CINXE.COM

Search results for: organochlorine pesticide

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: organochlorine pesticide</title> <meta name="description" content="Search results for: organochlorine pesticide"> <meta name="keywords" content="organochlorine pesticide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="organochlorine pesticide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="organochlorine pesticide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 154</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: organochlorine pesticide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Organochlorine and Organophosphorus Pesticide Residues in Fish Samples from Lake Chad, Baga, North Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Akan">J. C. Akan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20I.%20%20Abdulrahman"> F. I. Abdulrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20M.%20Chellube"> Z. M. Chellube</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the levels of some organochlorine (o, p-DDE, p,p’-DDD, o,p’-DDD, p,p’-DDT, p,p’-DDT, α-BHC, γ-BHC, lindane, Endosulfan sulphate, dieldrin and aldrin and organophosphorus (Dichlorvos, Diazinon, Chlorpyrifos, fenitrothion and Fenitrothion) pesticide residues in the gills, liver, stomach, kidney and flesh of four fish species (Tilapia zilli, Clarias anguillaris Hetrotis niloticus and Oreochronmis niloticus) between the periods of September 2010 to October, 2011. Samples were collected from Kwantan turare in Lake Chad, Baga, Borno State, Nigeria. Extraction of the fish samples and de-fattening of the fish sample extracts were performed using standard procedures. Analysis of the fish samples for pesticide residues were carried out using Shimadzu GC/MS (GC – 17A), equipped with fluorescence detector. Large differences in the levels of pesticide residues were observed between tissues within each fish. The concentrations of all the organophosphorus pesticides were higher in the organs of Oreochronmis niloticus, while Hetrotis niloticus shows the lowest. For organochlorine pesticides, the organs of Tilapia zilli showed the highest concentrations, while Hetrotis niloticus shows the lowest. The highest pesticide concentrations were observed in gills and liver tissues of all the species of fish study, while the lowest concentrations were observed in flesh. Based on the above results, it can therefore be concluded that the concentrations of pesticide in the four fish species study did exceed the permissible limits set by FAO and FEPA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organochlorine" title="organochlorine">organochlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphorus" title=" organophosphorus"> organophosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=accumulation" title=" accumulation"> accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20chad" title=" lake chad"> lake chad</a> </p> <a href="https://publications.waset.org/abstracts/1908/organochlorine-and-organophosphorus-pesticide-residues-in-fish-samples-from-lake-chad-baga-north-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">700</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Comparative Assessment of Organo-Chlorine Pesticides Residue in Fruits and Fruit Juices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saidu%20Garba%20Okereafor%20Stella">Saidu Garba Okereafor Stella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of 15 organochlorine pesticides residue was assessed from 29 different fruits and fruit juice samples from selected farms in Kaduna and Niger States using the quick easy cheap effective rugged and safe (QuEChERS), followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The results showed the presence of varying concentrations of ten (10) organochlorine pesticide residues in all the samples with Endrin ketone showing the highest concentration in 3 samples from Kaduna (guava juice 1 and 2 0.099 to 0.145 mg/kg) and Niger States (orange juice J19 0.102 mg/kg). The heptachlor was detected at high concentration in 11 samples, 7 samples from Kaduna State (mango juice 0.011 mg/kg, Washington orange 0.014 mg/kg, Valencia orange fruit 0.020 mg/kg, orange juice 0.011, white guava fruit 0.024 mg/kg, guava juice 0.023 mg/kg, guava juice 2 0.024 mg/kg) and 4 samples from (mango juice 1 0.015 mg/kg, pineapple juice 1 0.0120 mg/kg pineapple juice 2 011 mg/kg and mix juice 2 0.012 mg/kg) from Niger State. Dieldrine and endosulfansulfate were detected at high levels in one sample each from Niger (guava fruit 0.019 mg/kg and mixed juice1 0.011mg/kg), respectively. However, all were above the maximum residue limits (MRLs) set by WHO/FAO which suggest that people consuming these type of contaminated fruits and fruits juices may contact diseases associated with those organochlorine pesticides residue. Minute concentrations of other organochlorines (α- BHC, δ- BHC, β- BHC, Lindane, and p’p DDT) ranged from 0.003 to 0.015 were recorded below the MRLs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fruits%20and%20fruits%20juices" title="fruits and fruits juices">fruits and fruits juices</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide%20residue" title=" organochlorine pesticide residue"> organochlorine pesticide residue</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20studies" title=" comparative studies"> comparative studies</a>, <a href="https://publications.waset.org/abstracts/search?q=gc-ms%20spectrophometer" title=" gc-ms spectrophometer"> gc-ms spectrophometer</a> </p> <a href="https://publications.waset.org/abstracts/136919/comparative-assessment-of-organo-chlorine-pesticides-residue-in-fruits-and-fruit-juices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Occurrence and Spatial Distribution of Pesticide Residues in Butter and Ghee (Clarified Butter Fat) in Punjab (India)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Bedi">J. S. Bedi</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20S.%20Gill"> J. P. S. Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Aulakh"> R. S. Aulakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhjit%20Kaur"> Prabhjit Kaur </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was undertaken to monitor organochlorine, organophosphate and synthetic pyrethroid pesticide residues in butter and ghee samples collected from six different districts of Punjab. The estimation of pesticide residues was done by multiple residue analytical technique using gas chromatography equipped with GC-ECD and GC-FTD. The confirmation of residues was done on gas chromatography mass spectrometry in both SIM and Scan mode. Results indicated the presence of HCH and pp DDE as predominant contaminant in both butter and ghee even after their ban/restriction on usage in India. Residues of HCH were detected in 25.5 and 23.2 % samples of butter and ghee, respectively, while residues of pp DDE were recorded in 29.3 and 25.0 % butter and ghee samples, respectively. More importantly, the presence of endosulfan, cypermethrin, fenvalerate, deltamethrin and chlorpyrifos was observed in few butter and ghee samples indicating the serious concerns. The spatial variation of pesticide residues occurrence indicated the cotton belt of Punjab as most affected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butter" title="butter">butter</a>, <a href="https://publications.waset.org/abstracts/search?q=ghee" title=" ghee"> ghee</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides%20residues" title=" pesticides residues"> pesticides residues</a>, <a href="https://publications.waset.org/abstracts/search?q=Punjab" title=" Punjab"> Punjab</a> </p> <a href="https://publications.waset.org/abstracts/24490/occurrence-and-spatial-distribution-of-pesticide-residues-in-butter-and-ghee-clarified-butter-fat-in-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Determination of Some Organochlorine Pesticide Residues in Vegetable and Soil Samples from Alau Dam and Gongulong Agricultural Sites, Borno State, North Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Clement%20Akan">Joseph Clement Akan</a>, <a href="https://publications.waset.org/abstracts/search?q=Lami%20Jafiya"> Lami Jafiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaynab%20Muhammad%20Chellube"> Zaynab Muhammad Chellube</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakari%20Mohammed"> Zakari Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanna%20Inna%20Abdulrahman"> Fanna Inna Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Five vegetables (spinach, lettuce, cabbage, tomato, and onion) were freshly harvested from the Alau Dam and Gongulong agricultural areas for the determination of some organochlorine pesticide residues (o, p-DDE, p,p’-DDD, o,p’-DDD, p,p’-DDT, α-BHC, γ-BHC, metoxichlor, lindane, endosulfan dieldrin, and aldrin.) Soil samples were also collected at different depths for the determination of the above pesticides. Samples collection and preparation were conducted using standard procedures. The concentrations of all the pesticides in the soil and vegetable samples were determined using GC/MS SHIMADZU (GC-17A) equipped with electron capture detector (ECD). The highest concentration was that of p,p’-DDD (132.4±13.45µg/g) which was observed in the leaf of cabbage, while the lowest concentration was that of p,p’-DDT (2.34µg/g) was observed in the root of spinach. Similar trends were observed at the Gongulong agricultural area, with p,p’-DDD having the highest concentration of 153.23µg/g in the leaf of cabbage, while the lowest concentration was that of p,p’-DDT (12.45µg/g) which was observed in the root of spinach. α-BHC, γ-BHC, Methoxychlor, and lindane were detected in all the vegetable samples studied. The concentrations of all the pesticides in the soil samples were observed to be higher at a depth of 21-30cm, while the lowest concentrations were observed at a depth of 0-10cm. The concentrations of all the pesticides in the vegetables and soil samples from the two agricultural sites were observed to be at alarming levels, much higher than the maximum residue limits (MRLs) and acceptable daily intake values (ADIs) .The levels of the pesticides observed in the vegetables and soil samples investigated, are of such a magnitude that calls for special attention and laws to regulate the use and circulation of such chemicals. Routine monitoring of pesticide residues in these study areas is necessary for the prevention, control and reduction of environmental pollution, so as to minimize health risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alau%20Dam" title="Alau Dam">Alau Dam</a>, <a href="https://publications.waset.org/abstracts/search?q=gongulong" title=" gongulong"> gongulong</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine" title=" organochlorine"> organochlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a> </p> <a href="https://publications.waset.org/abstracts/1905/determination-of-some-organochlorine-pesticide-residues-in-vegetable-and-soil-samples-from-alau-dam-and-gongulong-agricultural-sites-borno-state-north-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Transcriptomic Response of Calmodulin Encoding Gene (CaM) in Pesticide Utilizing Talaromyces Fungal Strains </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20D.%20Asemoloye">M. D. Asemoloye</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Jonathan"> S. G. Jonathan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rafiq"> A. Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20J.%20Olawuyi"> O. J. Olawuyi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20O.%20Adejoye"> D. O. Adejoye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calmodulin is one of the intracellular calcium proteins that regulates large spectrum of enzymes and cellular functions including metabolism of cyclic nucleotides and glycogen. The potentials of calmodulin gene in fungi necessitates their genetic response and their strong cassette of enzyme secretions for pesticide degradation. Therefore, this study was carried out to investigate the ‘Transcriptomic’ response of calmodulin encoding genes in Talaromyces fungi in response to 2, 2-dichlorovinyl dimethyl phosphate (DDVP or Dichlorvos) an organophosphate pesticide and γ-Hexachlorocyclohexane (Lindane) an organochlorine pesticide. Fungi strains isolated from rhizosphere from grasses rhizosphere in pesticide polluted sites were subjected to percentage incidence test. Two most frequent fungi were further characterized using ITS gene amplification (ITS1 and ITS4 combinations), they were thereafter subjected to In-vitro DDVP and lindane tolerance tests at different concentrations. They were also screened for presence and expression of calmodulin gene (caM) using RT-PCR technique. The two Talaromyces strains had the highest incidence of 50-72% in pesticide polluted site, they were both identified as Talaromyces astroroseus asemoG and Talaromyces purpurogenum asemoN submitted in NCBI gene-bank with accession numbers KY488464 and KY488468 respectively. T. astroroseus KY488464 tolerated DDVP (1.23±0.023 cm) and lindane (1.11±0.018 cm) at 25 % concentration while T. purpurogenum KY488468 tolerated DDVP (1.33±0.061 cm) and lindane (1.54±0.077 cm) at this concentration. Calmodulin gene was detected in both strains, but RT-PCR expression of caM gene revealed at 900-1000 bp showed an under-expression of caM in T. astrorosues KY488464 but overexpressed in T. purpurogenum KY488464. Thus, the calmodulin gene response of these fungal strains to both pesticides could be considered in monitoring the potentials of fungal strains to pesticide tolerance and bioremediation of pesticide in polluted soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Calmodulin%20gene" title="Calmodulin gene">Calmodulin gene</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR" title=" RT-PCR"> RT-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=talaromyces" title=" talaromyces"> talaromyces</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/77765/transcriptomic-response-of-calmodulin-encoding-gene-cam-in-pesticide-utilizing-talaromyces-fungal-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Farmers’ Awareness and Behavior of Chemical Pesticide Uses in Suan Luang Sub-District Municipality, Ampawa, Samut Songkram, Thailand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paiboon%20Jeamponk">Paiboon Jeamponk</a>, <a href="https://publications.waset.org/abstracts/search?q=Tikamporn%20Thipsaeng"> Tikamporn Thipsaeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to investigate farmers’ level of awareness and behavior of chemical pesticide uses, by using a case study of Suan Luang Sub- District Municipality, Ampawa, Samut Songkram Province. Questionnaire was employed in this study with the farmers from 46 households to explore their level of awareness in chemical pesticide uses, while interview and observation were adopted in exploring their behavior of chemical pesticide uses. The findings reflected the farmers’ high level of awareness in chemical pesticide uses in the hazardous effects of the chemical to human and environmental health, while their behavior of chemical pesticide uses explained their awareness paid to the right way of using pesticides, for instance reading the direction on the label, keeping children and animals away from the area of pesticide mixing, covering body with clothes and wearing hat and mask, no smoking, eating or drinking during pesticide spray or standing in windward direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=awareness" title="awareness">awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior" title=" behavior"> behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a> </p> <a href="https://publications.waset.org/abstracts/8902/farmers-awareness-and-behavior-of-chemical-pesticide-uses-in-suan-luang-sub-district-municipality-ampawa-samut-songkram-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Plants and Microorganisms for Phytoremediation of Soils Polluted with Organochlorine Pesticides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maritsa%20Kurashvili">Maritsa Kurashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Adamia"> George Adamia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Ananiashvili"> Tamar Ananiashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Lia%20Amiranasvili"> Lia Amiranasvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Varazi"> Tamar Varazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Pruidze"> Marina Pruidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlen%20Gordeziani"> Marlen Gordeziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Gia%20Khatisashvili"> Gia Khatisashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of presented work is the development phytoremediation method targeted to cleaning environment polluted with organochlorine pesticides, based on joint application of plants and microorganisms. For this aim the selection of plants and microorganisms with corresponding capabilities towards three organochlorine pesticides (Lindane, DDT and PCP) has been carried out. The tolerance of plants to tested pesticides and induction degree of plant detoxification enzymes by these compounds have been used as main criteria for estimating the applicability of plants in proposed technology. Obtained results show that alfalfa, maize and soybean among tested six plant species have highest tolerance to pesticides. As a result of screening, more than 30 strains from genera Pseudomonas have been selected. As a result of GC analysis of incubation area, 11 active cultures for investigated pesticides are carefully chosen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DDT" title="DDT">DDT</a>, <a href="https://publications.waset.org/abstracts/search?q=Lindane" title=" Lindane"> Lindane</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticides" title=" organochlorine pesticides"> organochlorine pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=PCP" title=" PCP"> PCP</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/3753/plants-and-microorganisms-for-phytoremediation-of-soils-polluted-with-organochlorine-pesticides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Pesticide Residue Determination on Cumin Plant (Nigella orientalis L.) with LC-MS/MS and GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilda%20Ersoy">Nilda Ersoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevin%C3%A7%20%C5%9Eener"> Sevinç Şener</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Yal%C3%A7%C4%B1n%20Elidemir"> Ayşe Yalçın Elidemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Evcil"> Ebru Evcil</a>, <a href="https://publications.waset.org/abstracts/search?q=Erg%C3%BCn%20D%C3%B6%C4%9Fen"> Ergün Döğen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, pesticide residues were investigated in black cumin (Nigella orientalis L.) seeds grown in Turkey. GC-MS and LC-MS/MS analytical instruments are used in high precision when determining residue limits. A total of 100 pesticide active ingredients in LC-MS/MS devices have been performed in Nigella orientalis L. seeds samples. Also for the same aim, 103 pesticide active ingredients were analyzed in GC-MS. This study was conducted in 2012 and 2013. Sample residues were not found in detectable levels for two years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cumin" title=" black cumin"> black cumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20orientalis%20L." title=" Nigella orientalis L."> Nigella orientalis L.</a> </p> <a href="https://publications.waset.org/abstracts/14955/pesticide-residue-determination-on-cumin-plant-nigella-orientalis-l-with-lc-msms-and-gc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> A Review on the Mechanism Removal of Pesticides and Heavy Metal from Agricultural Runoff in Treatment Train</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Ahmad%20Zubairi">N. A. Ahmad Zubairi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Takaijudin"> H. Takaijudin</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20W.%20Yusof"> K. W. Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pesticides have been used widely over the world in agriculture to protect from pests and reduce crop losses. However, it affects the environment with toxic chemicals. Exceed of toxic constituents in the ecosystem will result in bad side effects. The hydrological cycle is related to the existence of pesticides and heavy metal which it can penetrate through varieties of sources into the soil or water bodies, especially runoff. Therefore, proper mechanisms of pesticide and heavy metal removal should be studied to improve the quality of ecosystem free or reduce from unwanted substances. This paper reviews the use of treatment train and its mechanisms to minimize pesticides and heavy metal from agricultural runoff. Organochlorine (OCL) is a common pesticide that was found in the agricultural runoff. OCL is one of the toxic chemicals that can disturb the ecosystem such as inhibiting plants&#39; growth and harm human health by having symptoms as asthma, active cancer cell, vomit, diarrhea, etc. Thus, this unwanted contaminant gives disadvantages to the environment and needs treatment system. Hence, treatment train by bioretention system is suitable because removal efficiency achieves until 90% of pesticide removal with selected vegetated plant and additive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticides" title="pesticides">pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20runoff" title=" agricultural runoff"> agricultural runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=bioretention" title=" bioretention"> bioretention</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20removal" title=" mechanism removal"> mechanism removal</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20train" title=" treatment train"> treatment train</a> </p> <a href="https://publications.waset.org/abstracts/130426/a-review-on-the-mechanism-removal-of-pesticides-and-heavy-metal-from-agricultural-runoff-in-treatment-train" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Pesticide Residue Determination on Cumin Plant (Nigella orientalis L.) Grown through Agricultural Practices with LC-MS/MS and GC-MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilda%20Ersoy">Nilda Ersoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevin%C3%A7%20%C5%9Eener"> Sevinç Şener</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Yal%C3%A7%C4%B1n%20Elidemir"> Ayşe Yalçın Elidemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebru%20Evcil"> Ebru Evcil</a>, <a href="https://publications.waset.org/abstracts/search?q=Erg%C3%BCn%20D%C3%B6%C4%9Fen"> Ergün Döğen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, pesticide residues were investigated in black cumin (Nigella orientalis L.) seeds which grown in Turkey. GC-MS and LC-MS/MS analytical instruments are used in high precision, when determining residue limits. A total of 100 pesticide active ingredients in LC-MS/MS devices have been performed in Nigella orientalis L. seeds samples. Moreover, for same aim, 103 pesticide active ingredients were analyzed in GC-MS. This study conducted in 2012 and 2013. Samples residues were not found in detectable levels for two years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cumin" title=" black cumin"> black cumin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20orientalis%20L." title=" Nigella orientalis L."> Nigella orientalis L.</a> </p> <a href="https://publications.waset.org/abstracts/14753/pesticide-residue-determination-on-cumin-plant-nigella-orientalis-l-grown-through-agricultural-practices-with-lc-msms-and-gc-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Dietary Exposure to Pesticide Residues by Various Physiological Groups of Population in Andhra Pradesh, South India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Padmaja%20R.%20Jonnalagadda">Padmaja R. Jonnalagadda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dietary exposure assessment of fifteen pesticide residues was done in Andhra Pradesh. Twelve commonly consumed foods including water, which were representative of the diet, were collected, processed as table ready and analysed for the presence of various Organochlorines, organophosphates and synthetic pyrethroids. All the samples were contaminated with one or more of the 15 pesticide residues and all of them were within the MRLs. DDT and its isomers, Chlorpyriphos and Cypermethrin were frequently detected in many of the food samples. The mean concentration of the pesticide residues ranged from 0.02 μg kg-1 to 5.1 μg kg-1 (fresh weight) in the analysed foods. When exposure assessments was carried out for different age, sex and physiological groups it was found that the estimates of daily dietary intakes of the analysed pesticide residues in the present study are much lower than the violative levels in all age groups that were computed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20ready%20foods" title="table ready foods">table ready foods</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20intake" title=" dietary intake"> dietary intake</a>, <a href="https://publications.waset.org/abstracts/search?q=physiological%20groups" title=" physiological groups"> physiological groups</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a> </p> <a href="https://publications.waset.org/abstracts/31211/dietary-exposure-to-pesticide-residues-by-various-physiological-groups-of-population-in-andhra-pradesh-south-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Monitoring of Pesticide Content in Biscuits Available on the Vojvodina Market, Serbia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Loncarevic">Ivana Loncarevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Biljana%20Pajin"> Biljana Pajin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Vasiljevic"> Ivana Vasiljevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Milana%20Lazovic"> Milana Lazovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Danica%20Mrkajic"> Danica Mrkajic</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Fises"> Aleksandar Fises</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Kovacevic"> Strahinja Kovacevic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biscuits belong to a group of flour-confectionery products that are considerably consumed worldwide. The basic raw material for their production is wheat flour or integral flour as a nutritionally highly valuable component. However, this raw material is also a potential source of contamination since it may contain the residues of biochemical compounds originating from plant and soil protection agents. Therefore, it is necessary to examine the health safety of both raw materials and final products. The aim of this research was to examine the content of undesirable residues of pesticides (mostly organochlorine pesticides, organophosphorus pesticides, carbamate pesticides, triazine pesticides, and pyrethroid pesticides) in 30 different biscuit samples of domestic origin present on the Vojvodina market using Gas Chromatograph Thermo ISQ/Trace 1300. The results showed that all tested samples had the limit of detection of pesticide content below 0.01 mg/kg, indicating that this type of confectionary products is not contaminated with pesticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biscuits" title="biscuits">biscuits</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination" title=" contamination"> contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a> </p> <a href="https://publications.waset.org/abstracts/100321/monitoring-of-pesticide-content-in-biscuits-available-on-the-vojvodina-market-serbia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Efficient Reduction of Organophosphate Pesticide from Fruits and Vegetables Using Cost Effective Neutralizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjani%20Dasgupta">Debjani Dasgupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Aman%20Zalawadia"> Aman Zalawadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuj%20Thapa"> Anuj Thapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranjali%20Sing"> Pranjali Sing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Dabade"> Ashish Dabade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organophosphate group pesticides are common pesticide group, which gain entry into food product due to incomplete removal of pesticide residues. The current food industry raw material handling process is not sufficient to eliminate pesticide residues. A neutralizer was used to neutralize the residues of pesticide on Vitis vinifera (Grapes). The water based dilution of neutralizer was demonstrated on fruits like grapes. Analysis for pesticides in water wash and neutralizer wash was carried out using GCMS. Fruits washed with neutralizer exhibited 72.95% removal of pesticides compared with normal water wash method. An economical chemical neutralizer can be used to remove such residues in raw material handling at industrial scale with minor modification in process to achieve minimum pesticide entry into final food products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GCMS" title="GCMS">GCMS</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphate" title=" organophosphate"> organophosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20material%20handling" title=" raw material handling"> raw material handling</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitis%20vinifera" title=" Vitis vinifera"> Vitis vinifera</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20neutralizer" title=" pesticide neutralizer"> pesticide neutralizer</a> </p> <a href="https://publications.waset.org/abstracts/75453/efficient-reduction-of-organophosphate-pesticide-from-fruits-and-vegetables-using-cost-effective-neutralizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">141</span> Pesticide Risk: A Study on the Effectiveness of Organic/Biopesticides in Sustainable Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berk%20K%C4%B1l%C4%B1%C3%A7">Berk Kılıç</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96mer%20Ayd%C4%B1n"> Ömer Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerem%20Mestani"> Kerem Mestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Defne%20Uzun"> Defne Uzun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In agriculture and farming, pesticides are frequently used to kill off or fend off any pests (bugs, bacteria, fungi, etc.). However, traditional pesticides have proven to have harmful effects on both the environment and the human body, such as hazards in the endocrine, neurodevelopmental, and reproductive systems. This experiment aims to test the effectiveness of organic/bio-pesticides (environmentally friendly pesticides) compared to traditional pesticides. Black pepper and garlic will be used as biopesticides in this experiment. The results support that organic farming applying organic pesticides operates through non-toxic mechanisms, offering minimal threats to human well-being and the environment. Consequently, consuming organic produce can significantly diminish the dangers associated with pesticide intake. In this study, method is introduced to reduce pesticide-related risks by promoting organic farming techniques within organic/bio-pesticide usage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide" title="pesticide">pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=garlic" title=" garlic"> garlic</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20pepper" title=" black pepper"> black pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-pesticide" title=" bio-pesticide"> bio-pesticide</a> </p> <a href="https://publications.waset.org/abstracts/179368/pesticide-risk-a-study-on-the-effectiveness-of-organicbiopesticides-in-sustainable-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">140</span> Evaluation of Non-Destructive Application to Detect Pesticide Residue on Leaf Mustard Using Spectroscopic Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazmi%20Mat%20Nawi">Nazmi Mat Nawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhamad%20Najib%20Mohamad%20Nor"> Muhamad Najib Mohamad Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Dini%20Maryani%20Ishkandar"> Che Dini Maryani Ishkandar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to evaluate the capability of spectroscopic methods to detect the presence of pesticide residues on leaf mustard. A total of 105 leaf mustard used were divided into five batches, four batches were treated with four different types of pesticides whereas one batch with no pesticide applied. Spectral data were obtained using visible shortwave near infrared spectrometer (VSWNIRS) which is Ocean Optics HR4000 High-resolution Miniature Fiber Optic Spectrometer. Reflectance value was collected to determine the difference between one pesticide to the other. The obtained spectral data were pre-processed for optimum performance. The effective wavelength of approximate 880 nm, 675-710 nm also 550 and 700 nm indicates the overtones -CH stretching vibration, tannin, also chlorophyll content present in the leaf mustard respectively. This study has successfully demonstrated that the spectroscopic method was able to differentiate between leaf mustard sample with and without pesticide residue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detect" title="detect">detect</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20mustard" title=" leaf mustard"> leaf mustard</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive" title=" non-destructive"> non-destructive</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residue" title=" pesticide residue"> pesticide residue</a> </p> <a href="https://publications.waset.org/abstracts/68852/evaluation-of-non-destructive-application-to-detect-pesticide-residue-on-leaf-mustard-using-spectroscopic-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">139</span> Studies on Pesticide Usage Pattern and Farmers Knowledge on Pesticide Usage and Technologies in Open Field and Poly House Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Raghu">B. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Vemuri"> Shashi Vemuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Sreenivasa%20Rao"> Ch. Sreenivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The survey on pesticide use pattern was carried out by interviewing farmers growing chill in open fields and poly houses based on the questionnaire prepared to assess their knowledge and practices on crop cultivation, general awareness on pesticide recommendations and use. Education levels of poly house farmers are high compared to open field farmers, where 57.14% poly house farmers are high school educated, whereas 35% open field farmers are illiterates. Majority farmers use nursery of 35 days and grow in <0.5 acre poly house in summer and rabi and < 1 acre in open field during kharif. Awareness on pesticide related issues is varying among poly house and open field farmers with some commonality, where 28.57% poly house farmers know about recommended pesticides while only 10% open field farmers are aware of this issue. However, in general, all farmers contact pesticide dealer for recommendations, poly house farmers prefer to contact scientists (35.71%) and open field farmers prefer to contact agricultural officers (33.33). Most farmers are unaware about pesticide classification and toxicity symbols on packing. Farmers are aware about endosulfan ban, but only 21.42% poly house and 11.66% open field farmers know about ban of monocrotofos on vegetables. Very few farmers know about pesticide residues and related issues, but know washing helps to reduce contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20field" title="open field">open field</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20usage" title=" pesticide usage"> pesticide usage</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhouses" title=" polyhouses"> polyhouses</a>, <a href="https://publications.waset.org/abstracts/search?q=residues%20survey" title=" residues survey"> residues survey</a> </p> <a href="https://publications.waset.org/abstracts/21476/studies-on-pesticide-usage-pattern-and-farmers-knowledge-on-pesticide-usage-and-technologies-in-open-field-and-poly-house-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">138</span> Enhanced Degradation of Endosulfan in Soil Using Lycopersicon esculentum L. (Tomato) and Endosulfan Tolerant Bacterium Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupa%20Rani">Rupa Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Kumar"> Vipin Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endosulfan, an organochlorine pesticide is of environmental concern due to its apparent persistence and toxicity. It has been reported as contaminants in soil, air, and water and is bioaccumulated and magnified in ecosystems. The combined use of microorganisms and plants has great potential for remediating soil contaminated with organic compounds such as pesticides. The objective of this study was to evaluate whether the bacterial inoculation influences plant growth promotion, endosulfan degradation in soil and endosulfan accumulation in different plant parts. Lycopersicon esculentum L. (Tomato) was grown in endosulfan spiked soil and inoculated with endosulfan tolerant bacterial strains. Endosulfan residues from different parts of plants and soil were extracted and estimated by using gas chromatograph equipped with 63Ni electron capture detector (GC-ECD). The inoculation of bacterial strains into the soil with plants showed a beneficial effect on endosulfan degradation and plant biomass production. Maximum endosulfan (90%) degradation was observed after 120 days of bacterial inoculation in the soil. Furthermore, there was significantly less endosulfan accumulation in roots and shoots of bacterial strains inoculated plants as compared to uninoculated plants. The results show the effectiveness of inoculated endosulfan tolerant bacterial strains to increase the remediation of endosulfan contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticides" title="organochlorine pesticides">organochlorine pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=endosulfan" title=" endosulfan"> endosulfan</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant-bacteria%20partnerships" title=" plant-bacteria partnerships"> plant-bacteria partnerships</a> </p> <a href="https://publications.waset.org/abstracts/104417/enhanced-degradation-of-endosulfan-in-soil-using-lycopersicon-esculentum-l-tomato-and-endosulfan-tolerant-bacterium-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">137</span> Estimation of Level of Pesticide in Recurrent Pregnancy Loss and Its Correlation with Paraoxanase1 Gene in North Indian Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Apurva%20Singh">Apurva Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Jaiswar"> S. P. Jaiswar</a>, <a href="https://publications.waset.org/abstracts/search?q=Apala%20Priyadarshini"> Apala Priyadarshini</a>, <a href="https://publications.waset.org/abstracts/search?q=Akancha%20Pandey"> Akancha Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The aim of this study is to find the association of PON1 gene polymorphism with pesticides In RPL subjects. Background: Recurrent pregnancy loss (RPL) is defined as three or more sequential abortions before the 20th week of gestation. Pesticides and its derivatives (organochlorine and organophosphate) are proposed to accommodate a ruler chemical for RPL in the sub-humid region of India. The paraoxonase-1 enzyme (PON1) plays an important role in the toxicity of some organophosphate pesticides, with low PON1 activity being associated with higher pesticide sensitivity Methodology: This is a case-control study done in Department of Obstetrics & Gynaecology & Department of Biochemistry, K.G.M.U, Lucknow, India. The subjects were enrolled after fulfilling the inclusion & exclusion criteria. Inclusion criteria: Cases- Subject having two or more spontaneous abortions & Control- Healthy female having one or more alive child was selected. Exclusion criteria: Cases & Control- Subject having the following disease will be excluded from the study Diabetes mellitus, Hypertension, Tuberculosis, Immunocompromised patients, any endocrine disorder and genital, colon or breast cancer any other malignancies. Blood samples were collected in EDTA tubes from cases & healthy control women & genomic DNA was extracted by phenol-chloroform method. The estimation of pesticides residue from blood was done by HPLC. Biochemical estimation was also performed. Genotyping of PON1 gene polymorphism was performed by RFLP. Statistical analysis of the data was performed using the SPSS16.3 software. Results: A sum of total 14 pesticides (12 organochlorine and 2 organophosphate) selected on the basis of their persistent nature and consumption rate. The significant level of pesticide (ppb) estimated by the Mann whiney test and it was found to be significant at higher level of β-HCH (p:0.04), γ-HCH (p:0.001), δ-HCH (p: 0.002), chloropyrifos (p:0.001), pp-DDD (p:0.001) and fenvalrate (p: 0.001) in case group compare to its control. The level of antioxidant enzymes were found to be significantly decreased among the cases. Wild homozygous TT was more frequent and prevalent among control groups. However, heterozygous group (Tt) was more in cases than control groups (CI-0.3-1.3) (p=0.06). Conclusion: Higher levels of pesticides with endocrine disrupting potential in cases indicate the possible role of these compounds as one of the causes of recurrent pregnancy loss. Possibly, increased pesticide level appears to indicate increased levels of oxidative damage that has been associated with the possible cause of Recurrent Miscarriage, it may reflect indirect evidence of toxicity rather than the direct cause. Since both factors are reported to increase risk, individuals with higher levels of these 'Toxic compounds' especially in 'high-risk genotypes' might be more susceptible to recurrent pregnancy loss. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraoxonase" title="paraoxonase">paraoxonase</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=PON1" title=" PON1"> PON1</a>, <a href="https://publications.waset.org/abstracts/search?q=RPL" title=" RPL"> RPL</a> </p> <a href="https://publications.waset.org/abstracts/92157/estimation-of-level-of-pesticide-in-recurrent-pregnancy-loss-and-its-correlation-with-paraoxanase1-gene-in-north-indian-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">136</span> Food Safety Aspects of Pesticide Residues in Spice Paprika</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sz.%20Kl%C3%A1tyik">Sz. Klátyik</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Darvas"> B. Darvas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M%C3%B6rtl"> M. Mörtl</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ottucs%C3%A1k"> M. Ottucsák</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tak%C3%A1cs"> E. Takács</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20B%C3%A1n%C3%A1ti"> H. Bánáti</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Simon"> L. Simon</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Gyurcs%C3%B3"> G. Gyurcsó</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sz%C3%A9k%C3%A1cs"> A. Székács</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental and health safety of condiments used for spicing food products in food processing or by culinary means receive relatively low attention, even though possible contamination of spices may affect food quality and safety. Contamination surveys mostly focus on microbial contaminants or their secondary metabolites, mycotoxins. Chemical contaminants, particularly pesticide residues, however, are clearly substantial factors in the case of given condiments in the Capsicum family including spice paprika and chilli. To assess food safety and support the quality of the Hungaricum product spice paprika, the pesticide residue status of spice paprika and chilli is assessed on the basis of reported pesticide contamination cases and non-compliances in the Rapid Alert System for Food and Feed of the European Union since 1998. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spice%20paprika" title="spice paprika">spice paprika</a>, <a href="https://publications.waset.org/abstracts/search?q=Capsicum" title=" Capsicum"> Capsicum</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a>, <a href="https://publications.waset.org/abstracts/search?q=RASFF" title=" RASFF"> RASFF</a> </p> <a href="https://publications.waset.org/abstracts/46930/food-safety-aspects-of-pesticide-residues-in-spice-paprika" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">135</span> Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iwona%20Cie%C5%9Blik">Iwona Cieślik</a>, <a href="https://publications.waset.org/abstracts/search?q=W%C5%82adys%C5%82aw%20Migda%C5%82"> Władysław Migdał</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinga%20Topolska"> Kinga Topolska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Cie%C5%9Blik"> Ewa Cieślik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contaminants" title="contaminants">contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides%20residues" title=" pesticides residues"> pesticides residues</a>, <a href="https://publications.waset.org/abstracts/search?q=QuEChERS%20method" title=" QuEChERS method"> QuEChERS method</a> </p> <a href="https://publications.waset.org/abstracts/46809/determination-of-pesticides-residues-in-tissue-of-two-freshwater-fish-species-by-modified-quechers-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">134</span> Reduction of Chlordecone Rates in Bioelectrochemicals Systems from Water and Sediment Swamp Mangrove in Absence of a Redox Mediator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malory%20Beaujolais">Malory Beaujolais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlordecone is an organochlorine pesticide with a bishomocubane structure which led to high stability in organic matter. Microbial fuel cell is a type of electrochemical system that can convert organic matters into electricity thanks to electroactive bacteria. This technique has been used with mangrove swamp from Martinique to try to reduce chlordecone rates. Those experiments led to characterize the behavior of the electroactive biofilm formed at the cathode, without added redox mediator. The designed bioelectrochemical system seems to provide the necessary conditions for chlordecone degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioelectrochemistry" title="bioelectrochemistry">bioelectrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=chlordecone" title=" chlordecone"> chlordecone</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20swamp" title=" mangrove swamp"> mangrove swamp</a> </p> <a href="https://publications.waset.org/abstracts/186572/reduction-of-chlordecone-rates-in-bioelectrochemicals-systems-from-water-and-sediment-swamp-mangrove-in-absence-of-a-redox-mediator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">133</span> Use of Fabric Phase Sorptive Extraction with Gas Chromatography-Mass Spectrometry for the Determination of Organochlorine Pesticides in Various Aqueous and Juice Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramandeep%20Kaur">Ramandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Malik"> Ashok Kumar Malik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabric Phase Sorptive Extraction (FPSE) combined with Gas chromatography Mass Spectrometry (GCMS) has been developed for the determination of nineteen organochlorine pesticides in various aqueous samples. The method consolidates the features of sol-gel derived microextraction sorbents with rich surface chemistry of cellulose fabric substrate which could directly extract sample from complex sample matrices and incredibly improve the operation with decreased pretreatment time. Some vital parameters such as kind and volume of extraction solvent and extraction time were examinedand optimized. Calibration curves were obtained in the concentration range 0.5-500 ng/mL. Under the optimum conditions, the limits of detection (LODs) were in the range 0.033 ng/mL to 0.136 ng/mL. The relative standard deviations (RSDs) for extraction of 10 ng/mL 0f OCPs were less than 10%. The developed method has been applied for the quantification of these compounds in aqueous and fruit juice samples. The results obtained proved the present method to be rapid and feasible for the determination of organochlorine pesticides in aqueous samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fabric%20phase%20sorptive%20extraction" title="fabric phase sorptive extraction">fabric phase sorptive extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography-mass%20spectrometry" title=" gas chromatography-mass spectrometry"> gas chromatography-mass spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticides" title=" organochlorine pesticides"> organochlorine pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20pretreatment" title=" sample pretreatment"> sample pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/80494/use-of-fabric-phase-sorptive-extraction-with-gas-chromatography-mass-spectrometry-for-the-determination-of-organochlorine-pesticides-in-various-aqueous-and-juice-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">132</span> Physicochemical Studies and Screening of Aflatoxins and Pesticide Residues in Some &#039;Honey Pastes&#039; Marketed in Jeddah, Saudi Arabia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Al-Hindi">Rashad Al-Hindi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aimed at investigating and screening of some contaminants in some honey-based products. Sixty-nine 'honey paste' samples marketed in Jeddah, Saudi Arabia, were subjected to physicochemical studies and screening of aflatoxins and pesticide residues. The physicochemical parameters studied were mainly: moisture content, total sugars, total ash, total nitrogen, fibres, total acidity as citric acid and pH. These parameters were investigated using standard methods of analysis. Mycotoxins (aflatoxins) and pesticide residues were by an enzyme-linked immunosorbent assay (ELISA) according to official methods. Results revealed that mean values of the examined criteria were: 15.44±0.36%; 74±4.30%; 0.40±0.062%; 0.22±0.05%; 6.93±1.30%; 2.53±0.161 mmol/kg; 4.10±0.158, respectively. Overall results proved that all tested honey pastes samples were free from mycotoxins (aflatoxins) and pesticide residues. Therefore, we conclude that 'honey pastes' marketed in Jeddah city, Saudi Arabia were safe for human consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxins" title="aflatoxins">aflatoxins</a>, <a href="https://publications.waset.org/abstracts/search?q=honey%20mixtures" title=" honey mixtures"> honey mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a> </p> <a href="https://publications.waset.org/abstracts/96021/physicochemical-studies-and-screening-of-aflatoxins-and-pesticide-residues-in-some-honey-pastes-marketed-in-jeddah-saudi-arabia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">131</span> Self-reported Acute Pesticide Intoxication in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amare%20Nigatu">Amare Nigatu</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A5gne%20Bratveit"> Mågne Bratveit</a>, <a href="https://publications.waset.org/abstracts/search?q=Bente%20E.%20Moen"> Bente E. Moen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Pesticide exposure is an important public health concern in Ethiopia, but there is limited information on pesticide intoxications. Residents may have an increased risk of pesticide exposure through proximity of their homes to farms using pesticides. Also the pesticide exposure might be related to employment at these farms. This study investigated the prevalence of acute pesticide intoxications (API) by residence proximity to a nearby flower farm and assessed if intoxications are related to working there or not. Methods: A cross-sectional survey involving 516 persons was conducted. Participants were grouped according to their residence proximity from a large flower farm; living within 5 kilometers and 5-12 kilometers away, respectively. In a structured interview, participants were asked if they had health symptoms within 48 hours of pesticide exposure in the past year. Those, who had experienced this and reported two or more typical pesticide intoxication symptoms, were considered as having had API. Chi-square and independent t-tests were used to compare categorical and continuous variables, respectively. Confounding variables were adjusted by using binomial regression model. Results: The prevalence of API in the past year among the residents in the study area was 26%, and it was higher in the population living close to the flower farm (42%) compared to those living far away (11%), prevalence ratio (PR) = 3.2, 95% CI: 2.2-4.8, adjusted for age, gender & education. A subgroup living close to the farm & working there had significantly more API (56%) than those living close & did not work there (16%), adjusted PR = 3.0, 95% CI: 1.8-4.9. Flower farm workers reported more API (56%) than those not working there (13%,), adjusted PR = 4.0, 95% CI: 2.9-5.6. Conclusion: The residents living closer than 5 kilometers to the flower farm reported significantly higher prevalence of API than those living 5-12 kilometers away. This increased risk of API was associated with work at the flower farm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acute%20pesticide%20intoxications" title="acute pesticide intoxications">acute pesticide intoxications</a>, <a href="https://publications.waset.org/abstracts/search?q=self-reported%20symptoms" title=" self-reported symptoms"> self-reported symptoms</a>, <a href="https://publications.waset.org/abstracts/search?q=flower%20farm%20workers" title=" flower farm workers"> flower farm workers</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20proximity" title=" living proximity"> living proximity</a> </p> <a href="https://publications.waset.org/abstracts/42370/self-reported-acute-pesticide-intoxication-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">130</span> Adsorption Mechanism of Heavy Metals and Organic Pesticide on Industrial Construction and Demolition Waste and Its Runoff Behaviors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng%20Huang">Sheng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Zhao"> Xin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Gao"> Xiaofeng Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Zhou"> Tao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijin%20Dai"> Shijin Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Youcai%20Zhao"> Youcai Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption of heavy metal pollutants (Zn, Cd, Pb, Cr, Cu) and organic pesticide (phorate, dithiophosphate diethyl, triethyl phosphorothioate), along with their multi-contamination on the surface of industrial construction & demolition waste (C&D waste) was investigated. Brick powder was selected as the appropriate waste while its maximum equilibrium adsorption amount of heavy metal under single controlled contamination matrix reached 5.41, 0.81, 0.45, 1.13 and 0.97 mg/g, respectively. Effects of pH and spiking dose of ICDW was also investigated. Equilibrium adsorption amount of organic pesticide varied from 0.02 to 0.97 mg/g, which was negatively correlated to the size distribution and hydrophilism. Existence of organic pesticide on surface of ICDW caused various effects on the heavy metal adsorption, mainly due to combination of metal ions and the floccule formation along with wrapping behaviors by pesticide pollutants. Adsorption of Zn was sharply decreased from 7.1 to 0.15 mg/g compared with clean ICDW and phorate contaminated ICDW, while that of Pb, Cr and Cd experienced an increase- then decrease procedure. On the other hand, runoff of pesticide contaminants was investigated under 25 mm/h simulated rainfall. Results showed that the cumulative runoff amount fitted well with curve obtained from a power function, of which r2=0.95 and 0.91 for 1DAA (1 day between contamination and runoff) and 7DAA, respectively. This study helps provide evaluation of industrial construction and demolition waste contamination into aquatic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20mechanism" title="adsorption mechanism">adsorption mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20construction%20waste" title=" industrial construction waste"> industrial construction waste</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/70934/adsorption-mechanism-of-heavy-metals-and-organic-pesticide-on-industrial-construction-and-demolition-waste-and-its-runoff-behaviors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">129</span> Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waleed%20A.%20El-Said">Waleed A. El-Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20M.%20Fouad"> Dina M. Fouad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20H.%20Aly"> Mohamed H. Aly</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20El-Gahami"> Mohamed A. El-Gahami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title="green synthesis">green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica" title=" mesoporous silica"> mesoporous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20iron%20oxide%20NPs" title=" magnetic iron oxide NPs"> magnetic iron oxide NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20Lindane" title=" adsorption Lindane"> adsorption Lindane</a> </p> <a href="https://publications.waset.org/abstracts/74140/green-synthesis-of-magnetic-silica-nanocomposite-and-its-adsorptive-performance-against-organochlorine-pesticides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">128</span> Degradation of Endosulfan in Different Soils by Indigenous and Adapted Microorganisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20%C3%96zyer">A. Özyer</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Turan"> N. G. Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ardal%C4%B1"> Y. Ardalı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental fate of organic contaminants in soils is influenced significantly by the pH, texture of soil, water content and also presence of organic matter. In this study, biodegradation of endosulfan isomers was studied in two different soils (Soil A and Soil B) that have contrasting properties in terms of their texture, pH, organic content, etc. Two <em>Nocardia </em>sp., which were isolated from soil, were used for degradation of endosulfan. Soils were contaminated with commercial endosulfan. Six sets were maintained from two different soils, contaminated with different endosulfan concentrations for degradation experiments. Inoculated and uninoculated mineral media with <em>Nocardia</em> isolates were added to the soils and mixed. Soils were incubated at a certain temperature (30 &deg;C) during ten weeks. Residue endosulfan and its metabolites&rsquo; concentrations were determined weekly during the incubation period. The changes of the soil microorganisms were investigated weekly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endosulfan" title="endosulfan">endosulfan</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nocardia%20sp.%20soil" title=" Nocardia sp. soil"> Nocardia sp. soil</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide" title=" organochlorine pesticide"> organochlorine pesticide</a> </p> <a href="https://publications.waset.org/abstracts/48178/degradation-of-endosulfan-in-different-soils-by-indigenous-and-adapted-microorganisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">127</span> Consumer’ Knowledge, Attitude and Behavior on Food Safety Issues Related to Pesticide Residues in Cabbage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dekie%20Rawung">Dekie Rawung</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20L.%20Abadi"> Abdul L. Abadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Toto%20Himawan"> Toto Himawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siegfried%20Berhimpon"> Siegfried Berhimpon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A case study on consumer' knowledge, attitude, and behavior on food safety issue related to pesticide residues in cabbage was conducted in the area of Manado and Tomohon city, North Sulawesi. A sample of 150 consumers were selected randomly on location (open market and supermarket) while they were purchasing vegetables. The data on consumers’ perception, knowledge, attitude and behavior on food safety issue regarding pesticide residues were collected using a 5-point, two-section Likert-Scale questionnaire, and the relationship of knowledge, attitude, and behavior on food safety issues were analyzed using Structural Equation Modeling (SEM). It was found that, among many food safety issues, the illegal, non-food chemical preservatives were considered the most important one (by more than 35% respondents), followed by high cholesterol content and textile coloring chemical (> 27% respondents). The pesticide residues issue was only in the 4th place. The same results were seen on the issue of quality factors that determine the product selection during purchasing. The pesticide-free and organic products labels were considered much less important quality factors as compared with freshness and nutrition value which were considered the most and the second most important quality factors (almost 65% of respondents). SEM analysis showed that only knowledge and attitude on food safety that had the significant relation (coefficient value of 0.38), whereas those with behaviors were not significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cabbage" title="cabbage">cabbage</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer" title=" consumer"> consumer</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20residues" title=" pesticide residues"> pesticide residues</a> </p> <a href="https://publications.waset.org/abstracts/35823/consumer-knowledge-attitude-and-behavior-on-food-safety-issues-related-to-pesticide-residues-in-cabbage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">126</span> Evaluating an Educational Intervention to Reduce Pesticide Exposure Among Farmers in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gift%20Udoh">Gift Udoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Diane%20S.%20Rohlman"> Diane S. Rohlman</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Sindt"> Benjamin Sindt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND: There is concern regarding the widespread use of pesticides and impacts on public health. Farmers in Nigeria frequently apply pesticides, including organophosphate pesticides which are known neurotoxicants. They receive little guidance on how much to apply or information about safe handling practices. Pesticide poisoning is one of the major hazards that farmers face in Nigeria. Farmers continue to use highly neurotoxic pesticides for agricultural activities. Because farmers receive little or no information on safe handling and how much to apply, they continue to develop severe and mild illnesses caused by high exposures to pesticides. The project aimed to reduce pesticide exposure among rural farmers in Nigeria by identifying hazards associated with pesticide use and developing and pilot testing training to reduce exposures to pesticides utilizing the hierarchy of controls system. METHODS: Information on pesticide knowledge, behaviors, barriers to safety, and prevention methods was collected from farmers in Nigeria through workplace observations, questionnaires, and interviews. Pre and post-surveys were used to measure farmer’s knowledge before and after the delivery of pesticide safety training. Training topics included the benefits and risks of using pesticides, routes of exposure and health effects, pesticide label activity, use and selection of PPE, ways to prevent exposure and information on local resources. The training was evaluated among farmers and changes in knowledge, attitudes and behaviors were collected prior to and following the training. RESULTS: The training was administered to 60 farmers, a mean age of 35, with a range of farming experience (<1 year to > 50 years). There was an overall increase in knowledge after the training. In addition, farmers perceived a greater immediate risk from exposure to pesticides and their perception of their personal risk increased. For example, farmers believed that pesticide risk is greater to children than to adults, recognized that just because a pesticide is put on the market doesn’t mean it is safe, and they were more confident that they could get advice about handling pesticides. Also, there was greater awareness about behaviors that can increase their exposure (mixing pesticides with bare hands, eating food in the field, not washing hands before eating after applying pesticides, walking in fields recently sprayed, splashing pesticides on their clothes, pesticide storage). CONCLUSION: These results build on existing evidence from a 2022 article highlighting the need for pesticide safety training in Nigeria which suggested that pesticide safety educational programs should focus on community-based, grassroots-style, and involve a family-oriented approach. Educating farmers on agricultural safety while letting them share their experiences with their peers is an effective way of creating awareness on the dangers associated with handling pesticides. Also, for rural communities, especially in Nigeria, pesticide safety pieces of training may not be able to reach some locations, so intentional scouting of rural farming communities and delivering pesticide safety training will improve knowledge of pesticide hazards. There is a need for pesticide information centers to be situated in rural farming communities or agro supply stores, which gives rural farmers information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pesticide%20exposure" title="pesticide exposure">pesticide exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20safety" title=" pesticide safety"> pesticide safety</a>, <a href="https://publications.waset.org/abstracts/search?q=nigeria" title=" nigeria"> nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20farming" title=" rural farming"> rural farming</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20education" title=" pesticide education"> pesticide education</a> </p> <a href="https://publications.waset.org/abstracts/164295/evaluating-an-educational-intervention-to-reduce-pesticide-exposure-among-farmers-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">125</span> Investigation of Operational Conditions for Treatment of Industrial Wastewater Contaminated with Pesticides Using Electro-Fenton Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Gar%20Alalm">Mohamed Gar Alalm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate various operating conditions that affect the performance of the electro-Fenton process for degradation of pesticides. Stainless steel electrodes were utilized in the electro-Fenton cell due to their relatively low cost. The favored conditions of current intensity, pH, iron loading, and pesticide concentration were deeply discussed. Complete removal of pesticide was attained at the optimum conditions. The degradation kinetics were described by pseudo- first-order pattern. In addition, a response surface model was developed to describe the performance of electro-Fenton process under different operational conditions. The model indicated that the coefficient of determination was (R² = 0.995). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-Fenton" title="electro-Fenton">electro-Fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/96760/investigation-of-operational-conditions-for-treatment-of-industrial-wastewater-contaminated-with-pesticides-using-electro-fenton-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=organochlorine%20pesticide&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10