the fungal isolates, followed by itraconazole, while metronidazole and fluconazole showed the least inhibitory effect on the entire test fungal isolates. Hence, the multiple drug resistance of most isolates to appropriate drugs of choice are of great public health concern and cells for periodic monitoring of antibiograms to detect possible changing patterns. Microbes isolated in the salt mining site can also be used as a source of gene(s) that can increase salt tolerance in different crop species through genetic engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title="microorganisms">microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20mining%20site" title=" salt mining site"> salt mining site</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebonyi%20State" title=" Ebonyi State"> Ebonyi State</a> </p> <a href="https://publications.waset.org/abstracts/25026/microbiological-examination-and-antimicrobial-susceptibility-of-microorganisms-isolated-from-salt-mining-site-in-ebonyi-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bahkali">Ali Bahkali</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayan%20Yousef%20Booq"> Rayan Yousef Booq</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Khiyami"> Mohammad Khiyami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria%20forming%20polyhydroxyalkanoate" title="bacteria forming polyhydroxyalkanoate">bacteria forming polyhydroxyalkanoate</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular" title=" molecular"> molecular</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/31932/detection-and-molecular-identification-of-bacteria-forming-polyhydroxyalkanoate-and-polyhydroxybutyrate-isolated-from-soil-in-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Metagenomics Analysis on Microbial Communities of Sewage Sludge from Nyeri-Kangemi Wastewater Treatment Plant, Nyeri County-Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allan%20Kiptanui%20Kimisto">Allan Kiptanui Kimisto</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20Odhiambo%20Ongondo"> Geoffrey Odhiambo Ongondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Wairimu%20Muia"> Anastasia Wairimu Muia</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyrus%20Ndungu%20Kimani"> Cyrus Ndungu Kimani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major challenge to proper sewage sludge treatment processes is the poor understanding of sludge microbiome diversities. This study applied the whole-genome. shotgun metagenomics technique to profile the microbial composition of sewage sludge in two active digestion lagoons at the Nyeri-Kangemi Wastewater Treatment Plant in Nyeri County, Kenya. Total microbial community DNA was extracted from samples using the available ZymoBIOMICS™ DNA Miniprep Kit and sequenced using Shotgun metagenomics. Samples were analyzed using MG-RAST software (Project ID: mgp100988), which allowed for comparing taxonomic diversity before β-diversities studies for Bacteria, Archaea and Eukaryotes. The study identified 57 phyla, 145 classes, 301 orders, 506 families, 963 genera, and 1980 species. Bacteria dominated the microbes and comprised 28 species, 51 classes, 110 orders, 243 families, 597 genera, and 1518 species. The Bacteroides(6.77%) were dominant, followed by Acinetobacter(1.44%) belonging to the Gammaproteobacteria and Acidororax (1.36%), Bacillus (1.24%) and Clostridium (1.02%) belonging to Betaproteobacteria. Archaea recorded 5 phyla, 13 classes, 19 orders, 29 families, 60 genera,and87 species, with the dominant genera being Methanospirillum (16.01%), methanosarcina (15.70%), and Methanoregula(14.80%) and Methanosaeta (8.74%), Methanosphaerula(5.48%) and Methanobrevibacter(5.03%) being the subdominant group. The eukaryotes were the least in abundance and comprised 24 phyla, 81 classes, 301 orders, 506 families, 963 genera, and 980 species. Arabidopsis (4.91%) and Caenorhabditis (4.81%) dominated the eukaryotes, while Dityostelium (3.63%) and Drosophila(2.08%) were the subdominant genera. All these microbes play distinct roles in the anaerobic treatment process of sewage sludge. The local sludge microbial composition and abundance variations may be due to age difference differences between the two digestion lagoons in operation at the plant and the different degradation rales played by the taxa. The information presented in this study can help in the genetic manipulation or formulation of optimal microbial ratios to improve their effectiveness in sewage sludge treatment. This study recommends further research on how the different taxa respond to environmental changes over time and space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shotgun%20metagenomics" title="shotgun metagenomics">shotgun metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=archaea" title=" archaea"> archaea</a>, <a href="https://publications.waset.org/abstracts/search?q=eukaryotes" title=" eukaryotes"> eukaryotes</a> </p> <a href="https://publications.waset.org/abstracts/157198/metagenomics-analysis-on-microbial-communities-of-sewage-sludge-from-nyeri-kangemi-wastewater-treatment-plant-nyeri-county-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Comparative Analysis of Chemical Composition and Biological Activities of Ajuga genevensis L. in in vitro Culture and Intact Plants </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naira%20Sahakyan">Naira Sahakyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Margarit%20Petrosyan"> Margarit Petrosyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Armen%20Trchounian"> Armen Trchounian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the tasks in contemporary biotechnology, pharmacology and other fields of human activities is to obtain biologically active substances from plants. They are very essential in the treatment of many diseases due to their actually high therapeutic value without visible side effects. However, sometimes the possibility of obtaining the metabolites is limited due to the reduction of wild-growing plants. That is why the plant cell cultures are of great interest as alternative sources of biologically active substances. Besides, during the monitored cultivation, it is possible to obtain substances that are not synthesized by plants in nature. Isolated culture of <em>Ajuga genevensis</em> with high growth activity and ability of regeneration was obtained using MS nutrient medium. The agar-diffusion method showed that aqueous extracts of callus culture revealed high antimicrobial activity towards various gram-positive (<em>Bacillus subtilis</em> A1WT; <em>B. mesentericus</em> WDCM 1873; <em>Staphylococcus aureus</em> WDCM 5233; <em>Staph. citreus</em> WT) and gram-negative (<em>Escherichia coli</em> WKPM M-17; <em>Salmonella typhimurium</em> TA 100) microorganisms. The broth dilution method revealed that the minimal and half maximal inhibitory concentration values against <em>E. coli</em> corresponded to the 70 μg/mL and 140 μg/mL concentration of the extract respectively. According to the photochemiluminescent analysis, callus tissue extracts of leaf and root origin showed higher antioxidant activity than the same quantity of <em>A. genevensis</em> intact plant extract. <em>A. genevensis</em> intact plant and callus culture extracts showed no cytotoxic effect on K-562 suspension cell line of human chronic myeloid leukemia. The GC-MS analysis showed deep differences between the qualitative and quantitative composition of callus culture and intact plant extracts. Hexacosane (11.17%); n-hexadecanoic acid (9.33%); and 2-methoxy-4-vinylphenol (4.28%) were the main components of intact plant extracts. 10-Methylnonadecane (57.0%); methoxyacetic acid, 2-tetradecyl ester (17.75%) and 1-Bromopentadecane (14.55%) were the main components of <em>A. genevensis</em> callus culture extracts. Obtained data indicate that callus culture of <em>A. genevensis</em> can be used as an alternative source of biologically active substances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajuga%20genevensis" title="Ajuga genevensis">Ajuga genevensis</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=callus%20cultures" title=" callus cultures"> callus cultures</a> </p> <a href="https://publications.waset.org/abstracts/49385/comparative-analysis-of-chemical-composition-and-biological-activities-of-ajuga-genevensis-l-in-in-vitro-culture-and-intact-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=9" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bacillus%20magisterium&page=11" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>