CINXE.COM
Cauchy-eulersche Bewegungsgesetze – Wikipedia
<!doctype html> <html class="client-nojs mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="de" dir="ltr"> <head> <base href="https://de.m.wikipedia.org/wiki/Cauchy-eulersche_Bewegungsgesetze"> <meta charset="UTF-8"> <title>Cauchy-eulersche Bewegungsgesetze – Wikipedia</title> <script>(function(){var className="client-js mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )dewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januar","Februar","März","April","Mai","Juni","Juli","August","September","Oktober","November","Dezember"],"wgRequestId":"cd86f85c-f881-4918-b034-7a14c91e2221","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Cauchy-eulersche_Bewegungsgesetze","wgTitle":"Cauchy-eulersche Bewegungsgesetze","wgCurRevisionId":248111095,"wgRevisionId":248111095, "wgArticleId":8895421,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"de","wgPageContentLanguage":"de","wgPageContentModel":"wikitext","wgRelevantPageName":"Cauchy-eulersche_Bewegungsgesetze","wgRelevantArticleId":8895421,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":248111095,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"de","pageLanguageDir":"ltr","pageVariantFallbacks":"de"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby": true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"","wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{ "lang":"awa","autonym":"अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir": "ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cs","autonym":"čeština","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{ "lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"es","autonym":"español","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj", "autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"fr","autonym":"français","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur", "autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"he","autonym":"עברית","dir":"rtl"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang" :"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"ja","autonym":"日本語","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ", "dir":"ltr"},{"lang":"ko","autonym":"한국어","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym": "lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt", "autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nl","autonym":"Nederlands","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa" ,"dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pl","autonym":"polski","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pt","autonym":"português","dir":"ltr"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang": "rn","autonym":"ikirundi","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym": "සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym":"slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sv","autonym":"svenska","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym": "ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang": "tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{ "lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus", "kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki", "ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q5408983","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":false},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.gadget.citeRef":"ready","ext.gadget.defaultPlainlinks":"ready","ext.gadget.dewikiCommonHide":"ready","ext.gadget.dewikiCommonLayout":"ready","ext.gadget.dewikiCommonStyle":"ready","ext.gadget.dewikiDarkmode":"ready", "ext.gadget.dewikiResponsive":"ready","ext.gadget.NavFrame":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.donateLink","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=de&modules=ext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.codex.messagebox.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async src="/w/load.php?lang=de&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=de&modules=ext.gadget.NavFrame%2CciteRef%2CdefaultPlainlinks%2CdewikiCommonHide%2CdewikiCommonLayout%2CdewikiCommonStyle%2CdewikiDarkmode%2CdewikiResponsive&only=styles&skin=minerva"> <link rel="stylesheet" href="/w/load.php?lang=de&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Cauchy-eulersche Bewegungsgesetze – Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Seite bearbeiten" href="/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (de)"> <link rel="EditURI" type="application/rsd+xml" href="//de.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://de.wikipedia.org/wiki/Cauchy-eulersche_Bewegungsgesetze"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.de"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=corsproxy" data-sourceurl="https://de.m.wikipedia.org/wiki/Cauchy-eulersche_Bewegungsgesetze"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://de.m.wikipedia.org/wiki/Cauchy-eulersche_Bewegungsgesetze"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Cauchy-eulersche_Bewegungsgesetze rootpage-Cauchy-eulersche_Bewegungsgesetze stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.omlEigW4xY8.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfpjsL9kUWY0h-sp7Ilu7hZWGwEmeg/m=navigationui" data-environment="prod" data-proxy-url="https://de-m-wikipedia-org.translate.goog" data-proxy-full-url="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-source-url="https://de.m.wikipedia.org/wiki/Cauchy-eulersche_Bewegungsgesetze" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="de" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.m.wikipedia.org/wiki/Cauchy-eulersche_Bewegungsgesetze&anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://de-m-wikipedia-org.translate.goog/wiki/Wikipedia:Hauptseite?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Start</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:Zuf%C3%A4llige_Seite?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Zufällige Seite</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:In_der_N%C3%A4he?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">In der Nähe</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Spezial:Anmelden&returnto=Cauchy-eulersche+Bewegungsgesetze&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Anmelden</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Spezial:Mobile_Optionen&returnto=Cauchy-eulersche+Bewegungsgesetze&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Einstellungen</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_de.wikipedia.org%26uselang%3Dde%26wmf_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Spenden</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://de-m-wikipedia-org.translate.goog/wiki/Wikipedia:%C3%9Cber_Wikipedia?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Über Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://de-m-wikipedia-org.translate.goog/wiki/Wikipedia:Impressum?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Impressum</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Wikipedia:Hauptseite?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Spezial:Suche"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Wikipedia durchsuchen" aria-label="Wikipedia durchsuchen" autocapitalize="sentences" title="Durchsuche die Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Suchen</span> </button> </form> <nav class="minerva-user-navigation" aria-label="Weitere Navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Cauchy-eulersche Bewegungsgesetze</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"><a class="minerva__tab-text" href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" rel="" data-event-name="tabs.subject">Artikel</a></li> <li class="minerva__tab new"><a class="minerva__tab-text" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Diskussion:Cauchy-eulersche_Bewegungsgesetze&action=edit&redlink=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" rel="discussion" data-event-name="tabs.talk">Diskussion</a></li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Sprache" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Sprache</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Spezial:Anmelden&returnto=Cauchy-eulersche+Bewegungsgesetze&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Beobachten</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="de" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <p>Die <b>cauchy-eulerschen Bewegungsgesetze</b> von <a href="https://de-m-wikipedia-org.translate.goog/wiki/Augustin-Louis_Cauchy?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a> und <a href="https://de-m-wikipedia-org.translate.goog/wiki/Leonhard_Euler?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Leonhard Euler">Leonhard Euler</a> sind die lokalen Formen des <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kinetik_(Mechanik)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Schwerpunktsatz_oder_Impulssatz" title="Kinetik (Mechanik)">Impuls-</a> und <a href="https://de-m-wikipedia-org.translate.goog/wiki/Drallsatz?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Drallsatz">Drallsatzes</a> in der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kontinuumsmechanik?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Kontinuumsmechanik">Kontinuumsmechanik</a>. Es sind <a href="https://de-m-wikipedia-org.translate.goog/wiki/Bewegungsgleichung?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Bewegungsgleichung">Bewegungsgleichungen</a>, die, wenn sie lokal, d. h. in jedem Punkt eines <a href="https://de-m-wikipedia-org.translate.goog/wiki/K%C3%B6rper_(Physik)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Körper (Physik)">Körpers</a> erfüllt sind, sicherstellen, dass die Bewegung des Körpers als Ganzes – inklusive Verformungen – dem Impuls- bzw. Drallsatz gehorcht.</p> <p>Das <b>erste cauchy-eulersche Bewegungsgesetz</b> korrespondiert mit dem Impulssatz und lautet im <a href="https://de-m-wikipedia-org.translate.goog/wiki/Geometrische_Linearisierung?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Geometrische Linearisierung">geometrisch linearen</a> Fall an einem materiellen Punkt des Körpers:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho {\vec {a}}=\rho {\vec {k}}+\operatorname {div} \;{\boldsymbol {\sigma }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi> div </mi> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho {\vec {a}}=\rho {\vec {k}}+\operatorname {div} \;{\boldsymbol {\sigma }}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82d7cd02561a0a341564c3407905db8653741588" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.577ex; height:3.343ex;" alt="{\displaystyle \rho {\vec {a}}=\rho {\vec {k}}+\operatorname {div} \;{\boldsymbol {\sigma }}}"></span> </dd> </dl> <p>Hier ist <i>ρ</i> die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Dichte?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Dichte">Dichte</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {a}}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span> die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Beschleunigung?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Beschleunigung">Beschleunigung</a> des materiellen Punktes, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {k}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {k}}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ccd4b98d198d6538010ae815ee1199baabd3493" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.843ex;" alt="{\displaystyle {\vec {k}}}"></span> die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Schwerebeschleunigung?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Schwerebeschleunigung">Schwerebeschleunigung</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\sigma }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\sigma }}} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e45fe1b9d8dcbc3103fc7805d69798bfe5ca5b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.594ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\sigma }}}"></span> der cauchysche <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spannungstensor?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Spannungstensor">Spannungstensor</a> und div der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Divergenz_eines_Vektorfeldes?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Divergenz eines Vektorfeldes">Divergenzoperator</a>. Die spezifische Impulsänderung bestimmt sich demnach aus der spezifischen Schwerkraft und dem Antrieb durch einen Spannungsanstieg. Alle Variablen in der Gleichung sind im Allgemeinen sowohl vom Ort als auch von der Zeit abhängig.</p> <p>Das <b>zweite cauchy-eulersche Bewegungsgesetz</b> entspricht dem lokal formulierten Drallsatz, der sich auf die Forderung nach der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Symmetrische_Matrix?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Symmetrische Matrix">Symmetrie</a> des cauchyschen Spannungstensors reduziert:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8a70fa32d7549270a3a5501e977e6874d017b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.798ex; height:2.676ex;" alt="{\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }}"></span> </dd> </dl> <p>Das Superskript „⊤“ markiert die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Transponierte_Matrix?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Transponierte Matrix">Transposition</a>. Die Symmetrie entspricht dem <b>Satz von der Gleichheit der zugeordneten <a href="https://de-m-wikipedia-org.translate.goog/wiki/Schubspannung?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Schubspannung">Schubspannungen</a></b>.<sup id="cite_ref-szabo_1-0" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-szabo-1"><span class="cite-bracket">[</span>L 1<span class="cite-bracket">]</span></a></sup><span id="Satz_von_der_Gleichheit_der_zugeordneten_Schubspannungen"></span></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{ij}=\sigma _{ji},\quad i,j=1,2,3}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mi> i </mi> </mrow> </msub> <mo> , </mo> <mspace width="1em"></mspace> <mi> i </mi> <mo> , </mo> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sigma _{ij}=\sigma _{ji},\quad i,j=1,2,3} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cba3e1f1596767c86e4a07debad4d5ef70064725" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.512ex; height:2.843ex;" alt="{\displaystyle \sigma _{ij}=\sigma _{ji},\quad i,j=1,2,3}"></span>. </dd> </dl> <p>Bei großen Verschiebungen können beide Bewegungsgesetze in <a href="https://de-m-wikipedia-org.translate.goog/wiki/Lagrangesche_Betrachtungsweise?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Lagrangesche Betrachtungsweise">lagrangescher Betrachtungsweise</a> <i>materiell</i> oder <a href="https://de-m-wikipedia-org.translate.goog/wiki/Eulersche_Betrachtungsweise?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Eulersche Betrachtungsweise">eulerscher Betrachtungsweise</a> <i>räumlich</i> formuliert werden. Die Struktur der Gleichungen bleibt dabei erhalten, aber es kommt zu Modifikationen in den Abhängigkeiten oder im Spannungstensor.</p> <p>Die cauchy-eulerschen Bewegungsgesetze sind die Basis für die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Eulersche_Gleichungen_(Str%C3%B6mungsmechanik)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Eulersche Gleichungen (Strömungsmechanik)">eulerschen Gleichungen der Strömungsmechanik</a>, der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Navier-Stokes-Gleichungen?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Navier-Stokes-Gleichungen">Navier-Stokes-</a> und der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Navier-Cauchy-Gleichungen?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Navier-Cauchy-Gleichungen">Navier-Cauchy-Gleichungen</a>. Eine der Grundgleichungen der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Verschiebungsmethode?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Verschiebungsmethode">Verschiebungsmethode</a> in der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Finite-Elemente-Methode?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Finite-Elemente-Methode">Finite-Elemente-Methode</a> ist das <a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Prinzip_von_d%E2%80%99Alembert">Prinzip von d’Alembert</a> in der lagrangeschen Fassung, das eine aus den cauchy-eulerschen Gesetzen folgende Aussage ist.</p> <p>Für Begriffsklärung empfiehlt sich die Lektüre des Artikels zur <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kontinuumsmechanik?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Kontinuumsmechanik">Kontinuumsmechanik</a>. Die verwendeten Operatoren und Rechenregeln sind in den Formelsammlungen zur <a href="https://de-m-wikipedia-org.translate.goog/wiki/Formelsammlung_Tensoralgebra?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Formelsammlung Tensoralgebra">Tensoralgebra</a> und <a href="https://de-m-wikipedia-org.translate.goog/wiki/Formelsammlung_Tensoranalysis?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Formelsammlung Tensoranalysis">Tensoranalysis</a> aufgeführt.</p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="de" dir="ltr"> <h2 id="mw-toc-heading">Inhaltsverzeichnis</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Erstes_cauchy-eulersches_Bewegungsgesetz"><span class="tocnumber">1</span> <span class="toctext">Erstes cauchy-eulersches Bewegungsgesetz</span></a> <ul> <li class="toclevel-2 tocsection-2"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Impulssatz_am_Volumenelement"><span class="tocnumber">1.1</span> <span class="toctext">Impulssatz am Volumenelement</span></a></li> <li class="toclevel-2 tocsection-3"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Impulssatz_in_lagrangescher_Darstellung"><span class="tocnumber">1.2</span> <span class="toctext">Impulssatz in lagrangescher Darstellung</span></a></li> <li class="toclevel-2 tocsection-4"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Impulssatz_in_eulerscher_Darstellung"><span class="tocnumber">1.3</span> <span class="toctext">Impulssatz in eulerscher Darstellung</span></a></li> <li class="toclevel-2 tocsection-5"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Einfluss_von_Sprungstellen_im_Impulssatz"><span class="tocnumber">1.4</span> <span class="toctext">Einfluss von Sprungstellen im Impulssatz</span></a></li> </ul></li> <li class="toclevel-1 tocsection-6"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Zweites_cauchy-eulersches_Bewegungsgesetz"><span class="tocnumber">2</span> <span class="toctext">Zweites cauchy-eulersches Bewegungsgesetz</span></a> <ul> <li class="toclevel-2 tocsection-7"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Drallsatz_am_Volumenelement"><span class="tocnumber">2.1</span> <span class="toctext">Drallsatz am Volumenelement</span></a></li> <li class="toclevel-2 tocsection-8"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Drehimpulssatz_in_lagrangescher_Darstellung"><span class="tocnumber">2.2</span> <span class="toctext">Drehimpulssatz in lagrangescher Darstellung</span></a></li> <li class="toclevel-2 tocsection-9"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Drehimpulssatz_in_eulerscher_Darstellung"><span class="tocnumber">2.3</span> <span class="toctext">Drehimpulssatz in eulerscher Darstellung</span></a></li> <li class="toclevel-2 tocsection-10"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Einfluss_von_Sprungstellen_im_Drehimpulssatz"><span class="tocnumber">2.4</span> <span class="toctext">Einfluss von Sprungstellen im Drehimpulssatz</span></a></li> </ul></li> <li class="toclevel-1 tocsection-11"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Folgerungen_aus_den_Bewegungsgesetzen"><span class="tocnumber">3</span> <span class="toctext">Folgerungen aus den Bewegungsgesetzen</span></a> <ul> <li class="toclevel-2 tocsection-12"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Prinzip_von_d%E2%80%99Alembert"><span class="tocnumber">3.1</span> <span class="toctext">Prinzip von d’Alembert</span></a></li> <li class="toclevel-2 tocsection-13"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Bilanz_der_mechanischen_Energie"><span class="tocnumber">3.2</span> <span class="toctext">Bilanz der mechanischen Energie</span></a></li> <li class="toclevel-2 tocsection-14"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Energieerhaltungssatz"><span class="tocnumber">3.3</span> <span class="toctext">Energieerhaltungssatz</span></a></li> <li class="toclevel-2 tocsection-15"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Satz_von_Clapeyron"><span class="tocnumber">3.4</span> <span class="toctext">Satz von Clapeyron</span></a></li> </ul></li> <li class="toclevel-1 tocsection-16"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Fu%C3%9Fnoten"><span class="tocnumber">4</span> <span class="toctext">Fußnoten</span></a></li> <li class="toclevel-1 tocsection-17"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Literatur"><span class="tocnumber">5</span> <span class="toctext">Literatur</span></a></li> <li class="toclevel-1 tocsection-18"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Einzelnachweise"><span class="tocnumber">6</span> <span class="toctext">Einzelnachweise</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Erstes_cauchy-eulersches_Bewegungsgesetz">Erstes cauchy-eulersches Bewegungsgesetz</h2><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Erstes cauchy-eulersches Bewegungsgesetz" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Das erste cauchy-eulersche Bewegungsgesetz folgt aus dem 1687 von <a href="https://de-m-wikipedia-org.translate.goog/wiki/Isaac_Newton?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Isaac Newton">Isaac Newton</a> formulierten und nach ihm benannten zweiten <a href="https://de-m-wikipedia-org.translate.goog/wiki/Newtonsche_Gesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Newtonsche Gesetze">newtonschen Gesetz</a>, das dem <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kinetik_(Mechanik)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Schwerpunktsatz_oder_Impulssatz" title="Kinetik (Mechanik)">Impulssatz</a> entspricht, demgemäß die Änderung des Impulses mit der Zeit gleich der auf einen Körper wirkenden äußeren Kräfte ist:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} {\vec {p}}}{\mathrm {d} t}}={\vec {F}}_{v}+{\vec {F}}_{a}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> p </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> F </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> F </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} {\vec {p}}}{\mathrm {d} t}}={\vec {F}}_{v}+{\vec {F}}_{a}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dba1f2a7e337b9462ed3d95456a8fafceb61931" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:15.066ex; height:5.676ex;" alt="{\displaystyle {\frac {\mathrm {d} {\vec {p}}}{\mathrm {d} t}}={\vec {F}}_{v}+{\vec {F}}_{a}}"> </noscript><span class="lazy-image-placeholder" style="width: 15.066ex;height: 5.676ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dba1f2a7e337b9462ed3d95456a8fafceb61931" data-alt="{\displaystyle {\frac {\mathrm {d} {\vec {p}}}{\mathrm {d} t}}={\vec {F}}_{v}+{\vec {F}}_{a}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {p}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> p </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {p}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84fee53c81592db54e0fe6c6f9eba002bb1dc74b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.415ex; height:2.676ex;" alt="{\displaystyle {\vec {p}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.415ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84fee53c81592db54e0fe6c6f9eba002bb1dc74b" data-alt="{\displaystyle {\vec {p}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> stellt den <a href="https://de-m-wikipedia-org.translate.goog/wiki/Impuls_(Mechanik)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Impuls (Mechanik)">Impuls</a> dar, dessen zeitliche Änderung sich aus volumenverteilten und oberflächig eingeleiteten Kräften <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}_{v}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> F </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {F}}_{v}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/952406f765878c480c997a1948d652315b089750" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.801ex; height:3.176ex;" alt="{\displaystyle {\vec {F}}_{v}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.801ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/952406f765878c480c997a1948d652315b089750" data-alt="{\displaystyle {\vec {F}}_{v}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> bzw. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {F}}_{a}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> F </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {F}}_{a}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f65ad46c96c6023160ca54f697e7e70f1d3c01f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.873ex; height:3.176ex;" alt="{\displaystyle {\vec {F}}_{a}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.873ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f65ad46c96c6023160ca54f697e7e70f1d3c01f" data-alt="{\displaystyle {\vec {F}}_{a}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ergibt. In dem die Kontinuumsmechanik den Körper als Punktmenge idealisiert, wird aus der obigen Gleichung eine <a href="https://de-m-wikipedia-org.translate.goog/wiki/Integralgleichung?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Integralgleichung">Integralgleichung</a>, in der der spezifische Impuls, die spezifische Schwerebeschleunigung und die oberflächig wirkenden Kräfte über das Volumen bzw. über die Oberfläche integriert werden. Bei kleinen Verformungen kann das erste cauchy-eulersche Bewegungsgesetz am Volumenelement hergeleitet werden.</p> <div class="mw-heading mw-heading3"> <h3 id="Impulssatz_am_Volumenelement">Impulssatz am Volumenelement</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=2&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Impulssatz am Volumenelement" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://de-m-wikipedia-org.translate.goog/wiki/Datei:Impscheibe.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Impscheibe.png/220px-Impscheibe.png" decoding="async" width="220" height="261" class="mw-file-element" data-file-width="596" data-file-height="707"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 261px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Impscheibe.png/220px-Impscheibe.png" data-width="220" data-height="261" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Impscheibe.png/330px-Impscheibe.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Impscheibe.png/440px-Impscheibe.png 2x" data-class="mw-file-element"> </span></a> <figcaption> Spannungen an einem freigeschnittenen Scheibenelement </figcaption> </figure> <p>Der zweidimensionale Fall im ebenen Spannungszustand lässt sich leichter veranschaulichen und soll daher vorangestellt werden. Dazu wird eine ebene Scheibe der Dicke h betrachtet, die durch in der Ebene wirkende Kräfte belastet wird, siehe oberen Bildteil. Aus dieser Scheibe wird gedanklich ein rechteckiges Stück (gelb) herausgeschnitten, parallel zu dessen Kanten ein <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kartesisches_Koordinatensystem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Kartesisches Koordinatensystem">kartesisches Koordinatensystem</a> definiert wird, in dem es die Breite d<i>x</i> und Höhe d<i>y</i> hat. Nach dem <a href="https://de-m-wikipedia-org.translate.goog/wiki/Schnittprinzip?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Schnittprinzip">Schnittprinzip</a> entstehen an den Schnittflächen Schnittspannungen, die an die Stelle des weggeschnittenen Teils treten, siehe <a href="https://de-m-wikipedia-org.translate.goog/wiki/Schnittreaktion?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Schnittreaktion">Schnittreaktion</a>. Bei einem (infinitesimal) kleinen Scheibenelement können die Schnittspannungen als über die Fläche konstant angenommen werden. Die Schnittspannungen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {t}}_{x}=\sigma _{xx}{\hat {e}}_{x}+\sigma _{xy}{\hat {e}}_{y}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> x </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> y </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {t}}_{x}=\sigma _{xx}{\hat {e}}_{x}+\sigma _{xy}{\hat {e}}_{y}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/507fbe1b490c132d369772fdd20dfea1b5069ad4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.961ex; height:3.509ex;" alt="{\displaystyle {\vec {t}}_{x}=\sigma _{xx}{\hat {e}}_{x}+\sigma _{xy}{\hat {e}}_{y}}"> </noscript><span class="lazy-image-placeholder" style="width: 19.961ex;height: 3.509ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/507fbe1b490c132d369772fdd20dfea1b5069ad4" data-alt="{\displaystyle {\vec {t}}_{x}=\sigma _{xx}{\hat {e}}_{x}+\sigma _{xy}{\hat {e}}_{y}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> treten auf der Oberfläche mit der Normalen in x-Richtung auf und entsprechend operiert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {t}}_{y}=\sigma _{yx}{\hat {e}}_{x}+\sigma _{yy}{\hat {e}}_{y}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> x </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> y </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {t}}_{y}=\sigma _{yx}{\hat {e}}_{x}+\sigma _{yy}{\hat {e}}_{y}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/940498dabfb6b713f5e2fb6805e98568a448812c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.591ex; height:3.509ex;" alt="{\displaystyle {\vec {t}}_{y}=\sigma _{yx}{\hat {e}}_{x}+\sigma _{yy}{\hat {e}}_{y}}"> </noscript><span class="lazy-image-placeholder" style="width: 19.591ex;height: 3.509ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/940498dabfb6b713f5e2fb6805e98568a448812c" data-alt="{\displaystyle {\vec {t}}_{y}=\sigma _{yx}{\hat {e}}_{x}+\sigma _{yy}{\hat {e}}_{y}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> auf der Oberfläche mit der Normalen in y-Richtung. In der Komponente <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{ij}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sigma _{ij}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43acbf52cc4d4f83f187ceaa49f045114b71772e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.804ex; height:2.343ex;" alt="{\displaystyle \sigma _{ij}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.804ex;height: 2.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43acbf52cc4d4f83f187ceaa49f045114b71772e" data-alt="{\displaystyle \sigma _{ij}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> bezieht sich der erste Index also auf die Flächennormale und der zweite Index auf die Wirkrichtung. Nach Voraussetzung gibt es keine Spannungen senkrecht zur Scheibenebene. An den Flächen, deren Normalen in positive Koordinatenrichtung weisen, ist das <i>positive</i> Schnittufer und die Spannungen wirken in positiver Richtung. An den Flächen, deren Normalen in negative Koordinatenrichtung weisen, ist das <i>negative</i> Schnittufer und die Spannungen wirken in negativer Richtung, siehe Bild. Sie sind im Gleichgewicht mit den Schnittspannungen an den benachbarten, weggeschnittenen Teilen des Körpers.</p> <p>Das zweite <a href="https://de-m-wikipedia-org.translate.goog/wiki/Newtonsche_Gesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Newtonsche Gesetze">newtonsche Gesetz</a> besagt, dass die an dem Scheibenelement angreifenden Spannungen – multipliziert mit ihrer Wirkfläche – das Scheibenelement beschleunigen. An dem Scheibenelement führt das unter Berücksichtigung der Schwerebeschleunigung in x- und y-Richtung auf</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{ll}\mathrm {d} m\,a_{x}=\mathrm {d} m\,k_{x}\!\!\!\!\!\!&+\,\sigma _{xx}(x+\mathrm {d} x,y)h\,\mathrm {d} y+\sigma _{yx}(x,y+\mathrm {d} y)h\,\mathrm {d} x\\&-\,\sigma _{xx}(x,y)h\,\mathrm {d} y-\sigma _{yx}(x,y)h\,\mathrm {d} x\\\mathrm {d} m\,a_{y}=\mathrm {d} m\,k_{y}\!\!\!\!\!\!&+\,\sigma _{xy}(x+\mathrm {d} x,y)h\,\mathrm {d} y+\sigma _{yy}(x,y+\mathrm {d} y)h\,\mathrm {d} x\\&-\,\sigma _{xy}(x,y)h\,\mathrm {d} y-\sigma _{yy}(x,y)h\,\mathrm {d} x\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> m </mi> <mspace width="thinmathspace"></mspace> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> m </mi> <mspace width="thinmathspace"></mspace> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> + </mo> <mspace width="thinmathspace"></mspace> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> y </mi> <mo> + </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> y </mi> <mo stretchy="false"> ) </mo> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mo> −<!-- − --> </mo> <mspace width="thinmathspace"></mspace> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> m </mi> <mspace width="thinmathspace"></mspace> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> m </mi> <mspace width="thinmathspace"></mspace> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> + </mo> <mspace width="thinmathspace"></mspace> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> y </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> y </mi> <mo> + </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> y </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> y </mi> <mo stretchy="false"> ) </mo> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mo> −<!-- − --> </mo> <mspace width="thinmathspace"></mspace> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> y </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> y </mi> <mo> −<!-- − --> </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> y </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> , </mo> <mi> y </mi> <mo stretchy="false"> ) </mo> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{ll}\mathrm {d} m\,a_{x}=\mathrm {d} m\,k_{x}\!\!\!\!\!\!&+\,\sigma _{xx}(x+\mathrm {d} x,y)h\,\mathrm {d} y+\sigma _{yx}(x,y+\mathrm {d} y)h\,\mathrm {d} x\\&-\,\sigma _{xx}(x,y)h\,\mathrm {d} y-\sigma _{yx}(x,y)h\,\mathrm {d} x\\\mathrm {d} m\,a_{y}=\mathrm {d} m\,k_{y}\!\!\!\!\!\!&+\,\sigma _{xy}(x+\mathrm {d} x,y)h\,\mathrm {d} y+\sigma _{yy}(x,y+\mathrm {d} y)h\,\mathrm {d} x\\&-\,\sigma _{xy}(x,y)h\,\mathrm {d} y-\sigma _{yy}(x,y)h\,\mathrm {d} x\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1f48a52c8752fc81c3f59229281cb6a5aa0adaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:57.799ex; height:13.509ex;" alt="{\displaystyle {\begin{array}{ll}\mathrm {d} m\,a_{x}=\mathrm {d} m\,k_{x}\!\!\!\!\!\!&+\,\sigma _{xx}(x+\mathrm {d} x,y)h\,\mathrm {d} y+\sigma _{yx}(x,y+\mathrm {d} y)h\,\mathrm {d} x\\&-\,\sigma _{xx}(x,y)h\,\mathrm {d} y-\sigma _{yx}(x,y)h\,\mathrm {d} x\\\mathrm {d} m\,a_{y}=\mathrm {d} m\,k_{y}\!\!\!\!\!\!&+\,\sigma _{xy}(x+\mathrm {d} x,y)h\,\mathrm {d} y+\sigma _{yy}(x,y+\mathrm {d} y)h\,\mathrm {d} x\\&-\,\sigma _{xy}(x,y)h\,\mathrm {d} y-\sigma _{yy}(x,y)h\,\mathrm {d} x\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 57.799ex;height: 13.509ex;vertical-align: -6.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1f48a52c8752fc81c3f59229281cb6a5aa0adaf" data-alt="{\displaystyle {\begin{array}{ll}\mathrm {d} m\,a_{x}=\mathrm {d} m\,k_{x}\!\!\!\!\!\!&+\,\sigma _{xx}(x+\mathrm {d} x,y)h\,\mathrm {d} y+\sigma _{yx}(x,y+\mathrm {d} y)h\,\mathrm {d} x\\&-\,\sigma _{xx}(x,y)h\,\mathrm {d} y-\sigma _{yx}(x,y)h\,\mathrm {d} x\\\mathrm {d} m\,a_{y}=\mathrm {d} m\,k_{y}\!\!\!\!\!\!&+\,\sigma _{xy}(x+\mathrm {d} x,y)h\,\mathrm {d} y+\sigma _{yy}(x,y+\mathrm {d} y)h\,\mathrm {d} x\\&-\,\sigma _{xy}(x,y)h\,\mathrm {d} y-\sigma _{yy}(x,y)h\,\mathrm {d} x\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Die Masse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} m=\rho h\,\mathrm {d} x\,\mathrm {d} y}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> m </mi> <mo> = </mo> <mi> ρ<!-- ρ --> </mi> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> y </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathrm {d} m=\rho h\,\mathrm {d} x\,\mathrm {d} y} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af3fe9edba5e5644807e5c3fb47684d2c546c60a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.817ex; height:2.676ex;" alt="{\displaystyle \mathrm {d} m=\rho h\,\mathrm {d} x\,\mathrm {d} y}"> </noscript><span class="lazy-image-placeholder" style="width: 14.817ex;height: 2.676ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af3fe9edba5e5644807e5c3fb47684d2c546c60a" data-alt="{\displaystyle \mathrm {d} m=\rho h\,\mathrm {d} x\,\mathrm {d} y}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> des Scheibenelements ergibt sich aus der Dichte <i>ρ</i> des Materials und dem Volumen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\,\mathrm {d} x\,\mathrm {d} y}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> h </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> y </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h\,\mathrm {d} x\,\mathrm {d} y} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d01d45ab6117a35dbae8e810a9f2495ae540e824" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.183ex; height:2.509ex;" alt="{\displaystyle h\,\mathrm {d} x\,\mathrm {d} y}"> </noscript><span class="lazy-image-placeholder" style="width: 7.183ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d01d45ab6117a35dbae8e810a9f2495ae540e824" data-alt="{\displaystyle h\,\mathrm {d} x\,\mathrm {d} y}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Division durch dieses Volumen liefert im Grenzwert <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} x\rightarrow 0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathrm {d} x\rightarrow 0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1489a33a7dffc86c6c2bf60a73557e746c011f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.399ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} x\rightarrow 0}"> </noscript><span class="lazy-image-placeholder" style="width: 7.399ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1489a33a7dffc86c6c2bf60a73557e746c011f6" data-alt="{\displaystyle \mathrm {d} x\rightarrow 0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} y\rightarrow 0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> y </mi> <mo stretchy="false"> →<!-- → --> </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathrm {d} y\rightarrow 0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1ee68a2afb93f400e86881e967d6ef49c02ac1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.225ex; height:2.509ex;" alt="{\displaystyle \mathrm {d} y\rightarrow 0}"> </noscript><span class="lazy-image-placeholder" style="width: 7.225ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1ee68a2afb93f400e86881e967d6ef49c02ac1c" data-alt="{\displaystyle \mathrm {d} y\rightarrow 0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> den lokalen Impulssatz in x- bzw. y-Richtung:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left.{\begin{array}{rcl}\rho a_{x}&=&\rho k_{x}+{\frac {\partial \sigma _{xx}}{\partial x}}+{\frac {\partial \sigma _{yx}}{\partial y}}\\\rho a_{y}&=&\rho k_{y}+{\frac {\partial \sigma _{xy}}{\partial x}}+{\frac {\partial \sigma _{yy}}{\partial y}}\end{array}}\right\}\leftrightarrow \quad \rho a_{i}=\rho k_{i}+\sum _{j=1}^{2}{\frac {\partial \sigma _{ji}}{\partial x_{j}}}\,,\quad i=1,2}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi> ρ<!-- ρ --> </mi> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mi> ρ<!-- ρ --> </mi> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> x </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> x </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> x </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> y </mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> ρ<!-- ρ --> </mi> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mi> ρ<!-- ρ --> </mi> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> y </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> x </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> <mi> y </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> y </mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> } </mo> </mrow> <mo stretchy="false"> ↔<!-- ↔ --> </mo> <mspace width="1em"></mspace> <mi> ρ<!-- ρ --> </mi> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mi> ρ<!-- ρ --> </mi> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mo> , </mo> <mspace width="1em"></mspace> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left.{\begin{array}{rcl}\rho a_{x}&=&\rho k_{x}+{\frac {\partial \sigma _{xx}}{\partial x}}+{\frac {\partial \sigma _{yx}}{\partial y}}\\\rho a_{y}&=&\rho k_{y}+{\frac {\partial \sigma _{xy}}{\partial x}}+{\frac {\partial \sigma _{yy}}{\partial y}}\end{array}}\right\}\leftrightarrow \quad \rho a_{i}=\rho k_{i}+\sum _{j=1}^{2}{\frac {\partial \sigma _{ji}}{\partial x_{j}}}\,,\quad i=1,2} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e65e412add80c3202b515621ac1b229e1414c688" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.999ex; margin-bottom: -0.173ex; width:68.861ex; height:9.509ex;" alt="{\displaystyle \left.{\begin{array}{rcl}\rho a_{x}&=&\rho k_{x}+{\frac {\partial \sigma _{xx}}{\partial x}}+{\frac {\partial \sigma _{yx}}{\partial y}}\\\rho a_{y}&=&\rho k_{y}+{\frac {\partial \sigma _{xy}}{\partial x}}+{\frac {\partial \sigma _{yy}}{\partial y}}\end{array}}\right\}\leftrightarrow \quad \rho a_{i}=\rho k_{i}+\sum _{j=1}^{2}{\frac {\partial \sigma _{ji}}{\partial x_{j}}}\,,\quad i=1,2}"> </noscript><span class="lazy-image-placeholder" style="width: 68.861ex;height: 9.509ex;vertical-align: -3.999ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e65e412add80c3202b515621ac1b229e1414c688" data-alt="{\displaystyle \left.{\begin{array}{rcl}\rho a_{x}&=&\rho k_{x}+{\frac {\partial \sigma _{xx}}{\partial x}}+{\frac {\partial \sigma _{yx}}{\partial y}}\\\rho a_{y}&=&\rho k_{y}+{\frac {\partial \sigma _{xy}}{\partial x}}+{\frac {\partial \sigma _{yy}}{\partial y}}\end{array}}\right\}\leftrightarrow \quad \rho a_{i}=\rho k_{i}+\sum _{j=1}^{2}{\frac {\partial \sigma _{ji}}{\partial x_{j}}}\,,\quad i=1,2}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>wenn – wie üblich – die Koordinaten nach dem Schema x→1, y→2, z→3 durchnummeriert werden. In drei Dimensionen resultieren die gleichen Differentialgleichungen analog, nur wird von eins bis drei summiert:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho a_{i}=\rho k_{i}+\sum _{j=1}^{3}{\frac {\partial \sigma _{ji}}{\partial x_{j}}}\,,\quad i=1,2,3}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ρ<!-- ρ --> </mi> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mi> ρ<!-- ρ --> </mi> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mi> i </mi> </mrow> </msub> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mo> , </mo> <mspace width="1em"></mspace> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> <mo> , </mo> <mn> 3 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho a_{i}=\rho k_{i}+\sum _{j=1}^{3}{\frac {\partial \sigma _{ji}}{\partial x_{j}}}\,,\quad i=1,2,3} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6831ce9e3bfeeba26afa1d49eda7433d7031f79d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:34.284ex; height:7.509ex;" alt="{\displaystyle \rho a_{i}=\rho k_{i}+\sum _{j=1}^{3}{\frac {\partial \sigma _{ji}}{\partial x_{j}}}\,,\quad i=1,2,3}"> </noscript><span class="lazy-image-placeholder" style="width: 34.284ex;height: 7.509ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6831ce9e3bfeeba26afa1d49eda7433d7031f79d" data-alt="{\displaystyle \rho a_{i}=\rho k_{i}+\sum _{j=1}^{3}{\frac {\partial \sigma _{ji}}{\partial x_{j}}}\,,\quad i=1,2,3}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Multiplikation dieser Gleichungen mit dem Basisvektor <i>ê<sub>i</sub></i> der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Standardbasis?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Standardbasis">Standardbasis</a> und Addition der resultierenden drei Gleichungen mündet in der Vektorgleichung</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{cccccccl}\underbrace {\displaystyle \sum _{i=1}^{3}\rho a_{i}{\hat {e}}_{i}} \!\!\!\!&=&\!\!\!\!\underbrace {\displaystyle \sum _{i=1}^{3}\rho k_{i}{\hat {e}}_{i}} \!\!\!\!&+&\!\!\!\!\underbrace {\displaystyle \sum _{k=1}^{3}{\hat {e}}_{k}{\frac {\partial }{\partial x_{k}}}} \!\!\!\!&\cdot &\!\!\!\!\underbrace {\displaystyle \sum _{i,j=1}^{3}\sigma _{ji}{\hat {e}}_{j}\otimes {\hat {e}}_{i}} \\\rho {\vec {a}}\!\!\!\!&=&\!\!\!\!\rho {\vec {k}}\!\!\!\!&+&\!\!\!\!\nabla \!\!\!\!&\cdot \!\!\!\!&{\boldsymbol {\sigma }}&=\;\rho {\vec {k}}+\operatorname {div} \;{\boldsymbol {\sigma }}\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center center center center center center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <mi> ρ<!-- ρ --> </mi> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <mi> ρ<!-- ρ --> </mi> <msub> <mi> k </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> + </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> ⋅<!-- ⋅ --> </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> , </mo> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> </mtd> </mtr> <mtr> <mtd> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> + </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> ⋅<!-- ⋅ --> </mo> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mtd> <mtd> <mo> = </mo> <mspace width="thickmathspace"></mspace> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi> div </mi> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{cccccccl}\underbrace {\displaystyle \sum _{i=1}^{3}\rho a_{i}{\hat {e}}_{i}} \!\!\!\!&=&\!\!\!\!\underbrace {\displaystyle \sum _{i=1}^{3}\rho k_{i}{\hat {e}}_{i}} \!\!\!\!&+&\!\!\!\!\underbrace {\displaystyle \sum _{k=1}^{3}{\hat {e}}_{k}{\frac {\partial }{\partial x_{k}}}} \!\!\!\!&\cdot &\!\!\!\!\underbrace {\displaystyle \sum _{i,j=1}^{3}\sigma _{ji}{\hat {e}}_{j}\otimes {\hat {e}}_{i}} \\\rho {\vec {a}}\!\!\!\!&=&\!\!\!\!\rho {\vec {k}}\!\!\!\!&+&\!\!\!\!\nabla \!\!\!\!&\cdot \!\!\!\!&{\boldsymbol {\sigma }}&=\;\rho {\vec {k}}+\operatorname {div} \;{\boldsymbol {\sigma }}\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/013acd4ea4908090bece8729ed39fc35d533decf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:69.061ex; height:13.176ex;" alt="{\displaystyle {\begin{array}{cccccccl}\underbrace {\displaystyle \sum _{i=1}^{3}\rho a_{i}{\hat {e}}_{i}} \!\!\!\!&=&\!\!\!\!\underbrace {\displaystyle \sum _{i=1}^{3}\rho k_{i}{\hat {e}}_{i}} \!\!\!\!&+&\!\!\!\!\underbrace {\displaystyle \sum _{k=1}^{3}{\hat {e}}_{k}{\frac {\partial }{\partial x_{k}}}} \!\!\!\!&\cdot &\!\!\!\!\underbrace {\displaystyle \sum _{i,j=1}^{3}\sigma _{ji}{\hat {e}}_{j}\otimes {\hat {e}}_{i}} \\\rho {\vec {a}}\!\!\!\!&=&\!\!\!\!\rho {\vec {k}}\!\!\!\!&+&\!\!\!\!\nabla \!\!\!\!&\cdot \!\!\!\!&{\boldsymbol {\sigma }}&=\;\rho {\vec {k}}+\operatorname {div} \;{\boldsymbol {\sigma }}\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 69.061ex;height: 13.176ex;vertical-align: -6.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/013acd4ea4908090bece8729ed39fc35d533decf" data-alt="{\displaystyle {\begin{array}{cccccccl}\underbrace {\displaystyle \sum _{i=1}^{3}\rho a_{i}{\hat {e}}_{i}} \!\!\!\!&=&\!\!\!\!\underbrace {\displaystyle \sum _{i=1}^{3}\rho k_{i}{\hat {e}}_{i}} \!\!\!\!&+&\!\!\!\!\underbrace {\displaystyle \sum _{k=1}^{3}{\hat {e}}_{k}{\frac {\partial }{\partial x_{k}}}} \!\!\!\!&\cdot &\!\!\!\!\underbrace {\displaystyle \sum _{i,j=1}^{3}\sigma _{ji}{\hat {e}}_{j}\otimes {\hat {e}}_{i}} \\\rho {\vec {a}}\!\!\!\!&=&\!\!\!\!\rho {\vec {k}}\!\!\!\!&+&\!\!\!\!\nabla \!\!\!\!&\cdot \!\!\!\!&{\boldsymbol {\sigma }}&=\;\rho {\vec {k}}+\operatorname {div} \;{\boldsymbol {\sigma }}\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Nabla-Operator?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Nabla-Operator">Nabla-Operator</a> „<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \nabla } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.176ex;" alt="{\displaystyle \nabla }"> </noscript><span class="lazy-image-placeholder" style="width: 1.936ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3d0e93b78c50237f9ea83d027e4ebbdaef354b2" data-alt="{\displaystyle \nabla }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>“ liefert im <a href="https://de-m-wikipedia-org.translate.goog/wiki/Skalarprodukt?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Skalarprodukt">Skalarprodukt</a> die Divergenz div des cauchyschen Spannungstensors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\sigma }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\sigma }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e45fe1b9d8dcbc3103fc7805d69798bfe5ca5b16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.594ex; height:1.676ex;" alt="{\displaystyle {\boldsymbol {\sigma }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.594ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e45fe1b9d8dcbc3103fc7805d69798bfe5ca5b16" data-alt="{\displaystyle {\boldsymbol {\sigma }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, der eine Summe von Dyaden ist, die mit dem <a href="https://de-m-wikipedia-org.translate.goog/wiki/Dyadisches_Produkt?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Dyadisches Produkt">dyadischen Produkt</a> „<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \otimes }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> ⊗<!-- ⊗ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \otimes } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de29098f5a34ee296a505681a0d5e875070f2aea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \otimes }"> </noscript><span class="lazy-image-placeholder" style="width: 1.808ex;height: 2.176ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de29098f5a34ee296a505681a0d5e875070f2aea" data-alt="{\displaystyle \otimes }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>“ der Basisvektoren und seinen Komponenten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{ji}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sigma _{ji}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a2784210881b8d361b4ceb221dc5224dc2aeaaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.804ex; height:2.343ex;" alt="{\displaystyle \sigma _{ji}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.804ex;height: 2.343ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a2784210881b8d361b4ceb221dc5224dc2aeaaf" data-alt="{\displaystyle \sigma _{ji}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> gebildet werden. Die Vektorgleichung ist die koordinatenfreie Version des lokalen Impulssatzes, die in beliebigen Koordinaten eines <a href="https://de-m-wikipedia-org.translate.goog/wiki/Inertialsystem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Inertialsystem">Inertialsystems</a> gilt.</p> <p>Der Schnittspannungsvektor</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {t}}_{x}=\sigma _{xx}{\hat {e}}_{x}+\sigma _{xy}{\hat {e}}_{y}+\sigma _{xz}{\hat {e}}_{z}={\boldsymbol {\sigma }}^{\top }\cdot {\hat {e}}_{x}={\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> x </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> y </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> <mi> z </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {t}}_{x}=\sigma _{xx}{\hat {e}}_{x}+\sigma _{xy}{\hat {e}}_{y}+\sigma _{xz}{\hat {e}}_{z}={\boldsymbol {\sigma }}^{\top }\cdot {\hat {e}}_{x}={\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b0f154700a142b69f214f4cd088c3a8c0cadd49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:47.547ex; height:3.509ex;" alt="{\displaystyle {\vec {t}}_{x}=\sigma _{xx}{\hat {e}}_{x}+\sigma _{xy}{\hat {e}}_{y}+\sigma _{xz}{\hat {e}}_{z}={\boldsymbol {\sigma }}^{\top }\cdot {\hat {e}}_{x}={\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}}"> </noscript><span class="lazy-image-placeholder" style="width: 47.547ex;height: 3.509ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b0f154700a142b69f214f4cd088c3a8c0cadd49" data-alt="{\displaystyle {\vec {t}}_{x}=\sigma _{xx}{\hat {e}}_{x}+\sigma _{xy}{\hat {e}}_{y}+\sigma _{xz}{\hat {e}}_{z}={\boldsymbol {\sigma }}^{\top }\cdot {\hat {e}}_{x}={\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>in der Schnittfläche mit Normalenvektor in x-Richtung ist im cauchyschen Spannungstensor zeilenweise eingetragen, was sinngemäß auch für Schnittspannungsvektoren in y- und z-Richtung gilt.</p> <div class="mw-heading mw-heading3"> <h3 id="Impulssatz_in_lagrangescher_Darstellung">Impulssatz in lagrangescher Darstellung</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=3&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Impulssatz in lagrangescher Darstellung" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <p>In der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Lagrangesche_Betrachtungsweise?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Lagrangesche Betrachtungsweise">lagrangeschen Darstellung</a> lautet der globale Impulssatz</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}\rho _{0}({\vec {X}})\,{\dot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V=\int _{V}\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}({\vec {X}},t)\,\mathrm {d} A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}\rho _{0}({\vec {X}})\,{\dot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V=\int _{V}\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}({\vec {X}},t)\,\mathrm {d} A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58911e68fee307c066a55fd76a6c872a700a36c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:65.062ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}\rho _{0}({\vec {X}})\,{\dot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V=\int _{V}\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}({\vec {X}},t)\,\mathrm {d} A}"> </noscript><span class="lazy-image-placeholder" style="width: 65.062ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58911e68fee307c066a55fd76a6c872a700a36c7" data-alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}\rho _{0}({\vec {X}})\,{\dot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V=\int _{V}\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}({\vec {X}},t)\,\mathrm {d} A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>die den materiellen Punkten (Partikel) zugeordnete physikalische Größen benutzt, siehe <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kontinuumsmechanik?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Impulsbilanz" title="Kontinuumsmechanik">Impulsbilanz</a>. Die Partikel werden durch ihre <i>materiellen</i> Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {X}}\in V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ∈<!-- ∈ --> </mo> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {X}}\in V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b96389a1d18d9ae781522869a1337e51b85ebce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.608ex; height:2.843ex;" alt="{\displaystyle {\vec {X}}\in V}"> </noscript><span class="lazy-image-placeholder" style="width: 6.608ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b96389a1d18d9ae781522869a1337e51b85ebce" data-alt="{\displaystyle {\vec {X}}\in V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> in dem Volumen <i>V</i> des Körpers zu einer festgelegten Zeit t<sub>0</sub> im <i>Referenzzustand</i> identifiziert, und auf diese Partikel bezieht sich die Impulsbilanz lokal. Die einem materiellen Punkt zugeordnete Dichte <i>ρ</i><sub>0</sub> ist auf Grund der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kontinuumsmechanik?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Massenbilanz" title="Kontinuumsmechanik">Massenbilanz</a> keine Funktion der Zeit. Der <a href="https://de-m-wikipedia-org.translate.goog/wiki/%C3%9Cberpunkt?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Als_wissenschaftliches_Symbol" title="Überpunkt">aufgesetzte Punkt</a> steht hier wie im Folgenden für die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Substantielle_Ableitung?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Substantielle Ableitung">substantielle Ableitung</a>, also für die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Zeitableitung?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Zeitableitung">Zeitableitung</a> bei festgehaltenem Partikel, denn die Gesetze der Mechanik beziehen sich auf die Partikel und nicht auf die Raumpunkte.</p> <p>Bei den Integralen oben ist das Integrationsgebiet materiell festgelegt, sodass es sich also mit dem Körper mitbewegt, ohne dass neue Partikel zum Gebiet hinzukommen oder wegfallen. Dies wird durch die Großschreibung <i>V</i> bzw. <i>A</i> der Integrationsgebiete symbolisiert.</p> <p>Weil das Referenzvolumen <i>V</i> somit nicht von der Zeit abhängt, kann die Zeitableitung des Integrals in den Integranden verschoben werden:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}\rho _{0}({\vec {X}})\,{\dot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V=\int _{V}\rho _{0}({\vec {X}})\,{\ddot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}\rho _{0}({\vec {X}})\,{\dot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V=\int _{V}\rho _{0}({\vec {X}})\,{\ddot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcf26800eda8612e55514821a8eb345c1cdaece0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:46.84ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}\rho _{0}({\vec {X}})\,{\dot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V=\int _{V}\rho _{0}({\vec {X}})\,{\ddot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V}"> </noscript><span class="lazy-image-placeholder" style="width: 46.84ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcf26800eda8612e55514821a8eb345c1cdaece0" data-alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}\rho _{0}({\vec {X}})\,{\dot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V=\int _{V}\rho _{0}({\vec {X}})\,{\ddot {\vec {\chi }}}({\vec {X}},t)\,\mathrm {d} V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Die von außen angreifenden, flächenverteilten Kräfte (Spannungen) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {t}}_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {t}}_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c6d87b2de6589445294992c544f9848febf5b13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.342ex; height:3.176ex;" alt="{\displaystyle {\vec {t}}_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.342ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c6d87b2de6589445294992c544f9848febf5b13" data-alt="{\displaystyle {\vec {t}}_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> sind die mit dem Nennspannungstensor <b>N</b> transformierten <a href="https://de-m-wikipedia-org.translate.goog/wiki/Normaleneinheitsvektor?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Normaleneinheitsvektor">Normaleneinheitsvektoren</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {N}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {N}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13e01cc1cec4201098af497311170ea68412c6b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.843ex;" alt="{\displaystyle {\vec {N}}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.064ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13e01cc1cec4201098af497311170ea68412c6b7" data-alt="{\displaystyle {\vec {N}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> an der Oberfläche <i>A</i> des Körpers: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {t}}_{0}=\mathbf {N} ^{\top }\cdot {\vec {N}}=\mathbf {P} \cdot {\vec {N}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> P </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {t}}_{0}=\mathbf {N} ^{\top }\cdot {\vec {N}}=\mathbf {P} \cdot {\vec {N}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/100c3f16540761fa26577120c66eb768e2f37596" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.453ex; height:3.176ex;" alt="{\displaystyle {\vec {t}}_{0}=\mathbf {N} ^{\top }\cdot {\vec {N}}=\mathbf {P} \cdot {\vec {N}}}"> </noscript><span class="lazy-image-placeholder" style="width: 21.453ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/100c3f16540761fa26577120c66eb768e2f37596" data-alt="{\displaystyle {\vec {t}}_{0}=\mathbf {N} ^{\top }\cdot {\vec {N}}=\mathbf {P} \cdot {\vec {N}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Darin ist <b>P</b> = <b>N</b><sup>⊤</sup> der erste-Piola-Kirchhoff Tensor und <sup>⊤</sup> bedeutet die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Transponierte_Matrix?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Transponierte Matrix">Transponierung</a>. Das <a href="https://de-m-wikipedia-org.translate.goog/wiki/Oberfl%C3%A4chenintegral?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Oberflächenintegral">Oberflächenintegral</a> der Oberflächenspannungen wird mit dem <a href="https://de-m-wikipedia-org.translate.goog/wiki/Gaussscher_Integralsatz?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Gaussscher Integralsatz">gaußschen Integralsatz</a> in ein <a href="https://de-m-wikipedia-org.translate.goog/wiki/Volumenintegral?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Volumenintegral">Volumenintegral</a> umgewandelt:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{A}{\vec {t}}_{0}\,\mathrm {d} A=&\int _{A}\mathbf {N} ^{\top }\cdot {\vec {N}}\,\mathrm {d} A=\int _{V}\nabla _{0}\cdot \mathbf {N} \,\mathrm {d} V\\=&\int _{A}\mathbf {P} \cdot {\vec {N}}\,\mathrm {d} A=\int _{V}\operatorname {DIV} (\mathbf {P} )\,\mathrm {d} V\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> P </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mi> DIV </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> P </mi> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\int _{A}{\vec {t}}_{0}\,\mathrm {d} A=&\int _{A}\mathbf {N} ^{\top }\cdot {\vec {N}}\,\mathrm {d} A=\int _{V}\nabla _{0}\cdot \mathbf {N} \,\mathrm {d} V\\=&\int _{A}\mathbf {P} \cdot {\vec {N}}\,\mathrm {d} A=\int _{V}\operatorname {DIV} (\mathbf {P} )\,\mathrm {d} V\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bcffebac62e17b0b36c34e5c60e8b12fc8bc6dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:42.915ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}\int _{A}{\vec {t}}_{0}\,\mathrm {d} A=&\int _{A}\mathbf {N} ^{\top }\cdot {\vec {N}}\,\mathrm {d} A=\int _{V}\nabla _{0}\cdot \mathbf {N} \,\mathrm {d} V\\=&\int _{A}\mathbf {P} \cdot {\vec {N}}\,\mathrm {d} A=\int _{V}\operatorname {DIV} (\mathbf {P} )\,\mathrm {d} V\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 42.915ex;height: 11.843ex;vertical-align: -5.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bcffebac62e17b0b36c34e5c60e8b12fc8bc6dc" data-alt="{\displaystyle {\begin{aligned}\int _{A}{\vec {t}}_{0}\,\mathrm {d} A=&\int _{A}\mathbf {N} ^{\top }\cdot {\vec {N}}\,\mathrm {d} A=\int _{V}\nabla _{0}\cdot \mathbf {N} \,\mathrm {d} V\\=&\int _{A}\mathbf {P} \cdot {\vec {N}}\,\mathrm {d} A=\int _{V}\operatorname {DIV} (\mathbf {P} )\,\mathrm {d} V\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der Divergenzoperator DIV wird hier groß geschrieben und der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Nabla-Operator?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Nabla-Operator">Nabla-Operator</a> wird mit einem Index 𝜵<sub>0</sub> versehen, weil sie die materiellen Ableitungen nach den materiellen Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {X}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {X}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc35b5a0226cf11a2c3f2d2dbbac6ab5ade6036" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.843ex;" alt="{\displaystyle {\vec {X}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.98ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc35b5a0226cf11a2c3f2d2dbbac6ab5ade6036" data-alt="{\displaystyle {\vec {X}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> beinhalten. Es gilt für jedes Tensorfeld <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {T} ({\vec {X}})\colon \;\operatorname {DIV} \mathbf {T} =\nabla _{0}\cdot (\mathbf {T} ^{\top })}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> :<!-- : --> </mo> <mspace width="thickmathspace"></mspace> <mi> DIV </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo> = </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {T} ({\vec {X}})\colon \;\operatorname {DIV} \mathbf {T} =\nabla _{0}\cdot (\mathbf {T} ^{\top })} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82e42163c3d4a4e521144cd8020a4e2df5b884d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.879ex; height:3.343ex;" alt="{\displaystyle \mathbf {T} ({\vec {X}})\colon \;\operatorname {DIV} \mathbf {T} =\nabla _{0}\cdot (\mathbf {T} ^{\top })}"> </noscript><span class="lazy-image-placeholder" style="width: 26.879ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82e42163c3d4a4e521144cd8020a4e2df5b884d8" data-alt="{\displaystyle \mathbf {T} ({\vec {X}})\colon \;\operatorname {DIV} \mathbf {T} =\nabla _{0}\cdot (\mathbf {T} ^{\top })}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Die Operatoren in dieser Gleichung sind von den <i>räumlichen</i> Operatoren div bzw. 𝜵 zu unterscheiden, die die <i>räumlichen</i> Ableitungen nach den räumlichen Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {x}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2dc6ced9cc3bc7e8b9f2707cbec033f6d3759c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.343ex;" alt="{\displaystyle {\vec {x}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2dc6ced9cc3bc7e8b9f2707cbec033f6d3759c" data-alt="{\displaystyle {\vec {x}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ausführen, und die in der eulerschen Darstellung benötigt werden. Mit den vorliegenden Ergebnissen kann die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Impulssatz_in_lagrangescher_Darstellung">Impulsbilanz</a> als verschwindendes Volumenintegral ausgedrückt werden:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{V}(\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\nabla _{0}\cdot \mathbf {N} )\,\mathrm {d} V=\int _{V}(\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\operatorname {DIV} \mathbf {P} )\,\mathrm {d} V={\vec {0}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <mi> DIV </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> P </mi> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int _{V}(\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\nabla _{0}\cdot \mathbf {N} )\,\mathrm {d} V=\int _{V}(\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\operatorname {DIV} \mathbf {P} )\,\mathrm {d} V={\vec {0}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cc3e2f260dea4f914f653e8a86cd53bb3686e28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:64.649ex; height:5.676ex;" alt="{\displaystyle \int _{V}(\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\nabla _{0}\cdot \mathbf {N} )\,\mathrm {d} V=\int _{V}(\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\operatorname {DIV} \mathbf {P} )\,\mathrm {d} V={\vec {0}}}"> </noscript><span class="lazy-image-placeholder" style="width: 64.649ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cc3e2f260dea4f914f653e8a86cd53bb3686e28" data-alt="{\displaystyle \int _{V}(\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\nabla _{0}\cdot \mathbf {N} )\,\mathrm {d} V=\int _{V}(\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\operatorname {DIV} \mathbf {P} )\,\mathrm {d} V={\vec {0}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Diese Gleichung gilt für jeden Körper und jeden seiner Teilkörper, sodass – Stetigkeit des Integranden vorausgesetzt – auf das erste cauchy-eulersche Bewegungsgesetz in der lagrangeschen Darstellung</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho _{0}({\vec {X}})\,{\ddot {\vec {\chi }}}({\vec {X}},t)=\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)+\nabla _{0}\cdot \mathbf {N} ({\vec {X}},t)=\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)+\operatorname {DIV} \mathbf {P} ({\vec {X}},t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> DIV </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> P </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho _{0}({\vec {X}})\,{\ddot {\vec {\chi }}}({\vec {X}},t)=\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)+\nabla _{0}\cdot \mathbf {N} ({\vec {X}},t)=\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)+\operatorname {DIV} \mathbf {P} ({\vec {X}},t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fb249d2cf6b8022c44163a786feb3bd9951d9b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:78.809ex; height:3.343ex;" alt="{\displaystyle \rho _{0}({\vec {X}})\,{\ddot {\vec {\chi }}}({\vec {X}},t)=\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)+\nabla _{0}\cdot \mathbf {N} ({\vec {X}},t)=\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)+\operatorname {DIV} \mathbf {P} ({\vec {X}},t)}"> </noscript><span class="lazy-image-placeholder" style="width: 78.809ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fb249d2cf6b8022c44163a786feb3bd9951d9b1" data-alt="{\displaystyle \rho _{0}({\vec {X}})\,{\ddot {\vec {\chi }}}({\vec {X}},t)=\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)+\nabla _{0}\cdot \mathbf {N} ({\vec {X}},t)=\rho _{0}({\vec {X}})\,{\vec {k}}_{0}({\vec {X}},t)+\operatorname {DIV} \mathbf {P} ({\vec {X}},t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>geschlossen werden kann. Das Vorkommen der materiellen Koordinaten und des Nennspannungstensors <b>N</b> bzw. des ersten-Piola-Kirchhoff’schen Spannungstensors <b>P</b> an Stelle des cauchyschen Spannungstensors berücksichtigt die Formänderung des bei der Betrachtung am Volumenelement oben herausgeschnittenen Teilkörpers bei großen Deformationen. Bei kleinen Verschiebungen ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {N} \approx \mathbf {P} \approx {\boldsymbol {\sigma }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> ≈<!-- ≈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> P </mi> </mrow> <mo> ≈<!-- ≈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {N} \approx \mathbf {P} \approx {\boldsymbol {\sigma }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acac21387c95c042fc18ca482e363a8394bc2536" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.71ex; height:2.176ex;" alt="{\displaystyle \mathbf {N} \approx \mathbf {P} \approx {\boldsymbol {\sigma }}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.71ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acac21387c95c042fc18ca482e363a8394bc2536" data-alt="{\displaystyle \mathbf {N} \approx \mathbf {P} \approx {\boldsymbol {\sigma }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und zwischen den materiellen und räumlichen Koordinaten braucht nicht unterschieden zu werden, wodurch das eingangs angegebene Bewegungsgesetz entsteht.</p> <div class="mw-heading mw-heading3"> <h3 id="Impulssatz_in_eulerscher_Darstellung">Impulssatz in eulerscher Darstellung</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=4&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Impulssatz in eulerscher Darstellung" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <p>In der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Eulersche_Betrachtungsweise?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Eulersche Betrachtungsweise">eulerschen Darstellung</a> lautet der globale Impulssatz</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho ({\vec {x}},t){\vec {v}}({\vec {x}},t)\,\mathrm {d} v=\int _{v}\rho ({\vec {x}},t){\vec {k}}({\vec {x}},t)\,\mathrm {d} v+\int _{a}{\vec {t}}({\vec {x}},t)\,\mathrm {d} a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho ({\vec {x}},t){\vec {v}}({\vec {x}},t)\,\mathrm {d} v=\int _{v}\rho ({\vec {x}},t){\vec {k}}({\vec {x}},t)\,\mathrm {d} v+\int _{a}{\vec {t}}({\vec {x}},t)\,\mathrm {d} a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d823070ebafb1ff3a22771fda6c7d696bf5cd44d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:57.159ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho ({\vec {x}},t){\vec {v}}({\vec {x}},t)\,\mathrm {d} v=\int _{v}\rho ({\vec {x}},t){\vec {k}}({\vec {x}},t)\,\mathrm {d} v+\int _{a}{\vec {t}}({\vec {x}},t)\,\mathrm {d} a}"> </noscript><span class="lazy-image-placeholder" style="width: 57.159ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d823070ebafb1ff3a22771fda6c7d696bf5cd44d" data-alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho ({\vec {x}},t){\vec {v}}({\vec {x}},t)\,\mathrm {d} v=\int _{v}\rho ({\vec {x}},t){\vec {k}}({\vec {x}},t)\,\mathrm {d} v+\int _{a}{\vec {t}}({\vec {x}},t)\,\mathrm {d} a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Die räumlichen Punkte werden durch ihre <i>räumlichen</i> Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}\in v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ∈<!-- ∈ --> </mo> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {x}}\in v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ce305701955b60bab06e8605008e879a1be5844" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.298ex; height:2.343ex;" alt="{\displaystyle {\vec {x}}\in v}"> </noscript><span class="lazy-image-placeholder" style="width: 5.298ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ce305701955b60bab06e8605008e879a1be5844" data-alt="{\displaystyle {\vec {x}}\in v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> in dem momentanen Volumen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"> </noscript><span class="lazy-image-placeholder" style="width: 1.128ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" data-alt="{\displaystyle v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> zur Zeit <i>t</i> identifiziert, siehe <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kontinuumsmechanik?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Impulsbilanz" title="Kontinuumsmechanik">Impulsbilanz</a>. Anders als in der lagrangeschen Darstellung sind die Integrationsgrenzen als Oberflächen des Körpers von der Zeit abhängig, was bei der Berechnung der Impulsänderung zu berücksichtigen ist. Nach dem <a href="https://de-m-wikipedia-org.translate.goog/wiki/Reynoldsscher_Transportsatz?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Reynoldsscher Transportsatz">reynoldsschen Transportsatz</a> gilt:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho ({\vec {x}},t){\vec {v}}({\vec {x}},t)\,\mathrm {d} v=&\int _{v}{\frac {\mathrm {d} }{\mathrm {d} t}}(\rho {\vec {v}})\,\mathrm {d} v+\int _{a}\rho {\vec {v}}({\vec {v}}\cdot \mathrm {d} {\vec {a}})=\int _{v}\left[{\frac {\mathrm {d} }{\mathrm {d} t}}(\rho {\vec {v}})+\operatorname {div} ({\vec {v}})\rho {\vec {v}}\right]\,\mathrm {d} v\\=&\int _{v}{\big (}\underbrace {{\dot {\rho }}{\vec {v}}+\operatorname {div} ({\vec {v}})\rho {\vec {v}}} _{={\vec {0}}}+\rho {\dot {\vec {v}}}{\big )}\,\mathrm {d} v=\int _{v}\rho {\dot {\vec {v}}}\,\mathrm {d} v\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <mo stretchy="false"> ( </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow> <mo> [ </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <mo stretchy="false"> ( </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi> div </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ] </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ρ<!-- ρ --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi> div </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> </munder> <mo> + </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho ({\vec {x}},t){\vec {v}}({\vec {x}},t)\,\mathrm {d} v=&\int _{v}{\frac {\mathrm {d} }{\mathrm {d} t}}(\rho {\vec {v}})\,\mathrm {d} v+\int _{a}\rho {\vec {v}}({\vec {v}}\cdot \mathrm {d} {\vec {a}})=\int _{v}\left[{\frac {\mathrm {d} }{\mathrm {d} t}}(\rho {\vec {v}})+\operatorname {div} ({\vec {v}})\rho {\vec {v}}\right]\,\mathrm {d} v\\=&\int _{v}{\big (}\underbrace {{\dot {\rho }}{\vec {v}}+\operatorname {div} ({\vec {v}})\rho {\vec {v}}} _{={\vec {0}}}+\rho {\dot {\vec {v}}}{\big )}\,\mathrm {d} v=\int _{v}\rho {\dot {\vec {v}}}\,\mathrm {d} v\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6034e4d944d39058c3da1796baf8bec87e1868f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:82.704ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho ({\vec {x}},t){\vec {v}}({\vec {x}},t)\,\mathrm {d} v=&\int _{v}{\frac {\mathrm {d} }{\mathrm {d} t}}(\rho {\vec {v}})\,\mathrm {d} v+\int _{a}\rho {\vec {v}}({\vec {v}}\cdot \mathrm {d} {\vec {a}})=\int _{v}\left[{\frac {\mathrm {d} }{\mathrm {d} t}}(\rho {\vec {v}})+\operatorname {div} ({\vec {v}})\rho {\vec {v}}\right]\,\mathrm {d} v\\=&\int _{v}{\big (}\underbrace {{\dot {\rho }}{\vec {v}}+\operatorname {div} ({\vec {v}})\rho {\vec {v}}} _{={\vec {0}}}+\rho {\dot {\vec {v}}}{\big )}\,\mathrm {d} v=\int _{v}\rho {\dot {\vec {v}}}\,\mathrm {d} v\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 82.704ex;height: 14.509ex;vertical-align: -6.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6034e4d944d39058c3da1796baf8bec87e1868f4" data-alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho ({\vec {x}},t){\vec {v}}({\vec {x}},t)\,\mathrm {d} v=&\int _{v}{\frac {\mathrm {d} }{\mathrm {d} t}}(\rho {\vec {v}})\,\mathrm {d} v+\int _{a}\rho {\vec {v}}({\vec {v}}\cdot \mathrm {d} {\vec {a}})=\int _{v}\left[{\frac {\mathrm {d} }{\mathrm {d} t}}(\rho {\vec {v}})+\operatorname {div} ({\vec {v}})\rho {\vec {v}}\right]\,\mathrm {d} v\\=&\int _{v}{\big (}\underbrace {{\dot {\rho }}{\vec {v}}+\operatorname {div} ({\vec {v}})\rho {\vec {v}}} _{={\vec {0}}}+\rho {\dot {\vec {v}}}{\big )}\,\mathrm {d} v=\int _{v}\rho {\dot {\vec {v}}}\,\mathrm {d} v\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der aufgesetzte Punkt steht für die substantielle Ableitung und in der ersten Zeile wurde das Oberflächenintegral mit dem gaußschen Integralsatz in ein Volumenintegral überführt. Der unterklammerte Term trägt auf Grund der lokalen <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kontinuumsmechanik?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Massenbilanz" title="Kontinuumsmechanik">Massenbilanz</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\rho }}+\rho \operatorname {div} {\vec {v}}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ρ<!-- ρ --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi> ρ<!-- ρ --> </mi> <mi> div </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\dot {\rho }}+\rho \operatorname {div} {\vec {v}}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1a2243877581cd756c08dcb9ea91e369d5a14df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.795ex; height:2.843ex;" alt="{\displaystyle {\dot {\rho }}+\rho \operatorname {div} {\vec {v}}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 14.795ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1a2243877581cd756c08dcb9ea91e369d5a14df" data-alt="{\displaystyle {\dot {\rho }}+\rho \operatorname {div} {\vec {v}}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> in der eulerschen Darstellung nichts bei.</p> <p>Das Oberflächenintegral der von außen angreifenden Spannungen wird wie in der lagrangeschen Darstellung mit dem gaußschen Integralsatz in ein Volumenintegral überführt:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}{\vec {t}}\,\mathrm {d} a=\int _{a}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a=\int _{v}\nabla \cdot {\boldsymbol {\sigma }}\,\mathrm {d} v=\int _{v}\operatorname {div} ({\boldsymbol {\sigma }})\,\mathrm {d} v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> div </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int _{a}{\vec {t}}\,\mathrm {d} a=\int _{a}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a=\int _{v}\nabla \cdot {\boldsymbol {\sigma }}\,\mathrm {d} v=\int _{v}\operatorname {div} ({\boldsymbol {\sigma }})\,\mathrm {d} v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d36b88c15ba8381dca696dc70be734f97a1366b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:50.957ex; height:5.676ex;" alt="{\displaystyle \int _{a}{\vec {t}}\,\mathrm {d} a=\int _{a}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a=\int _{v}\nabla \cdot {\boldsymbol {\sigma }}\,\mathrm {d} v=\int _{v}\operatorname {div} ({\boldsymbol {\sigma }})\,\mathrm {d} v}"> </noscript><span class="lazy-image-placeholder" style="width: 50.957ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d36b88c15ba8381dca696dc70be734f97a1366b4" data-alt="{\displaystyle \int _{a}{\vec {t}}\,\mathrm {d} a=\int _{a}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a=\int _{v}\nabla \cdot {\boldsymbol {\sigma }}\,\mathrm {d} v=\int _{v}\operatorname {div} ({\boldsymbol {\sigma }})\,\mathrm {d} v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>denn der cauchysche Spannungstensor <b>σ</b> ist wegen des zweiten cauchy-eulerschen Bewegungsgesetzes unten <a href="https://de-m-wikipedia-org.translate.goog/wiki/Symmetrische_Matrix?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Symmetrische Matrix">symmetrisch</a>. Der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Nabla-Operator?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Nabla-Operator">Nabla-Operator</a> 𝜵 und der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Divergenz_eines_Vektorfeldes?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Divergenz eines Vektorfeldes">Divergenzoperator</a> div beinhalten die <i>räumlichen</i> Ableitungen nach den <i>räumlichen</i> Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {x}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2dc6ced9cc3bc7e8b9f2707cbec033f6d3759c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.343ex;" alt="{\displaystyle {\vec {x}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2dc6ced9cc3bc7e8b9f2707cbec033f6d3759c" data-alt="{\displaystyle {\vec {x}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <p>Mit den vorliegenden Ergebnissen kann die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Impulssatz_in_eulerscher_Darstellung">Impulsbilanz</a> als verschwindendes Volumenintegral ausgedrückt werden:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{v}(\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})\,\mathrm {d} v={\vec {0}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int _{v}(\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})\,\mathrm {d} v={\vec {0}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e6598e0fe29a617c43e2546f845423697fc35ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.915ex; height:5.676ex;" alt="{\displaystyle \int _{v}(\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})\,\mathrm {d} v={\vec {0}}}"> </noscript><span class="lazy-image-placeholder" style="width: 26.915ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e6598e0fe29a617c43e2546f845423697fc35ba" data-alt="{\displaystyle \int _{v}(\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})\,\mathrm {d} v={\vec {0}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Diese Gleichung gilt für jedes Volumen, sodass – Stetigkeit des Integranden vorausgesetzt – das erste cauchy-eulersche Bewegungsgesetz in der eulerschen Darstellung</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho ({\vec {x}},t)\,{\dot {\vec {v}}}({\vec {x}},t)=\rho ({\vec {x}},t)\,{\vec {k}}({\vec {x}},t)+\nabla \cdot {\boldsymbol {\sigma }}({\vec {x}},t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \rho ({\vec {x}},t)\,{\dot {\vec {v}}}({\vec {x}},t)=\rho ({\vec {x}},t)\,{\vec {k}}({\vec {x}},t)+\nabla \cdot {\boldsymbol {\sigma }}({\vec {x}},t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb67c8ea8d53c2914477197c1cd63594ed0e06cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.81ex; height:3.343ex;" alt="{\displaystyle \rho ({\vec {x}},t)\,{\dot {\vec {v}}}({\vec {x}},t)=\rho ({\vec {x}},t)\,{\vec {k}}({\vec {x}},t)+\nabla \cdot {\boldsymbol {\sigma }}({\vec {x}},t)}"> </noscript><span class="lazy-image-placeholder" style="width: 41.81ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb67c8ea8d53c2914477197c1cd63594ed0e06cb" data-alt="{\displaystyle \rho ({\vec {x}},t)\,{\dot {\vec {v}}}({\vec {x}},t)=\rho ({\vec {x}},t)\,{\vec {k}}({\vec {x}},t)+\nabla \cdot {\boldsymbol {\sigma }}({\vec {x}},t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>abgeleitet werden kann. Hier ist die substantielle Zeitableitung der Geschwindigkeit bei festgehaltenem Partikel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {X}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {X}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc35b5a0226cf11a2c3f2d2dbbac6ab5ade6036" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.843ex;" alt="{\displaystyle {\vec {X}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.98ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc35b5a0226cf11a2c3f2d2dbbac6ab5ade6036" data-alt="{\displaystyle {\vec {X}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> zu bilden, das sich zur Zeit <i>t</i> am Ort <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}={\vec {\chi }}({\vec {X}},t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {x}}={\vec {\chi }}({\vec {X}},t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e92bff89d59a995104a9f1d246741c880d1b2b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.546ex; height:3.343ex;" alt="{\displaystyle {\vec {x}}={\vec {\chi }}({\vec {X}},t)}"> </noscript><span class="lazy-image-placeholder" style="width: 11.546ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e92bff89d59a995104a9f1d246741c880d1b2b5" data-alt="{\displaystyle {\vec {x}}={\vec {\chi }}({\vec {X}},t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> befindet und dort die Geschwindigkeit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}({\vec {x}},t)={\dot {\vec {\chi }}}({\vec {X}},t)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {v}}({\vec {x}},t)={\dot {\vec {\chi }}}({\vec {X}},t)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bc75511fedd7635904ff72ac3c7481227b21622" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.404ex; height:3.343ex;" alt="{\displaystyle {\vec {v}}({\vec {x}},t)={\dot {\vec {\chi }}}({\vec {X}},t)}"> </noscript><span class="lazy-image-placeholder" style="width: 16.404ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bc75511fedd7635904ff72ac3c7481227b21622" data-alt="{\displaystyle {\vec {v}}({\vec {x}},t)={\dot {\vec {\chi }}}({\vec {X}},t)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> besitzt:<sup id="cite_ref-Frechet_2-0" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-Frechet-2"><span class="cite-bracket">[</span>F 1<span class="cite-bracket">]</span></a></sup></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\dot {\vec {v}}}({\vec {x}},t):=&\left.{\frac {\mathrm {d} }{\mathrm {d} t}}{\vec {v}}({\vec {\chi }}({\vec {X}},t),t)\right|_{{\vec {X}}\;{\text{fest}}}={\frac {\partial }{\partial {\vec {x}}}}{\vec {v}}({\vec {x}},t)\cdot {\dot {\vec {\chi }}}({\vec {X}},t)+{\frac {\partial }{\partial t}}{\vec {v}}({\vec {x}},t)\\=&\operatorname {grad} ({\vec {v}})\cdot {\vec {v}}+{\frac {\partial {\vec {v}}}{\partial t}}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> := </mo> </mtd> <mtd> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mrow> <mo> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> fest </mtext> </mrow> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi> grad </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> t </mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\dot {\vec {v}}}({\vec {x}},t):=&\left.{\frac {\mathrm {d} }{\mathrm {d} t}}{\vec {v}}({\vec {\chi }}({\vec {X}},t),t)\right|_{{\vec {X}}\;{\text{fest}}}={\frac {\partial }{\partial {\vec {x}}}}{\vec {v}}({\vec {x}},t)\cdot {\dot {\vec {\chi }}}({\vec {X}},t)+{\frac {\partial }{\partial t}}{\vec {v}}({\vec {x}},t)\\=&\operatorname {grad} ({\vec {v}})\cdot {\vec {v}}+{\frac {\partial {\vec {v}}}{\partial t}}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92705ed12b1dcfcbad60aea7558c788bf79d37b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.988ex; margin-bottom: -0.183ex; width:64.053ex; height:11.509ex;" alt="{\displaystyle {\begin{aligned}{\dot {\vec {v}}}({\vec {x}},t):=&\left.{\frac {\mathrm {d} }{\mathrm {d} t}}{\vec {v}}({\vec {\chi }}({\vec {X}},t),t)\right|_{{\vec {X}}\;{\text{fest}}}={\frac {\partial }{\partial {\vec {x}}}}{\vec {v}}({\vec {x}},t)\cdot {\dot {\vec {\chi }}}({\vec {X}},t)+{\frac {\partial }{\partial t}}{\vec {v}}({\vec {x}},t)\\=&\operatorname {grad} ({\vec {v}})\cdot {\vec {v}}+{\frac {\partial {\vec {v}}}{\partial t}}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 64.053ex;height: 11.509ex;vertical-align: -4.988ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f92705ed12b1dcfcbad60aea7558c788bf79d37b" data-alt="{\displaystyle {\begin{aligned}{\dot {\vec {v}}}({\vec {x}},t):=&\left.{\frac {\mathrm {d} }{\mathrm {d} t}}{\vec {v}}({\vec {\chi }}({\vec {X}},t),t)\right|_{{\vec {X}}\;{\text{fest}}}={\frac {\partial }{\partial {\vec {x}}}}{\vec {v}}({\vec {x}},t)\cdot {\dot {\vec {\chi }}}({\vec {X}},t)+{\frac {\partial }{\partial t}}{\vec {v}}({\vec {x}},t)\\=&\operatorname {grad} ({\vec {v}})\cdot {\vec {v}}+{\frac {\partial {\vec {v}}}{\partial t}}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der räumliche Operator grad berechnet den räumlichen <a href="https://de-m-wikipedia-org.translate.goog/wiki/Geschwindigkeitsgradient?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Geschwindigkeitsgradient">Geschwindigkeitsgradienten</a> mit Ableitungen nach den räumlichen Koordinaten x<sub>1,2,3</sub>. Der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Konvektion?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Konvektion">konvektive Anteil</a></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {grad} ({\vec {v}})\cdot {\vec {v}}:=(\nabla \otimes {\vec {v}})^{\top }\cdot {\vec {v}}={\vec {v}}\cdot (\nabla \otimes {\vec {v}})=({\vec {v}}\cdot \nabla ){\vec {v}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> grad </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> := </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {grad} ({\vec {v}})\cdot {\vec {v}}:=(\nabla \otimes {\vec {v}})^{\top }\cdot {\vec {v}}={\vec {v}}\cdot (\nabla \otimes {\vec {v}})=({\vec {v}}\cdot \nabla ){\vec {v}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05e16be2f6ecab2ec54288ce9ed188538be34753" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.827ex; height:3.176ex;" alt="{\displaystyle \operatorname {grad} ({\vec {v}})\cdot {\vec {v}}:=(\nabla \otimes {\vec {v}})^{\top }\cdot {\vec {v}}={\vec {v}}\cdot (\nabla \otimes {\vec {v}})=({\vec {v}}\cdot \nabla ){\vec {v}}}"> </noscript><span class="lazy-image-placeholder" style="width: 50.827ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05e16be2f6ecab2ec54288ce9ed188538be34753" data-alt="{\displaystyle \operatorname {grad} ({\vec {v}})\cdot {\vec {v}}:=(\nabla \otimes {\vec {v}})^{\top }\cdot {\vec {v}}={\vec {v}}\cdot (\nabla \otimes {\vec {v}})=({\vec {v}}\cdot \nabla ){\vec {v}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>in der substantiellen Beschleunigung berücksichtigt das Hindurchfließen des Materials durch das bei der Betrachtung am Volumenelement oben festgehaltene Volumen <i>V</i> bei großen Verschiebungen. Bei kleinen Verschiebungen kann der quadratische konvektive Anteil vernachlässigt werden, sodass mit</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}={\dot {\vec {v}}}={\frac {\partial {\vec {v}}}{\partial t}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> t </mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {a}}={\dot {\vec {v}}}={\frac {\partial {\vec {v}}}{\partial t}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c533bcde1b3fa7c75de461994c7a35730592890" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.966ex; height:5.509ex;" alt="{\displaystyle {\vec {a}}={\dot {\vec {v}}}={\frac {\partial {\vec {v}}}{\partial t}}}"> </noscript><span class="lazy-image-placeholder" style="width: 11.966ex;height: 5.509ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c533bcde1b3fa7c75de461994c7a35730592890" data-alt="{\displaystyle {\vec {a}}={\dot {\vec {v}}}={\frac {\partial {\vec {v}}}{\partial t}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>das eingangs angegebene Bewegungsgesetz entsteht.</p> <div class="mw-heading mw-heading3"> <h3 id="Einfluss_von_Sprungstellen_im_Impulssatz">Einfluss von Sprungstellen im Impulssatz</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Einfluss von Sprungstellen im Impulssatz" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://de-m-wikipedia-org.translate.goog/wiki/Datei:Diskontinuitaet.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Diskontinuitaet.png/220px-Diskontinuitaet.png" decoding="async" width="220" height="289" class="mw-file-element" data-file-width="367" data-file-height="482"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 289px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Diskontinuitaet.png/220px-Diskontinuitaet.png" data-width="220" data-height="289" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Diskontinuitaet.png/330px-Diskontinuitaet.png 1.5x, //upload.wikimedia.org/wikipedia/commons/b/b6/Diskontinuitaet.png 2x" data-class="mw-file-element"> </span></a> <figcaption> Eine Sprungstelle auf der Fläche a<sub>s</sub> trennt zwei Raumbereiche v<sup>+</sup> und v<sup>−</sup> </figcaption> </figure> <p>Die verlangte örtliche Stetigkeit der Integranden wird unter realen Verhältnissen verletzt, wenn beispielsweise <a href="https://de-m-wikipedia-org.translate.goog/wiki/Dichte?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Dichte">Dichte</a>sprünge an Materialgrenzen oder <a href="https://de-m-wikipedia-org.translate.goog/wiki/Sto%C3%9Fwelle?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Stoßwelle">Stoßwellen</a> auftreten. Solche flächigen Sprungstellen können jedoch berücksichtigt werden, wenn die Fläche selbst örtlich stetig differenzierbar ist und so in jedem ihrer Punkte einen <a href="https://de-m-wikipedia-org.translate.goog/wiki/Normalenvektor?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Normalenvektor">Normalenvektor</a> besitzt. Die Fläche – im Folgenden Sprungstelle genannt – muss keine materielle Fläche sein, kann sich also mit einer anderen Geschwindigkeit bewegen als die Masse selbst. Durch diese Fläche wird die Masse in zwei Stücke v<sup>+</sup> und v<sup>−</sup> geteilt und es wird vereinbart, dass der Normalenvektor der Sprungstelle a<sub>s</sub> in Richtung der Sprungstellengeschwindigkeit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{s}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {v}}_{s}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf2e35aa3a72fe7aff65a3d0684235219174053e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.179ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}_{s}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.179ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf2e35aa3a72fe7aff65a3d0684235219174053e" data-alt="{\displaystyle {\vec {v}}_{s}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und das Volumen v<sup>+</sup> weise, siehe Bild rechts.</p> <p>Dann lautet das Reynolds-Transport-Theorem mit Sprungstelle:<sup id="cite_ref-3" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-3"><span class="cite-bracket">[</span>L 2<span class="cite-bracket">]</span></a></sup></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho {\vec {v}}\,\mathrm {d} v=&\int _{v}{\frac {\partial (\rho {\vec {v}})}{\partial t}}\,\mathrm {d} v+\int _{a}\rho {\vec {v}}\;({\vec {v}}\cdot \,\mathrm {d} {\vec {a}})+\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}\\=&\int _{v}\rho {\dot {\vec {v}}}\,\mathrm {d} v+\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mo stretchy="false"> ( </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> a </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho {\vec {v}}\,\mathrm {d} v=&\int _{v}{\frac {\partial (\rho {\vec {v}})}{\partial t}}\,\mathrm {d} v+\int _{a}\rho {\vec {v}}\;({\vec {v}}\cdot \,\mathrm {d} {\vec {a}})+\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}\\=&\int _{v}\rho {\dot {\vec {v}}}\,\mathrm {d} v+\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2440586bf727130838b65e9d94d67771ef358172" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:70.963ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho {\vec {v}}\,\mathrm {d} v=&\int _{v}{\frac {\partial (\rho {\vec {v}})}{\partial t}}\,\mathrm {d} v+\int _{a}\rho {\vec {v}}\;({\vec {v}}\cdot \,\mathrm {d} {\vec {a}})+\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}\\=&\int _{v}\rho {\dot {\vec {v}}}\,\mathrm {d} v+\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 70.963ex;height: 12.509ex;vertical-align: -5.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2440586bf727130838b65e9d94d67771ef358172" data-alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}\rho {\vec {v}}\,\mathrm {d} v=&\int _{v}{\frac {\partial (\rho {\vec {v}})}{\partial t}}\,\mathrm {d} v+\int _{a}\rho {\vec {v}}\;({\vec {v}}\cdot \,\mathrm {d} {\vec {a}})+\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}\\=&\int _{v}\rho {\dot {\vec {v}}}\,\mathrm {d} v+\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der zweite Term mit der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Sprungklammer?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Sprungklammer">Sprungklammer</a> [[...]] kommt neu hinzu. Die Integrale über die von außen angreifenden Kräfte werden getrennt für die Volumina v<sup>+</sup> und v<sup>−</sup> berechnet:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\left(\int _{v}\rho {\vec {k}}\;\mathrm {d} v+\int _{a}{\vec {t}}\,\mathrm {d} a\right)^{+}=&\int _{v^{+}}\rho {\vec {k}}\;\mathrm {d} v^{+}+\int _{a^{+}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{+}-\int _{a_{s}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\\\left(\int _{v}\rho {\vec {k}}\;\mathrm {d} v+\int _{a}{\vec {t}}\,\mathrm {d} a\right)^{-}=&\int _{v^{-}}\rho {\vec {k}}\;\mathrm {d} v^{-}+\int _{a^{-}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{-}+\int _{a_{s}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\left(\int _{v}\rho {\vec {k}}\;\mathrm {d} v+\int _{a}{\vec {t}}\,\mathrm {d} a\right)^{+}=&\int _{v^{+}}\rho {\vec {k}}\;\mathrm {d} v^{+}+\int _{a^{+}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{+}-\int _{a_{s}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\\\left(\int _{v}\rho {\vec {k}}\;\mathrm {d} v+\int _{a}{\vec {t}}\,\mathrm {d} a\right)^{-}=&\int _{v^{-}}\rho {\vec {k}}\;\mathrm {d} v^{-}+\int _{a^{-}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{-}+\int _{a_{s}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87bbb627413abf8da630baac1aad61ac9d338378" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:71.358ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}\left(\int _{v}\rho {\vec {k}}\;\mathrm {d} v+\int _{a}{\vec {t}}\,\mathrm {d} a\right)^{+}=&\int _{v^{+}}\rho {\vec {k}}\;\mathrm {d} v^{+}+\int _{a^{+}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{+}-\int _{a_{s}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\\\left(\int _{v}\rho {\vec {k}}\;\mathrm {d} v+\int _{a}{\vec {t}}\,\mathrm {d} a\right)^{-}=&\int _{v^{-}}\rho {\vec {k}}\;\mathrm {d} v^{-}+\int _{a^{-}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{-}+\int _{a_{s}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 71.358ex;height: 13.176ex;vertical-align: -6.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87bbb627413abf8da630baac1aad61ac9d338378" data-alt="{\displaystyle {\begin{aligned}\left(\int _{v}\rho {\vec {k}}\;\mathrm {d} v+\int _{a}{\vec {t}}\,\mathrm {d} a\right)^{+}=&\int _{v^{+}}\rho {\vec {k}}\;\mathrm {d} v^{+}+\int _{a^{+}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{+}-\int _{a_{s}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\\\left(\int _{v}\rho {\vec {k}}\;\mathrm {d} v+\int _{a}{\vec {t}}\,\mathrm {d} a\right)^{-}=&\int _{v^{-}}\rho {\vec {k}}\;\mathrm {d} v^{-}+\int _{a^{-}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{-}+\int _{a_{s}}{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Die Normale soll immer nach außen gerichtet sein und geht daher auf der Sprungstelle einmal mit positivem und einmal mit negativem Vorzeichen ein. Die Vereinigung der Oberflächen a<sup>+</sup> und a<sup>−</sup> ergibt die Oberfläche a des gesamten Volumens v, zu dessen Oberfläche die innere Fläche a<sub>s</sub> nicht gehört. Die Summe der drei Gleichungen führt nach Umformungen, wie sie oben bereits angegeben wurden, auf</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{v}(\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})\,\mathrm {d} v=\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}-{\vec {v}}_{s})\cdot {\vec {n}})-{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]\mathrm {d} a_{s}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int _{v}(\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})\,\mathrm {d} v=\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}-{\vec {v}}_{s})\cdot {\vec {n}})-{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]\mathrm {d} a_{s}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b938854dc5f35ab959f7537ba542b154e1e89018" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:59.978ex; height:6.009ex;" alt="{\displaystyle \int _{v}(\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})\,\mathrm {d} v=\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}-{\vec {v}}_{s})\cdot {\vec {n}})-{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]\mathrm {d} a_{s}}"> </noscript><span class="lazy-image-placeholder" style="width: 59.978ex;height: 6.009ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b938854dc5f35ab959f7537ba542b154e1e89018" data-alt="{\displaystyle \int _{v}(\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})\,\mathrm {d} v=\int _{a_{s}}[[\rho {\vec {v}}\;(({\vec {v}}-{\vec {v}}_{s})\cdot {\vec {n}})-{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]\mathrm {d} a_{s}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Jenseits der Sprungstelle verschwindet die rechte Seite und die lokale Impulsbilanz ohne Sprungstelle folgt. An der (flächigen) Sprungstelle ist dv=0 und die linke Seite kann vernachlässigt werden, sodass bei Stetigkeit des Integranden mit der Sprungklammer in der Fläche<sup id="cite_ref-4" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-4"><span class="cite-bracket">[</span>L 3<span class="cite-bracket">]</span></a></sup></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})+{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]=[[\rho {\vec {v}}\otimes ({\vec {v}}_{s}-{\vec {v}})+{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mo> = </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⊗<!-- ⊗ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})+{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]=[[\rho {\vec {v}}\otimes ({\vec {v}}_{s}-{\vec {v}})+{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/040500c5001c02a217438c0f4abf13e4d562ea88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.704ex; height:3.343ex;" alt="{\displaystyle [[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})+{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]=[[\rho {\vec {v}}\otimes ({\vec {v}}_{s}-{\vec {v}})+{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}}"> </noscript><span class="lazy-image-placeholder" style="width: 59.704ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/040500c5001c02a217438c0f4abf13e4d562ea88" data-alt="{\displaystyle [[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})+{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]=[[\rho {\vec {v}}\otimes ({\vec {v}}_{s}-{\vec {v}})+{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>abgeleitet werden kann. Wenn die Sprungstelle eine materielle Fläche ist, wie beispielsweise an Materialgrenzen, dann ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {v}}_{s}={\vec {v}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {v}}_{s}={\vec {v}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2984e7378a6a2949141cdfefe282f17a86e45908" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.452ex; height:2.676ex;" alt="{\displaystyle {\vec {v}}_{s}={\vec {v}}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.452ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2984e7378a6a2949141cdfefe282f17a86e45908" data-alt="{\displaystyle {\vec {v}}_{s}={\vec {v}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und es folgt:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [[{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}\quad \Leftrightarrow \quad {{\boldsymbol {\sigma }}^{+}}^{\top }\cdot {\vec {n}}={\vec {t}}^{+}={{\boldsymbol {\sigma }}^{-}}^{\top }\cdot {\vec {n}}={\vec {t}}^{-}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="1em"></mspace> <mo stretchy="false"> ⇔<!-- ⇔ --> </mo> <mspace width="1em"></mspace> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle [[{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}\quad \Leftrightarrow \quad {{\boldsymbol {\sigma }}^{+}}^{\top }\cdot {\vec {n}}={\vec {t}}^{+}={{\boldsymbol {\sigma }}^{-}}^{\top }\cdot {\vec {n}}={\vec {t}}^{-}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71767aa85022b0f0b4d69f45c17a43d54588917c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.558ex; height:3.509ex;" alt="{\displaystyle [[{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}\quad \Leftrightarrow \quad {{\boldsymbol {\sigma }}^{+}}^{\top }\cdot {\vec {n}}={\vec {t}}^{+}={{\boldsymbol {\sigma }}^{-}}^{\top }\cdot {\vec {n}}={\vec {t}}^{-}}"> </noscript><span class="lazy-image-placeholder" style="width: 51.558ex;height: 3.509ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71767aa85022b0f0b4d69f45c17a43d54588917c" data-alt="{\displaystyle [[{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}\quad \Leftrightarrow \quad {{\boldsymbol {\sigma }}^{+}}^{\top }\cdot {\vec {n}}={\vec {t}}^{+}={{\boldsymbol {\sigma }}^{-}}^{\top }\cdot {\vec {n}}={\vec {t}}^{-}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Die Schnittspannungen auf beiden Seiten einer materiellen Sprungstelle müssen gleich sein.<sup id="cite_ref-5" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-5"><span class="cite-bracket">[</span>L 4<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Zweites_cauchy-eulersches_Bewegungsgesetz">Zweites cauchy-eulersches Bewegungsgesetz</h2><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=6&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Zweites cauchy-eulersches Bewegungsgesetz" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>Das zweite cauchy-eulersche Bewegungsgesetz folgt aus dem 1754 von Leonhard Euler aufgestellten <a href="https://de-m-wikipedia-org.translate.goog/wiki/Drallsatz?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Drallsatz">Drallsatz</a>, nach dem die zeitliche Änderung des Drehimpulses <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {L}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> L </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {L}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0c139fc28d6ca3873993892f44e7331e5ff18fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.843ex;" alt="{\displaystyle {\vec {L}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.583ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0c139fc28d6ca3873993892f44e7331e5ff18fd" data-alt="{\displaystyle {\vec {L}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> gleich der von außen angreifenden <a href="https://de-m-wikipedia-org.translate.goog/wiki/Drehmoment?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Drehmoment">Drehmomente</a> ist:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\vec {L}}}={\vec {M}}_{v}+{\vec {M}}_{a}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> L </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\dot {\vec {L}}}={\vec {M}}_{v}+{\vec {M}}_{a}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c56cc5ddb0e8cd3046f25467573763a331c71f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.538ex; height:3.843ex;" alt="{\displaystyle {\dot {\vec {L}}}={\vec {M}}_{v}+{\vec {M}}_{a}}"> </noscript><span class="lazy-image-placeholder" style="width: 14.538ex;height: 3.843ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c56cc5ddb0e8cd3046f25467573763a331c71f2" data-alt="{\displaystyle {\dot {\vec {L}}}={\vec {M}}_{v}+{\vec {M}}_{a}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {M}}_{v}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {M}}_{v}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/765b67b0d3207ae60b0572cb1dc4d2f1d7942911" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.472ex; height:3.176ex;" alt="{\displaystyle {\vec {M}}_{v}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.472ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/765b67b0d3207ae60b0572cb1dc4d2f1d7942911" data-alt="{\displaystyle {\vec {M}}_{v}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> steht für das von volumenverteilten Kräften ausgehende Drehmoment und der Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {M}}_{a}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {M}}_{a}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8d9d64abd1f4a8ee88a99c64b8f23aea8c21c7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.544ex; height:3.176ex;" alt="{\displaystyle {\vec {M}}_{a}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.544ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8d9d64abd1f4a8ee88a99c64b8f23aea8c21c7d" data-alt="{\displaystyle {\vec {M}}_{a}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> für das oberflächig eingeleitete Moment.</p> <div class="mw-heading mw-heading3"> <h3 id="Drallsatz_am_Volumenelement">Drallsatz am Volumenelement</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=7&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Drallsatz am Volumenelement" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <figure class="mw-default-size" typeof="mw:File/Thumb"> <a href="https://de-m-wikipedia-org.translate.goog/wiki/Datei:Drehimscheibe.png?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Drehimscheibe.png/220px-Drehimscheibe.png" decoding="async" width="220" height="367" class="mw-file-element" data-file-width="497" data-file-height="828"> </noscript><span class="lazy-image-placeholder" style="width: 220px;height: 367px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Drehimscheibe.png/220px-Drehimscheibe.png" data-width="220" data-height="367" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Drehimscheibe.png/330px-Drehimscheibe.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cc/Drehimscheibe.png/440px-Drehimscheibe.png 2x" data-class="mw-file-element"> </span></a> <figcaption> Schnittspannungen an einem würfelförmigen Teilkörper </figcaption> </figure> <p>Es wird ein belasteter Körper betrachtet, aus dem gedanklich ein <a href="https://de-m-wikipedia-org.translate.goog/wiki/W%C3%BCrfel_(Geometrie)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Würfel (Geometrie)">würfel</a>förmiger Teilkörper (im Bild gelb) herausgeschnitten wird, der die Kantenlänge 2L hat und in dessen <a href="https://de-m-wikipedia-org.translate.goog/wiki/Massenmittelpunkt?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Massenmittelpunkt">Massenmittelpunkt</a> ein zu den Würfelkanten parallel ausgerichtetes kartesisches Koordinatensystem gelegt wird. An den Würfelflächen entstehen dem Schnittprinzip zufolge Schnittspannungen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {t}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {t}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f793e16d925f6933447f6d57064554ef469e9d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.287ex; height:2.843ex;" alt="{\displaystyle {\vec {t}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.287ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f793e16d925f6933447f6d57064554ef469e9d3f" data-alt="{\displaystyle {\vec {t}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, die an die Stelle des weggeschnittenen Teilkörpers treten und die nach dem <a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchysches_Fundamentaltheorem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Cauchysches Fundamentaltheorem">cauchyschen Fundamentaltheorem</a> die mit dem cauchyschen Spannungstensor transformierten Normalenvektoren an die Schnittfläche sind. Bei infinitesimal kleinem Würfel können die Schnittspannungen als über die Fläche konstant angenommen werden und zu einer Resultierenden aufintegriert werden, die den Würfel aus Symmetriegründen in den Flächenmitten belasten. Für die in der Würfelmitte angreifenden Momente gilt:</p> <ul> <li>Vom Schwerpunkt des Würfels weist der Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L{\hat {e}}_{x}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L{\hat {e}}_{x}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f4bd24aa61e5581d7573e5c659daada0ae9f903" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.047ex; height:2.509ex;" alt="{\displaystyle L{\hat {e}}_{x}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.047ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f4bd24aa61e5581d7573e5c659daada0ae9f903" data-alt="{\displaystyle L{\hat {e}}_{x}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> zur Mitte der Schnittfläche am positiven Schnittufer mit Normale in +x-Richtung und die Schnittspannung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {t}}_{+x}={\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{+x}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> <mi> x </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> <mi> x </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {t}}_{+x}={\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{+x}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80cfbcb9e66ee035fc0374039ac7673c9b4a12a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.026ex; height:3.176ex;" alt="{\displaystyle {\vec {t}}_{+x}={\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{+x}}"> </noscript><span class="lazy-image-placeholder" style="width: 15.026ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80cfbcb9e66ee035fc0374039ac7673c9b4a12a5" data-alt="{\displaystyle {\vec {t}}_{+x}={\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{+x}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> wirkt dort auf der Fläche 4L².</li> <li>Das Moment der Schnittspannung am positiven Schnittufer lautet mit dem <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kreuzprodukt?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Kreuzprodukt">Kreuzprodukt</a> „ד: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {M}}_{+x}=4L^{2}(L{\hat {e}}_{x})\times ({\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{+x})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> <mi> x </mi> </mrow> </msub> <mo> = </mo> <mn> 4 </mn> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ( </mo> <mi> L </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {M}}_{+x}=4L^{2}(L{\hat {e}}_{x})\times ({\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{+x})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37dec054a7cbe0bc8f16f99d76e8674665908a47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.486ex; height:3.343ex;" alt="{\displaystyle {\vec {M}}_{+x}=4L^{2}(L{\hat {e}}_{x})\times ({\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{+x})}"> </noscript><span class="lazy-image-placeholder" style="width: 30.486ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37dec054a7cbe0bc8f16f99d76e8674665908a47" data-alt="{\displaystyle {\vec {M}}_{+x}=4L^{2}(L{\hat {e}}_{x})\times ({\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{+x})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</li> <li>Am negativen Schnittufer ist der Hebelarm <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -L{\hat {e}}_{x}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mi> L </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -L{\hat {e}}_{x}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48b10e8ca6ccb748dc389a58586c77775820df09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.855ex; height:2.509ex;" alt="{\displaystyle -L{\hat {e}}_{x}}"> </noscript><span class="lazy-image-placeholder" style="width: 5.855ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48b10e8ca6ccb748dc389a58586c77775820df09" data-alt="{\displaystyle -L{\hat {e}}_{x}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und die Schnittspannung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {t}}_{-x}=-{\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{-x}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> x </mi> </mrow> </msub> <mo> = </mo> <mo> −<!-- − --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> x </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {t}}_{-x}=-{\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{-x}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4596322a369e4ba64fdbc0285610d9ae1d56b32d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.834ex; height:3.176ex;" alt="{\displaystyle {\vec {t}}_{-x}=-{\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{-x}}"> </noscript><span class="lazy-image-placeholder" style="width: 16.834ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4596322a369e4ba64fdbc0285610d9ae1d56b32d" data-alt="{\displaystyle {\vec {t}}_{-x}=-{\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{-x}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> operiert auf der gleichen Fläche 4L²: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {M}}_{-x}=4L^{2}(-L{\hat {e}}_{x})\times (-{\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{-x})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> x </mi> </mrow> </msub> <mo> = </mo> <mn> 4 </mn> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mi> L </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {M}}_{-x}=4L^{2}(-L{\hat {e}}_{x})\times (-{\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{-x})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/775a3e5ff4578f991775f16934b38fc13ba03b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.102ex; height:3.343ex;" alt="{\displaystyle {\vec {M}}_{-x}=4L^{2}(-L{\hat {e}}_{x})\times (-{\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{-x})}"> </noscript><span class="lazy-image-placeholder" style="width: 34.102ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/775a3e5ff4578f991775f16934b38fc13ba03b8a" data-alt="{\displaystyle {\vec {M}}_{-x}=4L^{2}(-L{\hat {e}}_{x})\times (-{\hat {e}}_{x}\cdot {\boldsymbol {\sigma }}_{-x})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</li> <li>Die Momente der Schnittspannungen summieren sich zu <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {M}}_{x}=4L^{3}{\hat {e}}_{x}\times [{\hat {e}}_{x}\cdot ({\boldsymbol {\sigma }}_{+x}+{\boldsymbol {\sigma }}_{-x})]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> = </mo> <mn> 4 </mn> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> [ </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> <mi> x </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> x </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {M}}_{x}=4L^{3}{\hat {e}}_{x}\times [{\hat {e}}_{x}\cdot ({\boldsymbol {\sigma }}_{+x}+{\boldsymbol {\sigma }}_{-x})]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/625e9b4484781765ae437a7ab37e7b4058bb3b33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.995ex; height:3.343ex;" alt="{\displaystyle {\vec {M}}_{x}=4L^{3}{\hat {e}}_{x}\times [{\hat {e}}_{x}\cdot ({\boldsymbol {\sigma }}_{+x}+{\boldsymbol {\sigma }}_{-x})]}"> </noscript><span class="lazy-image-placeholder" style="width: 33.995ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/625e9b4484781765ae437a7ab37e7b4058bb3b33" data-alt="{\displaystyle {\vec {M}}_{x}=4L^{3}{\hat {e}}_{x}\times [{\hat {e}}_{x}\cdot ({\boldsymbol {\sigma }}_{+x}+{\boldsymbol {\sigma }}_{-x})]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</li> <li>In den anderen beiden Raumrichtungen ergibt sich entsprechend <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {M}}_{y}=4L^{3}{\hat {e}}_{y}\times [{\hat {e}}_{y}\cdot ({\boldsymbol {\sigma }}_{+y}+{\boldsymbol {\sigma }}_{-y})]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> = </mo> <mn> 4 </mn> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> [ </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> y </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> <mi> y </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> y </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {M}}_{y}=4L^{3}{\hat {e}}_{y}\times [{\hat {e}}_{y}\cdot ({\boldsymbol {\sigma }}_{+y}+{\boldsymbol {\sigma }}_{-y})]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31f6c12bffaa47c0455fa206ae9310030145c1cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.379ex; height:3.509ex;" alt="{\displaystyle {\vec {M}}_{y}=4L^{3}{\hat {e}}_{y}\times [{\hat {e}}_{y}\cdot ({\boldsymbol {\sigma }}_{+y}+{\boldsymbol {\sigma }}_{-y})]}"> </noscript><span class="lazy-image-placeholder" style="width: 33.379ex;height: 3.509ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31f6c12bffaa47c0455fa206ae9310030145c1cf" data-alt="{\displaystyle {\vec {M}}_{y}=4L^{3}{\hat {e}}_{y}\times [{\hat {e}}_{y}\cdot ({\boldsymbol {\sigma }}_{+y}+{\boldsymbol {\sigma }}_{-y})]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {M}}_{z}=4L^{3}{\hat {e}}_{z}\times [{\hat {e}}_{z}\cdot ({\boldsymbol {\sigma }}_{+z}+{\boldsymbol {\sigma }}_{-z})]}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> <mo> = </mo> <mn> 4 </mn> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> [ </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> z </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> <mi> z </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> z </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {M}}_{z}=4L^{3}{\hat {e}}_{z}\times [{\hat {e}}_{z}\cdot ({\boldsymbol {\sigma }}_{+z}+{\boldsymbol {\sigma }}_{-z})]} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9f1ef73f738de2a04048443e981bba067bab03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.141ex; height:3.343ex;" alt="{\displaystyle {\vec {M}}_{z}=4L^{3}{\hat {e}}_{z}\times [{\hat {e}}_{z}\cdot ({\boldsymbol {\sigma }}_{+z}+{\boldsymbol {\sigma }}_{-z})]}"> </noscript><span class="lazy-image-placeholder" style="width: 33.141ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9f1ef73f738de2a04048443e981bba067bab03a" data-alt="{\displaystyle {\vec {M}}_{z}=4L^{3}{\hat {e}}_{z}\times [{\hat {e}}_{z}\cdot ({\boldsymbol {\sigma }}_{+z}+{\boldsymbol {\sigma }}_{-z})]}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</li> <li>Im infinitesimal kleinen Würfel kann von ortsunabhängiger Dichte <i>ρ</i> und ortsunabhängigem Schwerefeld ausgegangen werden, das daher in der Würfelmitte kein Moment verursacht.</li> </ul> <p>Bei homogener Dichte hat der Würfel die Masse <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=\rho (2L)^{3}=8\rho L^{3}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> <mo> = </mo> <mi> ρ<!-- ρ --> </mi> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> L </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <mo> = </mo> <mn> 8 </mn> <mi> ρ<!-- ρ --> </mi> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m=\rho (2L)^{3}=8\rho L^{3}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/999bcd700cf9ddf8596cc2f2c680b7836fa552a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.05ex; height:3.176ex;" alt="{\displaystyle m=\rho (2L)^{3}=8\rho L^{3}}"> </noscript><span class="lazy-image-placeholder" style="width: 20.05ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/999bcd700cf9ddf8596cc2f2c680b7836fa552a6" data-alt="{\displaystyle m=\rho (2L)^{3}=8\rho L^{3}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und den <a href="https://de-m-wikipedia-org.translate.goog/wiki/Liste_von_Tr%C3%A4gheitstensoren?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Platonische_K%C3%B6rper" title="Liste von Trägheitstensoren">Trägheitstensor</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\Theta }}={\tfrac {m}{6}}(2L)^{2}\mathbf {1} ={\tfrac {16}{3}}\rho L^{5}\mathbf {1} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Θ<!-- Θ --> </mi> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi> m </mi> <mn> 6 </mn> </mfrac> </mstyle> </mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> L </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold"> 1 </mn> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn> 16 </mn> <mn> 3 </mn> </mfrac> </mstyle> </mrow> <mi> ρ<!-- ρ --> </mi> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 5 </mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold"> 1 </mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\Theta }}={\tfrac {m}{6}}(2L)^{2}\mathbf {1} ={\tfrac {16}{3}}\rho L^{5}\mathbf {1} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/192eb8d0f2b9731536e1f0a5a03341da7d0a020e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:25.155ex; height:3.676ex;" alt="{\displaystyle {\boldsymbol {\Theta }}={\tfrac {m}{6}}(2L)^{2}\mathbf {1} ={\tfrac {16}{3}}\rho L^{5}\mathbf {1} }"> </noscript><span class="lazy-image-placeholder" style="width: 25.155ex;height: 3.676ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/192eb8d0f2b9731536e1f0a5a03341da7d0a020e" data-alt="{\displaystyle {\boldsymbol {\Theta }}={\tfrac {m}{6}}(2L)^{2}\mathbf {1} ={\tfrac {16}{3}}\rho L^{5}\mathbf {1} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, der proportional zum <a href="https://de-m-wikipedia-org.translate.goog/wiki/Einheitstensor?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Einheitstensor">Einheitstensor</a> <b>1</b> ist. Im Drallsatz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {M}}={\dot {\vec {L}}}=({\boldsymbol {\Theta }}\cdot {\vec {\omega }}{\dot {)\,}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> L </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Θ<!-- Θ --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ω<!-- ω --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {M}}={\dot {\vec {L}}}=({\boldsymbol {\Theta }}\cdot {\vec {\omega }}{\dot {)\,}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/575ba36cdbaebcf44d4da626f53be01fc9f2a502" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.621ex; height:4.009ex;" alt="{\displaystyle {\vec {M}}={\dot {\vec {L}}}=({\boldsymbol {\Theta }}\cdot {\vec {\omega }}{\dot {)\,}}}"> </noscript><span class="lazy-image-placeholder" style="width: 17.621ex;height: 4.009ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/575ba36cdbaebcf44d4da626f53be01fc9f2a502" data-alt="{\displaystyle {\vec {M}}={\dot {\vec {L}}}=({\boldsymbol {\Theta }}\cdot {\vec {\omega }}{\dot {)\,}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> mit der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Winkelgeschwindigkeit?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Winkelgeschwindigkeit">Winkelgeschwindigkeit</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\omega }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ω<!-- ω --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {\omega }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e066a68ceb355e3314fb2b97f1c0c421ca6074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.446ex; height:2.343ex;" alt="{\displaystyle {\vec {\omega }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.446ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f4e066a68ceb355e3314fb2b97f1c0c421ca6074" data-alt="{\displaystyle {\vec {\omega }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ist die Massenträgheit demnach von fünfter Ordnung in den Abmessungen des ausgeschnittenen Teilkörpers während die Momente nur von dritter Ordnung sind, und das gilt auch bei einem nicht würfelförmigen Quader mit unterschiedlichen Dimensionen in x-, y- und z-Richtung, siehe <a href="https://de-m-wikipedia-org.translate.goog/wiki/Liste_von_Tr%C3%A4gheitstensoren?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Quader" title="Liste von Trägheitstensoren">Trägheitstensor eines Quaders</a>. Bei kleiner werdendem Teilkörper geht die Massenträgheit schneller gegen null als die Momente, woraus das <a href="https://de-m-wikipedia-org.translate.goog/wiki/Boltzmann-Axiom?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Boltzmann-Axiom">Boltzmann-Axiom</a> resultiert:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {M}}=4L^{3}\sum _{k=1}^{3}{\hat {e}}_{k}\times [{\hat {e}}_{k}\cdot ({\boldsymbol {\sigma }}_{+k}+{\boldsymbol {\sigma }}_{-k})]={\vec {0}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> M </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mn> 4 </mn> <msup> <mi> L </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msup> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> [ </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> <mi> k </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> k </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {M}}=4L^{3}\sum _{k=1}^{3}{\hat {e}}_{k}\times [{\hat {e}}_{k}\cdot ({\boldsymbol {\sigma }}_{+k}+{\boldsymbol {\sigma }}_{-k})]={\vec {0}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d95f02f71321c438c02d9560fd795b34ddbb2130" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:40.877ex; height:7.176ex;" alt="{\displaystyle {\vec {M}}=4L^{3}\sum _{k=1}^{3}{\hat {e}}_{k}\times [{\hat {e}}_{k}\cdot ({\boldsymbol {\sigma }}_{+k}+{\boldsymbol {\sigma }}_{-k})]={\vec {0}}}"> </noscript><span class="lazy-image-placeholder" style="width: 40.877ex;height: 7.176ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d95f02f71321c438c02d9560fd795b34ddbb2130" data-alt="{\displaystyle {\vec {M}}=4L^{3}\sum _{k=1}^{3}{\hat {e}}_{k}\times [{\hat {e}}_{k}\cdot ({\boldsymbol {\sigma }}_{+k}+{\boldsymbol {\sigma }}_{-k})]={\vec {0}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p><i>Die inneren Kräfte in einem <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kontinuum_(Physik)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Kontinuum (Physik)">Kontinuum</a> sind momentenfrei</i>. Bei kleiner werdendem Teilkörper wird <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\sigma }}_{+k}\approx {\boldsymbol {\sigma }}_{-k}\approx {\boldsymbol {\sigma }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> <mi> k </mi> </mrow> </msub> <mo> ≈<!-- ≈ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> k </mi> </mrow> </msub> <mo> ≈<!-- ≈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\sigma }}_{+k}\approx {\boldsymbol {\sigma }}_{-k}\approx {\boldsymbol {\sigma }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ceee98526e30348c66113d6e9e5d397c48fde02e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.715ex; height:2.009ex;" alt="{\displaystyle {\boldsymbol {\sigma }}_{+k}\approx {\boldsymbol {\sigma }}_{-k}\approx {\boldsymbol {\sigma }}}"> </noscript><span class="lazy-image-placeholder" style="width: 15.715ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ceee98526e30348c66113d6e9e5d397c48fde02e" data-alt="{\displaystyle {\boldsymbol {\sigma }}_{+k}\approx {\boldsymbol {\sigma }}_{-k}\approx {\boldsymbol {\sigma }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und somit</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\vec {0}}=&\sum _{k=1}^{3}{\hat {e}}_{k}\times ({\hat {e}}_{k}\cdot {\boldsymbol {\sigma }})=\sum _{k=1}^{3}{\hat {e}}_{k}\times \left({\hat {e}}_{k}\cdot \sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)\\=&\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}=(\sigma _{12}-\sigma _{21}){\hat {e}}_{3}+(\sigma _{23}-\sigma _{32}){\hat {e}}_{1}+(\sigma _{31}-\sigma _{13}){\hat {e}}_{2}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> </mtd> <mtd> <mi></mi> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> , </mo> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> , </mo> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> = </mo> <mo stretchy="false"> ( </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 12 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 21 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </msub> <mo> + </mo> <mo stretchy="false"> ( </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 23 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 32 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mo stretchy="false"> ( </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 31 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 13 </mn> </mrow> </msub> <mo stretchy="false"> ) </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\vec {0}}=&\sum _{k=1}^{3}{\hat {e}}_{k}\times ({\hat {e}}_{k}\cdot {\boldsymbol {\sigma }})=\sum _{k=1}^{3}{\hat {e}}_{k}\times \left({\hat {e}}_{k}\cdot \sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)\\=&\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}=(\sigma _{12}-\sigma _{21}){\hat {e}}_{3}+(\sigma _{23}-\sigma _{32}){\hat {e}}_{1}+(\sigma _{31}-\sigma _{13}){\hat {e}}_{2}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5252c81b2ef5bbe2ed2d62147452d6c4328acec4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.9ex; margin-bottom: -0.272ex; width:67.869ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}{\vec {0}}=&\sum _{k=1}^{3}{\hat {e}}_{k}\times ({\hat {e}}_{k}\cdot {\boldsymbol {\sigma }})=\sum _{k=1}^{3}{\hat {e}}_{k}\times \left({\hat {e}}_{k}\cdot \sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)\\=&\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}=(\sigma _{12}-\sigma _{21}){\hat {e}}_{3}+(\sigma _{23}-\sigma _{32}){\hat {e}}_{1}+(\sigma _{31}-\sigma _{13}){\hat {e}}_{2}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 67.869ex;height: 15.509ex;vertical-align: -6.9ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5252c81b2ef5bbe2ed2d62147452d6c4328acec4" data-alt="{\displaystyle {\begin{aligned}{\vec {0}}=&\sum _{k=1}^{3}{\hat {e}}_{k}\times ({\hat {e}}_{k}\cdot {\boldsymbol {\sigma }})=\sum _{k=1}^{3}{\hat {e}}_{k}\times \left({\hat {e}}_{k}\cdot \sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)\\=&\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}=(\sigma _{12}-\sigma _{21}){\hat {e}}_{3}+(\sigma _{23}-\sigma _{32}){\hat {e}}_{1}+(\sigma _{31}-\sigma _{13}){\hat {e}}_{2}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Hieraus folgt der eingangs erwähnte <i>Satz von der Gleichheit der zugeordneten Schubspannungen</i>.<sup id="cite_ref-szabo_1-1" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-szabo-1"><span class="cite-bracket">[</span>L 1<span class="cite-bracket">]</span></a></sup> Die obige Summe kann mit der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Vektorinvariante?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Vektorinvariante">Vektorinvariante</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\mathrm {i} }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {\mathrm {i} }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc27250111830f88f20bd6ece648ee8189f8c49c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.094ex; height:2.843ex;" alt="{\displaystyle {\vec {\mathrm {i} }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.094ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc27250111830f88f20bd6ece648ee8189f8c49c" data-alt="{\displaystyle {\vec {\mathrm {i} }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> von Tensoren koordinatenfrei ausgedrückt werden:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {0}}=\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}={\vec {\mathrm {i} }}\left(\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)={\vec {\mathrm {i} }}({\boldsymbol {\sigma }})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> , </mo> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> , </mo> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 3 </mn> </mrow> </munderover> <msub> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mi> j </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {0}}=\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}={\vec {\mathrm {i} }}\left(\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)={\vec {\mathrm {i} }}({\boldsymbol {\sigma }})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6bc32f8542e7fabbe08fdb7c23517bc01f42834" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:48.373ex; height:7.676ex;" alt="{\displaystyle {\vec {0}}=\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}={\vec {\mathrm {i} }}\left(\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)={\vec {\mathrm {i} }}({\boldsymbol {\sigma }})}"> </noscript><span class="lazy-image-placeholder" style="width: 48.373ex;height: 7.676ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6bc32f8542e7fabbe08fdb7c23517bc01f42834" data-alt="{\displaystyle {\vec {0}}=\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\times {\hat {e}}_{j}={\vec {\mathrm {i} }}\left(\sum _{i,j=1}^{3}\sigma _{ij}{\hat {e}}_{i}\otimes {\hat {e}}_{j}\right)={\vec {\mathrm {i} }}({\boldsymbol {\sigma }})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Denn in der Vektorinvariante ist das dyadische Produkt ⊗ durch das Kreuzprodukt × ausgetauscht. Nur der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Schiefsymmetrische_Matrix?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Schiefsymmetrische Matrix">schiefsymmetrischer</a> Anteil des Tensors trägt zu seiner Vektorinvariante bei, die hier verschwindet, sodass die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Symmetrische_Matrix?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Symmetrische Matrix">Symmetrie</a> des cauchyschen Spannungstensors folgt:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8a70fa32d7549270a3a5501e977e6874d017b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.798ex; height:2.676ex;" alt="{\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }}"> </noscript><span class="lazy-image-placeholder" style="width: 7.798ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8a70fa32d7549270a3a5501e977e6874d017b9" data-alt="{\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Diese Tensorgleichung, die in beliebigen <a href="https://de-m-wikipedia-org.translate.goog/wiki/Vektorraumbasis?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Vektorraumbasis">Vektorraumbasen</a> eines <a href="https://de-m-wikipedia-org.translate.goog/wiki/Inertialsystem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Inertialsystem">Inertialsystems</a> gilt, ist die koordinatenfreie Version des lokalen Drallsatzes.</p> <div class="mw-heading mw-heading3"> <h3 id="Drehimpulssatz_in_lagrangescher_Darstellung">Drehimpulssatz in lagrangescher Darstellung</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=8&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Drehimpulssatz in lagrangescher Darstellung" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <p>Der Drehimpulssatz lautet in globaler lagrangescher Formulierung:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\vec {k}}_{0}\,\mathrm {d} V+\int _{A}({\vec {\chi }}-{\vec {c}})\times {\vec {t}}_{0}\,\mathrm {d} A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\vec {k}}_{0}\,\mathrm {d} V+\int _{A}({\vec {\chi }}-{\vec {c}})\times {\vec {t}}_{0}\,\mathrm {d} A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8256e612ef50ef4eb51201a7098e1cb95147d838" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:69.064ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\vec {k}}_{0}\,\mathrm {d} V+\int _{A}({\vec {\chi }}-{\vec {c}})\times {\vec {t}}_{0}\,\mathrm {d} A}"> </noscript><span class="lazy-image-placeholder" style="width: 69.064ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8256e612ef50ef4eb51201a7098e1cb95147d838" data-alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\vec {k}}_{0}\,\mathrm {d} V+\int _{A}({\vec {\chi }}-{\vec {c}})\times {\vec {t}}_{0}\,\mathrm {d} A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>worin die physikalischen Größen zumeist sowohl vom Ort <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {X}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {X}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc35b5a0226cf11a2c3f2d2dbbac6ab5ade6036" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.843ex;" alt="{\displaystyle {\vec {X}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.98ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dc35b5a0226cf11a2c3f2d2dbbac6ab5ade6036" data-alt="{\displaystyle {\vec {X}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> als auch von der Zeit <i>t</i> abhängen, was hier zwecks kompakter Darstellung unterschlagen wurde. Nur die Dichte <i>ρ</i><sub>0</sub> ist wegen der Massenerhaltung keine Funktion der Zeit und der beliebige Ortsvektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {c}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {c}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/965bd8710781b710cbfdb79da0b4e3b097bef506" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {c}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.223ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/965bd8710781b710cbfdb79da0b4e3b097bef506" data-alt="{\displaystyle {\vec {c}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ist ebenfalls zeitlich fixiert, siehe <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kontinuumsmechanik?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Drehimpulsbilanz" title="Kontinuumsmechanik">Drehimpulsbilanz</a>. Die Zeitableitung des ersten Integrals kann wie beim Impulssatz in den Integranden verschoben werden:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{V}[\underbrace {{\dot {\vec {\chi }}}\times \rho _{0}{\dot {\vec {\chi }}}} _{={\vec {0}}}+({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\ddot {\vec {\chi }}}]\,\mathrm {d} V=\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\ddot {\vec {\chi }}}\,\mathrm {d} V}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> ×<!-- × --> </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> </munder> <mo> + </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ] </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{V}[\underbrace {{\dot {\vec {\chi }}}\times \rho _{0}{\dot {\vec {\chi }}}} _{={\vec {0}}}+({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\ddot {\vec {\chi }}}]\,\mathrm {d} V=\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\ddot {\vec {\chi }}}\,\mathrm {d} V} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3366a958c7f9633c72e2f208870051106881007" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:82.098ex; height:8.343ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{V}[\underbrace {{\dot {\vec {\chi }}}\times \rho _{0}{\dot {\vec {\chi }}}} _{={\vec {0}}}+({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\ddot {\vec {\chi }}}]\,\mathrm {d} V=\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\ddot {\vec {\chi }}}\,\mathrm {d} V}"> </noscript><span class="lazy-image-placeholder" style="width: 82.098ex;height: 8.343ex;vertical-align: -4.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3366a958c7f9633c72e2f208870051106881007" data-alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{V}[\underbrace {{\dot {\vec {\chi }}}\times \rho _{0}{\dot {\vec {\chi }}}} _{={\vec {0}}}+({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\ddot {\vec {\chi }}}]\,\mathrm {d} V=\int _{V}({\vec {\chi }}-{\vec {c}})\times \rho _{0}{\ddot {\vec {\chi }}}\,\mathrm {d} V}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Das Oberflächenintegral wird wie gehabt mit dem gaußschen Integralsatz in ein Volumenintegral umgeschrieben:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{A}({\vec {\chi }}-{\vec {c}})\times {\vec {t}}_{0}\,\mathrm {d} A=&\int _{A}({\vec {\chi }}-{\vec {c}})\times (\mathbf {N} ^{\top }\cdot {\vec {N}})\,\mathrm {d} A=\int _{A}[({\vec {\chi }}-{\vec {c}})\times \mathbf {N} ^{\top }]\cdot {\vec {N}}\,\mathrm {d} A\\=&-\int _{A}[\mathbf {N} \times ({\vec {\chi }}-{\vec {c}})]^{\top }\cdot {\vec {N}}\,\mathrm {d} A=-\int _{V}\nabla _{0}\cdot [\mathbf {N} \times ({\vec {\chi }}-{\vec {c}})]\,\mathrm {d} V\\=&-\int _{V}\left\{(\nabla _{0}\cdot \mathbf {N} )\times ({\vec {\chi }}-{\vec {c}})-{\vec {\mathrm {i} }}{\big (}[\nabla _{0}\otimes ({\vec {\chi }}-{\vec {c}})]^{\top }\cdot \mathbf {N} {\big )}\right\}\,\mathrm {d} V\\=&\int _{V}\left\{({\vec {\chi }}-{\vec {c}})\times (\nabla _{0}\cdot \mathbf {N} )+{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}\right\}\,\mathrm {d} V\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo stretchy="false"> ] </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> = </mo> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow> <mo> { </mo> <mrow> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mo stretchy="false"> [ </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow> <mo> { </mo> <mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\int _{A}({\vec {\chi }}-{\vec {c}})\times {\vec {t}}_{0}\,\mathrm {d} A=&\int _{A}({\vec {\chi }}-{\vec {c}})\times (\mathbf {N} ^{\top }\cdot {\vec {N}})\,\mathrm {d} A=\int _{A}[({\vec {\chi }}-{\vec {c}})\times \mathbf {N} ^{\top }]\cdot {\vec {N}}\,\mathrm {d} A\\=&-\int _{A}[\mathbf {N} \times ({\vec {\chi }}-{\vec {c}})]^{\top }\cdot {\vec {N}}\,\mathrm {d} A=-\int _{V}\nabla _{0}\cdot [\mathbf {N} \times ({\vec {\chi }}-{\vec {c}})]\,\mathrm {d} V\\=&-\int _{V}\left\{(\nabla _{0}\cdot \mathbf {N} )\times ({\vec {\chi }}-{\vec {c}})-{\vec {\mathrm {i} }}{\big (}[\nabla _{0}\otimes ({\vec {\chi }}-{\vec {c}})]^{\top }\cdot \mathbf {N} {\big )}\right\}\,\mathrm {d} V\\=&\int _{V}\left\{({\vec {\chi }}-{\vec {c}})\times (\nabla _{0}\cdot \mathbf {N} )+{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}\right\}\,\mathrm {d} V\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26e6cf4160f5bf8951c024394712762554a09e7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.022ex; margin-bottom: -0.316ex; width:79.881ex; height:23.843ex;" alt="{\displaystyle {\begin{aligned}\int _{A}({\vec {\chi }}-{\vec {c}})\times {\vec {t}}_{0}\,\mathrm {d} A=&\int _{A}({\vec {\chi }}-{\vec {c}})\times (\mathbf {N} ^{\top }\cdot {\vec {N}})\,\mathrm {d} A=\int _{A}[({\vec {\chi }}-{\vec {c}})\times \mathbf {N} ^{\top }]\cdot {\vec {N}}\,\mathrm {d} A\\=&-\int _{A}[\mathbf {N} \times ({\vec {\chi }}-{\vec {c}})]^{\top }\cdot {\vec {N}}\,\mathrm {d} A=-\int _{V}\nabla _{0}\cdot [\mathbf {N} \times ({\vec {\chi }}-{\vec {c}})]\,\mathrm {d} V\\=&-\int _{V}\left\{(\nabla _{0}\cdot \mathbf {N} )\times ({\vec {\chi }}-{\vec {c}})-{\vec {\mathrm {i} }}{\big (}[\nabla _{0}\otimes ({\vec {\chi }}-{\vec {c}})]^{\top }\cdot \mathbf {N} {\big )}\right\}\,\mathrm {d} V\\=&\int _{V}\left\{({\vec {\chi }}-{\vec {c}})\times (\nabla _{0}\cdot \mathbf {N} )+{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}\right\}\,\mathrm {d} V\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 79.881ex;height: 23.843ex;vertical-align: -11.022ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26e6cf4160f5bf8951c024394712762554a09e7b" data-alt="{\displaystyle {\begin{aligned}\int _{A}({\vec {\chi }}-{\vec {c}})\times {\vec {t}}_{0}\,\mathrm {d} A=&\int _{A}({\vec {\chi }}-{\vec {c}})\times (\mathbf {N} ^{\top }\cdot {\vec {N}})\,\mathrm {d} A=\int _{A}[({\vec {\chi }}-{\vec {c}})\times \mathbf {N} ^{\top }]\cdot {\vec {N}}\,\mathrm {d} A\\=&-\int _{A}[\mathbf {N} \times ({\vec {\chi }}-{\vec {c}})]^{\top }\cdot {\vec {N}}\,\mathrm {d} A=-\int _{V}\nabla _{0}\cdot [\mathbf {N} \times ({\vec {\chi }}-{\vec {c}})]\,\mathrm {d} V\\=&-\int _{V}\left\{(\nabla _{0}\cdot \mathbf {N} )\times ({\vec {\chi }}-{\vec {c}})-{\vec {\mathrm {i} }}{\big (}[\nabla _{0}\otimes ({\vec {\chi }}-{\vec {c}})]^{\top }\cdot \mathbf {N} {\big )}\right\}\,\mathrm {d} V\\=&\int _{V}\left\{({\vec {\chi }}-{\vec {c}})\times (\nabla _{0}\cdot \mathbf {N} )+{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}\right\}\,\mathrm {d} V\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Hier wurde die Produktregel <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla \cdot (\mathbf {T} \times {\vec {f}})=(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left((\nabla \otimes {\vec {f}})^{\top }\cdot \mathbf {T} \right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow> <mo> ( </mo> <mrow> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \nabla \cdot (\mathbf {T} \times {\vec {f}})=(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left((\nabla \otimes {\vec {f}})^{\top }\cdot \mathbf {T} \right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbebf7e6d11550e38cd1429aede6cdaf87b2b563" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:47.072ex; height:4.843ex;" alt="{\displaystyle \nabla \cdot (\mathbf {T} \times {\vec {f}})=(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left((\nabla \otimes {\vec {f}})^{\top }\cdot \mathbf {T} \right)}"> </noscript><span class="lazy-image-placeholder" style="width: 47.072ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbebf7e6d11550e38cd1429aede6cdaf87b2b563" data-alt="{\displaystyle \nabla \cdot (\mathbf {T} \times {\vec {f}})=(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left((\nabla \otimes {\vec {f}})^{\top }\cdot \mathbf {T} \right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><sup id="cite_ref-prodregel_6-0" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-prodregel-6"><span class="cite-bracket">[</span>F 2<span class="cite-bracket">]</span></a></sup> und die Definition des <a href="https://de-m-wikipedia-org.translate.goog/wiki/Deformationsgradient?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Deformationsgradient">Deformationsgradienten</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =\operatorname {GRAD} {\vec {\chi }}=(\nabla _{0}\otimes {\vec {\chi }})^{\top }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo> = </mo> <mi> GRAD </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} =\operatorname {GRAD} {\vec {\chi }}=(\nabla _{0}\otimes {\vec {\chi }})^{\top }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3edc9b1f7bba30f1c53a23580bc255491d84551a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.381ex; height:3.176ex;" alt="{\displaystyle \mathbf {F} =\operatorname {GRAD} {\vec {\chi }}=(\nabla _{0}\otimes {\vec {\chi }})^{\top }}"> </noscript><span class="lazy-image-placeholder" style="width: 27.381ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3edc9b1f7bba30f1c53a23580bc255491d84551a" data-alt="{\displaystyle \mathbf {F} =\operatorname {GRAD} {\vec {\chi }}=(\nabla _{0}\otimes {\vec {\chi }})^{\top }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> eingesetzt. Die Operatoren 𝜵<sub>0</sub> und GRAD bilden den materiellen <a href="https://de-m-wikipedia-org.translate.goog/wiki/Vektorgradient?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Vektorgradient">Vektorgradient</a> mit Ableitungen nach den materiellen Koordinaten X<sub>1,2,3</sub>, weshalb der Nabla-Operator 𝜵<sub>0</sub> einen Index 0 und der Operator GRAD hier in Abgrenzung zum räumlichen Gradienten grad groß geschrieben wird.</p> <p>Mit den vorliegenden Ergebnissen kann die Drehimpulsbilanz als verschwindendes Volumenintegral ausgedrückt werden:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{V}[({\vec {\chi }}-{\vec {c}})\times (\underbrace {\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\nabla _{0}\cdot \mathbf {N} } _{={\vec {0}}})-{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}]\,\mathrm {d} V=-\int _{V}{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}\,\mathrm {d} V={\vec {0}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> </mrow> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> </munder> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <mo stretchy="false"> ] </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int _{V}[({\vec {\chi }}-{\vec {c}})\times (\underbrace {\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\nabla _{0}\cdot \mathbf {N} } _{={\vec {0}}})-{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}]\,\mathrm {d} V=-\int _{V}{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}\,\mathrm {d} V={\vec {0}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44077fc5072e7a23b70bd2b90e4c8f92573de9d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:76.593ex; height:8.176ex;" alt="{\displaystyle \int _{V}[({\vec {\chi }}-{\vec {c}})\times (\underbrace {\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\nabla _{0}\cdot \mathbf {N} } _{={\vec {0}}})-{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}]\,\mathrm {d} V=-\int _{V}{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}\,\mathrm {d} V={\vec {0}}}"> </noscript><span class="lazy-image-placeholder" style="width: 76.593ex;height: 8.176ex;vertical-align: -4.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44077fc5072e7a23b70bd2b90e4c8f92573de9d4" data-alt="{\displaystyle \int _{V}[({\vec {\chi }}-{\vec {c}})\times (\underbrace {\rho _{0}{\ddot {\vec {\chi }}}-\rho _{0}{\vec {k}}_{0}-\nabla _{0}\cdot \mathbf {N} } _{={\vec {0}}})-{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}]\,\mathrm {d} V=-\int _{V}{\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}\,\mathrm {d} V={\vec {0}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der unterklammerte Term trägt wegen der lokalen Impulsbilanz nichts bei. Das letzte Integral gilt für jeden beliebigen Teilkörper, sodass bei stetigem Integrand <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}={\vec {0}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}={\vec {0}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/160150a866f49086f5ed32a3a418657910c85b00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.938ex; height:3.509ex;" alt="{\displaystyle {\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}={\vec {0}}}"> </noscript><span class="lazy-image-placeholder" style="width: 12.938ex;height: 3.509ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/160150a866f49086f5ed32a3a418657910c85b00" data-alt="{\displaystyle {\vec {\mathrm {i} }}{\big (}\mathbf {F} \cdot \mathbf {N} {\big )}={\vec {0}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und – wie bei der Herleitung am Volumenelement – die Symmetrie von <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F\cdot N} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> N </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F\cdot N} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1ae0cd1101dafec014df705d90e622949eb1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.453ex; height:2.176ex;" alt="{\displaystyle \mathbf {F\cdot N} }"> </noscript><span class="lazy-image-placeholder" style="width: 5.453ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1ae0cd1101dafec014df705d90e622949eb1c61" data-alt="{\displaystyle \mathbf {F\cdot N} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> abgeleitet werden kann. Die lokale Drehimpulsbilanz in der lagrangeschen Darstellung reduziert sich demnach auf die Forderung</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F\cdot N} =(\mathbf {F\cdot N} )^{\top }=\mathbf {N^{\top }\cdot F^{\top }} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> N </mi> </mrow> <mo> = </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> N </mi> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold"> N </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mi mathvariant="bold"> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F\cdot N} =(\mathbf {F\cdot N} )^{\top }=\mathbf {N^{\top }\cdot F^{\top }} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/647a023bc418a8fe0a901c742afbc8da40b1bac1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.899ex; height:3.176ex;" alt="{\displaystyle \mathbf {F\cdot N} =(\mathbf {F\cdot N} )^{\top }=\mathbf {N^{\top }\cdot F^{\top }} }"> </noscript><span class="lazy-image-placeholder" style="width: 28.899ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/647a023bc418a8fe0a901c742afbc8da40b1bac1" data-alt="{\displaystyle \mathbf {F\cdot N} =(\mathbf {F\cdot N} )^{\top }=\mathbf {N^{\top }\cdot F^{\top }} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Multiplikation von links mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} ^{-1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} ^{-1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22670c5594281f4ec938aa0182280ce4b78967e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.015ex; height:2.676ex;" alt="{\displaystyle \mathbf {F} ^{-1}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.015ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22670c5594281f4ec938aa0182280ce4b78967e" data-alt="{\displaystyle \mathbf {F} ^{-1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und von rechts mit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} ^{\top -1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} ^{\top -1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d99825abd03cf66b76c20e63ce2f4f27045fda06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.294ex; height:2.676ex;" alt="{\displaystyle \mathbf {F} ^{\top -1}}"> </noscript><span class="lazy-image-placeholder" style="width: 5.294ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d99825abd03cf66b76c20e63ce2f4f27045fda06" data-alt="{\displaystyle \mathbf {F} ^{\top -1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ergibt gleichbedeutend:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} ^{-1}\cdot \mathbf {F\cdot N\cdot F} ^{\top -1}=\mathbf {F} ^{-1}\cdot \mathbf {N^{\top }\cdot F^{\top }\cdot F} ^{\top -1}\;\leftrightarrow \;\mathbf {N\cdot F} ^{\top -1}=(\mathbf {N\cdot F} ^{\top -1})^{\top }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> N </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi mathvariant="bold"> N </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mi mathvariant="bold"> F </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mspace width="thickmathspace"></mspace> <mo stretchy="false"> ↔<!-- ↔ --> </mo> <mspace width="thickmathspace"></mspace> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo> = </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} ^{-1}\cdot \mathbf {F\cdot N\cdot F} ^{\top -1}=\mathbf {F} ^{-1}\cdot \mathbf {N^{\top }\cdot F^{\top }\cdot F} ^{\top -1}\;\leftrightarrow \;\mathbf {N\cdot F} ^{\top -1}=(\mathbf {N\cdot F} ^{\top -1})^{\top }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e30a46af9876934e48ff7dc64a108fa252ce35d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:71.814ex; height:3.676ex;" alt="{\displaystyle \mathbf {F} ^{-1}\cdot \mathbf {F\cdot N\cdot F} ^{\top -1}=\mathbf {F} ^{-1}\cdot \mathbf {N^{\top }\cdot F^{\top }\cdot F} ^{\top -1}\;\leftrightarrow \;\mathbf {N\cdot F} ^{\top -1}=(\mathbf {N\cdot F} ^{\top -1})^{\top }}"> </noscript><span class="lazy-image-placeholder" style="width: 71.814ex;height: 3.676ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e30a46af9876934e48ff7dc64a108fa252ce35d" data-alt="{\displaystyle \mathbf {F} ^{-1}\cdot \mathbf {F\cdot N\cdot F} ^{\top -1}=\mathbf {F} ^{-1}\cdot \mathbf {N^{\top }\cdot F^{\top }\cdot F} ^{\top -1}\;\leftrightarrow \;\mathbf {N\cdot F} ^{\top -1}=(\mathbf {N\cdot F} ^{\top -1})^{\top }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der Tensor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\mathbf {T} }}:=\mathbf {N\cdot F} ^{\top -1}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> := </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\tilde {\mathbf {T} }}:=\mathbf {N\cdot F} ^{\top -1}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6c41f747cb97c0aa3d5981b9e0a0e8ba7e11583" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.669ex; height:2.676ex;" alt="{\displaystyle {\tilde {\mathbf {T} }}:=\mathbf {N\cdot F} ^{\top -1}}"> </noscript><span class="lazy-image-placeholder" style="width: 14.669ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6c41f747cb97c0aa3d5981b9e0a0e8ba7e11583" data-alt="{\displaystyle {\tilde {\mathbf {T} }}:=\mathbf {N\cdot F} ^{\top -1}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ist der zweite piola-kirchhoffsche Spannungstensor, dessen Symmetrie gemäß</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\mathbf {T} }}={\tilde {\mathbf {T} }}^{\top }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\tilde {\mathbf {T} }}={\tilde {\mathbf {T} }}^{\top }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e39f790569850d8258152615cea2fccb6fa118" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.328ex; height:3.176ex;" alt="{\displaystyle {\tilde {\mathbf {T} }}={\tilde {\mathbf {T} }}^{\top }}"> </noscript><span class="lazy-image-placeholder" style="width: 8.328ex;height: 3.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e39f790569850d8258152615cea2fccb6fa118" data-alt="{\displaystyle {\tilde {\mathbf {T} }}={\tilde {\mathbf {T} }}^{\top }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>die Erfüllung der Drehimpulsbilanz sicherstellt. Bei kleinen Verschiebungen stimmen der zweite piola-kirchhoffsche und der cauchysche Spannungstensor näherungsweise überein: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\mathbf {T} }}\approx {\boldsymbol {\sigma }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> ≈<!-- ≈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\tilde {\mathbf {T} }}\approx {\boldsymbol {\sigma }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/896bb41fa7c39a198dc3208d776ecf483b90f2a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.552ex; height:2.676ex;" alt="{\displaystyle {\tilde {\mathbf {T} }}\approx {\boldsymbol {\sigma }}}"> </noscript><span class="lazy-image-placeholder" style="width: 6.552ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/896bb41fa7c39a198dc3208d776ecf483b90f2a5" data-alt="{\displaystyle {\tilde {\mathbf {T} }}\approx {\boldsymbol {\sigma }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</p> <div class="mw-heading mw-heading3"> <h3 id="Drehimpulssatz_in_eulerscher_Darstellung">Drehimpulssatz in eulerscher Darstellung</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=9&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Drehimpulssatz in eulerscher Darstellung" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <p>In globaler eulerscher Formulierung lautet der Drehimpulssatz:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\,\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\,\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2910cf682aca524a206770d97e2c06f875e6c6cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:61.063ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\,\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a}"> </noscript><span class="lazy-image-placeholder" style="width: 61.063ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2910cf682aca524a206770d97e2c06f875e6c6cc" data-alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\,\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>worin die physikalischen Größen zumeist Funktionen sowohl vom Ort <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {x}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2dc6ced9cc3bc7e8b9f2707cbec033f6d3759c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.343ex;" alt="{\displaystyle {\vec {x}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2dc6ced9cc3bc7e8b9f2707cbec033f6d3759c" data-alt="{\displaystyle {\vec {x}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> als auch von der Zeit <i>t</i> sind, was hier zwecks kompakter Darstellung unterschlagen wurde. Der Vektor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {c}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {c}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/965bd8710781b710cbfdb79da0b4e3b097bef506" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.223ex; height:2.343ex;" alt="{\displaystyle {\vec {c}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.223ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/965bd8710781b710cbfdb79da0b4e3b097bef506" data-alt="{\displaystyle {\vec {c}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ist beliebig und zeitlich fixiert, und die räumlichen Koordinaten <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {x}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {x}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2dc6ced9cc3bc7e8b9f2707cbec033f6d3759c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.343ex;" alt="{\displaystyle {\vec {x}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db2dc6ced9cc3bc7e8b9f2707cbec033f6d3759c" data-alt="{\displaystyle {\vec {x}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> stellen Integrationsvariable dar, die daher auch nicht von der Zeit abhängen.</p> <p>Das erste Integral wird wie bei der Impulsbilanz mit dem reynoldsschen Transportsatz berechnet:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=&\int _{v}\left\{{\frac {\mathrm {d} }{\mathrm {d} t}}[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}]+\operatorname {div} ({\vec {v}})({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\right\}\,\mathrm {d} v\\=&\int _{v}({\vec {x}}-{\vec {c}})\times [\underbrace {{\dot {\rho }}\,{\vec {v}}+\operatorname {div} ({\vec {v}})\rho \,{\vec {v}}} _{={\vec {0}}}+\rho \,{\dot {\vec {v}}}]\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho \,{\dot {\vec {v}}}\,\mathrm {d} v\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow> <mo> { </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ] </mo> <mo> + </mo> <mi> div </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mo> } </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> [ </mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ρ<!-- ρ --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi> div </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> </munder> <mo> + </mo> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ] </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=&\int _{v}\left\{{\frac {\mathrm {d} }{\mathrm {d} t}}[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}]+\operatorname {div} ({\vec {v}})({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\right\}\,\mathrm {d} v\\=&\int _{v}({\vec {x}}-{\vec {c}})\times [\underbrace {{\dot {\rho }}\,{\vec {v}}+\operatorname {div} ({\vec {v}})\rho \,{\vec {v}}} _{={\vec {0}}}+\rho \,{\dot {\vec {v}}}]\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho \,{\dot {\vec {v}}}\,\mathrm {d} v\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a499e1dfd5282978a1a520a73f709bdbf055c7fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:82.365ex; height:14.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=&\int _{v}\left\{{\frac {\mathrm {d} }{\mathrm {d} t}}[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}]+\operatorname {div} ({\vec {v}})({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\right\}\,\mathrm {d} v\\=&\int _{v}({\vec {x}}-{\vec {c}})\times [\underbrace {{\dot {\rho }}\,{\vec {v}}+\operatorname {div} ({\vec {v}})\rho \,{\vec {v}}} _{={\vec {0}}}+\rho \,{\dot {\vec {v}}}]\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho \,{\dot {\vec {v}}}\,\mathrm {d} v\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 82.365ex;height: 14.509ex;vertical-align: -6.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a499e1dfd5282978a1a520a73f709bdbf055c7fe" data-alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=&\int _{v}\left\{{\frac {\mathrm {d} }{\mathrm {d} t}}[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}]+\operatorname {div} ({\vec {v}})({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\right\}\,\mathrm {d} v\\=&\int _{v}({\vec {x}}-{\vec {c}})\times [\underbrace {{\dot {\rho }}\,{\vec {v}}+\operatorname {div} ({\vec {v}})\rho \,{\vec {v}}} _{={\vec {0}}}+\rho \,{\dot {\vec {v}}}]\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho \,{\dot {\vec {v}}}\,\mathrm {d} v\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der unterklammerte Term trägt aufgrund der Massenbilanz nichts bei. Das Oberflächenintegral in der Drehimpulsbilanz wird analog zur lagrangeschen Darstellung mit dem gaußschen Integralsatz in ein Volumenintegral umgeschrieben:<sup id="cite_ref-prodregel_6-1" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-prodregel-6"><span class="cite-bracket">[</span>F 2<span class="cite-bracket">]</span></a></sup></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a=&\int _{a}({\vec {x}}-{\vec {c}})\times ({\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}})\,\mathrm {d} a=\int _{a}[({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }]\cdot {\vec {n}}\,\mathrm {d} a\\=&-\int _{a}[{\boldsymbol {\sigma }}\times ({\vec {x}}-{\vec {c}})]^{\top }\cdot {\vec {n}}\,\mathrm {d} a=-\int _{v}\nabla \cdot [{\boldsymbol {\sigma }}\times ({\vec {x}}-{\vec {c}})]\,\mathrm {d} v\\=&-\int _{v}\left\{(\nabla \cdot {\boldsymbol {\sigma }})\times ({\vec {x}}-{\vec {c}})-{\vec {\operatorname {i} }}\left([\nabla \otimes ({\vec {x}}-{\vec {c}})]^{\top }\cdot {\boldsymbol {\sigma }}\right)\right\}\,\mathrm {d} v\\=&\int _{v}\left\{({\vec {x}}-{\vec {c}})\times (\nabla \cdot {\boldsymbol {\sigma }})+{\vec {\operatorname {i} }}(\mathbf {1} \cdot {\boldsymbol {\sigma }})\right\}\,\mathrm {d} v\\=&\int _{v}\left[({\vec {x}}-{\vec {c}})\times (\nabla \cdot {\boldsymbol {\sigma }})+{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})\right]\,\mathrm {d} v\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo stretchy="false"> ] </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> <mo> = </mo> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow> <mo> { </mo> <mrow> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal"> i </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow> <mo> ( </mo> <mrow> <mo stretchy="false"> [ </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⊗<!-- ⊗ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <msup> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> } </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow> <mo> { </mo> <mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal"> i </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold"> 1 </mn> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> </mrow> <mo> } </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow> <mo> [ </mo> <mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal"> i </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> </mrow> <mo> ] </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a=&\int _{a}({\vec {x}}-{\vec {c}})\times ({\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}})\,\mathrm {d} a=\int _{a}[({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }]\cdot {\vec {n}}\,\mathrm {d} a\\=&-\int _{a}[{\boldsymbol {\sigma }}\times ({\vec {x}}-{\vec {c}})]^{\top }\cdot {\vec {n}}\,\mathrm {d} a=-\int _{v}\nabla \cdot [{\boldsymbol {\sigma }}\times ({\vec {x}}-{\vec {c}})]\,\mathrm {d} v\\=&-\int _{v}\left\{(\nabla \cdot {\boldsymbol {\sigma }})\times ({\vec {x}}-{\vec {c}})-{\vec {\operatorname {i} }}\left([\nabla \otimes ({\vec {x}}-{\vec {c}})]^{\top }\cdot {\boldsymbol {\sigma }}\right)\right\}\,\mathrm {d} v\\=&\int _{v}\left\{({\vec {x}}-{\vec {c}})\times (\nabla \cdot {\boldsymbol {\sigma }})+{\vec {\operatorname {i} }}(\mathbf {1} \cdot {\boldsymbol {\sigma }})\right\}\,\mathrm {d} v\\=&\int _{v}\left[({\vec {x}}-{\vec {c}})\times (\nabla \cdot {\boldsymbol {\sigma }})+{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})\right]\,\mathrm {d} v\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f49bc93411a34b53e934514520d0b562cdbdcfa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.171ex; width:73.253ex; height:29.509ex;" alt="{\displaystyle {\begin{aligned}\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a=&\int _{a}({\vec {x}}-{\vec {c}})\times ({\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}})\,\mathrm {d} a=\int _{a}[({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }]\cdot {\vec {n}}\,\mathrm {d} a\\=&-\int _{a}[{\boldsymbol {\sigma }}\times ({\vec {x}}-{\vec {c}})]^{\top }\cdot {\vec {n}}\,\mathrm {d} a=-\int _{v}\nabla \cdot [{\boldsymbol {\sigma }}\times ({\vec {x}}-{\vec {c}})]\,\mathrm {d} v\\=&-\int _{v}\left\{(\nabla \cdot {\boldsymbol {\sigma }})\times ({\vec {x}}-{\vec {c}})-{\vec {\operatorname {i} }}\left([\nabla \otimes ({\vec {x}}-{\vec {c}})]^{\top }\cdot {\boldsymbol {\sigma }}\right)\right\}\,\mathrm {d} v\\=&\int _{v}\left\{({\vec {x}}-{\vec {c}})\times (\nabla \cdot {\boldsymbol {\sigma }})+{\vec {\operatorname {i} }}(\mathbf {1} \cdot {\boldsymbol {\sigma }})\right\}\,\mathrm {d} v\\=&\int _{v}\left[({\vec {x}}-{\vec {c}})\times (\nabla \cdot {\boldsymbol {\sigma }})+{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})\right]\,\mathrm {d} v\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 73.253ex;height: 29.509ex;vertical-align: -14.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f49bc93411a34b53e934514520d0b562cdbdcfa" data-alt="{\displaystyle {\begin{aligned}\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a=&\int _{a}({\vec {x}}-{\vec {c}})\times ({\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}})\,\mathrm {d} a=\int _{a}[({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }]\cdot {\vec {n}}\,\mathrm {d} a\\=&-\int _{a}[{\boldsymbol {\sigma }}\times ({\vec {x}}-{\vec {c}})]^{\top }\cdot {\vec {n}}\,\mathrm {d} a=-\int _{v}\nabla \cdot [{\boldsymbol {\sigma }}\times ({\vec {x}}-{\vec {c}})]\,\mathrm {d} v\\=&-\int _{v}\left\{(\nabla \cdot {\boldsymbol {\sigma }})\times ({\vec {x}}-{\vec {c}})-{\vec {\operatorname {i} }}\left([\nabla \otimes ({\vec {x}}-{\vec {c}})]^{\top }\cdot {\boldsymbol {\sigma }}\right)\right\}\,\mathrm {d} v\\=&\int _{v}\left\{({\vec {x}}-{\vec {c}})\times (\nabla \cdot {\boldsymbol {\sigma }})+{\vec {\operatorname {i} }}(\mathbf {1} \cdot {\boldsymbol {\sigma }})\right\}\,\mathrm {d} v\\=&\int _{v}\left[({\vec {x}}-{\vec {c}})\times (\nabla \cdot {\boldsymbol {\sigma }})+{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})\right]\,\mathrm {d} v\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Abweichend von der lagrangeschen Darstellung tritt hier der cauchysche Spannungstensor an die Stelle des Nennspannungstensors und wegen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\nabla \otimes {\vec {x}})^{\top }=\operatorname {grad} {\vec {x}}=\mathbf {1} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> = </mo> <mi> grad </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold"> 1 </mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (\nabla \otimes {\vec {x}})^{\top }=\operatorname {grad} {\vec {x}}=\mathbf {1} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb2866425b76d47900f36ca043f164aae5dec98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.205ex; height:3.176ex;" alt="{\displaystyle (\nabla \otimes {\vec {x}})^{\top }=\operatorname {grad} {\vec {x}}=\mathbf {1} }"> </noscript><span class="lazy-image-placeholder" style="width: 23.205ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb2866425b76d47900f36ca043f164aae5dec98" data-alt="{\displaystyle (\nabla \otimes {\vec {x}})^{\top }=\operatorname {grad} {\vec {x}}=\mathbf {1} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> der Einheitstensor an die Stelle des Deformationsgradienten.</p> <p>Mit den vorliegenden Ergebnissen kann die Drehimpulsbilanz als verschwindendes Volumenintegral ausgedrückt werden:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{v}[({\vec {x}}-{\vec {c}})\times (\underbrace {\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }}} _{={\vec {0}}})-{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})]\,\mathrm {d} v=-\int _{v}{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})\,\mathrm {d} v={\vec {0}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mrow> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> </munder> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal"> i </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal"> i </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int _{v}[({\vec {x}}-{\vec {c}})\times (\underbrace {\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }}} _{={\vec {0}}})-{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})]\,\mathrm {d} v=-\int _{v}{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})\,\mathrm {d} v={\vec {0}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91ef84516ba263aa171c4bc9e686955e7b07b4cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.838ex; width:60.897ex; height:8.176ex;" alt="{\displaystyle \int _{v}[({\vec {x}}-{\vec {c}})\times (\underbrace {\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }}} _{={\vec {0}}})-{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})]\,\mathrm {d} v=-\int _{v}{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})\,\mathrm {d} v={\vec {0}}}"> </noscript><span class="lazy-image-placeholder" style="width: 60.897ex;height: 8.176ex;vertical-align: -4.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91ef84516ba263aa171c4bc9e686955e7b07b4cf" data-alt="{\displaystyle \int _{v}[({\vec {x}}-{\vec {c}})\times (\underbrace {\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }}} _{={\vec {0}}})-{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})]\,\mathrm {d} v=-\int _{v}{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})\,\mathrm {d} v={\vec {0}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der unterklammerte Term trägt wegen der lokalen Impulsbilanz nichts bei und das letzte Integral gilt für jedes beliebige Volumen, sodass bei stetigem Integrand auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {\operatorname {i} }}({\boldsymbol {\sigma }})={\vec {0}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal"> i </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {\operatorname {i} }}({\boldsymbol {\sigma }})={\vec {0}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edee281f011ac949182873a75e3b5e5c0f69ff12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.759ex; height:3.343ex;" alt="{\displaystyle {\vec {\operatorname {i} }}({\boldsymbol {\sigma }})={\vec {0}}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.759ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edee281f011ac949182873a75e3b5e5c0f69ff12" data-alt="{\displaystyle {\vec {\operatorname {i} }}({\boldsymbol {\sigma }})={\vec {0}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> geschlossen werden kann. Analog zur lagrangeschen Darstellung reduziert sich die Drehimpulsbilanz in eulerscher Darstellung auf die Forderung nach der Symmetrie des cauchyschen Spannungstensors:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> = </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8a70fa32d7549270a3a5501e977e6874d017b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.798ex; height:2.676ex;" alt="{\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }}"> </noscript><span class="lazy-image-placeholder" style="width: 7.798ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8a70fa32d7549270a3a5501e977e6874d017b9" data-alt="{\displaystyle {\boldsymbol {\sigma }}={\boldsymbol {\sigma }}^{\top }}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <div class="mw-heading mw-heading3"> <h3 id="Einfluss_von_Sprungstellen_im_Drehimpulssatz">Einfluss von Sprungstellen im Drehimpulssatz</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=10&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Einfluss von Sprungstellen im Drehimpulssatz" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <p>Analog zum ersten cauchy-eulerschen Bewegungsgesetz lautet das Reynolds-Transport-Theorem mit Sprungstelle hier:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\dot {\vec {v}}}\,\mathrm {d} v+\int _{a_{s}}[[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\dot {\vec {v}}}\,\mathrm {d} v+\int _{a_{s}}[[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8f944a7db30029758f4755dc407602ce11535eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:79.677ex; height:6.176ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\dot {\vec {v}}}\,\mathrm {d} v+\int _{a_{s}}[[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}}"> </noscript><span class="lazy-image-placeholder" style="width: 79.677ex;height: 6.176ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8f944a7db30029758f4755dc407602ce11535eb" data-alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\,\mathrm {d} v=\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\dot {\vec {v}}}\,\mathrm {d} v+\int _{a_{s}}[[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})]]\mathrm {d} a_{s}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der zweite Term mit der Sprungklammer [[...]] kommt neu hinzu. Die Integrale über die von außen angreifenden Kräfte werden getrennt für v<sup>+</sup> und v<sup>−</sup> berechnet:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{l}\displaystyle \left(\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a\right)^{+}=\ldots \\\displaystyle \ldots =\int _{v^{+}}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v^{+}+\int _{a^{+}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{+}-\int _{a_{s}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\\\displaystyle \left(\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a\right)^{-}=\ldots \\\displaystyle \ldots =\int _{v^{-}}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v^{-}+\int _{a^{-}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{-}+\int _{a_{s}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> <mo> = </mo> <mo> …<!-- … --> </mo> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mo> …<!-- … --> </mo> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> + </mo> </mrow> </msup> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> <mo> = </mo> <mo> …<!-- … --> </mo> </mstyle> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mo> …<!-- … --> </mo> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msup> <mi> v </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> </mrow> </msup> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mstyle> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{l}\displaystyle \left(\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a\right)^{+}=\ldots \\\displaystyle \ldots =\int _{v^{+}}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v^{+}+\int _{a^{+}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{+}-\int _{a_{s}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\\\displaystyle \left(\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a\right)^{-}=\ldots \\\displaystyle \ldots =\int _{v^{-}}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v^{-}+\int _{a^{-}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{-}+\int _{a_{s}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c2f7a57af8d18bfc85ca402be46cc70f0a8682a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.225ex; margin-bottom: -0.279ex; width:80.369ex; height:26.176ex;" alt="{\displaystyle {\begin{array}{l}\displaystyle \left(\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a\right)^{+}=\ldots \\\displaystyle \ldots =\int _{v^{+}}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v^{+}+\int _{a^{+}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{+}-\int _{a_{s}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\\\displaystyle \left(\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a\right)^{-}=\ldots \\\displaystyle \ldots =\int _{v^{-}}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v^{-}+\int _{a^{-}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{-}+\int _{a_{s}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 80.369ex;height: 26.176ex;vertical-align: -12.225ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c2f7a57af8d18bfc85ca402be46cc70f0a8682a" data-alt="{\displaystyle {\begin{array}{l}\displaystyle \left(\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a\right)^{+}=\ldots \\\displaystyle \ldots =\int _{v^{+}}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v^{+}+\int _{a^{+}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{+}-\int _{a_{s}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\\\displaystyle \left(\int _{v}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v+\int _{a}({\vec {x}}-{\vec {c}})\times {\vec {t}}\,\mathrm {d} a\right)^{-}=\ldots \\\displaystyle \ldots =\int _{v^{-}}({\vec {x}}-{\vec {c}})\times \rho {\vec {k}}\;\mathrm {d} v^{-}+\int _{a^{-}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a^{-}+\int _{a_{s}}({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a_{s}\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Die Summe der drei Gleichungen führt nach Umformungen, wie sie oben bereits angegeben wurden, auf</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{l}\displaystyle \int _{v}[({\vec {x}}-{\vec {c}})\times (\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})-{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})]\,\mathrm {d} v=\ldots \\\qquad \qquad \ldots =\int _{a_{s}}[[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\;(({\vec {v}}-{\vec {v}}_{s})\cdot {\vec {n}})-({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]\mathrm {d} a_{s}\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal"> i </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ] </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <mo> …<!-- … --> </mo> </mstyle> </mtd> </mtr> <mtr> <mtd> <mspace width="2em"></mspace> <mspace width="2em"></mspace> <mo> …<!-- … --> </mo> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <msub> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{l}\displaystyle \int _{v}[({\vec {x}}-{\vec {c}})\times (\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})-{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})]\,\mathrm {d} v=\ldots \\\qquad \qquad \ldots =\int _{a_{s}}[[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\;(({\vec {v}}-{\vec {v}}_{s})\cdot {\vec {n}})-({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]\mathrm {d} a_{s}\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8659ac6120415488ec612cc770a7b5898ad9027a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.017ex; margin-bottom: -0.321ex; width:69.981ex; height:9.843ex;" alt="{\displaystyle {\begin{array}{l}\displaystyle \int _{v}[({\vec {x}}-{\vec {c}})\times (\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})-{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})]\,\mathrm {d} v=\ldots \\\qquad \qquad \ldots =\int _{a_{s}}[[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\;(({\vec {v}}-{\vec {v}}_{s})\cdot {\vec {n}})-({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]\mathrm {d} a_{s}\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 69.981ex;height: 9.843ex;vertical-align: -4.017ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8659ac6120415488ec612cc770a7b5898ad9027a" data-alt="{\displaystyle {\begin{array}{l}\displaystyle \int _{v}[({\vec {x}}-{\vec {c}})\times (\rho {\dot {\vec {v}}}-\rho {\vec {k}}-\nabla \cdot {\boldsymbol {\sigma }})-{\vec {\operatorname {i} }}({\boldsymbol {\sigma }})]\,\mathrm {d} v=\ldots \\\qquad \qquad \ldots =\int _{a_{s}}[[({\vec {x}}-{\vec {c}})\times \rho {\vec {v}}\;(({\vec {v}}-{\vec {v}}_{s})\cdot {\vec {n}})-({\vec {x}}-{\vec {c}})\times {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]\mathrm {d} a_{s}\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Jenseits der Sprungstelle verschwindet die rechte Seite und die Symmetrie des Spannungstensors folgt wie oben. An der (flächigen) Sprungstelle ist dv=0 und die linke Seite kann vernachlässigt werden, sodass bei Stetigkeit des Integranden mit der Sprungklammer in der Fläche</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\vec {x}}-{\vec {c}})\times [[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})+{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]=({\vec {x}}-{\vec {c}})\times [[\rho {\vec {v}}\otimes ({\vec {v}}_{s}-{\vec {v}})+{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thickmathspace"></mspace> <mo stretchy="false"> ( </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mo> = </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> c </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mo stretchy="false"> [ </mo> <mo stretchy="false"> [ </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⊗<!-- ⊗ --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> + </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo stretchy="false"> ] </mo> <mo stretchy="false"> ] </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle ({\vec {x}}-{\vec {c}})\times [[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})+{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]=({\vec {x}}-{\vec {c}})\times [[\rho {\vec {v}}\otimes ({\vec {v}}_{s}-{\vec {v}})+{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93c7aa41b1e43856813661241ccb50967d2ee57d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:79.789ex; height:3.343ex;" alt="{\displaystyle ({\vec {x}}-{\vec {c}})\times [[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})+{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]=({\vec {x}}-{\vec {c}})\times [[\rho {\vec {v}}\otimes ({\vec {v}}_{s}-{\vec {v}})+{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}}"> </noscript><span class="lazy-image-placeholder" style="width: 79.789ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93c7aa41b1e43856813661241ccb50967d2ee57d" data-alt="{\displaystyle ({\vec {x}}-{\vec {c}})\times [[\rho {\vec {v}}\;(({\vec {v}}_{s}-{\vec {v}})\cdot {\vec {n}})+{\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}]]=({\vec {x}}-{\vec {c}})\times [[\rho {\vec {v}}\otimes ({\vec {v}}_{s}-{\vec {v}})+{\boldsymbol {\sigma }}^{\top }]]\cdot {\vec {n}}={\vec {0}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>abgeleitet werden kann, was wegen der Sprungbedingung im ersten cauchy-eulerschen Bewegungsgesetz identisch erfüllt ist.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Folgerungen_aus_den_Bewegungsgesetzen">Folgerungen aus den Bewegungsgesetzen</h2><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=11&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Folgerungen aus den Bewegungsgesetzen" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>Aus den Bewegungsgesetzen können weitere, materialunabhängige, zu Prinzipien äquivalente Gleichungen gefolgert werden. Das erste cauchy-eulersche Bewegungsgesetz lautet:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\text{materiell:}}\quad &\rho _{0}\,{\ddot {\vec {\chi }}}\!\!\!\!\!\!\!\!\!\!&=&\;\rho _{0}\,{\vec {k}}_{0}+\nabla _{0}\cdot \mathbf {N} \\{\text{räumlich:}}\quad &\rho \,{\dot {\vec {v}}}\!\!\!\!\!\!\!\!\!\!&=&\;\rho \,{\vec {k}}+\nabla \cdot {\boldsymbol {\sigma }}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell: </mtext> </mrow> <mspace width="1em"></mspace> </mtd> <mtd> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mspace width="thickmathspace"></mspace> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> + </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich: </mtext> </mrow> <mspace width="1em"></mspace> </mtd> <mtd> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mspace width="thickmathspace"></mspace> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\text{materiell:}}\quad &\rho _{0}\,{\ddot {\vec {\chi }}}\!\!\!\!\!\!\!\!\!\!&=&\;\rho _{0}\,{\vec {k}}_{0}+\nabla _{0}\cdot \mathbf {N} \\{\text{räumlich:}}\quad &\rho \,{\dot {\vec {v}}}\!\!\!\!\!\!\!\!\!\!&=&\;\rho \,{\vec {k}}+\nabla \cdot {\boldsymbol {\sigma }}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a6cb5822addab3e040a90abdc0522226b617dca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.732ex; height:7.509ex;" alt="{\displaystyle {\begin{aligned}{\text{materiell:}}\quad &\rho _{0}\,{\ddot {\vec {\chi }}}\!\!\!\!\!\!\!\!\!\!&=&\;\rho _{0}\,{\vec {k}}_{0}+\nabla _{0}\cdot \mathbf {N} \\{\text{räumlich:}}\quad &\rho \,{\dot {\vec {v}}}\!\!\!\!\!\!\!\!\!\!&=&\;\rho \,{\vec {k}}+\nabla \cdot {\boldsymbol {\sigma }}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 34.732ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a6cb5822addab3e040a90abdc0522226b617dca" data-alt="{\displaystyle {\begin{aligned}{\text{materiell:}}\quad &\rho _{0}\,{\ddot {\vec {\chi }}}\!\!\!\!\!\!\!\!\!\!&=&\;\rho _{0}\,{\vec {k}}_{0}+\nabla _{0}\cdot \mathbf {N} \\{\text{räumlich:}}\quad &\rho \,{\dot {\vec {v}}}\!\!\!\!\!\!\!\!\!\!&=&\;\rho \,{\vec {k}}+\nabla \cdot {\boldsymbol {\sigma }}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Diese Gleichungen werden mit einem Vektorfeld <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {q}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {q}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.309ex; height:2.676ex;" alt="{\displaystyle {\vec {q}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.309ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" data-alt="{\displaystyle {\vec {q}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> skalar multipliziert, über das Volumen des Körpers integriert und umgeformt. Es entsteht:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\text{materiell:}}&\int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot {\vec {q}}\,\mathrm {d} V+\int _{V}{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {q}})\,\mathrm {d} V=\ldots \\&\qquad \ldots =\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\vec {q}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\vec {q}}\,\mathrm {d} A\\{\text{räumlich:}}&\int _{v}\rho \,{\dot {\vec {v}}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{v}{\boldsymbol {\sigma }}:\operatorname {sym(grad} ({\vec {q}}))\,\mathrm {d} v=\ldots \\&\qquad \ldots =\int _{v}\rho \,{\vec {k}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {q}}\,\mathrm {d} a\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell: </mtext> </mrow> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> : </mo> <mi> sym </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mi> GRAD </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <mo> …<!-- … --> </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mspace width="2em"></mspace> <mo> …<!-- … --> </mo> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich: </mtext> </mrow> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal"> s </mi> <mi mathvariant="normal"> y </mi> <mi mathvariant="normal"> m </mi> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> g </mi> <mi mathvariant="normal"> r </mi> <mi mathvariant="normal"> a </mi> <mi mathvariant="normal"> d </mi> </mrow> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <mo> …<!-- … --> </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mspace width="2em"></mspace> <mo> …<!-- … --> </mo> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\text{materiell:}}&\int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot {\vec {q}}\,\mathrm {d} V+\int _{V}{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {q}})\,\mathrm {d} V=\ldots \\&\qquad \ldots =\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\vec {q}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\vec {q}}\,\mathrm {d} A\\{\text{räumlich:}}&\int _{v}\rho \,{\dot {\vec {v}}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{v}{\boldsymbol {\sigma }}:\operatorname {sym(grad} ({\vec {q}}))\,\mathrm {d} v=\ldots \\&\qquad \ldots =\int _{v}\rho \,{\vec {k}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {q}}\,\mathrm {d} a\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76cb964e96e71b45b58084eb84620ee8f48f1199" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.022ex; margin-bottom: -0.316ex; width:63.301ex; height:23.843ex;" alt="{\displaystyle {\begin{aligned}{\text{materiell:}}&\int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot {\vec {q}}\,\mathrm {d} V+\int _{V}{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {q}})\,\mathrm {d} V=\ldots \\&\qquad \ldots =\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\vec {q}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\vec {q}}\,\mathrm {d} A\\{\text{räumlich:}}&\int _{v}\rho \,{\dot {\vec {v}}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{v}{\boldsymbol {\sigma }}:\operatorname {sym(grad} ({\vec {q}}))\,\mathrm {d} v=\ldots \\&\qquad \ldots =\int _{v}\rho \,{\vec {k}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {q}}\,\mathrm {d} a\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 63.301ex;height: 23.843ex;vertical-align: -11.022ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76cb964e96e71b45b58084eb84620ee8f48f1199" data-alt="{\displaystyle {\begin{aligned}{\text{materiell:}}&\int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot {\vec {q}}\,\mathrm {d} V+\int _{V}{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {q}})\,\mathrm {d} V=\ldots \\&\qquad \ldots =\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\vec {q}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\vec {q}}\,\mathrm {d} A\\{\text{räumlich:}}&\int _{v}\rho \,{\dot {\vec {v}}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{v}{\boldsymbol {\sigma }}:\operatorname {sym(grad} ({\vec {q}}))\,\mathrm {d} v=\ldots \\&\qquad \ldots =\int _{v}\rho \,{\vec {k}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {q}}\,\mathrm {d} a\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Je nach Vektorfeld <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {q}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {q}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.309ex; height:2.676ex;" alt="{\displaystyle {\vec {q}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.309ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" data-alt="{\displaystyle {\vec {q}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ergeben sich verschiedene Aussagen.</p> <table class="wikitable mw-collapsible mw-collapsed"> <tbody> <tr> <td>Beweis</td> </tr> <tr> <td>Skalare Multiplikation des ersten cauchy-eulerschen Bewegungsgesetzes mit dem Vektorfeld <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {q}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {q}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.309ex; height:2.676ex;" alt="{\displaystyle {\vec {q}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.309ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" data-alt="{\displaystyle {\vec {q}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und Integration über das Volumen des Körpers liefert: <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&\int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot {\vec {q}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\vec {q}}\,\mathrm {d} V+\int _{V}(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}\,\mathrm {d} V\\{\text{räumlich:}}&\int _{v}\rho \,{\dot {\vec {v}}}\cdot {\vec {q}}\,\mathrm {d} v&=&\int _{v}\rho \,{\vec {k}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{v}(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}\,\mathrm {d} v\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left left center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell: </mtext> </mrow> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich: </mtext> </mrow> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{llcl}{\text{materiell:}}&\int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot {\vec {q}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\vec {q}}\,\mathrm {d} V+\int _{V}(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}\,\mathrm {d} V\\{\text{räumlich:}}&\int _{v}\rho \,{\dot {\vec {v}}}\cdot {\vec {q}}\,\mathrm {d} v&=&\int _{v}\rho \,{\vec {k}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{v}(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}\,\mathrm {d} v\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72c03e2a0c523d09bea661541d540f23e7b37a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:67.685ex; height:7.843ex;" alt="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&\int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot {\vec {q}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\vec {q}}\,\mathrm {d} V+\int _{V}(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}\,\mathrm {d} V\\{\text{räumlich:}}&\int _{v}\rho \,{\dot {\vec {v}}}\cdot {\vec {q}}\,\mathrm {d} v&=&\int _{v}\rho \,{\vec {k}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{v}(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}\,\mathrm {d} v\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 67.685ex;height: 7.843ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72c03e2a0c523d09bea661541d540f23e7b37a1" data-alt="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&\int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot {\vec {q}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\vec {q}}\,\mathrm {d} V+\int _{V}(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}\,\mathrm {d} V\\{\text{räumlich:}}&\int _{v}\rho \,{\dot {\vec {v}}}\cdot {\vec {q}}\,\mathrm {d} v&=&\int _{v}\rho \,{\vec {k}}\cdot {\vec {q}}\,\mathrm {d} v+\int _{v}(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}\,\mathrm {d} v\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p><p>Der letzte Term auf der rechten Seite wird mit der Produktregel umgeformt:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{rlcl}{\text{materiell:}}&\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})&=&(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}+\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})\\\rightarrow &(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}&=&\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})-\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})\\{\text{räumlich:}}&\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})&=&(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}+{\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})\\\rightarrow &(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}&=&\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})-{\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell: </mtext> </mrow> </mtd> <mtd> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> : </mo> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false"> →<!-- → --> </mo> </mtd> <mtd> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> : </mo> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich: </mtext> </mrow> </mtd> <mtd> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false"> →<!-- → --> </mo> </mtd> <mtd> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{rlcl}{\text{materiell:}}&\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})&=&(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}+\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})\\\rightarrow &(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}&=&\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})-\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})\\{\text{räumlich:}}&\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})&=&(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}+{\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})\\\rightarrow &(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}&=&\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})-{\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0ee7a4d1f07abe7da1ec4efa806c6a89fc1b6e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.171ex; width:58.282ex; height:13.509ex;" alt="{\displaystyle {\begin{array}{rlcl}{\text{materiell:}}&\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})&=&(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}+\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})\\\rightarrow &(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}&=&\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})-\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})\\{\text{räumlich:}}&\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})&=&(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}+{\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})\\\rightarrow &(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}&=&\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})-{\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 58.282ex;height: 13.509ex;vertical-align: -6.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0ee7a4d1f07abe7da1ec4efa806c6a89fc1b6e4" data-alt="{\displaystyle {\begin{array}{rlcl}{\text{materiell:}}&\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})&=&(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}+\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})\\\rightarrow &(\nabla _{0}\cdot \mathbf {N} )\cdot {\vec {q}}&=&\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})-\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})\\{\text{räumlich:}}&\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})&=&(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}+{\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})\\\rightarrow &(\nabla \cdot {\boldsymbol {\sigma }})\cdot {\vec {q}}&=&\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})-{\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl><p>In der materiellen Form wird noch der Deformationsgradient einmultipliziert:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})=&(\mathbf {N} \cdot \mathbf {F} ^{\top -1}\cdot \mathbf {F} ^{\top }):(\nabla _{0}\otimes {\vec {q}})\\=&(\mathbf {N} \cdot \mathbf {F} ^{\top -1}):{\big (}(\nabla _{0}\otimes {\vec {q}})\cdot \mathbf {F} {\big )}\\=&{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {q}})\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> : </mo> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> </mtd> <mtd> <mi></mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> : </mo> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo stretchy="false"> ) </mo> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> : </mo> <mi> sym </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mi> GRAD </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})=&(\mathbf {N} \cdot \mathbf {F} ^{\top -1}\cdot \mathbf {F} ^{\top }):(\nabla _{0}\otimes {\vec {q}})\\=&(\mathbf {N} \cdot \mathbf {F} ^{\top -1}):{\big (}(\nabla _{0}\otimes {\vec {q}})\cdot \mathbf {F} {\big )}\\=&{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {q}})\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bef6dd428961015343901632189aaae4400937f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:43.433ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})=&(\mathbf {N} \cdot \mathbf {F} ^{\top -1}\cdot \mathbf {F} ^{\top }):(\nabla _{0}\otimes {\vec {q}})\\=&(\mathbf {N} \cdot \mathbf {F} ^{\top -1}):{\big (}(\nabla _{0}\otimes {\vec {q}})\cdot \mathbf {F} {\big )}\\=&{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {q}})\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 43.433ex;height: 10.176ex;vertical-align: -4.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bef6dd428961015343901632189aaae4400937f" data-alt="{\displaystyle {\begin{aligned}\mathbf {N} :(\nabla _{0}\otimes {\vec {q}})=&(\mathbf {N} \cdot \mathbf {F} ^{\top -1}\cdot \mathbf {F} ^{\top }):(\nabla _{0}\otimes {\vec {q}})\\=&(\mathbf {N} \cdot \mathbf {F} ^{\top -1}):{\big (}(\nabla _{0}\otimes {\vec {q}})\cdot \mathbf {F} {\big )}\\=&{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {q}})\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl><p>Im letzten Schritt wurde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\nabla _{0}\otimes {\vec {q}})^{\top }=\operatorname {GRAD} {\vec {q}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> = </mo> <mi> GRAD </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (\nabla _{0}\otimes {\vec {q}})^{\top }=\operatorname {GRAD} {\vec {q}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9d607545a7965b39af3eec708deffd578ff3276" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.307ex; height:3.176ex;" alt="{\displaystyle (\nabla _{0}\otimes {\vec {q}})^{\top }=\operatorname {GRAD} {\vec {q}}}"> </noscript><span class="lazy-image-placeholder" style="width: 22.307ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9d607545a7965b39af3eec708deffd578ff3276" data-alt="{\displaystyle (\nabla _{0}\otimes {\vec {q}})^{\top }=\operatorname {GRAD} {\vec {q}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ausgenutzt, und dass im Skalarprodukt mit einem symmetrischen Tensor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {\mathbf {T} }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\tilde {\mathbf {T} }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c9a3a6a6d1647ff631bf4ed995d6c1d53410666" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.859ex; height:2.676ex;" alt="{\displaystyle {\tilde {\mathbf {T} }}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.859ex;height: 2.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c9a3a6a6d1647ff631bf4ed995d6c1d53410666" data-alt="{\displaystyle {\tilde {\mathbf {T} }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> nur die symmetrischen Anteile sym(·) etwas beitragen, was auch in der räumlichen Formulierung ausgenutzt wird: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})={\boldsymbol {\sigma }}:\operatorname {sym(grad} ({\vec {q}}))}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal"> s </mi> <mi mathvariant="normal"> y </mi> <mi mathvariant="normal"> m </mi> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> g </mi> <mi mathvariant="normal"> r </mi> <mi mathvariant="normal"> a </mi> <mi mathvariant="normal"> d </mi> </mrow> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})={\boldsymbol {\sigma }}:\operatorname {sym(grad} ({\vec {q}}))} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/280e76f179540586b366f521361419e614abb23e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.592ex; height:2.843ex;" alt="{\displaystyle {\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})={\boldsymbol {\sigma }}:\operatorname {sym(grad} ({\vec {q}}))}"> </noscript><span class="lazy-image-placeholder" style="width: 31.592ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/280e76f179540586b366f521361419e614abb23e" data-alt="{\displaystyle {\boldsymbol {\sigma }}:(\nabla \otimes {\vec {q}})={\boldsymbol {\sigma }}:\operatorname {sym(grad} ({\vec {q}}))}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p><p>Das Volumenintegral des Divergenzterms wird mit dem gaußschen Integralsatz in ein Oberflächenintegral umgewandelt:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\text{materiell:}}&\int _{V}\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})\,\mathrm {d} V=\int _{A}(\mathbf {N} \cdot {\vec {q}})\cdot {\vec {N}}\,\mathrm {d} A=\int _{A}{\vec {q}}\cdot \mathbf {N} ^{\top }\cdot {\vec {N}}\,\mathrm {d} A=\int _{A}{\vec {q}}\cdot {\vec {t}}_{0}\,\mathrm {d} A\\{\text{räumlich:}}&\int _{v}\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})\,\mathrm {d} v=\int _{a}({\boldsymbol {\sigma }}\cdot {\vec {q}})\cdot {\vec {n}}\,\mathrm {d} a=\int _{a}{\vec {q}}\cdot {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a=\int _{a}{\vec {q}}\cdot {\vec {t}}\,\mathrm {d} a\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell: </mtext> </mrow> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> N </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> N </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich: </mtext> </mrow> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> n </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\text{materiell:}}&\int _{V}\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})\,\mathrm {d} V=\int _{A}(\mathbf {N} \cdot {\vec {q}})\cdot {\vec {N}}\,\mathrm {d} A=\int _{A}{\vec {q}}\cdot \mathbf {N} ^{\top }\cdot {\vec {N}}\,\mathrm {d} A=\int _{A}{\vec {q}}\cdot {\vec {t}}_{0}\,\mathrm {d} A\\{\text{räumlich:}}&\int _{v}\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})\,\mathrm {d} v=\int _{a}({\boldsymbol {\sigma }}\cdot {\vec {q}})\cdot {\vec {n}}\,\mathrm {d} a=\int _{a}{\vec {q}}\cdot {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a=\int _{a}{\vec {q}}\cdot {\vec {t}}\,\mathrm {d} a\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cd3d15ce5210cd7a51f0666890c33387d9b92a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.046ex; margin-bottom: -0.292ex; width:84.064ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}{\text{materiell:}}&\int _{V}\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})\,\mathrm {d} V=\int _{A}(\mathbf {N} \cdot {\vec {q}})\cdot {\vec {N}}\,\mathrm {d} A=\int _{A}{\vec {q}}\cdot \mathbf {N} ^{\top }\cdot {\vec {N}}\,\mathrm {d} A=\int _{A}{\vec {q}}\cdot {\vec {t}}_{0}\,\mathrm {d} A\\{\text{räumlich:}}&\int _{v}\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})\,\mathrm {d} v=\int _{a}({\boldsymbol {\sigma }}\cdot {\vec {q}})\cdot {\vec {n}}\,\mathrm {d} a=\int _{a}{\vec {q}}\cdot {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a=\int _{a}{\vec {q}}\cdot {\vec {t}}\,\mathrm {d} a\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 84.064ex;height: 11.843ex;vertical-align: -5.046ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cd3d15ce5210cd7a51f0666890c33387d9b92a3" data-alt="{\displaystyle {\begin{aligned}{\text{materiell:}}&\int _{V}\nabla _{0}\cdot (\mathbf {N} \cdot {\vec {q}})\,\mathrm {d} V=\int _{A}(\mathbf {N} \cdot {\vec {q}})\cdot {\vec {N}}\,\mathrm {d} A=\int _{A}{\vec {q}}\cdot \mathbf {N} ^{\top }\cdot {\vec {N}}\,\mathrm {d} A=\int _{A}{\vec {q}}\cdot {\vec {t}}_{0}\,\mathrm {d} A\\{\text{räumlich:}}&\int _{v}\nabla \cdot ({\boldsymbol {\sigma }}\cdot {\vec {q}})\,\mathrm {d} v=\int _{a}({\boldsymbol {\sigma }}\cdot {\vec {q}})\cdot {\vec {n}}\,\mathrm {d} a=\int _{a}{\vec {q}}\cdot {\boldsymbol {\sigma }}^{\top }\cdot {\vec {n}}\,\mathrm {d} a=\int _{a}{\vec {q}}\cdot {\vec {t}}\,\mathrm {d} a\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl><p>Zusammenführung dieser Ergebnisse resultiert in den angegebenen Gleichungen.</p></td> </tr> </tbody> </table> <div class="mw-heading mw-heading3"> <h3 id="Prinzip_von_d’Alembert"><span id="Prinzip_von_d.E2.80.99Alembert"></span>Prinzip von d’Alembert</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=12&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Prinzip von d’Alembert" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <div class="hauptartikel" role="navigation"> <span class="hauptartikel-pfeil" title="siehe" aria-hidden="true" role="presentation">→ </span><i><span class="hauptartikel-text">Hauptartikel</span>: <a href="https://de-m-wikipedia-org.translate.goog/wiki/D%E2%80%99Alembertsches_Prinzip?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="D’Alembertsches Prinzip">d’Alembertsches Prinzip</a></i> </div> <p>Das Prinzip von d’Alembert hat eine grundlegende Bedeutung für die Lösung von Anfangsrandwertaufgaben der Kontinuumsmechanik, insbesondere der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Verschiebungsmethode?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Verschiebungsmethode">Verschiebungsmethode</a> in der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Finite-Elemente-Methode?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Finite-Elemente-Methode">Finite-Elemente-Methode</a>. Für das Vektorfeld <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {q}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {q}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.309ex; height:2.676ex;" alt="{\displaystyle {\vec {q}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.309ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" data-alt="{\displaystyle {\vec {q}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> werden <i>virtuelle</i> Verschiebungen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta {\vec {u}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta {\vec {u}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7055555a7d07ebbb35de9f00a6cfaf754c02a402" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.378ex; height:2.343ex;" alt="{\displaystyle \delta {\vec {u}}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.378ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7055555a7d07ebbb35de9f00a6cfaf754c02a402" data-alt="{\displaystyle \delta {\vec {u}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> eingesetzt, die vom Verschiebungsfeld <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {u}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {u}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c41e9cf70c5e5b56e2128a136985a75f90ba43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.343ex;" alt="{\displaystyle {\vec {u}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89c41e9cf70c5e5b56e2128a136985a75f90ba43" data-alt="{\displaystyle {\vec {u}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> unabhängige, gedachte, weitgehend beliebige, differenzielle Verschiebungen sind und die mit den geometrischen Bindungen des Körpers verträglich sind. Die virtuellen Verschiebungen müssen verschwinden, wo immer Verschiebungsrandbedingungen des Körpers vorgegeben sind. Sei <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {A}^{u}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {A}^{u}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e0f7e703246fd77c570c75b6324a86432176063" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.916ex; height:2.343ex;" alt="{\displaystyle {A}^{u}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.916ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e0f7e703246fd77c570c75b6324a86432176063" data-alt="{\displaystyle {A}^{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> der Teil der Oberfläche <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> A </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle A} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"> </noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> des Körpers, auf dem Verschiebungsrandbedingungen erklärt sind. Für ein Vektorfeld der virtuellen Verschiebungen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta {\vec {u}}_{0}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta {\vec {u}}_{0}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faac1f44a898a8b5dcd1d24808acdd131e2ee30f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.433ex; height:2.676ex;" alt="{\displaystyle \delta {\vec {u}}_{0}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.433ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/faac1f44a898a8b5dcd1d24808acdd131e2ee30f" data-alt="{\displaystyle \delta {\vec {u}}_{0}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ist dann</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\text{materiell}}\quad &\delta {\vec {u}}_{0}({\vec {X}})={\vec {0}}\quad {\text{für alle}}\;{\vec {X}}{\in }{A}^{u}\\{\text{räumlich}}\quad &\delta {\vec {u}}({\vec {x}})={\vec {0}}\quad {\text{für alle}}\;{\vec {x}}{\in }{a}^{u}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell </mtext> </mrow> <mspace width="1em"></mspace> </mtd> <mtd> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> für alle </mtext> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ∈<!-- ∈ --> </mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich </mtext> </mrow> <mspace width="1em"></mspace> </mtd> <mtd> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn> 0 </mn> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> für alle </mtext> </mrow> <mspace width="thickmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> x </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ∈<!-- ∈ --> </mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\text{materiell}}\quad &\delta {\vec {u}}_{0}({\vec {X}})={\vec {0}}\quad {\text{für alle}}\;{\vec {X}}{\in }{A}^{u}\\{\text{räumlich}}\quad &\delta {\vec {u}}({\vec {x}})={\vec {0}}\quad {\text{für alle}}\;{\vec {x}}{\in }{a}^{u}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b4d86b7f8578a0e5604a034ad8f081dbba3952" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:40.255ex; height:7.843ex;" alt="{\displaystyle {\begin{aligned}{\text{materiell}}\quad &\delta {\vec {u}}_{0}({\vec {X}})={\vec {0}}\quad {\text{für alle}}\;{\vec {X}}{\in }{A}^{u}\\{\text{räumlich}}\quad &\delta {\vec {u}}({\vec {x}})={\vec {0}}\quad {\text{für alle}}\;{\vec {x}}{\in }{a}^{u}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 40.255ex;height: 7.843ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b4d86b7f8578a0e5604a034ad8f081dbba3952" data-alt="{\displaystyle {\begin{aligned}{\text{materiell}}\quad &\delta {\vec {u}}_{0}({\vec {X}})={\vec {0}}\quad {\text{für alle}}\;{\vec {X}}{\in }{A}^{u}\\{\text{räumlich}}\quad &\delta {\vec {u}}({\vec {x}})={\vec {0}}\quad {\text{für alle}}\;{\vec {x}}{\in }{a}^{u}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>zu fordern. Auf <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {A}^{u}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {A}^{u}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e0f7e703246fd77c570c75b6324a86432176063" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.916ex; height:2.343ex;" alt="{\displaystyle {A}^{u}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.916ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e0f7e703246fd77c570c75b6324a86432176063" data-alt="{\displaystyle {A}^{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> können dann keine Oberflächenspannungen vorgegeben werden. Deshalb bezeichnet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {A}^{\sigma }=A\setminus A^{u}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> σ<!-- σ --> </mi> </mrow> </msup> <mo> = </mo> <mi> A </mi> <mo class="MJX-variant"> ∖<!-- ∖ --> </mo> <msup> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> u </mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {A}^{\sigma }=A\setminus A^{u}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a16d826f014cb090d7c4706e2a5ecd8a0230059d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.867ex; height:2.843ex;" alt="{\displaystyle {A}^{\sigma }=A\setminus A^{u}}"> </noscript><span class="lazy-image-placeholder" style="width: 12.867ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a16d826f014cb090d7c4706e2a5ecd8a0230059d" data-alt="{\displaystyle {A}^{\sigma }=A\setminus A^{u}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> den Teil der Oberfläche des Körpers, auf dem Oberflächenspannungen wirken (können) was entsprechend auch in der räumlichen Formulierung definiert wird. So entsteht:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&\displaystyle \int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} V+\int _{V}{\tilde {\mathbf {T} }}:\delta \mathbf {E} \,\mathrm {d} V\!\!\!\!\!\!&=&\!\!\!\!\!\!\displaystyle \int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} V+\int _{A^{\sigma }}{\vec {t}}_{0}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} A\\&{\text{für alle}}\;\delta {\vec {u}}_{0}\in {\mathcal {V}}_{0}\\{\text{räumlich:}}&\displaystyle \int _{v}\rho \,{\dot {\vec {v}}}\cdot \delta {\vec {u}}\,\mathrm {d} v+\int _{v}{\boldsymbol {\sigma }}:\delta {\boldsymbol {\varepsilon }}\,\mathrm {d} v\!\!\!\!\!\!&=&\!\!\!\!\!\!\displaystyle \int _{v}\rho \,{\vec {k}}\cdot \delta {\vec {u}}\,\mathrm {d} v+\int _{a^{\sigma }}{\vec {t}}\cdot \delta {\vec {u}}\,\mathrm {d} a\\&{\text{für alle}}\;\delta {\vec {u}}\in {\mathcal {V}}\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left left center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell: </mtext> </mrow> </mtd> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> : </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mstyle> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> A </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> σ<!-- σ --> </mi> </mrow> </msup> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> für alle </mtext> </mrow> <mspace width="thickmathspace"></mspace> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ∈<!-- ∈ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> V </mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich: </mtext> </mrow> </mtd> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ε<!-- ε --> </mi> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> </mstyle> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mspace width="negativethinmathspace"></mspace> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi> a </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> σ<!-- σ --> </mi> </mrow> </msup> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mstyle> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> für alle </mtext> </mrow> <mspace width="thickmathspace"></mspace> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ∈<!-- ∈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> V </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{llcl}{\text{materiell:}}&\displaystyle \int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} V+\int _{V}{\tilde {\mathbf {T} }}:\delta \mathbf {E} \,\mathrm {d} V\!\!\!\!\!\!&=&\!\!\!\!\!\!\displaystyle \int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} V+\int _{A^{\sigma }}{\vec {t}}_{0}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} A\\&{\text{für alle}}\;\delta {\vec {u}}_{0}\in {\mathcal {V}}_{0}\\{\text{räumlich:}}&\displaystyle \int _{v}\rho \,{\dot {\vec {v}}}\cdot \delta {\vec {u}}\,\mathrm {d} v+\int _{v}{\boldsymbol {\sigma }}:\delta {\boldsymbol {\varepsilon }}\,\mathrm {d} v\!\!\!\!\!\!&=&\!\!\!\!\!\!\displaystyle \int _{v}\rho \,{\vec {k}}\cdot \delta {\vec {u}}\,\mathrm {d} v+\int _{a^{\sigma }}{\vec {t}}\cdot \delta {\vec {u}}\,\mathrm {d} a\\&{\text{für alle}}\;\delta {\vec {u}}\in {\mathcal {V}}\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc98c850b4b9cdacea05e8a3d5bd7ebb5413eb1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.338ex; width:81.093ex; height:19.843ex;" alt="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&\displaystyle \int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} V+\int _{V}{\tilde {\mathbf {T} }}:\delta \mathbf {E} \,\mathrm {d} V\!\!\!\!\!\!&=&\!\!\!\!\!\!\displaystyle \int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} V+\int _{A^{\sigma }}{\vec {t}}_{0}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} A\\&{\text{für alle}}\;\delta {\vec {u}}_{0}\in {\mathcal {V}}_{0}\\{\text{räumlich:}}&\displaystyle \int _{v}\rho \,{\dot {\vec {v}}}\cdot \delta {\vec {u}}\,\mathrm {d} v+\int _{v}{\boldsymbol {\sigma }}:\delta {\boldsymbol {\varepsilon }}\,\mathrm {d} v\!\!\!\!\!\!&=&\!\!\!\!\!\!\displaystyle \int _{v}\rho \,{\vec {k}}\cdot \delta {\vec {u}}\,\mathrm {d} v+\int _{a^{\sigma }}{\vec {t}}\cdot \delta {\vec {u}}\,\mathrm {d} a\\&{\text{für alle}}\;\delta {\vec {u}}\in {\mathcal {V}}\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 81.093ex;height: 19.843ex;vertical-align: -9.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc98c850b4b9cdacea05e8a3d5bd7ebb5413eb1c" data-alt="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&\displaystyle \int _{V}\rho _{0}\,{\ddot {\vec {\chi }}}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} V+\int _{V}{\tilde {\mathbf {T} }}:\delta \mathbf {E} \,\mathrm {d} V\!\!\!\!\!\!&=&\!\!\!\!\!\!\displaystyle \int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} V+\int _{A^{\sigma }}{\vec {t}}_{0}\cdot \delta {\vec {u}}_{0}\,\mathrm {d} A\\&{\text{für alle}}\;\delta {\vec {u}}_{0}\in {\mathcal {V}}_{0}\\{\text{räumlich:}}&\displaystyle \int _{v}\rho \,{\dot {\vec {v}}}\cdot \delta {\vec {u}}\,\mathrm {d} v+\int _{v}{\boldsymbol {\sigma }}:\delta {\boldsymbol {\varepsilon }}\,\mathrm {d} v\!\!\!\!\!\!&=&\!\!\!\!\!\!\displaystyle \int _{v}\rho \,{\vec {k}}\cdot \delta {\vec {u}}\,\mathrm {d} v+\int _{a^{\sigma }}{\vec {t}}\cdot \delta {\vec {u}}\,\mathrm {d} a\\&{\text{für alle}}\;\delta {\vec {u}}\in {\mathcal {V}}\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Die Menge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {V}}_{(0)}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> V </mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 0 </mn> <mo stretchy="false"> ) </mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {V}}_{(0)}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/788f008af505351048f548cf1e98693698f7ef71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:3.759ex; height:3.009ex;" alt="{\displaystyle {\mathcal {V}}_{(0)}}"> </noscript><span class="lazy-image-placeholder" style="width: 3.759ex;height: 3.009ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/788f008af505351048f548cf1e98693698f7ef71" data-alt="{\displaystyle {\mathcal {V}}_{(0)}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> enthält alle zulässigen, materiellen bzw. räumlichen, virtuellen Verschiebungsfelder. Auf der linken Seite steht die virtuelle Arbeit der Trägheitskräfte und die virtuelle Deformationsarbeit und auf der rechten Seite die virtuelle Arbeit der äußeren Kräfte (volumen- und oberflächenverteilt.)</p> <p>In der materiellen Darstellung stehen die virtuelle Verzerrungen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {E} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta \mathbf {E} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60bc861a2f4add7bb1d104ba1449e7e3f5c1a118" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.806ex; height:2.343ex;" alt="{\displaystyle \delta \mathbf {E} }"> </noscript><span class="lazy-image-placeholder" style="width: 2.806ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60bc861a2f4add7bb1d104ba1449e7e3f5c1a118" data-alt="{\displaystyle \delta \mathbf {E} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> für die Variation des green-lagrangeschen Verzerrungstensors:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {E} :={\frac {1}{2}}(\mathbf {F} ^{\top }\cdot \delta \mathbf {F} +\delta \mathbf {F} ^{\top }\cdot \mathbf {F} )=\operatorname {sym} (\mathbf {F} ^{\top }\cdot \delta \mathbf {F} )}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> := </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo> + </mo> <mi> δ<!-- δ --> </mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> sym </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta \mathbf {E} :={\frac {1}{2}}(\mathbf {F} ^{\top }\cdot \delta \mathbf {F} +\delta \mathbf {F} ^{\top }\cdot \mathbf {F} )=\operatorname {sym} (\mathbf {F} ^{\top }\cdot \delta \mathbf {F} )} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0c0fa80c130656f2ad51207758906f86ea3dd45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.999ex; height:5.176ex;" alt="{\displaystyle \delta \mathbf {E} :={\frac {1}{2}}(\mathbf {F} ^{\top }\cdot \delta \mathbf {F} +\delta \mathbf {F} ^{\top }\cdot \mathbf {F} )=\operatorname {sym} (\mathbf {F} ^{\top }\cdot \delta \mathbf {F} )}"> </noscript><span class="lazy-image-placeholder" style="width: 44.999ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0c0fa80c130656f2ad51207758906f86ea3dd45" data-alt="{\displaystyle \delta \mathbf {E} :={\frac {1}{2}}(\mathbf {F} ^{\top }\cdot \delta \mathbf {F} +\delta \mathbf {F} ^{\top }\cdot \mathbf {F} )=\operatorname {sym} (\mathbf {F} ^{\top }\cdot \delta \mathbf {F} )}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>mit dem virtuellen Deformationsgradient <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {F} :=\operatorname {GRAD} \delta {\vec {u}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo> := </mo> <mi> GRAD </mi> <mo> <!-- --> </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta \mathbf {F} :=\operatorname {GRAD} \delta {\vec {u}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb2c2edce42737eb21f405e14b62e8913eada7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.296ex; height:2.343ex;" alt="{\displaystyle \delta \mathbf {F} :=\operatorname {GRAD} \delta {\vec {u}}}"> </noscript><span class="lazy-image-placeholder" style="width: 16.296ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb2c2edce42737eb21f405e14b62e8913eada7c" data-alt="{\displaystyle \delta \mathbf {F} :=\operatorname {GRAD} \delta {\vec {u}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. In der räumlichen Darstellung bildet sich der virtuelle Verzerrungstensor <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta {\boldsymbol {\varepsilon }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ε<!-- ε --> </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta {\boldsymbol {\varepsilon }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dcd145dd48190cbea329acfd863f5ba673a6790" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.278ex; height:2.343ex;" alt="{\displaystyle \delta {\boldsymbol {\varepsilon }}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.278ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7dcd145dd48190cbea329acfd863f5ba673a6790" data-alt="{\displaystyle \delta {\boldsymbol {\varepsilon }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> aus dem räumlichen virtuellen <a href="https://de-m-wikipedia-org.translate.goog/wiki/Verschiebungsgradient?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Verschiebungsgradient">Verschiebungsgradient</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {h} :=\operatorname {grad} \delta {\vec {u}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> h </mi> </mrow> <mo> := </mo> <mi> grad </mi> <mo> <!-- --> </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta \mathbf {h} :=\operatorname {grad} \delta {\vec {u}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c77d2ca81141dbbc979596690002326c53d4b1de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.574ex; height:2.676ex;" alt="{\displaystyle \delta \mathbf {h} :=\operatorname {grad} \delta {\vec {u}}}"> </noscript><span class="lazy-image-placeholder" style="width: 13.574ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c77d2ca81141dbbc979596690002326c53d4b1de" data-alt="{\displaystyle \delta \mathbf {h} :=\operatorname {grad} \delta {\vec {u}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta {\boldsymbol {\varepsilon }}:=\operatorname {sym\,grad} \delta {\vec {u}}={\frac {1}{2}}(\delta \mathbf {h} +\delta \mathbf {h} ^{\top })}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ε<!-- ε --> </mi> </mrow> <mo> := </mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal"> s </mi> <mi mathvariant="normal"> y </mi> <mi mathvariant="normal"> m </mi> <mspace width="thinmathspace"></mspace> <mi mathvariant="normal"> g </mi> <mi mathvariant="normal"> r </mi> <mi mathvariant="normal"> a </mi> <mi mathvariant="normal"> d </mi> </mrow> <mo> <!-- --> </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo stretchy="false"> ( </mo> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> h </mi> </mrow> <mo> + </mo> <mi> δ<!-- δ --> </mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> h </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta {\boldsymbol {\varepsilon }}:=\operatorname {sym\,grad} \delta {\vec {u}}={\frac {1}{2}}(\delta \mathbf {h} +\delta \mathbf {h} ^{\top })} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccac02222dc7ae2804502cbeea8dffa0bf432dba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:34.11ex; height:5.176ex;" alt="{\displaystyle \delta {\boldsymbol {\varepsilon }}:=\operatorname {sym\,grad} \delta {\vec {u}}={\frac {1}{2}}(\delta \mathbf {h} +\delta \mathbf {h} ^{\top })}"> </noscript><span class="lazy-image-placeholder" style="width: 34.11ex;height: 5.176ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccac02222dc7ae2804502cbeea8dffa0bf432dba" data-alt="{\displaystyle \delta {\boldsymbol {\varepsilon }}:=\operatorname {sym\,grad} \delta {\vec {u}}={\frac {1}{2}}(\delta \mathbf {h} +\delta \mathbf {h} ^{\top })}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <div class="mw-heading mw-heading3"> <h3 id="Bilanz_der_mechanischen_Energie">Bilanz der mechanischen Energie</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=13&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Bilanz der mechanischen Energie" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <p>Wenn für <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {q}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {q}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.309ex; height:2.676ex;" alt="{\displaystyle {\vec {q}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.309ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" data-alt="{\displaystyle {\vec {q}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> das Geschwindigkeitsfeld eingesetzt wird, folgt die Bilanz der mechanischen Energie:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} A-\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V\\{\text{räumlich:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v&=&\int _{v}\rho \,{\vec {k}}\cdot {\vec {v}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {v}}\,\mathrm {d} a-\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left left center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell: </mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mn> 2 </mn> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich: </mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ρ<!-- ρ --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> <mo> −<!-- − --> </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{llcl}{\text{materiell:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} A-\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V\\{\text{räumlich:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v&=&\int _{v}\rho \,{\vec {k}}\cdot {\vec {v}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {v}}\,\mathrm {d} a-\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/840f0038b1dabf380b0795483959f16301d17212" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:80.042ex; height:8.176ex;" alt="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} A-\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V\\{\text{räumlich:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v&=&\int _{v}\rho \,{\vec {k}}\cdot {\vec {v}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {v}}\,\mathrm {d} a-\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 80.042ex;height: 8.176ex;vertical-align: -3.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/840f0038b1dabf380b0795483959f16301d17212" data-alt="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} A-\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V\\{\text{räumlich:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v&=&\int _{v}\rho \,{\vec {k}}\cdot {\vec {v}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {v}}\,\mathrm {d} a-\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Auf der linken Seite steht die zeitliche Änderung der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kinetische_Energie?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Kinetische Energie">kinetischen Energie</a> und auf der rechten Seite steht die Leistung der äußeren Kräfte (volumen- und flächenverteilt) abzüglich der Verformungsleistung. Dieser Satz wird auch <a href="https://de-m-wikipedia-org.translate.goog/wiki/Arbeitssatz?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Arbeitssatz">Arbeitssatz</a><sup id="cite_ref-7" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-7"><span class="cite-bracket">[</span>L 5<span class="cite-bracket">]</span></a></sup> oder „Satz von der geleisteten Arbeit“ (<span style="font-style:normal;font-weight:normal"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Englische_Sprache?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Englische Sprache">englisch</a></span> <span lang="en-Latn" style="font-style:italic">Theorem of work expended</span><sup id="cite_ref-8" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-8"><span class="cite-bracket">[</span>L 6<span class="cite-bracket">]</span></a></sup>) genannt.</p> <table class="wikitable mw-collapsible mw-collapsed"> <tbody> <tr> <td>Beweis</td> </tr> <tr> <td>Die Zeitableitung der kinetischen Energie ist gleich der Leistung der Trägheitskräfte <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\dot {\vec {\chi }}}\cdot {\ddot {\vec {\chi }}}\,\mathrm {d} V\\{\text{räumlich:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v&=&\int _{v}\left[{\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right)+\operatorname {div} ({\vec {v}}){\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right]\,\mathrm {d} v\\&&=&\int _{v}\left[{\frac {\dot {\rho }}{2}}{\vec {v}}\cdot {\vec {v}}+\rho {\vec {v}}\cdot {\dot {\vec {v}}}+\operatorname {div} ({\vec {v}}){\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right]\,\mathrm {d} v\\&&=&\int _{v}{\Bigl [}(\underbrace {{\dot {\rho }}+\rho \operatorname {div} ({\vec {v}})} _{=0}){\frac {1}{2}}{\vec {v}}\cdot {\vec {v}}+\rho {\vec {v}}\cdot {\dot {\vec {v}}}{\Bigr ]}\,\mathrm {d} v=\int _{v}\rho {\vec {v}}\cdot {\dot {\vec {v}}}\,\mathrm {d} v\,,\end{array}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="left left center left" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell: </mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mn> 2 </mn> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ¨<!-- ¨ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich: </mtext> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ρ<!-- ρ --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow> <mo> [ </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ρ<!-- ρ --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mi> div </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ρ<!-- ρ --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ] </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> <mtr> <mtd></mtd> <mtd></mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow> <mo> [ </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ρ<!-- ρ --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi> div </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ρ<!-- ρ --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mo> ] </mo> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> <mtr> <mtd></mtd> <mtd></mtd> <mtd> <mo> = </mo> </mtd> <mtd> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.623em" minsize="1.623em"> [ </mo> </mrow> </mrow> <mo stretchy="false"> ( </mo> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> ρ<!-- ρ --> </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi> ρ<!-- ρ --> </mi> <mi> div </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> </mrow> <mo> ⏟<!-- ⏟ --> </mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> = </mo> <mn> 0 </mn> </mrow> </munder> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.623em" minsize="1.623em"> ] </mo> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mspace width="thinmathspace"></mspace> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{array}{llcl}{\text{materiell:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\dot {\vec {\chi }}}\cdot {\ddot {\vec {\chi }}}\,\mathrm {d} V\\{\text{räumlich:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v&=&\int _{v}\left[{\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right)+\operatorname {div} ({\vec {v}}){\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right]\,\mathrm {d} v\\&&=&\int _{v}\left[{\frac {\dot {\rho }}{2}}{\vec {v}}\cdot {\vec {v}}+\rho {\vec {v}}\cdot {\dot {\vec {v}}}+\operatorname {div} ({\vec {v}}){\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right]\,\mathrm {d} v\\&&=&\int _{v}{\Bigl [}(\underbrace {{\dot {\rho }}+\rho \operatorname {div} ({\vec {v}})} _{=0}){\frac {1}{2}}{\vec {v}}\cdot {\vec {v}}+\rho {\vec {v}}\cdot {\dot {\vec {v}}}{\Bigr ]}\,\mathrm {d} v=\int _{v}\rho {\vec {v}}\cdot {\dot {\vec {v}}}\,\mathrm {d} v\,,\end{array}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60e5018ab1ab151cdd970b70bad6ce30b471d7db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.338ex; width:85.818ex; height:21.843ex;" alt="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\dot {\vec {\chi }}}\cdot {\ddot {\vec {\chi }}}\,\mathrm {d} V\\{\text{räumlich:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v&=&\int _{v}\left[{\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right)+\operatorname {div} ({\vec {v}}){\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right]\,\mathrm {d} v\\&&=&\int _{v}\left[{\frac {\dot {\rho }}{2}}{\vec {v}}\cdot {\vec {v}}+\rho {\vec {v}}\cdot {\dot {\vec {v}}}+\operatorname {div} ({\vec {v}}){\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right]\,\mathrm {d} v\\&&=&\int _{v}{\Bigl [}(\underbrace {{\dot {\rho }}+\rho \operatorname {div} ({\vec {v}})} _{=0}){\frac {1}{2}}{\vec {v}}\cdot {\vec {v}}+\rho {\vec {v}}\cdot {\dot {\vec {v}}}{\Bigr ]}\,\mathrm {d} v=\int _{v}\rho {\vec {v}}\cdot {\dot {\vec {v}}}\,\mathrm {d} v\,,\end{array}}}"> </noscript><span class="lazy-image-placeholder" style="width: 85.818ex;height: 21.843ex;vertical-align: -10.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60e5018ab1ab151cdd970b70bad6ce30b471d7db" data-alt="{\displaystyle {\begin{array}{llcl}{\text{materiell:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V&=&\int _{V}\rho _{0}\,{\dot {\vec {\chi }}}\cdot {\ddot {\vec {\chi }}}\,\mathrm {d} V\\{\text{räumlich:}}&{\frac {\mathrm {d} }{\mathrm {d} t}}\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v&=&\int _{v}\left[{\frac {\mathrm {d} }{\mathrm {d} t}}\left({\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right)+\operatorname {div} ({\vec {v}}){\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right]\,\mathrm {d} v\\&&=&\int _{v}\left[{\frac {\dot {\rho }}{2}}{\vec {v}}\cdot {\vec {v}}+\rho {\vec {v}}\cdot {\dot {\vec {v}}}+\operatorname {div} ({\vec {v}}){\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\right]\,\mathrm {d} v\\&&=&\int _{v}{\Bigl [}(\underbrace {{\dot {\rho }}+\rho \operatorname {div} ({\vec {v}})} _{=0}){\frac {1}{2}}{\vec {v}}\cdot {\vec {v}}+\rho {\vec {v}}\cdot {\dot {\vec {v}}}{\Bigr ]}\,\mathrm {d} v=\int _{v}\rho {\vec {v}}\cdot {\dot {\vec {v}}}\,\mathrm {d} v\,,\end{array}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl><p>was die ersten Terme auf den linken Seiten begründet. In der räumlichen Formulierung wurde der reynoldssche Transportsatz und die Massenbilanz angewendet.</p><p>Der materielle Gradient der Geschwindigkeit ist die Zeitableitung <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GRAD} {\dot {\vec {\chi }}}={\dot {\mathbf {F} }}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> GRAD </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {GRAD} {\dot {\vec {\chi }}}={\dot {\mathbf {F} }}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d14c9ebe0790586de6fa0b75da19826fe93a0771" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.677ex; height:3.176ex;" alt="{\displaystyle \operatorname {GRAD} {\dot {\vec {\chi }}}={\dot {\mathbf {F} }}}"> </noscript><span class="lazy-image-placeholder" style="width: 13.677ex;height: 3.176ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d14c9ebe0790586de6fa0b75da19826fe93a0771" data-alt="{\displaystyle \operatorname {GRAD} {\dot {\vec {\chi }}}={\dot {\mathbf {F} }}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> des Deformationsgradienten und der symmetrische Anteil des räumlichen <a href="https://de-m-wikipedia-org.translate.goog/wiki/Geschwindigkeitsgradient?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Geschwindigkeitsgradient">Geschwindigkeitsgradienten</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {l} :=\operatorname {grad} {\vec {v}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> l </mi> </mrow> <mo> := </mo> <mi> grad </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {l} :=\operatorname {grad} {\vec {v}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e16c300a14f80a6f18bcdbe933d0b3bf9b24978" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.579ex; height:2.676ex;" alt="{\displaystyle \mathbf {l} :=\operatorname {grad} {\vec {v}}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.579ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e16c300a14f80a6f18bcdbe933d0b3bf9b24978" data-alt="{\displaystyle \mathbf {l} :=\operatorname {grad} {\vec {v}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ist der Verzerrungsgeschwindigkeitstensor <b>d</b>. Damit schreiben sich die Verformungsleistungen:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\text{materiell}}:&\int _{V}{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot {\dot {\mathbf {F} }})=:\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V\\{\text{räumlich}}:&\int _{v}{\boldsymbol {\sigma }}:\operatorname {sym} (\mathbf {l} )\,\mathrm {d} v=\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> materiell </mtext> </mrow> <mo> : </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> : </mo> <mi> sym </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> =: </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> räumlich </mtext> </mrow> <mo> : </mo> </mtd> <mtd> <mi></mi> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mi> sym </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> l </mi> </mrow> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}{\text{materiell}}:&\int _{V}{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot {\dot {\mathbf {F} }})=:\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V\\{\text{räumlich}}:&\int _{v}{\boldsymbol {\sigma }}:\operatorname {sym} (\mathbf {l} )\,\mathrm {d} v=\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7446c3adbb51ed7c04f4e7c5e70c9a75df7c93e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.046ex; margin-bottom: -0.292ex; width:46.963ex; height:11.843ex;" alt="{\displaystyle {\begin{aligned}{\text{materiell}}:&\int _{V}{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot {\dot {\mathbf {F} }})=:\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V\\{\text{räumlich}}:&\int _{v}{\boldsymbol {\sigma }}:\operatorname {sym} (\mathbf {l} )\,\mathrm {d} v=\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 46.963ex;height: 11.843ex;vertical-align: -5.046ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7446c3adbb51ed7c04f4e7c5e70c9a75df7c93e9" data-alt="{\displaystyle {\begin{aligned}{\text{materiell}}:&\int _{V}{\tilde {\mathbf {T} }}:\operatorname {sym} (\mathbf {F} ^{\top }\cdot {\dot {\mathbf {F} }})=:\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V\\{\text{räumlich}}:&\int _{v}{\boldsymbol {\sigma }}:\operatorname {sym} (\mathbf {l} )\,\mathrm {d} v=\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl><p>Die Leistungen der äußeren Kräfte ergeben sich durch Ersetzung des Vektors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {q}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {q}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.309ex; height:2.676ex;" alt="{\displaystyle {\vec {q}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.309ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" data-alt="{\displaystyle {\vec {q}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> durch den Geschwindigkeitsvektor.</p></td> </tr> </tbody> </table> <div class="mw-heading mw-heading3"> <h3 id="Energieerhaltungssatz">Energieerhaltungssatz</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=14&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Energieerhaltungssatz" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <p>In einem <a href="https://de-m-wikipedia-org.translate.goog/wiki/Konservatives_System?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Konservatives System">konservativen System</a> gibt es eine skalarwertige Funktion W<sub>a</sub>, die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Potentielle_Energie?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Potentielle Energie">potentielle Energie</a>, deren negative Zeitableitung gemäß</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\frac {\mathrm {d} }{\mathrm {d} t}}W_{a}:=\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} A=\int _{v}\rho \,{\vec {k}}\cdot {\vec {v}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {v}}\,\mathrm {d} a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mi> W </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo> := </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> A </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> A </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -{\frac {\mathrm {d} }{\mathrm {d} t}}W_{a}:=\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} A=\int _{v}\rho \,{\vec {k}}\cdot {\vec {v}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {v}}\,\mathrm {d} a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d98c3c65f9d8c57ba992a416df586cd8cc31d7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:68.329ex; height:5.843ex;" alt="{\displaystyle -{\frac {\mathrm {d} }{\mathrm {d} t}}W_{a}:=\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} A=\int _{v}\rho \,{\vec {k}}\cdot {\vec {v}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {v}}\,\mathrm {d} a}"> </noscript><span class="lazy-image-placeholder" style="width: 68.329ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d98c3c65f9d8c57ba992a416df586cd8cc31d7d" data-alt="{\displaystyle -{\frac {\mathrm {d} }{\mathrm {d} t}}W_{a}:=\int _{V}\rho _{0}\,{\vec {k}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V+\int _{A}{\vec {t}}_{0}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} A=\int _{v}\rho \,{\vec {k}}\cdot {\vec {v}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {v}}\,\mathrm {d} a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>die Leistung der äußeren Kräfte ist, und eine Formänderungsenergie W<sub>i</sub>, deren Zeitableitung</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}W_{i}:=\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V=\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mi> W </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> := </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ~<!-- ~ --> </mo> </mover> </mrow> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> E </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> d </mi> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}W_{i}:=\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V=\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/279c7969cef51646466d55ac82acfb59a3c5f353" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:35.535ex; height:5.843ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}W_{i}:=\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V=\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v}"> </noscript><span class="lazy-image-placeholder" style="width: 35.535ex;height: 5.843ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/279c7969cef51646466d55ac82acfb59a3c5f353" data-alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}W_{i}:=\int _{V}{\tilde {\mathbf {T} }}:{\dot {\mathbf {E} }}\,\mathrm {d} V=\int _{v}{\boldsymbol {\sigma }}:\mathbf {d} \,\mathrm {d} v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>die Verformungsleistung ist. Mit der Abkürzung</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K:=\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> K </mi> <mo> := </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> V </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi> ρ<!-- ρ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> </msub> <mn> 2 </mn> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> V </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> ρ<!-- ρ --> </mi> <mn> 2 </mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> v </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle K:=\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bc6134ee9e58b980453513a2ce770ac8d8fbbfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:35.205ex; height:5.676ex;" alt="{\displaystyle K:=\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v}"> </noscript><span class="lazy-image-placeholder" style="width: 35.205ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bc6134ee9e58b980453513a2ce770ac8d8fbbfe" data-alt="{\displaystyle K:=\int _{V}{\frac {\rho _{0}}{2}}\,{\dot {\vec {\chi }}}\cdot {\dot {\vec {\chi }}}\,\mathrm {d} V=\int _{v}{\frac {\rho }{2}}{\vec {v}}\cdot {\vec {v}}\,\mathrm {d} v}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>für die kinetische Energie schreibt sich die Bilanz der mechanischen Energie:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}K+{\frac {\mathrm {d} }{\mathrm {d} t}}W_{i}+{\frac {\mathrm {d} }{\mathrm {d} t}}W_{a}={\frac {\mathrm {d} }{\mathrm {d} t}}(K+W_{i}+W_{a})=0\quad \Leftrightarrow K+W_{i}+W_{a}=E}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <mi> K </mi> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mi> W </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <msub> <mi> W </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> t </mi> </mrow> </mfrac> </mrow> <mo stretchy="false"> ( </mo> <mi> K </mi> <mo> + </mo> <msub> <mi> W </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> W </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> = </mo> <mn> 0 </mn> <mspace width="1em"></mspace> <mo stretchy="false"> ⇔<!-- ⇔ --> </mo> <mi> K </mi> <mo> + </mo> <msub> <mi> W </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> W </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mo> = </mo> <mi> E </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}K+{\frac {\mathrm {d} }{\mathrm {d} t}}W_{i}+{\frac {\mathrm {d} }{\mathrm {d} t}}W_{a}={\frac {\mathrm {d} }{\mathrm {d} t}}(K+W_{i}+W_{a})=0\quad \Leftrightarrow K+W_{i}+W_{a}=E} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f039b024dc107c664f832543f2e70c3c67032a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:73.959ex; height:5.509ex;" alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}K+{\frac {\mathrm {d} }{\mathrm {d} t}}W_{i}+{\frac {\mathrm {d} }{\mathrm {d} t}}W_{a}={\frac {\mathrm {d} }{\mathrm {d} t}}(K+W_{i}+W_{a})=0\quad \Leftrightarrow K+W_{i}+W_{a}=E}"> </noscript><span class="lazy-image-placeholder" style="width: 73.959ex;height: 5.509ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f039b024dc107c664f832543f2e70c3c67032a" data-alt="{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}K+{\frac {\mathrm {d} }{\mathrm {d} t}}W_{i}+{\frac {\mathrm {d} }{\mathrm {d} t}}W_{a}={\frac {\mathrm {d} }{\mathrm {d} t}}(K+W_{i}+W_{a})=0\quad \Leftrightarrow K+W_{i}+W_{a}=E}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Die mechanische Gesamtenergie E, bestehend aus der kinetischen Energie, der Formänderungsenergie und der potentiellen Energie, ist mithin in einem konservativen System zeitlich konstant, was als <i><a href="https://de-m-wikipedia-org.translate.goog/wiki/Energieerhaltungssatz?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Energieerhaltungssatz">Energieerhaltungssatz</a></i> bekannt ist.</p> <div class="mw-heading mw-heading3"> <h3 id="Satz_von_Clapeyron">Satz von Clapeyron</h3><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=15&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Satz von Clapeyron" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <p>Wird bei kleinen Verformungen, linearer Elastizität und im statischen Fall für das Vektorfeld <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {q}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {q}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.309ex; height:2.676ex;" alt="{\displaystyle {\vec {q}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.309ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a4e063f8ee7dae2488859c45a4e645db5148085" data-alt="{\displaystyle {\vec {q}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> das Verschiebungsfeld <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {u}}({\vec {X}},t):={\vec {\chi }}({\vec {X}},t)-{\vec {X}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> := </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> X </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\vec {u}}({\vec {X}},t):={\vec {\chi }}({\vec {X}},t)-{\vec {X}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/645584ac36778809518ef7e10a2f7d2532b6b9b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.676ex; height:3.343ex;" alt="{\displaystyle {\vec {u}}({\vec {X}},t):={\vec {\chi }}({\vec {X}},t)-{\vec {X}}}"> </noscript><span class="lazy-image-placeholder" style="width: 22.676ex;height: 3.343ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/645584ac36778809518ef7e10a2f7d2532b6b9b7" data-alt="{\displaystyle {\vec {u}}({\vec {X}},t):={\vec {\chi }}({\vec {X}},t)-{\vec {X}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> eingesetzt, dann ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {grad} {\vec {q}}=\operatorname {grad} {\vec {u}}=\mathbf {H} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> grad </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mi> grad </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> H </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \operatorname {grad} {\vec {q}}=\operatorname {grad} {\vec {u}}=\mathbf {H} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35cadbe20879daff76a716c8a4e31fe2e912bd8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.759ex; height:2.676ex;" alt="{\displaystyle \operatorname {grad} {\vec {q}}=\operatorname {grad} {\vec {u}}=\mathbf {H} }"> </noscript><span class="lazy-image-placeholder" style="width: 20.759ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35cadbe20879daff76a716c8a4e31fe2e912bd8c" data-alt="{\displaystyle \operatorname {grad} {\vec {q}}=\operatorname {grad} {\vec {u}}=\mathbf {H} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Verschiebungsgradient?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Verschiebungsgradient">Verschiebungsgradient</a> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {H} \|\ll 1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> H </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mo> ≪<!-- ≪ --> </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|\mathbf {H} \|\ll 1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2845a04fdd6e6b1f27dabc913818fa0a0927d635" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.193ex; height:2.843ex;" alt="{\displaystyle \|\mathbf {H} \|\ll 1}"> </noscript><span class="lazy-image-placeholder" style="width: 9.193ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2845a04fdd6e6b1f27dabc913818fa0a0927d635" data-alt="{\displaystyle \|\mathbf {H} \|\ll 1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, sodass alle Terme, die <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \|\mathbf {H} \|}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> H </mi> </mrow> <mo fence="false" stretchy="false"> ‖<!-- ‖ --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \|\mathbf {H} \|} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c40b2595632e195d2d1435cb721be9c7a3e3b615" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.416ex; height:2.843ex;" alt="{\displaystyle \|\mathbf {H} \|}"> </noscript><span class="lazy-image-placeholder" style="width: 4.416ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c40b2595632e195d2d1435cb721be9c7a3e3b615" data-alt="{\displaystyle \|\mathbf {H} \|}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> in höherer Ordnung als eins enthalten, vernachlässigt werden können. Es folgt:</p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {GRAD} {\vec {u}}=\mathbf {H} =\operatorname {GRAD} {\vec {\chi }}-\mathbf {1} =\mathbf {F-1} \\\rightarrow \quad \operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {u}})=\operatorname {sym} (\mathbf {(1+H^{\top })\cdot H} )\approx \operatorname {sym} (\mathbf {H} )={\frac {1}{2}}(\mathbf {H+H^{\top }} )={\boldsymbol {\varepsilon }}\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi> GRAD </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> H </mi> </mrow> <mo> = </mo> <mi> GRAD </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> χ<!-- χ --> </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold"> 1 </mn> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> <mo mathvariant="bold"> −<!-- − --> </mo> <mn mathvariant="bold"> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false"> →<!-- → --> </mo> <mspace width="1em"></mspace> <mi> sym </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mi> GRAD </mi> <mo> <!-- --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> sym </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mo mathvariant="bold" stretchy="false"> ( </mo> <mn mathvariant="bold"> 1 </mn> <mo mathvariant="bold"> + </mo> <msup> <mi mathvariant="bold"> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo mathvariant="bold" stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mi mathvariant="bold"> H </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ≈<!-- ≈ --> </mo> <mi> sym </mi> <mo> <!-- --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> H </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> H </mi> <mo mathvariant="bold"> + </mo> <msup> <mi mathvariant="bold"> H </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ε<!-- ε --> </mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\operatorname {GRAD} {\vec {u}}=\mathbf {H} =\operatorname {GRAD} {\vec {\chi }}-\mathbf {1} =\mathbf {F-1} \\\rightarrow \quad \operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {u}})=\operatorname {sym} (\mathbf {(1+H^{\top })\cdot H} )\approx \operatorname {sym} (\mathbf {H} )={\frac {1}{2}}(\mathbf {H+H^{\top }} )={\boldsymbol {\varepsilon }}\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/befd91451f60f4b0d9fcc181426b39fbd556f679" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.293ex; margin-bottom: -0.211ex; width:79.578ex; height:8.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {GRAD} {\vec {u}}=\mathbf {H} =\operatorname {GRAD} {\vec {\chi }}-\mathbf {1} =\mathbf {F-1} \\\rightarrow \quad \operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {u}})=\operatorname {sym} (\mathbf {(1+H^{\top })\cdot H} )\approx \operatorname {sym} (\mathbf {H} )={\frac {1}{2}}(\mathbf {H+H^{\top }} )={\boldsymbol {\varepsilon }}\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 79.578ex;height: 8.176ex;vertical-align: -3.293ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/befd91451f60f4b0d9fcc181426b39fbd556f679" data-alt="{\displaystyle {\begin{aligned}\operatorname {GRAD} {\vec {u}}=\mathbf {H} =\operatorname {GRAD} {\vec {\chi }}-\mathbf {1} =\mathbf {F-1} \\\rightarrow \quad \operatorname {sym} (\mathbf {F} ^{\top }\cdot \operatorname {GRAD} {\vec {u}})=\operatorname {sym} (\mathbf {(1+H^{\top })\cdot H} )\approx \operatorname {sym} (\mathbf {H} )={\frac {1}{2}}(\mathbf {H+H^{\top }} )={\boldsymbol {\varepsilon }}\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der symmetrische Anteil des Verschiebungsgradienten ist der <a href="https://de-m-wikipedia-org.translate.goog/wiki/Verzerrungstensor?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Linearisierter_Verzerrungstensor" title="Verzerrungstensor">linearisierte Verzerrungstensor</a>. Der zweite piola-kirchhoffsche Spannungstensor geht bei kleinen Verformungen in den cauchyschen Spannungstensor über und es resultiert der Arbeitssatz<sup id="cite_ref-9" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-9"><span class="cite-bracket">[</span>L 7<span class="cite-bracket">]</span></a></sup></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{v}{\boldsymbol {\sigma }}:{\boldsymbol {\varepsilon }}\,\mathrm {d} v=\int _{v}\rho \,{\vec {k}}\cdot {\vec {u}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {u}}\,\mathrm {d} a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ε<!-- ε --> </mi> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int _{v}{\boldsymbol {\sigma }}:{\boldsymbol {\varepsilon }}\,\mathrm {d} v=\int _{v}\rho \,{\vec {k}}\cdot {\vec {u}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {u}}\,\mathrm {d} a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a64137860bd5f7e14f1edbcc61a23b85bf410df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:37.529ex; height:5.676ex;" alt="{\displaystyle \int _{v}{\boldsymbol {\sigma }}:{\boldsymbol {\varepsilon }}\,\mathrm {d} v=\int _{v}\rho \,{\vec {k}}\cdot {\vec {u}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {u}}\,\mathrm {d} a}"> </noscript><span class="lazy-image-placeholder" style="width: 37.529ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a64137860bd5f7e14f1edbcc61a23b85bf410df" data-alt="{\displaystyle \int _{v}{\boldsymbol {\sigma }}:{\boldsymbol {\varepsilon }}\,\mathrm {d} v=\int _{v}\rho \,{\vec {k}}\cdot {\vec {u}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {u}}\,\mathrm {d} a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> <p>Der Integrand auf der linken Seite ist das Doppelte der Formänderungsenergie <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\sigma }}:{\boldsymbol {\varepsilon }}=2w}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> σ<!-- σ --> </mi> </mrow> <mo> : </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic"> ε<!-- ε --> </mi> </mrow> <mo> = </mo> <mn> 2 </mn> <mi> w </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\boldsymbol {\sigma }}:{\boldsymbol {\varepsilon }}=2w} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17f32cc1014228fc4b4c06f7a72a2969b596f8ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.686ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {\sigma }}:{\boldsymbol {\varepsilon }}=2w}"> </noscript><span class="lazy-image-placeholder" style="width: 10.686ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17f32cc1014228fc4b4c06f7a72a2969b596f8ab" data-alt="{\displaystyle {\boldsymbol {\sigma }}:{\boldsymbol {\varepsilon }}=2w}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und es entsteht der <i>Satz von Clapeyron</i><sup id="cite_ref-10" class="reference"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-10"><span class="cite-bracket">[</span>L 8<span class="cite-bracket">]</span></a></sup></p> <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\int _{v}w\,\mathrm {d} v=\int _{v}\rho \,{\vec {k}}\cdot {\vec {u}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {u}}\,\mathrm {d} a}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn> 2 </mn> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> w </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> = </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> v </mi> </mrow> </msub> <mi> ρ<!-- ρ --> </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> k </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> v </mi> <mo> + </mo> <msub> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> a </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> t </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> u </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> a </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle 2\int _{v}w\,\mathrm {d} v=\int _{v}\rho \,{\vec {k}}\cdot {\vec {u}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {u}}\,\mathrm {d} a} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82bf92f736d6d2e51d5cac6fe20608ad49151222" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:35.982ex; height:5.676ex;" alt="{\displaystyle 2\int _{v}w\,\mathrm {d} v=\int _{v}\rho \,{\vec {k}}\cdot {\vec {u}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {u}}\,\mathrm {d} a}"> </noscript><span class="lazy-image-placeholder" style="width: 35.982ex;height: 5.676ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82bf92f736d6d2e51d5cac6fe20608ad49151222" data-alt="{\displaystyle 2\int _{v}w\,\mathrm {d} v=\int _{v}\rho \,{\vec {k}}\cdot {\vec {u}}\,\mathrm {d} v+\int _{a}{\vec {t}}\cdot {\vec {u}}\,\mathrm {d} a}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </dd> </dl> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Fußnoten"><span id="Fu.C3.9Fnoten"></span>Fußnoten</h2><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=16&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Fußnoten" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <ol class="references"> <li id="cite_note-Frechet-2"><span class="mw-cite-backlink"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-Frechet_2-0">↑</a></span> <span class="reference-text">Die <a href="https://de-m-wikipedia-org.translate.goog/wiki/Fr%C3%A9chet-Ableitung?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Fréchet-Ableitung">Fréchet-Ableitung</a> einer Funktion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> f </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle f} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"> </noscript><span class="lazy-image-placeholder" style="width: 1.279ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" data-alt="{\displaystyle f}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> nach <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> ist der beschränkte lineare Operator <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {A}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> A </mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {A}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/280ae03440942ab348c2ca9b8db6b56ffa9618f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.903ex; height:2.343ex;" alt="{\displaystyle {\mathcal {A}}}"> </noscript><span class="lazy-image-placeholder" style="width: 1.903ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/280ae03440942ab348c2ca9b8db6b56ffa9618f8" data-alt="{\displaystyle {\mathcal {A}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> der – sofern er existiert – in alle Richtungen <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> h </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"> </noscript><span class="lazy-image-placeholder" style="width: 1.339ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" data-alt="{\displaystyle h}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> dem <a href="https://de-m-wikipedia-org.translate.goog/wiki/G%C3%A2teaux-Differential?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Gâteaux-Differential">Gâteaux-Differential</a> entspricht, also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {A}}(h)=\left.{\frac {\mathrm {d} }{\mathrm {d} s}}f(x+sh)\right|_{s=0}=\lim _{s\rightarrow 0}{\frac {f(x+sh)-f(x)}{s}}\quad {\text{für alle}}\;h}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> A </mi> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mi> h </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <msub> <mrow> <mo fence="true" stretchy="true" symmetric="true"></mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> d </mi> </mrow> <mi> s </mi> </mrow> </mfrac> </mrow> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> + </mo> <mi> s </mi> <mi> h </mi> <mo stretchy="false"> ) </mo> </mrow> <mo> | </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> </msub> <mo> = </mo> <munder> <mo movablelimits="true" form="prefix"> lim </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> s </mi> <mo stretchy="false"> →<!-- → --> </mo> <mn> 0 </mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> + </mo> <mi> s </mi> <mi> h </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mi> f </mi> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> </mrow> <mi> s </mi> </mfrac> </mrow> <mspace width="1em"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mtext> für alle </mtext> </mrow> <mspace width="thickmathspace"></mspace> <mi> h </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {A}}(h)=\left.{\frac {\mathrm {d} }{\mathrm {d} s}}f(x+sh)\right|_{s=0}=\lim _{s\rightarrow 0}{\frac {f(x+sh)-f(x)}{s}}\quad {\text{für alle}}\;h} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c50d743aff9cbf01be79dc8aba5b1affab2a72f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:60.727ex; height:6.176ex;" alt="{\displaystyle {\mathcal {A}}(h)=\left.{\frac {\mathrm {d} }{\mathrm {d} s}}f(x+sh)\right|_{s=0}=\lim _{s\rightarrow 0}{\frac {f(x+sh)-f(x)}{s}}\quad {\text{für alle}}\;h}"> </noscript><span class="lazy-image-placeholder" style="width: 60.727ex;height: 6.176ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c50d743aff9cbf01be79dc8aba5b1affab2a72f0" data-alt="{\displaystyle {\mathcal {A}}(h)=\left.{\frac {\mathrm {d} }{\mathrm {d} s}}f(x+sh)\right|_{s=0}=\lim _{s\rightarrow 0}{\frac {f(x+sh)-f(x)}{s}}\quad {\text{für alle}}\;h}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> gilt. Darin ist <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s\in \mathbb {R} \,,f,x\,{\textsf {und}}\,h}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> s </mi> <mo> ∈<!-- ∈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck"> R </mi> </mrow> <mspace width="thinmathspace"></mspace> <mo> , </mo> <mi> f </mi> <mo> , </mo> <mi> x </mi> <mspace width="thinmathspace"></mspace> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext mathvariant="sans-serif"> und </mtext> </mrow> </mrow> <mspace width="thinmathspace"></mspace> <mi> h </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle s\in \mathbb {R} \,,f,x\,{\textsf {und}}\,h} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9dbea5741432858342457ca6073c0098dfaf2ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.391ex; height:2.509ex;" alt="{\displaystyle s\in \mathbb {R} \,,f,x\,{\textsf {und}}\,h}"> </noscript><span class="lazy-image-placeholder" style="width: 16.391ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9dbea5741432858342457ca6073c0098dfaf2ca" data-alt="{\displaystyle s\in \mathbb {R} \,,f,x\,{\textsf {und}}\,h}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> skalar-, vektor- oder tensorwertig aber <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> x </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle x} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"> </noscript><span class="lazy-image-placeholder" style="width: 1.33ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" data-alt="{\displaystyle x}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> und <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> h </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle h} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"> </noscript><span class="lazy-image-placeholder" style="width: 1.339ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" data-alt="{\displaystyle h}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> gleichartig. Dann wird auch <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {A}}={\frac {\partial f}{\partial x}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script"> A </mi> </mrow> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> f </mi> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> x </mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\mathcal {A}}={\frac {\partial f}{\partial x}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5d851fc35445648bf933225a1d553ef67b9458f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:8.486ex; height:5.676ex;" alt="{\displaystyle {\mathcal {A}}={\frac {\partial f}{\partial x}}}"> </noscript><span class="lazy-image-placeholder" style="width: 8.486ex;height: 5.676ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5d851fc35445648bf933225a1d553ef67b9458f" data-alt="{\displaystyle {\mathcal {A}}={\frac {\partial f}{\partial x}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> geschrieben.</span></li> <li id="cite_note-prodregel-6"><span class="mw-cite-backlink">↑ <sup><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-prodregel_6-0">a</a></sup> <sup><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-prodregel_6-1">b</a></sup></span> <span class="reference-text">Beweis der Produktregel in <a href="https://de-m-wikipedia-org.translate.goog/wiki/Kartesische_Koordinaten?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Kartesische Koordinaten">kartesischen Koordinaten</a> mit <a href="https://de-m-wikipedia-org.translate.goog/wiki/Einsteinsche_Summenkonvention?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Einsteinsche Summenkonvention">einsteinscher Summenkonvention</a>: <dl> <dd> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\nabla \cdot (\mathbf {T} \times {\vec {f}})=&{\hat {e}}_{l}{\frac {\partial }{\partial x_{l}}}\cdot (\mathbf {T} \times {\vec {f}})=\left({\hat {e}}_{l}\cdot {\frac {\partial \mathbf {T} }{\partial x_{l}}}\right)\times {\vec {f}}+({\hat {e}}_{l}\cdot \mathbf {T} )\times {\frac {\partial {\vec {f}}}{\partial x_{l}}}\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\frac {\partial {\vec {f}}}{\partial x_{l}}}\times ({\hat {e}}_{l}\cdot \mathbf {T} )\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left({\frac {\partial {\vec {f}}}{\partial x_{l}}}\otimes {\hat {e}}_{l}\cdot \mathbf {T} \right)\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left((\nabla \otimes {\vec {f}})^{\top }\cdot \mathbf {T} \right)\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> </mtd> <mtd> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo stretchy="false"> ) </mo> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> + </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> ⊗<!-- ⊗ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> e </mi> <mo stretchy="false"> ^<!-- ^ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> l </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo> = </mo> </mtd> <mtd> <mi></mi> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> <mo stretchy="false"> ) </mo> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> i </mi> </mrow> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <mrow> <mo> ( </mo> <mrow> <mo stretchy="false"> ( </mo> <mi mathvariant="normal"> ∇<!-- ∇ --> </mi> <mo> ⊗<!-- ⊗ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> f </mi> <mo stretchy="false"> →<!-- → --> </mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal"> ⊤<!-- ⊤ --> </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> T </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}\nabla \cdot (\mathbf {T} \times {\vec {f}})=&{\hat {e}}_{l}{\frac {\partial }{\partial x_{l}}}\cdot (\mathbf {T} \times {\vec {f}})=\left({\hat {e}}_{l}\cdot {\frac {\partial \mathbf {T} }{\partial x_{l}}}\right)\times {\vec {f}}+({\hat {e}}_{l}\cdot \mathbf {T} )\times {\frac {\partial {\vec {f}}}{\partial x_{l}}}\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\frac {\partial {\vec {f}}}{\partial x_{l}}}\times ({\hat {e}}_{l}\cdot \mathbf {T} )\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left({\frac {\partial {\vec {f}}}{\partial x_{l}}}\otimes {\hat {e}}_{l}\cdot \mathbf {T} \right)\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left((\nabla \otimes {\vec {f}})^{\top }\cdot \mathbf {T} \right)\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f7bcfd064ce9a68899a0713030f305f676c2f37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.224ex; margin-bottom: -0.281ex; width:67.24ex; height:26.176ex;" alt="{\displaystyle {\begin{aligned}\nabla \cdot (\mathbf {T} \times {\vec {f}})=&{\hat {e}}_{l}{\frac {\partial }{\partial x_{l}}}\cdot (\mathbf {T} \times {\vec {f}})=\left({\hat {e}}_{l}\cdot {\frac {\partial \mathbf {T} }{\partial x_{l}}}\right)\times {\vec {f}}+({\hat {e}}_{l}\cdot \mathbf {T} )\times {\frac {\partial {\vec {f}}}{\partial x_{l}}}\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\frac {\partial {\vec {f}}}{\partial x_{l}}}\times ({\hat {e}}_{l}\cdot \mathbf {T} )\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left({\frac {\partial {\vec {f}}}{\partial x_{l}}}\otimes {\hat {e}}_{l}\cdot \mathbf {T} \right)\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left((\nabla \otimes {\vec {f}})^{\top }\cdot \mathbf {T} \right)\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 67.24ex;height: 26.176ex;vertical-align: -12.224ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f7bcfd064ce9a68899a0713030f305f676c2f37" data-alt="{\displaystyle {\begin{aligned}\nabla \cdot (\mathbf {T} \times {\vec {f}})=&{\hat {e}}_{l}{\frac {\partial }{\partial x_{l}}}\cdot (\mathbf {T} \times {\vec {f}})=\left({\hat {e}}_{l}\cdot {\frac {\partial \mathbf {T} }{\partial x_{l}}}\right)\times {\vec {f}}+({\hat {e}}_{l}\cdot \mathbf {T} )\times {\frac {\partial {\vec {f}}}{\partial x_{l}}}\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\frac {\partial {\vec {f}}}{\partial x_{l}}}\times ({\hat {e}}_{l}\cdot \mathbf {T} )\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left({\frac {\partial {\vec {f}}}{\partial x_{l}}}\otimes {\hat {e}}_{l}\cdot \mathbf {T} \right)\\=&(\nabla \cdot \mathbf {T} )\times {\vec {f}}-{\vec {\mathrm {i} }}\left((\nabla \otimes {\vec {f}})^{\top }\cdot \mathbf {T} \right)\end{aligned}}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span><br> </dd> </dl> Siehe auch <a href="https://de-m-wikipedia-org.translate.goog/wiki/Vektorinvariante?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Vektorinvariante">Vektorinvariante</a> und <a href="https://de-m-wikipedia-org.translate.goog/wiki/Formelsammlung_Tensoralgebra?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Kreuzprodukt_eines_Vektors_mit_einem_Tensor" title="Formelsammlung Tensoralgebra">Formelsammlung Tensoralgebra#Kreuzprodukt eines Vektors mit einem Tensor</a></span></li> </ol> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Literatur">Literatur</h2><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=17&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Literatur" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <ul> <li><a href="https://de-m-wikipedia-org.translate.goog/wiki/Holm_Altenbach?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Holm Altenbach">Holm Altenbach</a>: <cite style="font-style:italic">Kontinuumsmechanik</cite>. Springer, 2012, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/9783642241185?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 978-3-642-24118-5</a>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=Holm+Altenbach&rft.btitle=Kontinuumsmechanik&rft.date=2012&rft.genre=book&rft.isbn=9783642241185&rft.pub=Springer" style="display:none"> </span></li> <li>Ralf Greve: <cite style="font-style:italic">Kontinuumsmechanik</cite>. Ein Grundkurs für Ingenieure und Physiker. Springer, Berlin u. a. 2003, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/3540007601?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 3-540-00760-1</a>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=Ralf+Greve&rft.btitle=Kontinuumsmechanik&rft.date=2003&rft.genre=book&rft.isbn=3540007601&rft.place=Berlin+u.+a.&rft.pub=Springer" style="display:none"> </span></li> <li><a href="https://de-m-wikipedia-org.translate.goog/wiki/Morton_Gurtin?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Morton Gurtin">Morton E. Gurtin</a>: <cite style="font-style:italic">The Linear Theory of Elasticity</cite>. In: <a href="https://de-m-wikipedia-org.translate.goog/wiki/Clifford_Truesdell?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Clifford Truesdell">C. Truesdell</a> (Hrsg.): <cite style="font-style:italic">Festkörpermechanik : Teil 2</cite> (= <a href="https://de-m-wikipedia-org.translate.goog/wiki/Siegfried_Fl%C3%BCgge?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Siegfried Flügge">S. Flügge</a> [Hrsg.]: <cite style="font-style:italic">Handbuch der Physik</cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em"> </span>6</span>a, Teilbd. 2). Springer, Berlin/Heidelberg 1972, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/3540055355?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 3-540-05535-5</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>1–295</span>, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Digital_Object_Identifier?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1007/978-3-662-39776-3_1">10.1007/978-3-662-39776-3_1</a></span> (DOI der englischen Ausgabe).<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.atitle=The+Linear+Theory+of+Elasticity&rft.au=Morton+E.+Gurtin&rft.btitle=Festk%C3%B6rpermechanik+%3A+Teil+2&rft.date=1972&rft.doi=10.1007%2F978-3-662-39776-3_1&rft.genre=book&rft.isbn=3540055355&rft.pages=1-295&rft.place=Berlin%2FHeidelberg&rft.pub=Springer&rft.series=Handbuch+der+Physik" style="display:none"> </span></li> <li>P. Haupt: <cite style="font-style:italic">Continuum Mechanics and Theory of Materials</cite>. Springer, 2002, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/9783642077180?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 978-3-642-07718-0</a>, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Digital_Object_Identifier?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1007/978-3-662-04775-0">10.1007/978-3-662-04775-0</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=P.+Haupt&rft.btitle=Continuum+Mechanics+and+Theory+of+Materials&rft.date=2002&rft.doi=10.1007%2F978-3-662-04775-0&rft.genre=book&rft.isbn=9783642077180&rft.pub=Springer" style="display:none"> </span></li> </ul> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Einzelnachweise">Einzelnachweise</h2><span class="mw-editsection"> <a role="button" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=edit&section=18&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Abschnitt bearbeiten: Einzelnachweise" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>Bearbeiten</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <ol class="references"> <li id="cite_note-szabo-1"><span class="mw-cite-backlink">↑ <sup><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-szabo_1-0">a</a></sup> <sup><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-szabo_1-1">b</a></sup></span> <span class="reference-text"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Istv%C3%A1n_Szab%C3%B3_(Ingenieur)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="István Szabó (Ingenieur)">István Szabó</a>: <cite style="font-style:italic">Geschichte der mechanischen Prinzipien</cite>. Springer, 2013, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/9783034853019?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 978-3-0348-5301-9</a> (<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.de/books?id%3DSJOmBgAAQBAJ%26pg%3DPA27%23v%3Donepage">eingeschränkte Vorschau</a> in der Google-Buchsuche [abgerufen am 2. Mai 2021]).<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=Istv%C3%A1n+Szab%C3%B3&rft.btitle=Geschichte+der+mechanischen+Prinzipien&rft.date=2013&rft.genre=book&rft.isbn=9783034853019&rft.pub=Springer" style="display:none"> </span></span></li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-3">↑</a></span> <span class="reference-text">P. Haupt: <cite style="font-style:italic">Continuum Mechanics and Theory of Materials</cite>. Springer, 2002, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/9783642077180?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 978-3-642-07718-0</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>141</span>, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Digital_Object_Identifier?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1007/978-3-662-04775-0">10.1007/978-3-662-04775-0</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=P.+Haupt&rft.btitle=Continuum+Mechanics+and+Theory+of+Materials&rft.date=2002&rft.doi=10.1007%2F978-3-662-04775-0&rft.genre=book&rft.isbn=9783642077180&rft.pages=141&rft.pub=Springer" style="display:none"> </span></span></li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-4">↑</a></span> <span class="reference-text">P. Haupt: <cite style="font-style:italic">Continuum Mechanics and Theory of Materials</cite>. Springer, 2002, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/9783642077180?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 978-3-642-07718-0</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>144</span>, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Digital_Object_Identifier?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1007/978-3-662-04775-0">10.1007/978-3-662-04775-0</a></span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=P.+Haupt&rft.btitle=Continuum+Mechanics+and+Theory+of+Materials&rft.date=2002&rft.doi=10.1007%2F978-3-662-04775-0&rft.genre=book&rft.isbn=9783642077180&rft.pages=144&rft.pub=Springer" style="display:none"> </span></span></li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-5">↑</a></span> <span class="reference-text">Ralf Greve: <cite style="font-style:italic">Kontinuumsmechanik</cite>. Ein Grundkurs für Ingenieure und Physiker. Springer, Berlin u. a. 2003, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/3540007601?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 3-540-00760-1</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>74</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=Ralf+Greve&rft.btitle=Kontinuumsmechanik&rft.date=2003&rft.genre=book&rft.isbn=3540007601&rft.pages=74&rft.place=Berlin+u.+a.&rft.pub=Springer" style="display:none"> </span></span></li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-7">↑</a></span> <span class="reference-text">W. H. Müller: <cite style="font-style:italic">Streifzüge durch die Kontinuumstheorie</cite>. Springer, 2011, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/9783642198694?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 978-3-642-19869-4</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>72</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=W.+H.+M%C3%BCller&rft.btitle=Streifz%C3%BCge+durch+die+Kontinuumstheorie&rft.date=2011&rft.genre=book&rft.isbn=9783642198694&rft.pages=72&rft.pub=Springer" style="display:none"> </span></span></li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-8">↑</a></span> <span class="reference-text">Ralf Sube: <cite style="font-style:italic">Wörterbuch Physik Englisch: German-English</cite>. Routledge, London 2001, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/9780415173384?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 978-0-415-17338-4</a> (<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.de/books?id%3Dvai7wiq5HIYC%26pg%3DPA1200%23v%3Donepage">eingeschränkte Vorschau</a> in der Google-Buchsuche [abgerufen am 17. März 2017]).<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=Ralf+Sube&rft.btitle=W%C3%B6rterbuch+Physik+Englisch%3A+German-English&rft.date=2001&rft.genre=book&rft.isbn=9780415173384&rft.place=London&rft.pub=Routledge" style="display:none"> </span></span></li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-9">↑</a></span> <span class="reference-text"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Morton_Gurtin?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Morton Gurtin">Morton E. Gurtin</a>: <cite style="font-style:italic">The Linear Theory of Elasticity</cite>. In: <a href="https://de-m-wikipedia-org.translate.goog/wiki/Clifford_Truesdell?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Clifford Truesdell">C. Truesdell</a> (Hrsg.): <cite style="font-style:italic">Festkörpermechanik : Teil 2</cite> (= <a href="https://de-m-wikipedia-org.translate.goog/wiki/Siegfried_Fl%C3%BCgge?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Siegfried Flügge">S. Flügge</a> [Hrsg.]: <cite style="font-style:italic">Handbuch der Physik</cite>. <span style="white-space:nowrap">Band<span style="display:inline-block;width:.2em"> </span>6</span>a, Teilbd. 2). Springer, Berlin/Heidelberg 1972, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/3540055355?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 3-540-05535-5</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>1–295</span>, <span style="white-space:nowrap">hier S. 60</span>, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Digital_Object_Identifier?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Digital Object Identifier">doi</a>:<span class="uri-handle" style="white-space:nowrap"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1007/978-3-662-39776-3_1">10.1007/978-3-662-39776-3_1</a></span> (DOI der englischen Ausgabe).<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.atitle=The+Linear+Theory+of+Elasticity&rft.au=Morton+E.+Gurtin&rft.btitle=Festk%C3%B6rpermechanik+%3A+Teil+2&rft.date=1972&rft.doi=10.1007%2F978-3-662-39776-3_1&rft.genre=book&rft.isbn=3540055355&rft.pages=1-295&rft.place=Berlin%2FHeidelberg&rft.pub=Springer&rft.series=Handbuch+der+Physik" style="display:none"> </span></span></li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Cauchy-eulersche_Bewegungsgesetze?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-10">↑</a></span> <span class="reference-text">Martin H. Sadd: <cite style="font-style:italic">Elasticity – Theory, applications and numerics</cite>. Elsevier Butterworth-Heinemann, 2005, <a href="https://de-m-wikipedia-org.translate.goog/wiki/Spezial:ISBN-Suche/0126058113?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="internal mw-magiclink-isbn">ISBN 0-12-605811-3</a>, <span style="white-space:nowrap">S.<span style="display:inline-block;width:.2em"> </span>110</span>.<span class="Z3988" title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rfr_id=info:sid/de.wikipedia.org:Cauchy-eulersche+Bewegungsgesetze&rft.au=Martin+H.+Sadd&rft.btitle=Elasticity+-+Theory%2C+applications+and+numerics&rft.date=2005&rft.genre=book&rft.isbn=0126058113&rft.pages=110&rft.pub=Elsevier+Butterworth-Heinemann" style="display:none"> </span></span></li> </ol> </section> </div><!-- MobileFormatter took 0.133 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&useformat=mobile" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Abgerufen von „<a dir="ltr" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.wikipedia.org/w/index.php?title%3DCauchy-eulersche_Bewegungsgesetze%26oldid%3D248111095">https://de.wikipedia.org/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&oldid=248111095</a>“ </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://de-m-wikipedia-org.translate.goog/w/index.php?title=Cauchy-eulersche_Bewegungsgesetze&action=history&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="RaschenTechner" data-user-gender="unknown" data-timestamp="1724837191"> <span>Zuletzt bearbeitet am 28. August 2024 um 10:26</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Sprachen</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://af.wikipedia.org/wiki/Euler_se_bewegingswette" title="Euler se bewegingswette – Afrikaans" lang="af" hreflang="af" data-title="Euler se bewegingswette" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ar.wikipedia.org/wiki/%25D9%2582%25D8%25A7%25D9%2586%25D9%2588%25D9%2586%25D9%258A_%25D8%25A3%25D9%2588%25D9%258A%25D9%2584%25D8%25B1_%25D9%2584%25D9%2584%25D8%25AD%25D8%25B1%25D9%2583%25D8%25A9" title="قانوني أويلر للحركة – Arabisch" lang="ar" hreflang="ar" data-title="قانوني أويلر للحركة" data-language-autonym="العربية" data-language-local-name="Arabisch" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ca.wikipedia.org/wiki/Lleis_del_moviment_d%2527Euler" title="Lleis del moviment d'Euler – Katalanisch" lang="ca" hreflang="ca" data-title="Lleis del moviment d'Euler" data-language-autonym="Català" data-language-local-name="Katalanisch" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/wiki/Euler%2527s_laws_of_motion" title="Euler's laws of motion – Englisch" lang="en" hreflang="en" data-title="Euler's laws of motion" data-language-autonym="English" data-language-local-name="Englisch" class="interlanguage-link-target"><span>English</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fa.wikipedia.org/wiki/%25D9%2582%25D9%2588%25D8%25A7%25D9%2586%25DB%258C%25D9%2586_%25D8%25AD%25D8%25B1%25DA%25A9%25D8%25AA_%25D8%25A7%25D9%2588%25DB%258C%25D9%2584%25D8%25B1" title="قوانین حرکت اویلر – Persisch" lang="fa" hreflang="fa" data-title="قوانین حرکت اویلر" data-language-autonym="فارسی" data-language-local-name="Persisch" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-id mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://id.wikipedia.org/wiki/Hukum_gerak_Euler" title="Hukum gerak Euler – Indonesisch" lang="id" hreflang="id" data-title="Hukum gerak Euler" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesisch" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://it.wikipedia.org/wiki/Equazioni_di_Eulero_(dinamica)" title="Equazioni di Eulero (dinamica) – Italienisch" lang="it" hreflang="it" data-title="Equazioni di Eulero (dinamica)" data-language-autonym="Italiano" data-language-local-name="Italienisch" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mk.wikipedia.org/wiki/%25D0%259E%25D1%2598%25D0%25BB%25D0%25B5%25D1%2580%25D0%25BE%25D0%25B2%25D0%25B8_%25D0%25B7%25D0%25B0%25D0%25BA%25D0%25BE%25D0%25BD%25D0%25B8_%25D0%25B7%25D0%25B0_%25D0%25B4%25D0%25B2%25D0%25B8%25D0%25B6%25D0%25B5%25D1%259A%25D0%25B5" title="Ојлерови закони за движење – Mazedonisch" lang="mk" hreflang="mk" data-title="Ојлерови закони за движење" data-language-autonym="Македонски" data-language-local-name="Mazedonisch" class="interlanguage-link-target"><span>Македонски</span></a></li> <li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ro.wikipedia.org/wiki/Legile_mi%25C8%2599c%25C4%2583rii_ale_lui_Euler" title="Legile mișcării ale lui Euler – Rumänisch" lang="ro" hreflang="ro" data-title="Legile mișcării ale lui Euler" data-language-autonym="Română" data-language-local-name="Rumänisch" class="interlanguage-link-target"><span>Română</span></a></li> <li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://vi.wikipedia.org/wiki/%25C4%2590%25E1%25BB%258Bnh_lu%25E1%25BA%25ADt_chuy%25E1%25BB%2583n_%25C4%2591%25E1%25BB%2599ng_c%25E1%25BB%25A7a_Euler" title="Định luật chuyển động của Euler – Vietnamesisch" lang="vi" hreflang="vi" data-title="Định luật chuyển động của Euler" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamesisch" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh.wikipedia.org/wiki/%25E6%25AD%2590%25E6%258B%2589%25E9%2581%258B%25E5%258B%2595%25E5%25AE%259A%25E5%25BE%258B" title="歐拉運動定律 – Chinesisch" lang="zh" hreflang="zh" data-title="歐拉運動定律" data-language-autonym="中文" data-language-local-name="Chinesisch" class="interlanguage-link-target"><span>中文</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">Diese Seite wurde zuletzt am 28. August 2024 um 10:26 Uhr bearbeitet.</li> <li id="footer-info-copyright"> <div id="footer-info-copyright-stats" class="noprint"> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pageviews.wmcloud.org/?pages%3DCauchy-eulersche_Bewegungsgesetze%26project%3Dde.wikipedia.org">Abrufstatistik</a> · <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://xtools.wmcloud.org/authorship/de.wikipedia.org/Cauchy-eulersche_Bewegungsgesetze">Autoren</a> </div> <div id="footer-info-copyright-separator"> <br> </div><p>Der Inhalt ist verfügbar unter <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://creativecommons.org/licenses/by-sa/4.0/deed.de">CC BY-SA 4.0</a>, sofern nicht anders angegeben.</p></li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/de">Datenschutz</a></li> <li id="footer-places-about"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Wikipedia:%C3%9Cber_Wikipedia?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">Über Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://de-m-wikipedia-org.translate.goog/wiki/Wikipedia:Impressum?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">Impressum</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Verhaltenskodex</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://developer.wikimedia.org">Entwickler</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://stats.wikimedia.org/%23/de.wikipedia.org">Statistiken</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Stellungnahme zu Cookies</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/de">Nutzungsbedingungen</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://de.wikipedia.org/w/index.php?title%3DCauchy-eulersche_Bewegungsgesetze%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Klassische Ansicht</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-w5dxt","wgBackendResponseTime":329,"wgPageParseReport":{"limitreport":{"cputime":"0.423","walltime":"0.706","ppvisitednodes":{"value":1720,"limit":1000000},"postexpandincludesize":{"value":20535,"limit":2097152},"templateargumentsize":{"value":272,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":17834,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 206.567 1 -total"," 66.16% 136.661 12 Vorlage:Literatur"," 13.43% 27.739 2 Vorlage:Google_Buch"," 11.41% 23.567 1 Vorlage:EnS"," 9.53% 19.678 1 Vorlage:Anker"," 3.91% 8.076 2 Vorlage:Str_find"," 2.30% 4.754 1 Vorlage:Hauptartikel"]},"scribunto":{"limitreport-timeusage":{"value":"0.098","limit":"10.000"},"limitreport-memusage":{"value":4487141,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5cd4cd96d5-rmh5s","timestamp":"20241127002530","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Cauchy-eulersche Bewegungsgesetze","url":"https:\/\/de.wikipedia.org\/wiki\/Cauchy-eulersche_Bewegungsgesetze","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5408983","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5408983","author":{"@type":"Organization","name":"Autoren der Wikimedia-Projekte"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2015-07-03T09:37:15Z"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('de', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&hl=en-GB&client=wt" type="text/javascript"></script> </body> </html>