CINXE.COM
Search results for: adsorption models
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: adsorption models</title> <meta name="description" content="Search results for: adsorption models"> <meta name="keywords" content="adsorption models"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="adsorption models" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="adsorption models"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7571</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: adsorption models</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7361</span> Application of Response Surface Methodology in Optimizing Chitosan-Argan Nutshell Beads for Radioactive Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20F.%20Zahra">F. F. Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20G.%20Touria"> E. G. Touria</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Samia"> Y. Samia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ahmed"> M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hasna"> H. Hasna</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Latifa"> B. M. Latifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of radioactive contaminants in wastewater poses a significant environmental and health risk, necessitating effective treatment solutions. This study investigates the optimization of chitosan-Argan nutshell beads for the removal of radioactive elements from wastewater, utilizing Response Surface Methodology (RSM) to enhance the treatment efficiency. Chitosan, known for its biocompatibility and adsorption properties, was combined with Argan nutshell powder to form composite beads. These beads were then evaluated for their capacity to remove radioactive contaminants from synthetic wastewater. The Box-Behnken design (BBD) under RSM was employed to analyze the influence of key operational parameters, including initial contaminant concentration, pH, bead dosage, and contact time, on the removal efficiency. Experimental results indicated that all tested parameters significantly affected the removal efficiency, with initial contaminant concentration and pH showing the most substantial impact. The optimized conditions, as determined by RSM, were found to be an initial contaminant concentration of 50 mg/L, a pH of 6, a bead dosage of 0.5 g/L, and a contact time of 120 minutes. Under these conditions, the removal efficiency reached up to 95%, demonstrating the potential of chitosan-Argan nutshell beads as a viable solution for radioactive wastewater treatment. Furthermore, the adsorption process was characterized by fitting the experimental data to various isotherm and kinetic models. The adsorption isotherms conformed well to the Langmuir model, indicating monolayer adsorption, while the kinetic data were best described by the pseudo-second-order model, suggesting chemisorption as the primary mechanism. This study highlights the efficacy of chitosan-Argan nutshell beads in removing radioactive contaminants from wastewater and underscores the importance of optimizing treatment parameters using RSM. The findings provide a foundation for developing cost-effective and environmentally friendly treatment technologies for radioactive wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=argan%20nutshell" title=" argan nutshell"> argan nutshell</a>, <a href="https://publications.waset.org/abstracts/search?q=beads" title=" beads"> beads</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20wastewater" title=" radioactive wastewater"> radioactive wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/188330/application-of-response-surface-methodology-in-optimizing-chitosan-argan-nutshell-beads-for-radioactive-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7360</span> Evaluation of Natural Waste Materials for Ammonia Removal in Biofilters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20F.%20Vieira">R. F. Vieira</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lopes"> D. Lopes</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Baptista"> I. Baptista</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Figueiredo"> S. A. Figueiredo</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20F.%20Domingues"> V. F. Domingues</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jorge"> R. Jorge</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Delerue-matos"> C. Delerue-matos</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Freitas"> O. M. Freitas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Odours are generated in municipal solid wastes management plants as a result of decomposition of organic matter, especially when anaerobic degradation occurs. Information was collected about the substances and respective concentration in the surrounding atmosphere of some management plants. The main components which are associated with these unpleasant odours were identified: ammonia, hydrogen sulfide and mercaptans. The first is the most common and the one that presents the highest concentrations, reaching values of 700 mg/m3. Biofiltration, which involves simultaneously biodegradation, absorption and adsorption processes, is a sustainable technology for the treatment of these odour emissions when a natural packing material is used. The packing material should ideally be cheap, durable, and allow the maximum microbiological activity and adsorption/absorption. The presence of nutrients and water is required for biodegradation processes. Adsorption and absorption are enhanced by high specific surface area, high porosity and low density. The main purpose of this work is the exploitation of natural waste materials, locally available, as packing media: heather (Erica lusitanica), chestnut bur (from Castanea sativa), peach pits (from Prunus persica) and eucalyptus bark (from Eucalyptus globulus). Preliminary batch tests of ammonia removal were performed in order to select the most interesting materials for biofiltration, which were then characterized. The following physical and chemical parameters were evaluated: density, moisture, pH, buffer and water retention capacity. The determination of equilibrium isotherms and the adjustment to Langmuir and Freundlich models was also performed. Both models can fit the experimental results. Based both in the material performance as adsorbent and in its physical and chemical characteristics, eucalyptus bark was considered the best material. It presents a maximum adsorption capacity of 0.78±0.45 mol/kg for ammonia. The results from its characterization are: 121 kg/m3 density, 9.8% moisture, pH equal to 5.7, buffer capacity of 0.370 mmol H+/kg of dry matter and water retention capacity of 1.4 g H2O/g of dry matter. The application of natural materials locally available, with little processing, in biofiltration is an economic and sustainable alternative that should be explored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia%20removal" title="ammonia removal">ammonia removal</a>, <a href="https://publications.waset.org/abstracts/search?q=biofiltration" title=" biofiltration"> biofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20materials" title=" natural materials"> natural materials</a>, <a href="https://publications.waset.org/abstracts/search?q=odour%20control" title=" odour control"> odour control</a> </p> <a href="https://publications.waset.org/abstracts/24769/evaluation-of-natural-waste-materials-for-ammonia-removal-in-biofilters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7359</span> Removal of Pb(II) Ions from Wastewater Using Magnetic Chitosan–Ethylene Glycol Diglycidyl Ether Beads as Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pyar%20Singh%20Jassal">Pyar Singh Jassal</a>, <a href="https://publications.waset.org/abstracts/search?q=Priti%20Rani"> Priti Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Johar"> Rajni Johar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of Pb(II) ions from wastewater using ethylene glycol diglycidyl ether cross-linked magnetic chitosan beads (EGDE-MCB) was carried out by considering a number of parameters. The removal efficiency of the metal ion by magnetic chitosan beads (MCB) and its cross-linked derivatives depended on viz contact time, dose of the adsorbent, pH, temperature, etc. The concentration of Cd( II) at different time intervals was estimated by differential pulse anodic stripping voltammetry (DPSAV) using 797 voltametric analyzer computrace. The adsorption data could be well interpreted by Langmuir and Freundlich adsorption model. The equilibrium parameter, RL values, support that the adsorption (0<RL<1) is a favorable and spontaneous process. The thermodynamic parameters suggest that it is an exothermic reaction which results with an increase in the randomness of the adsorption process. The kinetic data of Pb(II) ions fitted well with the pseudo-second-order kinetic model. The EGDE-MCB was characterized by using FTIR, SEM, EDX, and TGA techniques. The desorption of metal ion loaded chitosan beads was performed with 0.1M ethylene diamine tetra acetic acid (EDTA) solution for further use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20chitosan%20beads" title="magnetic chitosan beads">magnetic chitosan beads</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20glycol%20diglycidyl%20ether" title=" ethylene glycol diglycidyl ether"> ethylene glycol diglycidyl ether</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20parameters" title=" equilibrium parameters"> equilibrium parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a> </p> <a href="https://publications.waset.org/abstracts/147347/removal-of-pbii-ions-from-wastewater-using-magnetic-chitosan-ethylene-glycol-diglycidyl-ether-beads-as-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7358</span> Biosorption of Ni (II) Using Alkaline-Treated Rice Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khanom%20Simarani">Khanom Simarani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice husk has been widely reported as a good sorbent for heavy metals. Pre treatment of rice husk minimizes cellulose crystallinity and increases the surface area thus ensuring better adsorption capacity. Commercial base and natural base-treated rice husk were used to investigate the potential of Ni(II) adsorption from synthetic solutions and waste water in batch systems. Effects of process variables such as pH, contact time, adsorbent dose, initial Ni (II) concentration were studied. Optimum Ni (II) adsorption was observed at pH 6 within 60 min of contact time. Experimental data showed increased amount of adsorbed Ni(II) with increasing adsorbent dose and decreased percent of adsorption with increasing initial Ni(II) concentration. Kinetic isotherms (Langmuir, Freundlich) were also applied. Biosorption mechanism of rice husk was analyzed using SEM/EDS, FT-IR, and XRD. The results revealed that natural base produced from agroindustrial waste could be used as efficient as commercial bases during pre treatment rice husk in removing Ni(II) from waste waters within 15 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nickel%20removal" title="Nickel removal">Nickel removal</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/30082/biosorption-of-ni-ii-using-alkaline-treated-rice-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7357</span> Effect of Acid Activation of Vermiculite on Its Carbon Dioxide Adsorption Behaviors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Wal">Katarzyna Wal</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Stawi%C5%84ski"> Wojciech Stawiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Rutkowski"> Piotr Rutkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The scientific community is paying more and more attention to the problem of air pollution. Carbon dioxide is classified as one of the most harmful gases. Its emissions are generated during fossil fuel burning, waste management, and combustion and are responsible for global warming. Clay minerals constitute a group of promising materials for the role of adsorbents. They are composed of two types of phyllosilicate sheets: tetrahedral and octahedral, which form 1:1 or 2:1 structures. Vermiculite is one of their best-known representative, which can be used as an adsorbent from water and gaseous phase. The aim of the presented work was carbon dioxide adsorption on vermiculite. Acid-activated samples (W_NO3_x) were prepared by acid treatment with different concentrations of nitric acid (1, 2, 3, 4 mol L⁻¹). Vermiculite was subjected to modification in order to increase its porosity and adsorption properties. The prepared adsorbents were characterized using the BET-specific surface area analysis, thermogravimetry (TG), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Applied modifications significantly increase the specific surface area from 78,21 m² g⁻¹ for the unmodified sample (W_REF) to 536 m² g-1 for W_NO3_4. Obtained results showed that acid treatment tunes the material’s functional properties by increasing the contact surface and generating more active sites in its structure. The adsorption performance in terms carbon dioxide adsorption capacities follows the order of W_REF (25.91 mg g⁻¹) < W_NO3_1 (38.54 mg g⁻¹) < W_NO3_2 (44.03 mg g⁻¹) W_NO3_4 (67.51 mg g⁻¹) < W_NO3_3 (70.48 mg g⁻¹). Acid activation significantly improved the carbon dioxide adsorption properties of modified samples compared to raw material. These results demonstrate that vermiculite-based samples have the potential to be used as effective CO₂ adsorbents. Furthermore, acid treatment is a promising technique for improving the adsorption properties of clay minerals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title=" air pollution"> air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/142946/effect-of-acid-activation-of-vermiculite-on-its-carbon-dioxide-adsorption-behaviors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7356</span> Optimization of Chitosan Membrane Production Parameters for Zinc Ion Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20O.%20Osifo">Peter O. Osifo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hein%20W.%20J.%20P.%20Neomagus"> Hein W. J. P. Neomagus</a>, <a href="https://publications.waset.org/abstracts/search?q=Hein%20V.%20D.%20Merwe"> Hein V. D. Merwe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan materials from different sources of raw materials were characterized in order to determine optimal preparation conditions and parameters for membrane production. The membrane parameters such as molecular weight, viscosity, and degree of deacetylation were used to evaluate the membrane performance for zinc ion adsorption. The molecular weight of the chitosan was found to influence the viscosity of the chitosan/acetic acid solution. An increase in molecular weight (60000-400000 kg.kmol-1) of the chitosan resulted in a higher viscosity (0.05-0.65 Pa.s) of the chitosan/acetic acid solution. The effect of the degree of deacetylation on the viscosity is not significant. The effect of the membrane production parameters (chitosan- and acetic acid concentration) on the viscosity is mainly determined by the chitosan concentration. For higher chitosan concentrations, a membrane with a better adsorption capacity was obtained. The membrane adsorption capacity increases from 20-130 mg Zn per gram of wet membrane for an increase in chitosan concentration from 2-7 mass %. Chitosan concentrations below 2 and above 7.5 mass % produced membranes that lack good mechanical properties. The optimum manufacturing conditions including chitosan concentration, acetic acid concentration, sodium hydroxide concentration and crosslinking for chitosan membranes within the workable range were defined by the criteria of adsorption capacity and flux. The adsorption increases (50-120 mg.g-1) as the acetic acid concentration increases (1-7 mass %). The sodium hydroxide concentration seems not to have a large effect on the adsorption characteristics of the membrane however, a maximum was reached at a concentration of 5 mass %. The adsorption capacity per gram of wet membrane strongly increases with the chitosan concentration in the acetic acid solution but remains constant per gram of dry chitosan. The optimum solution for membrane production consists of 7 mass % chitosan and 4 mass % acetic acid in de-ionised water. The sodium hydroxide concentration for phase inversion is at optimum at 5 mass %. The optimum cross-linking time was determined to be 6 hours (Percentage crosslinking of 18%). As the cross-linking time increases the adsorption of the zinc decreases (150-50 mg.g-1) in the time range of 0 to 12 hours. After a crosslinking time of 12 hours, the adsorption capacity remains constant. This trend is comparable to the effect on flux through the membrane. The flux decreases (10-3 L.m-2.hr-1) with an increase in crosslinking time range of 0 to 12 hours and reaches a constant minimum after 12 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ions" title=" heavy metal ions"> heavy metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/42027/optimization-of-chitosan-membrane-production-parameters-for-zinc-ion-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7355</span> Quantum Chemical Investigation of Hydrogen Isotopes Adsorption on Metal Ion Functionalized Linde Type A and Faujasite Type Zeolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gayathri%20Devi%20V">Gayathri Devi V</a>, <a href="https://publications.waset.org/abstracts/search?q=Aravamudan%20Kannan"> Aravamudan Kannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Sircar"> Amit Sircar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the inner fuel cycle system of a nuclear fusion reactor, the Hydrogen Isotopes Removal System (HIRS) plays a pivoted role. It enables the effective extraction of the hydrogen isotopes from the breeder purge gas which helps to maintain the tritium breeding ratio and sustain the fusion reaction. One of the components of HIRS, Cryogenic Molecular Sieve Bed (CMSB) columns with zeolites adsorbents are considered for the physisorption of hydrogen isotopes at 1 bar and 77 K. Even though zeolites have good thermal stability and reduced activation properties making them ideal for use in nuclear reactor applications, their modest capacity for hydrogen isotopes adsorption is a cause of concern. In order to enhance the adsorbent capacity in an informed manner, it is helpful to understand the adsorption phenomena at the quantum electronic structure level. Physicochemical modifications of the adsorbent material enhances the adsorption capacity through the incorporation of active sites. This may be accomplished through the incorporation of suitable metal ions in the zeolite framework. In this work, molecular hydrogen isotopes adsorption on the active sites of functionalized zeolites are investigated in detail using Density Functional Theory (DFT) study. This involves the utilization of hybrid Generalized Gradient Approximation (GGA) with dispersion correction to account for the exchange and correlation functional of DFT. The electronic energies, adsorption enthalpy, adsorption free energy, Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) energies are computed on the stable 8T zeolite clusters as well as the periodic structure functionalized with different active sites. The characteristics of the dihydrogen bond with the active metal sites and the isotopic effects are also studied in detail. Validation studies with DFT will also be presented for adsorption of hydrogen on metal ion functionalized zeolites. The ab-inito screening analysis gave insights regarding the mechanism of hydrogen interaction with the zeolites under study and also the effect of the metal ion on adsorption. This detailed study provides guidelines for selection of the appropriate metal ions that may be incorporated in the zeolites framework for effective adsorption of hydrogen isotopes in the HIRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20enthalpy" title="adsorption enthalpy">adsorption enthalpy</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalized%20zeolites" title=" functionalized zeolites"> functionalized zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20isotopes" title=" hydrogen isotopes"> hydrogen isotopes</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fusion" title=" nuclear fusion"> nuclear fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=physisorption" title=" physisorption"> physisorption</a> </p> <a href="https://publications.waset.org/abstracts/137108/quantum-chemical-investigation-of-hydrogen-isotopes-adsorption-on-metal-ion-functionalized-linde-type-a-and-faujasite-type-zeolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7354</span> Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allouache%20Nadia">Allouache Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon-ammoniac%20pair" title="activated carbon-ammoniac pair">activated carbon-ammoniac pair</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20key%20parameters" title=" effect of key parameters"> effect of key parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cooling%20machine" title=" solar cooling machine"> solar cooling machine</a> </p> <a href="https://publications.waset.org/abstracts/60103/effect-of-key-parameters-on-performances-of-an-adsorption-solar-cooling-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7353</span> Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Arun">M. Arun</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kannan"> A. Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20orange%2010" title="acid orange 10">acid orange 10</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20adsorption%20conditions" title=" optimum adsorption conditions"> optimum adsorption conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20design" title=" statistical design"> statistical design</a> </p> <a href="https://publications.waset.org/abstracts/46740/statistical-optimization-of-adsorption-of-a-harmful-dye-from-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7352</span> Adsorption of Malachite Green Dye onto Industrial Waste Materials: Full Factorial Design </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Semra%20%C3%87oruh">Semra Çoruh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Tibet"> Yusuf Tibet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dyes are widely used in industries such as textiles, paper, paints, leather, rubber, plastics, cosmetics, food, and drug etc, to color their products. Due to their chemical structures, dyes are resistant to fading on exposure to light, water and many chemicals and, therefore, are difficult to be decolorized once released into the aquatic environment. Many of the organic dyes are hazardous and may affect aquatic life and even the food chain. This study deals with the adsorption of malachite green dye onto fly ash and red mud. The effects of experimental factors (adsorbent dosage, initial concentration, pH and temperature) on the adsorption process were examined by using 24 full factorial design. The results were statistically analyzed by using the student’s t-test, analysis of variance (ANOVA) and an F-test to define important experimental factors and their levels. A regression model that considers the significant main and interaction effects was suggested. The results showed that initial dye concentration an pH is the most significant factor that affects the removal of malachite green. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title="malachite green">malachite green</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=full%20factorial%20design" title=" full factorial design"> full factorial design</a> </p> <a href="https://publications.waset.org/abstracts/21950/adsorption-of-malachite-green-dye-onto-industrial-waste-materials-full-factorial-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7351</span> Magnetic Biomaterials for Removing Organic Pollutants from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Obeid">L. Obeid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bee"> A. Bee</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Talbot"> D. Talbot</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Abramson"> S. Abramson</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Welschbillig"> M. Welschbillig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption process is one of the most efficient methods to remove pollutants from wastewater provided that suitable adsorbents are used. In order to produce environmentally safe adsorbents, natural polymers have received increasing attention in recent years. Thus, alginate and chitosane are extensively used as inexpensive, non-toxic and efficient biosorbents. Alginate is an anionic polysaccharide extracted from brown seaweeds. Chitosan is an amino-polysaccharide; this cationic polymer is obtained by deacetylation of chitin the major constituent of crustaceans. Furthermore, it has been shown that the encapsulation of magnetic materials in alginate and chitosan beads facilitates their recovery from wastewater after the adsorption step, by the use of an external magnetic field gradient, obtained with a magnet or an electromagnet. In the present work, we have studied the adsorption affinity of magnetic alginate beads and magnetic chitosan beads (called magsorbents) for methyl orange (MO) (an anionic dye), methylene blue (MB) (a cationic dye) and p-nitrophenol (PNP) (a hydrophobic pollutant). The effect of different parameters (pH solution, contact time, pollutant initial concentration…) on the adsorption of pollutant on the magnetic beads was investigated. The adsorption of anionic and cationic pollutants is mainly due to electrostatic interactions. Consequently methyl orange is highly adsorbed by chitosan beads in acidic medium and methylene blue by alginate beads in basic medium. In the case of a hydrophobic pollutant, which is weakly adsorbed, we have shown that the adsorption is enhanced by adding a surfactant. Cetylpyridinium chloride (CPC), a cationic surfactant, was used to increase the adsorption of PNP by magnetic alginate beads. Adsorption of CPC by alginate beads occurs through two mechanisms: (i) electrostatic attractions between cationic head groups of CPC and negative carboxylate functions of alginate; (ii) interaction between the hydrocarbon chains of CPC. The hydrophobic pollutant is adsolubilized within the surface aggregated structures of surfactant. Figure c shows that PNP can reach up to 95% of adsorption in presence of CPC. At highest CPC concentrations, desorption occurs due to the formation of micelles in the solution. Our magsorbents appear to efficiently remove ionic and hydrophobic pollutants and we hope that this fundamental research will be helpful for the future development of magnetically assisted processes in water treatment plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=magsorbent" title=" magsorbent"> magsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic" title=" magnetic"> magnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutant" title=" organic pollutant"> organic pollutant</a> </p> <a href="https://publications.waset.org/abstracts/2514/magnetic-biomaterials-for-removing-organic-pollutants-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7350</span> A Cheap Mesoporous Silica from Fly Ash as an Adsorbent for Sulfate in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ximena%20Castillo">Ximena Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Pizarro"> Jaime Pizarro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research describes the development of a very cheap mesoporous silica material similar to hexagonal mesoporous silica (HMS) and using a silicate extract as precursor. This precursor is obtained from cheap fly ash by an easy calcination process at 850 °C and a green extraction with water. The obtained mesoporous fly ash material had a surface area of 282 m2 g-1 and a pore size of 5.7 nm. It was functionalized with ethylene diamino moieties via the well-known SAMMS method, followed by a DRIFT analysis that clearly showed the successful functionalization. An excellent adsorbent was obtained for the adsorption of sulfate anions by the solid’s modification with copper forming a copper-ethylenediamine complex. The adsorption of sulfates was studied in a batch system ( experimental conditions: pH=8.0; 5 min). The kinetics data were adjusted according to a pseudo-second order model with a high coefficient of linear regression at different initial concentrations. The adsorption isotherm that best fitted the experimental data was the Freundlich model. The maximum sulfate adsorption capacity of this very cheap fly ash based adsorbent was 146.1 mg g-1, 3 times greater than the values reported in literature and commercial adsorbent materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20materials" title=" mesoporous materials"> mesoporous materials</a>, <a href="https://publications.waset.org/abstracts/search?q=SAMMS" title=" SAMMS"> SAMMS</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate" title=" sulfate"> sulfate</a> </p> <a href="https://publications.waset.org/abstracts/95487/a-cheap-mesoporous-silica-from-fly-ash-as-an-adsorbent-for-sulfate-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7349</span> Investigation of Modified Microporous Materials for Environmental Depollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souhila%20Bendenia">Souhila Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Chahrazed%20Bendenia"> Chahrazed Bendenia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanaa%20Merad-Dib"> Hanaa Merad-Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Merabet"> Sarra Merabet</a>, <a href="https://publications.waset.org/abstracts/search?q=Samia%20Moulebhar"> Samia Moulebhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sid%20Ahmed%20Khantar"> Sid Ahmed Khantar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, environmental pollution is a major concernworldwide, threateninghumanhealth. Various techniques have been used, includingdegradation, filtration, advancedoxidationprocesses, ion exchange, membrane processes, and adsorption. The latter is one of the mostsuitablemethods, usinghighly efficient materials. In this study, NaX zeolite was modified with Cu or Ni at various rates. Following ion exchange, the samples were characterized by XRD, BET and SEM/EDX. After characterization, the exchanged zeolites were used for adsorption of various pollutants as CO2. Different thermodynamic parameters were studied such as Qst. XRD results show that the most intense peaks characteristic of 13X persist after the exchange reaction for all samples. The SEM images of our samples have uniform and regular crystal shapes. The results show that ion exhange with Cu or Ni affect the textural properties of X zeolites and prove that the exchange zeolites can be used as an adsorbent for depollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=X%20zeolites%20%28NaX%29" title="X zeolites (NaX)">X zeolites (NaX)</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchange" title=" ion exchange"> ion exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/174447/investigation-of-modified-microporous-materials-for-environmental-depollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7348</span> The shaping of Metal-Organic Frameworks for Water Vapor Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsung-Lin%20Hsieh">Tsung-Lin Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiun-Jen%20Chen"> Jiun-Jen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuhao%20Kang"> Yuhao Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal-organic frameworks (MOFs) have drawn scientists’ attention for decades due to its high specific surface area, tunable pore size, and relatively low temperature for regeneration. Bearing with those mentioned properties, MOFs has been widely used in various applications, such as adsorption/separation and catalysis. However, the current challenge for practical use of MOFs is to effectively shape these crystalline powder material into controllable forms such as pellets, granules, and monoliths with sufficient mechanical and chemical stability, while maintaining the excellent properties of MOFs powders. Herein, we have successfully synthesized an Al-based MOF powder which exhibits a high water capacity at relatively low humidity conditions and relatively low temperature for regeneration. Then the synthesized Al-MOF was shaped into granules with particle size of 2-4 mm by (1) tumbling granulation, (2) High shear mixing granulation, and (3) Extrusion techniques. Finally, the water vapor adsorption rate and crush strength of Al-MOF granules by different shaping techniques were measured and compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granulation" title="granulation">granulation</a>, <a href="https://publications.waset.org/abstracts/search?q=granules" title=" granules"> granules</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-organic%20frameworks" title=" metal-organic frameworks"> metal-organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapor%20adsorption" title=" water vapor adsorption"> water vapor adsorption</a> </p> <a href="https://publications.waset.org/abstracts/127112/the-shaping-of-metal-organic-frameworks-for-water-vapor-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7347</span> Sorption of Congo Red from Aqueous Solution by Surfactant-Modified Bentonite: Kinetic and Factorial Design Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Guezzen">B. Guezzen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Didi"> M. A. Didi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Medjahed"> B. Medjahed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An organoclay (HDTMA-B) was prepared from sodium bentonite (Na-B). The starting material was modified using the hexadecyltrimethylammonium ion (HDTMA<sup>+</sup>) in the amounts corresponding to 100 % of the CEC value. Batch experiments were carried out in order to model and optimize the sorption of Congo red dye from aqueous solution. The pseudo-first order and pseudo-second order kinetic models have been developed to predict the rate constant and the sorption capacity at equilibrium with the effect of temperature, the solid/solution ratio and the initial dye concentration. The equilibrium time was reached within 60 min. At room temperature (20 °C), optimum dye sorption of 49.4 mg/g (98.9%) was achieved at pH 6.6, sorbent dosage of 1g/L and initial dye concentration of 50 mg/L, using surfactant modified bentonite. The optimization of adsorption parameters mentioned above on dye removal was carried out using Box-Behnken design. The sorption parameters were analyzed statistically by means of variance analysis by using the Statgraphics Centurion XVI software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=organo-bentonite" title=" organo-bentonite"> organo-bentonite</a> </p> <a href="https://publications.waset.org/abstracts/74711/sorption-of-congo-red-from-aqueous-solution-by-surfactant-modified-bentonite-kinetic-and-factorial-design-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7346</span> Equilibrium, Kinetic and Thermodynamic Studies of the Biosorption of Textile Dye (Yellow Bemacid) onto Brahea edulis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Henini">G. Henini</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Laidani"> Y. Laidani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Souahi"> F. Souahi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Labbaci"> A. Labbaci</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hanini"> S. Hanini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental contamination is a major problem being faced by the society today. Industrial, agricultural, and domestic wastes, due to the rapid development in the technology, are discharged in the several receivers. Generally, this discharge is directed to the nearest water sources such as rivers, lakes, and seas. While the rates of development and waste production are not likely to diminish, efforts to control and dispose of wastes are appropriately rising. Wastewaters from textile industries represent a serious problem all over the world. They contain different types of synthetic dyes which are known to be a major source of environmental pollution in terms of both the volume of dye discharged and the effluent composition. From an environmental point of view, the removal of synthetic dyes is of great concern. Among several chemical and physical methods, adsorption is a promising technique due to the ease of use and low cost compared to other applications in the process of discoloration, especially if the adsorbent is inexpensive and readily available. The focus of the present study was to assess the potentiality of <em>Brahea</em><em> edulis</em> (BE) for the removal of synthetic dye Yellow bemacid (YB) from aqueous solutions. The results obtained here may transfer to other dyes with a similar chemical structure. Biosorption studies were carried out under various parameters such as mass adsorbent particle, pH, contact time, initial dye concentration, and temperature. The biosorption kinetic data of the material (BE) was tested by the pseudo first-order and the pseudo-second-order kinetic models. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of YB on the BE is feasible, spontaneous, and endothermic. The equilibrium data were analyzed by using Langmuir, Freundlich, Elovich, and Temkin isotherm models. The experimental results show that the percentage of biosorption increases with an increase in the biosorbent mass (0.25 g: 12 mg/g; 1.5 g: 47.44 mg/g). The maximum biosorption occurred at around pH value of 2 for the YB. The equilibrium uptake was increased with an increase in the initial dye concentration in solution (C<sub>o</sub> = 120 mg/l; q = 35.97 mg/g). Biosorption kinetic data were properly fitted with the pseudo-second-order kinetic model. The best fit was obtained by the Langmuir model with high correlation coefficient (R<sup>2</sup> > 0.998) and a maximum monolayer adsorption capacity of 35.97 mg/g for YB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Brahea%20edulis" title=" Brahea edulis"> Brahea edulis</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=yellow%20Bemacid" title=" yellow Bemacid"> yellow Bemacid</a> </p> <a href="https://publications.waset.org/abstracts/49783/equilibrium-kinetic-and-thermodynamic-studies-of-the-biosorption-of-textile-dye-yellow-bemacid-onto-brahea-edulis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7345</span> Adsorbent Removal of Oil Spills Using Bentonite Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Mohamed%20Elsaid%20Abdelrahman">Saad Mohamed Elsaid Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption method is one of the best modern techniques used in removing pollutants, especially organic hydrocarbon compounds, from polluted water. Through this research, bentonite clay can be used to remove organic hydrocarbon compounds, such as heptane and octane, resulting from oil spills in seawater. Bentonite clay can be obtained from the Kholayaz area, located north of Jeddah, at a distance of 80 km. Chemical analysis shows that bentonite clay consists of a mixture of silica, alumina and oxides of some elements. Bentonite clay can be activated in order to raise its adsorption efficiency and to make it suitable for removing pollutants using an ionic organic solvent. It is necessary to study some of the factors that could be in the efficiency of bentonite clay in removing oily organic compounds, such as the time of contact of the clay with heptane and octane solutions, pH and temperature, in order to reach the highest adsorption capacity of bentonite clay. The temperature can be a few degrees Celsius higher. The adsorption capacity of the clay decreases when the temperature is raised more than 4°C to reach its lowest value at the temperature of 50°C. The results show that the friction time of 30 minutes and the pH of 6.8 is the best conditions to obtain the highest adsorption capacity of the clay, 467 mg in the case of heptane and 385 mg in the case of octane compound. Experiments conducted on bentonite clay were encouraging to select it to remove heavy molecular weight pollutants such as petroleum compounds under study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title="adsorbent">adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite%20clay" title=" bentonite clay"> bentonite clay</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spills" title=" oil spills"> oil spills</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/163185/adsorbent-removal-of-oil-spills-using-bentonite-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7344</span> Synthesis and Applications of Biosorbent from Barley Husk for Adsorption of Heavy Metals and Bacteria from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudarshan%20Kalsulkar">Sudarshan Kalsulkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20S.%20Bhagwat"> Sunil S. Bhagwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Activated carbons (AC) are one such efficient biosorbents made by utilizing lignocellulosic materials from agricultural waste. Steam activated carbon (AC) was synthesized from Barley husk. Its synthesis parameters of time and temperature were optimized. Its physico-chemical properties like density, surface area, pore volume, Methylene blue and Iodine values were characterized. BET surface area was found to be 42 m²/g. Batch Adsorption tests were carried out to determine the maximum adsorption capacity (qmax) for various metal ions. Cd+2 48.74 mg/g, Pb+2 19.28 mg/g, Hg+2 39.1mg/g were the respective qmax values. pH and time were optimized for adsorption of each ion. Column Adsorptions were carried for each to obtain breakthrough data. Microbial adsorption was carried using E. coli K12 strain. 78% reduction in cell count was observed at operating conditions. Thus the synthesized Barley husk AC can be an economically feasible replacement for commercially available AC prepared from the costlier coconut shells. Breweries and malting industries where barley husk is a primary waste generated on a large scale can be a good source for bulk raw material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Barley%20husk" title=" Barley husk"> Barley husk</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20removal" title=" heavy metal removal"> heavy metal removal</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/19980/synthesis-and-applications-of-biosorbent-from-barley-husk-for-adsorption-of-heavy-metals-and-bacteria-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7343</span> Students' Perception of Using Dental E-Models in an Inquiry-Based Curriculum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanqi%20Yang">Yanqi Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chongshan%20Liao"> Chongshan Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheuk%20Hin%20Ho"> Cheuk Hin Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Bridges"> Susan Bridges </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: To investigate student’s perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding student’s perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most of the students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, student's preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-models" title="e-models">e-models</a>, <a href="https://publications.waset.org/abstracts/search?q=inquiry-based%20curriculum" title=" inquiry-based curriculum"> inquiry-based curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a> </p> <a href="https://publications.waset.org/abstracts/3739/students-perception-of-using-dental-e-models-in-an-inquiry-based-curriculum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7342</span> Boosting Profits and Enhancement of Environment through Adsorption of Methane during Upstream Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudipt%20Agarwal">Sudipt Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Verma"> Siddharth Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Iqbal"> S. M. Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitik%20Kalra"> Hitik Kalra </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural gas as a fuel has created wonders, but on the contrary, the ill-effects of methane have been a great worry for professionals. The largest source of methane emission is the oil and gas industry among all industries. Methane depletes groundwater and being a greenhouse gas has devastating effects on the atmosphere too. Methane remains for a decade or two in the atmosphere and later breaks into carbon dioxide and thus damages it immensely, as it warms up the atmosphere 72 times more than carbon dioxide in those two decades and keeps on harming after breaking into carbon dioxide afterward. The property of a fluid to adhere to the surface of a solid, better known as adsorption, can be a great boon to minimize the hindrance caused by methane. Adsorption of methane during upstream processes can save the groundwater and atmospheric depletion around the site which can be hugely lucrative to earn profits which are reduced due to environmental degradation leading to project cancellation. The paper would deal with reasons why casing and cementing are not able to prevent leakage and would suggest methods to adsorb methane during upstream processes with mathematical explanation using volumetric analysis of adsorption of methane on the surface of activated carbon doped with copper oxides (which increases the absorption by 54%). The paper would explain in detail (through a cost estimation) how the proposed idea can be hugely beneficial not only to environment but also to the profits earned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=casing" title=" casing"> casing</a>, <a href="https://publications.waset.org/abstracts/search?q=cementing" title=" cementing"> cementing</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20estimation" title=" cost estimation"> cost estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20analysis" title=" volumetric analysis"> volumetric analysis</a> </p> <a href="https://publications.waset.org/abstracts/85308/boosting-profits-and-enhancement-of-environment-through-adsorption-of-methane-during-upstream-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7341</span> Selective Guest Accommodation in Zn(II) Bimetallic: Organic Coordination Frameworks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bukunola%20K.%20Oguntade">Bukunola K. Oguntade</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20M.%20Watkins"> Gareth M. Watkins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis and characterization of metal-organic frameworks (MOFs) is an area of coordination chemistry which has grown rapidly in recent years. Worldwide there has been growing concerns about future energy supplies, and its environmental impacts. A good number of MOFs have been tested for the adsorption of small molecules in the vapour phase. An important issue for potential applications of MOFs for gas adsorption and storage materials is the stability of their structure upon sorption. Therefore, study on the thermal stability of MOFs upon adsorption is important. The incorporation of two or more transition metals in a coordination polymer is a current challenge for designed synthesis. This work focused on the synthesis, characterization and small molecule adsorption properties of three microporous (one zinc monometal and two bimetallics) complexes involving Cu(II), Zn(II) and 1,2,4,5-benzenetetracarboxylic acid using the ambient precipitation and solvothermal method. The complexes were characterized by elemental analysis, Infrared spectroscopy, Scanning Electron microscopy, Thermogravimetry analysis and X-ray Powder diffraction. The N2-adsorption Isotherm showed the complexes to be of TYPE III in reference to IUPAC classification, with very small pores only capable for small molecule sorption. All the synthesized compounds were observed to contain water as guest. Investigations of their inclusion properties for small molecules in the vapour phase showed water and methanol as the only possible inclusion candidates with 10.25H2O in the monometal complex [Zn4(H2B4C)2.5(OH)3(H2O)]·10H2O but not reusable after a complete structural collapse. The ambient precipitation bimetallic; [(CuZnB4C(H2O)2]·5H2O, was found to be reusable and recoverable from structure collapse after adsorption of 5.75H2O. In addition, Solvo-[CuZnB4C(H2O)2.5]·2H2O obtained from solvothermal method show two cycles of rehydration with 1.75H2O and 0.75MeOH inclusion while structure remains unaltered upon dehydration and adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20-organic%20frameworks" title=" metal -organic frameworks"> metal -organic frameworks</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/96381/selective-guest-accommodation-in-znii-bimetallic-organic-coordination-frameworks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7340</span> Molecular Simulation of NO, NH3 Adsorption in MFI and H-ZSM5 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Jamalzadeh">Z. Jamalzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Niaei"> A. Niaei</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Erfannia"> H. Erfannia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Hosseini"> S. G. Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Razmgir"> A. S. Razmgir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to developing the industries, the emission of pollutants such as NOx, SOx, and CO2 are rapidly increased. Generally, NOx is attributed to the mono nitrogen oxides of NO and NO2 that is one of the most important atmospheric contaminants. Hence, controlling the emission of nitrogen oxides is urgent environmentally. Selective Catalytic Reduction of NOx is one of the most common techniques for NOx removal in which Zeolites have wide application due to their high performance. In zeolitic processes, the catalytic reaction occurs mostly in the pores. Therefore, investigation the adsorption phenomena of the molecules in order to gain an insight and understand the catalytic cycle is of important. Hence, in current study, molecular simulations is applied for studying the adsorption phenomena in nanocatalysts applied for SCR of NOx process. The effect of cation addition to the support in the catalysts’ behavior through adsorption step was explored by Mont Carlo (MC). Simulation time of 1 Ns accompanying 1 fs time step, COMPASS27 Force Field and the cut off radios of 12.5 Ȧ was applied for performed runs. It was observed that the adsorption capacity increases in the presence of cations. The sorption isotherms demonstrated the behavior of type I isotherm categories and sorption capacity diminished with increase in temperature whereas an increase was observed at high pressures. Besides, NO sorption showed higher sorption capacity than NH3 in H–ZSM5. In this respect, the Energy distributions signified that the molecules could adsorb in just one sorption site at the catalyst and the sorption energy of NO was stronger than the NH3 in H-ZSM5. Furthermore, the isosteric heat of sorption data showed nearly same values for the molecules; however, it indicated stronger interactions of NO molecules with H-ZSM5 Zeolite compared to the isosteric heat of NH3 which was low in value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title="Monte Carlo simulation">Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=ZSM5" title=" ZSM5"> ZSM5</a> </p> <a href="https://publications.waset.org/abstracts/21389/molecular-simulation-of-no-nh3-adsorption-in-mfi-and-h-zsm5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7339</span> Iron Removal from Aqueous Solutions by Fabricated Calcite Ooids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Sayed%20A.%20Bakr">Al-Sayed A. Bakr</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Makled"> W. A. Makled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The precipitated low magnesium calcite ooids in assembled softening unit from natural Mediterranean seawater samples were used as adsorbent media in a comparative study with granular activated carbon media in a two separated single-media filtration vessels (operating in parallel) for removal of iron from aqueous solutions. In each vessel, the maximum bed capacity, which required to be filled, was 13.2 l and the bed filled in the vessels of ooids and GAC were 8.6, and 6.6 l, respectively. The operating conditions applied to the semi-pilot filtration unit were constant pH (7.5), different temperatures (293, 303 and 313 k), different flow rates (20, 30, 40, 50 and 60 l/min), different initial Fe(II) concentrations (15–105 mg/ l) and the calculated adsorbent masses were 34.1 and 123 g/l for GAC and calcite ooids, respectively. At higher temperature (313 k) and higher flow rate (60 l/min), the maximum adsorption capacities for ferrous ions by GAC and calcite ooids filters were 3.87 and 1.29 mg/g and at lower flow rate (20 l/min), the maximum adsorption capacities were 2.21 and 3.95 mg/g, respectively. From the experimental data, Freundlich and Langmuir adsorption isotherms were used to verify the adsorption performance. Therefore, the calcite ooids could act as new highly effective materials in iron removal from aqueous solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title="water treatment">water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=calcite%20ooids" title=" calcite ooids"> calcite ooids</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%28II%29%20removal" title=" Fe(II) removal"> Fe(II) removal</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a> </p> <a href="https://publications.waset.org/abstracts/85594/iron-removal-from-aqueous-solutions-by-fabricated-calcite-ooids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7338</span> Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uzaira%20Rafique">Uzaira Rafique</a>, <a href="https://publications.waset.org/abstracts/search?q=Kousar%20Parveen"> Kousar Parveen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20hybrid" title="alumina hybrid">alumina hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dopant" title=" dopant"> dopant</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a> </p> <a href="https://publications.waset.org/abstracts/38397/development-of-cobalt-doped-alumina-hybrids-for-adsorption-of-textile-effluents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7337</span> Effects of the Coagulation Bath and Reduction Process on SO2 Adsorption Capacity of Graphene Oxide Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zge%20Alpto%C4%9Fa">Özge Alptoğa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuray%20U%C3%A7ar"> Nuray Uçar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilg%C3%BCn%20Karatepe%20Yavuz"> Nilgün Karatepe Yavuz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fen%20%C3%96nen"> Ayşen Önen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur dioxide (SO<sub>2</sub>) is a very toxic air pollutant gas and it causes the greenhouse effect, photochemical smog, and acid rain, which threaten human health severely. Thus, the capture of SO<sub>2</sub> gas is very important for the environment. Graphene which is two-dimensional material has excellent mechanical, chemical, thermal properties, and many application areas such as energy storage devices, gas adsorption, sensing devices, and optical electronics. Further, graphene oxide (GO) is examined as a good adsorbent because of its important features such as functional groups (epoxy, carboxyl and hydroxyl) on the surface and layered structure. The SO<sub>2</sub> adsorption properties of the fibers are usually investigated on carbon fibers. In this study, potential adsorption capacity of GO fibers was researched. GO dispersion was first obtained with Hummers’ method from graphite, and then GO fibers were obtained via wet spinning process. These fibers were converted into a disc shape, dried, and then subjected to SO<sub>2</sub> gas adsorption test. The SO<sub>2</sub> gas adsorption capacity of GO fiber discs was investigated in the fields of utilization of different coagulation baths and reduction by hydrazine hydrate. As coagulation baths, single and triple baths were used. In single bath, only ethanol and CaCl<sub>2</sub> (calcium chloride) salt were added. In triple bath, each bath has a different concentration of water/ethanol and CaCl<sub>2</sub> salt, and the disc obtained from triple bath has been called as reference disk. The fibers which were produced with single bath were flexible and rough, and the analyses show that they had higher SO<sub>2</sub> adsorption capacity than triple bath fibers (reference disk). However, the reduction process did not increase the adsorption capacity, because the SEM images showed that the layers and uniform structure in the fiber form were damaged, and reduction decreased the functional groups which SO<sub>2</sub> will be attached. Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) analyzes were performed on the fibers and discs, and the effects on the results were interpreted. In the future applications of the study, it is aimed that subjects such as pH and additives will be examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation%20bath" title="coagulation bath">coagulation bath</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide%20fiber" title=" graphene oxide fiber"> graphene oxide fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=SO2%20gas%20adsorption" title=" SO2 gas adsorption"> SO2 gas adsorption</a> </p> <a href="https://publications.waset.org/abstracts/68831/effects-of-the-coagulation-bath-and-reduction-process-on-so2-adsorption-capacity-of-graphene-oxide-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7336</span> Adsorption of Congo Red from Aqueous Solution by Raw Clay: A Fixed Bed Column Study </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghribi">A. Ghribi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bagane"> M. Bagane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removals of such compounds at such low levels are a difficult problem. Physicochemical technique such as coagulation, flocculation, ozonation, reverse osmosis and adsorption on activated carbon, manganese oxide, silica gel and clay are among the methods employed. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. Dye molecules also have very high affinity for clay surfaces and are readily adsorbed when added to clay suspension. The elimination of the organic dye by clay was studied by serval researchers. The focus of this research was to evaluate the adsorption potential of the raw clay in removing congo red from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 7.Experiments were carried out at different bed heights (5-20 cm), influent flow rates (1.6- 8 mL/min) and influent congo red concentrations (10-50 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of congo red from aqueous solution. Uptake of congo red through a fixed-bed column was dependent on the bed depth, influent congo red concentration and flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=breakthrough%20curve" title=" breakthrough curve"> breakthrough curve</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=congo%20red" title=" congo red"> congo red</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20bed%20column" title=" fixed bed column"> fixed bed column</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/39160/adsorption-of-congo-red-from-aqueous-solution-by-raw-clay-a-fixed-bed-column-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7335</span> Removal of Rhodamine B from Aqueous Solution Using Natural Clay by Fixed Bed Column Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghribi">A. Ghribi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bagane"> M. Bagane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge of dye in industrial effluents is of great concern because their presence and accumulation have a toxic or carcinogenic effect on living species. The removal of such compounds at such low levels is a difficult problem. The adsorption process is an effective and attractive proposition for the treatment of dye contaminated wastewater. Activated carbon adsorption in fixed beds is a very common technology in the treatment of water and especially in processes of decolouration. However, it is expensive and the powdered one is difficult to be separated from aquatic system when it becomes exhausted or the effluent reaches the maximum allowable discharge level. The regeneration of exhausted activated carbon by chemical and thermal procedure is also expensive and results in loss of the sorbent. The focus of this research was to evaluate the adsorption potential of the raw clay in removing rhodamine B from aqueous solutions using a laboratory fixed-bed column. The continuous sorption process was conducted in this study in order to simulate industrial conditions. The effect of process parameters, such as inlet flow rate, adsorbent bed height, and initial adsorbate concentration on the shape of breakthrough curves was investigated. A glass column with an internal diameter of 1.5 cm and height of 30 cm was used as a fixed-bed column. The pH of feed solution was set at 8.5. Experiments were carried out at different bed heights (5 - 20 cm), influent flow rates (1.6- 8 mL/min) and influent rhodamine B concentrations (20 - 80 mg/L). The obtained results showed that the adsorption capacity increases with the bed depth and the initial concentration and it decreases at higher flow rate. The column regeneration was possible for four adsorption–desorption cycles. The clay column study states the value of the excellent adsorption capacity for the removal of rhodamine B from aqueous solution. Uptake of rhodamine B through a fixed-bed column was dependent on the bed depth, influent rhodamine B concentration, and flow rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=breakthrough%20curve" title=" breakthrough curve"> breakthrough curve</a>, <a href="https://publications.waset.org/abstracts/search?q=clay" title=" clay"> clay</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20bed%20column" title=" fixed bed column"> fixed bed column</a>, <a href="https://publications.waset.org/abstracts/search?q=rhodamine%20b" title=" rhodamine b"> rhodamine b</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a> </p> <a href="https://publications.waset.org/abstracts/39169/removal-of-rhodamine-b-from-aqueous-solution-using-natural-clay-by-fixed-bed-column-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7334</span> Comparison Methyl Orange and Malachite Green Dyes Removal by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH as Adsorbents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Moradi">Omid Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rajabi"> Mostafa Rajabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide (GO), reduced graphene oxide (rGO), multi-walled carbon nanotubes MWCNT), multi-walled carbon nanotube functionalized carboxyl (MWCNT-COOH), and multi-walled carbon nanotube functionalized thiol (MWCNT-SH) were used as efficient adsorbents for the rapid removal two dyes methyl orange (MO) and malachite green (MG) from the aqueous phase. The impact of several influential parameters such as initial dye concentrations, contact time, temperature, and initial solution pH was well studied and optimized. The optimize time for adsorption process of methyl orange dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 25, and 60 min, respectively and The optimize time for adsorption process of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were determined at 100, 100, 60, 15, and 60 min, respectively. The maximum removal efficiency for methyl orange dye by GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were occurred at optimized pH 3, 3, 6, 2, and 6 of aqueous solutions, respectively and for malachite green dye were occurred at optimized pH 3, 3, 6, 9, and 6 of aqueous solutions, respectively. The effect of temperature showed that adsorption process of malachite green dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic and for adsorption process of methyl orange dye on GO, rGO, MWCNT, and MWCNT-SH surfaces were endothermic but while adsorption of methyl orange and malachite green dyes on MWCNT-COOH surface were exothermic.On increasing the initial concentration of methyl orange dye adsorption capacity on GO surface was decreased and on rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased and with increasing the initial concentration of malachite green dye on GO, rGO, MWCNT, MWCNT-COOH, and MWCNT-SH surfaces were increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20orange" title=" methyl orange"> methyl orange</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite%20green" title=" malachite green"> malachite green</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/39808/comparison-methyl-orange-and-malachite-green-dyes-removal-by-go-rgo-mwcnt-mwcnt-cooh-and-mwcnt-sh-as-adsorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7333</span> Fabrication of Fe3O4core-meso SiO2/TiO2 Double Shell for Dye Pollution Remediation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Habila">Mohamed Habila</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mohamed%20El-Toni"> Ahmed Mohamed El-Toni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sheikh%20Moshab"> Mohamed Sheikh Moshab</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrhman%20Al-Awadi"> Abdulrhman Al-Awadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeid%20AL%20Othman"> Zeid AL Othman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water pollution with dyes is a critical environmental issue because off the huge amount of dyes disbarred annually, which cause severe damage for the ecosystem and human life. The main raison for this severs pollution is the rapid industrial development which led to more production of harmful pollutants. on the other hand, the core shell based magnetic materials have showed amazing character for controlling the material synthesis with the targeted structure to enhance the adsorptive removal of pollutants. Herein, the Fe3O4core-meso SiO2/TiO2 double shell have been prepared for methylene blue dye adsorption. the preparation procedure is controlled to prepare the magnetic core with further coating layers from silica and titania. The prepared Fe3O4core-meso SiO2/TiO2 double shell showed adsorption capacity for methylene blue removal about 50 mg/g at pH 6 after 80 min contact time form 50 ppm methylene blue solution. The adsorption process of methylene blue onto Fe3O4core-meso SiO2/TiO2 double shell was well fitted with the pseudo-second-order kinetic model and freundlish isotherm, indicating a quick and multilayer adsorption mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20core" title="magnetic core">magnetic core</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20shell" title=" silica shell"> silica shell</a>, <a href="https://publications.waset.org/abstracts/search?q=titania%20shell" title=" titania shell"> titania shell</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=solvo-thermal%20process" title=" solvo-thermal process"> solvo-thermal process</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/156847/fabrication-of-fe3o4core-meso-sio2tio2-double-shell-for-dye-pollution-remediation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7332</span> Ficus carica as Adsorbent for Removal of Phenol from Aqueous Solutions: Modeling and Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tizi%20Hayet">Tizi Hayet</a>, <a href="https://publications.waset.org/abstracts/search?q=Berrama%20Tarek"> Berrama Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Bounif%20Nadia"> Bounif Nadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenol and its derivatives are organic compounds utilized in the chemical industry. They are introduced into the environment by accidental spills and the illegal release of industrial and municipal wastewater. Phenols are organic intermediaries that are considered potential pollutants. Adsorption is one of the purification and separation techniques used in this area. Algeria annually produces 131000 tons of fig; therefore, a large amount of fig leaves is generated, and the conversion of this waste into adsorbent allows the valorization of agricultural residue. The main purpose of this present work is to describe an application of a statistical method for modeling and to optimize the conditions of the phenol adsorption from agricultural by-products, locally available (fig leaves). The best experimental performance of phenol elimination on the adsorbent was obtained with: Adsorbent concentration (X₂) = 200 mg L⁻¹; Initial concentration (X₃) = 150 mg L⁻¹; Speed agitation (X₁) = 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low-cost%20adsorbents" title="low-cost adsorbents">low-cost adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=fig%20leaves" title=" fig leaves"> fig leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=factorial%20design" title=" factorial design"> factorial design</a> </p> <a href="https://publications.waset.org/abstracts/156940/ficus-carica-as-adsorbent-for-removal-of-phenol-from-aqueous-solutions-modeling-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=7" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=252">252</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=253">253</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=adsorption%20models&page=9" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>