CINXE.COM
Search results for: charging data
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: charging data</title> <meta name="description" content="Search results for: charging data"> <meta name="keywords" content="charging data"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="charging data" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="charging data"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 25312</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: charging data</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25312</span> The Impact of the Parking Spot’ Surroundings on Charging Decision: A Data-Driven Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xizhen%20Zhou">Xizhen Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanjie%20Ji"> Yanjie Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The charging behavior of drivers provides a reference for the planning and management of charging facilities. Based on the real trajectory data of electric vehicles, this study explored the influence of the surrounding environments of the parking spot on charging decisions. The built environment, the condition of vehicles, and the nearest charging station were all considered. And the mixed binary logit model was used to capture the impact of unobserved heterogeneity. The results show that the number of fast chargers in the charging station, parking price, dwell time, and shopping services all significantly impact the charging decision, while the leisure services, scenic spots, and mileage since the last charging are opposite. Besides, factors related to unobserved heterogeneity include the number of fast chargers, parking and charging prices, residential areas, etc. The interaction effects of random parameters further illustrate the complexity of charging choice behavior. The results provide insights for planning and managing charging facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging%20decision" title="charging decision">charging decision</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory" title=" trajectory"> trajectory</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20logit" title=" mixed logit"> mixed logit</a> </p> <a href="https://publications.waset.org/abstracts/174575/the-impact-of-the-parking-spot-surroundings-on-charging-decision-a-data-driven-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25311</span> Optimizing Electric Vehicle Charging with Charging Data Analytics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayyibah%20Khanam">Tayyibah Khanam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saad%20Alam"> Mohammad Saad Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanchari%20Deb"> Sanchari Deb</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Rafat"> Yasser Rafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging%20data" title="charging data">charging data</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting%20times" title=" waiting times"> waiting times</a> </p> <a href="https://publications.waset.org/abstracts/133474/optimizing-electric-vehicle-charging-with-charging-data-analytics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25310</span> Optimization of Electric Vehicle (EV) Charging Station Allocation Based on Multiple Data - Taking Nanjing (China) as an Example</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yue%20Huang">Yue Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiheng%20Feng"> Yiheng Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the global pressure on climate and energy, many countries are vigorously promoting electric vehicles and building charging (public) charging facilities. Faced with the supply-demand gap of existing electric vehicle charging stations and unreasonable space usage in China, this paper takes the central city of Nanjing as an example, establishes a site selection model through multivariate data integration, conducts multiple linear regression SPSS analysis, gives quantitative site selection results, and provides optimization models and suggestions for charging station layout planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20station" title=" charging station"> charging station</a>, <a href="https://publications.waset.org/abstracts/search?q=allocation%20optimization" title=" allocation optimization"> allocation optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20mobility" title=" urban mobility"> urban mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20infrastructure" title=" urban infrastructure"> urban infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=nanjing" title=" nanjing"> nanjing</a> </p> <a href="https://publications.waset.org/abstracts/162869/optimization-of-electric-vehicle-ev-charging-station-allocation-based-on-multiple-data-taking-nanjing-china-as-an-example" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25309</span> Investigating the Characteristics of Correlated Parking-Charging Behaviors for Electric Vehicles: A Data-Driven Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xizhen%20Zhou">Xizhen Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanjie%20Ji"> Yanjie Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In advancing the management of integrated electric vehicle (EV) parking-charging behaviors, this study uses Changshu City in Suzhou as a case study to establish a data association mechanism for parking-charging platforms and to develop a database for EV parking-charging behaviors. Key indicators, such as charging start time, initial state of charge, final state of charge, and parking-charging time difference, are considered. Utilizing the K-S test method, the paper examines the heterogeneity of parking-charging behavior preferences among pure EV and non-pure EV users. The K-means clustering method is employed to analyze the characteristics of parking-charging behaviors for both user groups, thereby enhancing the overall understanding of these behaviors. The findings of this study reveal that using a classification model, the parking-charging behaviors of pure EVs can be classified into five distinct groups, while those of non-pure EVs can be separated into four groups. Among them, both types of EV users exhibit groups with low range anxiety for complete charging with special journeys, complete charging at destination, and partial charging. Additionally, both types have a group with high range anxiety, characterized by pure EV users displaying a preference for complete charging with specific journeys, while non-pure EV users exhibit a preference for complete charging. Notably, pure EV users also display a significant group engaging in nocturnal complete charging. The findings of this study can provide technical support for the scientific and rational layout and management of integrated parking and charging facilities for EVs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20engineering" title="traffic engineering">traffic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20preferences" title=" potential preferences"> potential preferences</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=EV" title=" EV"> EV</a>, <a href="https://publications.waset.org/abstracts/search?q=parking-charging%20behavior" title=" parking-charging behavior"> parking-charging behavior</a> </p> <a href="https://publications.waset.org/abstracts/174576/investigating-the-characteristics-of-correlated-parking-charging-behaviors-for-electric-vehicles-a-data-driven-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25308</span> Wireless Battery Charger with Adaptive Rapid-Charging Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byoung-Hee%20Lee">Byoung-Hee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless battery charger with adaptive rapid charging algorithm is proposed. The proposed wireless charger adopts voltage regulation technique to reduce the number of power conversion steps. Moreover, based on battery models, an adaptive rapid charging algorithm for Li-ion batteries is obtained. Rapid-charging performance with the proposed wireless battery charger and the proposed rapid charging algorithm has been experimentally verified to show more than 70% charging time reduction compared to conventional constant-current constant-voltage (CC-CV) charging without the degradation of battery lifetime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless" title="wireless">wireless</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20charger" title=" battery charger"> battery charger</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive" title=" adaptive"> adaptive</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid-charging" title=" rapid-charging"> rapid-charging</a> </p> <a href="https://publications.waset.org/abstracts/54610/wireless-battery-charger-with-adaptive-rapid-charging-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25307</span> Internet of Things-Based Electric Vehicle Charging Notification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagarjuna%20Pitty">Nagarjuna Pitty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is believed invention “Advanced Method and Process Quick Electric Vehicle Charging” is an Electric Vehicles (EVs) are quickly turning into the heralds of vehicle innovation. This study endeavors to address the inquiries of how module charging process correspondence has been performed between the EV and Electric Vehicle Supply Equipment (EVSE). The energy utilization of gas-powered motors is higher than that of electric engines. An invention is related to an Advanced Method and Process Quick Electric Vehicle Charging. In this research paper, readings on the electric vehicle charging approaches will be checked, and the module charging phases will be described comprehensively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric" title="electric">electric</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle" title=" vehicle"> vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=charging" title=" charging"> charging</a>, <a href="https://publications.waset.org/abstracts/search?q=notification" title=" notification"> notification</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=supply" title=" supply"> supply</a>, <a href="https://publications.waset.org/abstracts/search?q=equipment" title=" equipment"> equipment</a> </p> <a href="https://publications.waset.org/abstracts/166037/internet-of-things-based-electric-vehicle-charging-notification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25306</span> Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ons%20Sassi">Ons Sassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahiba%20Ramdane%20Cherif-Khettaf"> Wahiba Ramdane Cherif-Khettaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Oulamara"> Ammar Oulamara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a new real-life Heterogenous Electric Vehicle Routing Problem with Time Dependant Charging Costs and a Mixed Fleet (HEVRP-TDMF), in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time-dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with three different insertion strategies. All heuristics are tested on real data instances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging%20problem" title="charging problem">charging problem</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20search" title=" local search"> local search</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=routing%20problem" title=" routing problem"> routing problem</a> </p> <a href="https://publications.waset.org/abstracts/19969/vehicle-routing-problem-with-mixed-fleet-of-conventional-and-heterogenous-electric-vehicles-and-time-dependent-charging-costs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25305</span> Hybrid System Configurations and Charging Strategies for Isolated Electric Tuk-Tuk Charging Station in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bokopane">L. Bokopane</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kusakana"> K. Kusakana</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Vermaark"> H. J. Vermaark </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The success of renewable powered electric vehicle charging station in isolated areas depends highly on the availability and sustainability of renewable resources all year round at a selected location. The main focus of this paper is to discuss the possible charging strategies that could be implemented to find the best possible configuration of an electric Tuk-Tuk charging station at a given location within South Africa. The charging station is designed, modeled and simulated to evaluate its performances. The techno-economic analysis of different feasible supply configurations of the charging station using renewable energies is simulated using HOMER software and the results compared in order to select the best possible charging strategies in terms of cost of energy consumed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20tuk-tuk" title="electric tuk-tuk">electric tuk-tuk</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20Storage" title=" energy Storage"> energy Storage</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMER" title=" HOMER"> HOMER</a> </p> <a href="https://publications.waset.org/abstracts/13148/hybrid-system-configurations-and-charging-strategies-for-isolated-electric-tuk-tuk-charging-station-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25304</span> The Impact of Public Charging Infrastructure on the Adoption of Electric Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaherah%20Jordan">Shaherah Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Vandergert"> Paula Vandergert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discussion on public charging infrastructure is usually framed around the ‘chicken-egg’ challenge of consumers feeling reluctant to purchase without the necessary infrastructure and policymakers reluctant to invest in the infrastructure without the demand. However, public charging infrastructure may be more crucial to electric vehicle (EV) adoption than previously thought. Historically, access to residential charging was thought to be a major factor in potential for growth in the EV market as it offered a guaranteed place for a vehicle to be charged. The purpose of this study is to understand how the built environment may encourage uptake of EVs by seeking a correlation between EV ownership and public charging points in an urban and densely populated city such as London. Using a statistical approach with data from the Department for Transport and Zap-Map, a statistically significant correlation was found between the total (slow, fast and rapid) number of public charging points and a number of EV registrations per borough – with the strongest correlation found between EV registrations and rapid chargers. This research does not explicitly prove that there is a cause and effect relationship between public charging points EVs but challenges some of the previous literature which indicates that public charging infrastructure is not as important as home charging. Furthermore, the study provides strong evidence that public charging points play a functional and psychological role in the adoption of EVs and supports the notion that the built environment can influence human behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20change" title="behaviour change">behaviour change</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20charging%20infrastructure" title=" public charging infrastructure"> public charging infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/99164/the-impact-of-public-charging-infrastructure-on-the-adoption-of-electric-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25303</span> Electric Vehicles Charging Stations: Strategies and Algorithms Integrated in a Power-Sharing Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Loggia">Riccardo Loggia</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Pizzimenti"> Francesca Pizzimenti</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Lelli"> Francesco Lelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Martirano"> Luigi Martirano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent air emission regulations point toward the complete electrification of road vehicles. An increasing number of users are beginning to prefer full electric or hybrid, plug-in vehicle solutions, incentivized by government subsidies and the lower cost of electricity compared to gasoline or diesel. However, it is necessary to optimize charging stations so that they can simultaneously satisfy as many users as possible. The purpose of this paper is to present optimization algorithms that enable simultaneous charging of multiple electric vehicles while ensuring maximum performance in relation to the type of charging station. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20stations" title=" charging stations"> charging stations</a>, <a href="https://publications.waset.org/abstracts/search?q=sharing%20model" title=" sharing model"> sharing model</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20charging" title=" fast charging"> fast charging</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20park" title=" car park"> car park</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20profiles" title=" power profiles"> power profiles</a> </p> <a href="https://publications.waset.org/abstracts/151373/electric-vehicles-charging-stations-strategies-and-algorithms-integrated-in-a-power-sharing-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25302</span> Impact of Charging PHEV at Different Penetration Levels on Power System Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Ahmad">M. R. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Musirin"> I. Musirin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Othman"> M. M. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Rahmat"> N. A. Rahmat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plug-in Hybrid-Electric Vehicle (PHEV) has gained immense popularity in recent years. PHEV offers numerous advantages compared to the conventional internal-combustion engine (ICE) vehicle. Millions of PHEVs are estimated to be on the road in the USA by 2020. Uncoordinated PHEV charging is believed to cause severe impacts to the power grid; i.e. feeders, lines and transformers overload and voltage drop. Nevertheless, improper PHEV data model used in such studies may cause the findings of their works is in appropriated. Although smart charging is more attractive to researchers in recent years, its implementation is not yet attainable on the street due to its requirement for physical infrastructure readiness and technology advancement. As the first step, it is finest to study the impact of charging PHEV based on real vehicle travel data from National Household Travel Survey (NHTS) and at present charging rate. Due to the lack of charging station on the street at the moment, charging PHEV at home is the best option and has been considered in this work. This paper proposed a technique that comprehensively presents the impact of charging PHEV on power system networks considering huge numbers of PHEV samples with its traveling data pattern. Vehicles Charging Load Profile (VCLP) is developed and implemented in IEEE 30-bus test system that represents a portion of American Electric Power System (Midwestern US). Normalization technique is used to correspond to real time loads at all buses. Results from the study indicated that charging PHEV using opportunity charging will have significant impacts on power system networks, especially whereas bigger battery capacity (kWh) is used as well as for higher penetration level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plug-in%20hybrid%20electric%20vehicle" title="plug-in hybrid electric vehicle">plug-in hybrid electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20electrification" title=" transportation electrification"> transportation electrification</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20of%20charging%20PHEV" title=" impact of charging PHEV"> impact of charging PHEV</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20demand%20profile" title=" electricity demand profile"> electricity demand profile</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20profile" title=" load profile"> load profile</a> </p> <a href="https://publications.waset.org/abstracts/7838/impact-of-charging-phev-at-different-penetration-levels-on-power-system-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25301</span> Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Karaoglu">Kaan Karaoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raif%20Bayir"> Raif Bayir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20charging%20systems" title=" wireless charging systems"> wireless charging systems</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cartesian%20robot" title=" cartesian robot"> cartesian robot</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20detection" title=" location detection"> location detection</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20planning" title=" trajectory planning"> trajectory planning</a> </p> <a href="https://publications.waset.org/abstracts/181986/design-of-cartesian-robot-for-electric-vehicle-wireless-charging-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25300</span> Automatic Battery Charging for Rotor Wings Type Unmanned Aerial Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeyeon%20Kim">Jeyeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the development of the automatic battery charging device for the rotor wings type unmanned aerial vehicle (UAV) and the positioning method that can be accurately landed on the charging device when landing. The developed automatic battery charging device is considered by simple maintenance, durability, cost and error of the positioning when landing. In order to for the UAV accurately land on the charging device, two kinds of markers (a color marker and a light marker) installed on the charging device is detected by the camera mounted on the UAV. And then, the UAV is controlled so that the detected marker becomes the center of the image and is landed on the device. We conduct the performance evaluation of the proposal positioning method by the outdoor experiments at day and night, and show the effectiveness of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title="unmanned aerial vehicle">unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20battery%20charging" title=" automatic battery charging"> automatic battery charging</a>, <a href="https://publications.waset.org/abstracts/search?q=positioning" title=" positioning"> positioning</a> </p> <a href="https://publications.waset.org/abstracts/71183/automatic-battery-charging-for-rotor-wings-type-unmanned-aerial-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25299</span> Simulation Study on Spacecraft Surface Charging Induced by Jovian Plasma Environment with Particle in Cell Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meihua%20Fang">Meihua Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yipan%20Guo"> Yipan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Fei"> Tao Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengyu%20Tian"> Pengyu Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space plasma caused spacecraft surface charging is the major space environment hazard. Particle in cell (PIC) method can be used to simulate the interaction between space plasma and spacecraft. It was proved that surface charging level of spacecraft in Jupiter’s orbits was high for its’ electron-heavy plasma environment. In this paper, Jovian plasma environment is modeled and surface charging analysis is carried out by PIC based software Spacecraft Plasma Interaction System (SPIS). The results show that the spacecraft charging potentials exceed 1000V at 2Rj, 15Rj and 25Rj polar orbits in the dark side at worst case plasma model. Furthermore, the simulation results indicate that the large Jovian magnetic field increases the surface charging level for secondary electron gyration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jupiter" title="Jupiter">Jupiter</a>, <a href="https://publications.waset.org/abstracts/search?q=PIC" title=" PIC"> PIC</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20plasma" title=" space plasma"> space plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charging" title=" surface charging"> surface charging</a> </p> <a href="https://publications.waset.org/abstracts/106455/simulation-study-on-spacecraft-surface-charging-induced-by-jovian-plasma-environment-with-particle-in-cell-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25298</span> Design of Electric Ship Charging Station Considering Renewable Energy and Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun%20Yuan">Jun Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shipping is a major transportation mode all over the world, and it has a significant contribution to global carbon emissions. Electrification of ships is one of the main strategies to reduce shipping carbon emissions. The number of electric ships has continued to grow in recent years. However, charging infrastructure is still scarce, which severely restricts the development of electric ships. Therefore, it is very important to design ship charging stations reasonably by comprehensively considering charging demand and investment costs. This study aims to minimize the full life cycle cost of charging stations, considering the uncertainty of charging demand. A mixed integer programming model is developed for this optimization problem. Based on the characteristics of the mathematical model, a simulation based optimization method is proposed to find the optimal number and rated power of chargers. In addition, the impact of renewable energy and storage systems is analyzed. The results can provide decision support and a reference basis for the design of ship charging stations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shipping%20emission" title="shipping emission">shipping emission</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20ship" title=" electricity ship"> electricity ship</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20station" title=" charging station"> charging station</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title=" optimal design"> optimal design</a> </p> <a href="https://publications.waset.org/abstracts/175837/design-of-electric-ship-charging-station-considering-renewable-energy-and-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25297</span> The Effect of Socio-Economic Factors on Electric Vehicle Charging Behavior: An Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Judith%20Mwakalonge">Judith Mwakalonge</a>, <a href="https://publications.waset.org/abstracts/search?q=Geophrey%20Mbatta"> Geophrey Mbatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuthbert%20Ruseruka"> Cuthbert Ruseruka</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurcan%20Comert"> Gurcan Comert</a>, <a href="https://publications.waset.org/abstracts/search?q=Saidi%20Siuhi"> Saidi Siuhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent advancements in technology have fostered the development of Electric Vehicles (EVs) that provides relief from transportation dependence on natural fossil fuels as sources of energy. It is estimated that more than 50% of petroleum is used for transportation, which accounts for 28% of annual energy use. Vehicles make up about 82% of all transportation energy use. It is also estimated that about 22% of global Carbon dioxide (CO2) emissions are produced by the transportation sector, therefore, it raises environmental concerns. Governments worldwide, including the United States, are investing in developing EVs to resolve the issues related to the use of natural fossil fuels, such as air pollution due to emissions. For instance, the Bipartisan Infrastructure Law (BIL) that was signed by President Biden on November 15th, 2021, sets aside about $5 billion to be apportioned to all 50 states, the District of Columbia, and Puerto Rico for the development of EV chargers. These chargers should be placed in a way that maximizes their utility. This study aims at studying the charging behaviors of Electric Vehicle (EV) users to establish factors to be considered in the selection of charging locations. The study will focus on social-economic and land use data by studying the relationship between charging time and charging locations. Local factors affecting the charging time and the chargers’ utility will be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=EV%20charging%20stations" title=" EV charging stations"> EV charging stations</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20economic%20factors" title=" social economic factors"> social economic factors</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20networks" title=" charging networks"> charging networks</a> </p> <a href="https://publications.waset.org/abstracts/163547/the-effect-of-socio-economic-factors-on-electric-vehicle-charging-behavior-an-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25296</span> Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Joshi">H. J. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyajeet%20Patil"> Satyajeet Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Parth%20Dandavate"> Parth Dandavate</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihir%20Kulkarni"> Mihir Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshita%20Agrawal"> Harshita Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting" title="forecasting">forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20load%20forecasting" title=" electric vehicle load forecasting"> electric vehicle load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20forecasting" title=" time series forecasting"> time series forecasting</a> </p> <a href="https://publications.waset.org/abstracts/150536/comparison-of-different-machine-learning-models-for-time-series-based-load-forecasting-of-electric-vehicle-charging-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25295</span> Modelling of Multi-Agent Systems for the Scheduling of Multi-EV Charging from Power Limited Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manan%E2%80%99Iarivo%20Rasolonjanahary">Manan’Iarivo Rasolonjanahary</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Bingham"> Chris Bingham</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20Schofield"> Nigel Schofield</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Bazargan"> Masoud Bazargan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the research and application of model predictive scheduled charging of electric vehicles (EV) subject to limited available power resource. To focus on algorithm and operational characteristics, the EV interface to the source is modelled as a battery state equation during the charging operation. The researched methods allow for the priority scheduling of EV charging in a multi-vehicle regime and when subject to limited source power availability. Priority attribution for each connected EV is described. The validity of the developed methodology is shown through the simulation of different scenarios of charging operation of multiple connected EVs including non-scheduled and scheduled operation with various numbers of vehicles. Performance of the developed algorithms is also reported with the recommendation of the choice of suitable parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=non-scheduled" title=" non-scheduled"> non-scheduled</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20limited%20sources" title=" power limited sources"> power limited sources</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduled%20and%20stop-start%20battery%20charging" title=" scheduled and stop-start battery charging"> scheduled and stop-start battery charging</a> </p> <a href="https://publications.waset.org/abstracts/134020/modelling-of-multi-agent-systems-for-the-scheduling-of-multi-ev-charging-from-power-limited-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25294</span> Behaviour of an RC Circuit near Extreme Point</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tribhuvan%20N.%20Soorya">Tribhuvan N. Soorya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Charging and discharging of a capacitor through a resistor can be shown as exponential curve. Theoretically, it takes infinite time to fully charge or discharge a capacitor. The flow of charge is due to electrons having finite and fixed value of charge. If we carefully examine the charging and discharging process after several time constants, the points on q vs t graph become discrete and curve become discontinuous. Moreover for all practical purposes capacitor with charge (q0-e) can be taken as fully charged, as it introduces an error less than one part per million. Similar is the case for discharge of a capacitor, where the capacitor with the last electron (charge e) can be taken as fully discharged. With this, we can estimate the finite value of time for fully charging and discharging a capacitor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging" title="charging">charging</a>, <a href="https://publications.waset.org/abstracts/search?q=discharging" title=" discharging"> discharging</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20Circuit" title=" RC Circuit"> RC Circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitor" title=" capacitor"> capacitor</a> </p> <a href="https://publications.waset.org/abstracts/28590/behaviour-of-an-rc-circuit-near-extreme-point" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25293</span> Standalone Docking Station with Combined Charging Methods for Agricultural Mobile Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonor%20Varandas">Leonor Varandas</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20D.%20Gaspar"> Pedro D. Gaspar</a>, <a href="https://publications.waset.org/abstracts/search?q=Martim%20L.%20Aguiar"> Martim L. Aguiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the biggest concerns in the field of agriculture is around the energy efficiency of robots that will perform agriculture’s activity and their charging methods. In this paper, two different charging methods for agricultural standalone docking stations are shown that will take into account various variants as field size and its irregularities, work’s nature to which the robot will perform, deadlines that have to be respected, among others. Its features also are dependent on the orchard, season, battery type and its technical specifications and cost. First charging base method focuses on wireless charging, presenting more benefits for small field. The second charging base method relies on battery replacement being more suitable for large fields, thus avoiding the robot stop for recharge. Existing many methods to charge a battery, the CC CV was considered the most appropriate for either simplicity or effectiveness. The choice of the battery for agricultural purposes is if most importance. While the most common battery used is Li-ion battery, this study also discusses the use of graphene-based new type of batteries with 45% over capacity to the Li-ion one. A Battery Management Systems (BMS) is applied for battery balancing. All these approaches combined showed to be a promising method to improve a lot of technical agricultural work, not just in terms of plantation and harvesting but also about every technique to prevent harmful events like plagues and weeds or even to reduce crop time and cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20mobile%20robot" title="agricultural mobile robot">agricultural mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=charging%20methods" title=" charging methods"> charging methods</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20replacement%20method" title=" battery replacement method"> battery replacement method</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20charging%20method" title=" wireless charging method"> wireless charging method</a> </p> <a href="https://publications.waset.org/abstracts/96931/standalone-docking-station-with-combined-charging-methods-for-agricultural-mobile-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25292</span> Correlation Between Hydrogen Charging and Charpy Impact of 4340 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Alcisto">J. Alcisto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Papakyriakou"> M. Papakyriakou</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Guerra"> J. Guerra</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dominguez"> A. Dominguez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Miller"> M. Miller</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Foyos"> J. Foyos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Jones"> E. Jones</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ula"> N. Ula</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hahn"> M. Hahn</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Zeng"> L. Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Li"> Y. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20S.%20Es-Said"> O. S. Es-Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current methods of testing for hydrogen charging are slow and time consuming. The objective of this paper was to determine if hydrogen charging can be detected quantitatively through the use of Charpy Impact (CI) testing. CI is a much faster and simpler process than current methods for detecting hydrogen charging. Steel plates were Electro Discharge Machined (EDM) into ninety-six 4340 steel CI samples and forty-eight tensile bars. All the samples were heat treated at 900°C to austentite and then rapidly quenched in water to form martensite. The samples were tempered at eight different target strengths/target temperatures (145, 160, 170, 180, 190, 205, 220, to 250KSI, thousands of pounds per square inch)/(1100, 1013, 956, 898, 840, 754, 667, 494 degrees Celsius). After a tedious process of grinding and machining v-notches to the Charpy samples, they were divided into four groups. One group was kept as received baseline for comparison while the other three groups were sent to Alcoa (Fasteners) Inc. in Torrance to be cadmium coated. The three groups were coated with three thicknesses (2, 3 and 5 mils). That means that the samples were charged with ascending hydrogen levels. The samples were CI tested and tensile tested, and the data was tabulated and compared to the baseline group of uncharged samples of the same material. The results of this study were successful and indicated that CI testing was able to quantitatively detect hydrogen charging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charpy%20impact%20toughness" title="Charpy impact toughness">Charpy impact toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20charging" title=" hydrogen charging"> hydrogen charging</a>, <a href="https://publications.waset.org/abstracts/search?q=4340%20steel" title=" 4340 steel"> 4340 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Electro%20Discharge%20Machined%20%28EDM%29" title=" Electro Discharge Machined (EDM)"> Electro Discharge Machined (EDM)</a> </p> <a href="https://publications.waset.org/abstracts/11966/correlation-between-hydrogen-charging-and-charpy-impact-of-4340-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25291</span> Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trung%20Hieu%20Tran">Trung Hieu Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesse%20O%27Hanley"> Jesse O'Hanley</a>, <a href="https://publications.waset.org/abstracts/search?q=Russell%20Fowler"> Russell Fowler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20charging%20station" title=" wireless charging station"> wireless charging station</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20programming" title=" mathematical programming"> mathematical programming</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-heuristic%20algorithm" title=" meta-heuristic algorithm"> meta-heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a> </p> <a href="https://publications.waset.org/abstracts/159397/model-and-algorithm-for-dynamic-wireless-electric-vehicle-charging-network-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25290</span> Challenges for a WPT 4 Waiting Lane Concept - Laboratory and Practical Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julia%20Langen">Julia Langen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article describes the challenges of a wireless charging system for a cab waiting lane in a public space and presents a concept for solving them. In this concept, multiple cabs can be charged simultaneously and during stopping and rolling. Particular technical challenges are a coil topology that meets the EMF requirements and an intelligent control concept that allows the individual coil segments to be switched on and off. The charging concept explained here is currently being implemented as a pilot project, so that initial results on the operation can be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charge%20lane" title="charge lane">charge lane</a>, <a href="https://publications.waset.org/abstracts/search?q=inductive%20charging%20solution" title=" inductive charging solution"> inductive charging solution</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20power%20transfer" title=" wireless power transfer"> wireless power transfer</a> </p> <a href="https://publications.waset.org/abstracts/142962/challenges-for-a-wpt-4-waiting-lane-concept-laboratory-and-practical-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25289</span> Numerical Resolving of Net Faradaic Current in Fast-Scan Cyclic Voltammetry Considering Induced Charging Currents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Wosiak">Gabriel Wosiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dyovani%20Coelho"> Dyovani Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Evaldo%20B.%20Carneiro-Neto"> Evaldo B. Carneiro-Neto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20C.%20Pereira"> Ernesto C. Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20C.%20Lopes"> Mauro C. Lopes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the theoretical and experimental effects of induced charging currents on fast-scan cyclic voltammetry (FSCV) are investigated. Induced charging currents arise from the effect of ohmic drop in electrochemical systems, which depends on the presence of an uncompensated resistance. They cause the capacitive contribution to the total current to be different from the capacitive current measured in the absence of electroactive species. The paper shows that the induced charging current is relevant when the capacitive current magnitude is close to the total current, even for systems with low time constant. In these situations, the conventional background subtraction method may be inaccurate. A method is developed that separates the faradaic and capacitive currents by using a combination of voltametric experimental data and finite element simulation, by the obtention of a potential-dependent capacitance. The method was tested in a standard electrochemical cell with Platinum ultramicroelectrodes, in different experimental conditions as well in previously reported data in literature. The proposed method allows the real capacitive current to be separated even in situations where the conventional background subtraction method is clearly inappropriate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacitive%20current" title="capacitive current">capacitive current</a>, <a href="https://publications.waset.org/abstracts/search?q=fast-scan%20cyclic%20voltammetry" title=" fast-scan cyclic voltammetry"> fast-scan cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-element%20method" title=" finite-element method"> finite-element method</a>, <a href="https://publications.waset.org/abstracts/search?q=electroanalysis" title=" electroanalysis"> electroanalysis</a> </p> <a href="https://publications.waset.org/abstracts/172239/numerical-resolving-of-net-faradaic-current-in-fast-scan-cyclic-voltammetry-considering-induced-charging-currents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25288</span> Material Use and Life Cycle GHG Emissions of Different Electrification Options for Long-Haul Trucks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nafisa%20Mahbub">Nafisa Mahbub</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajo%20Ribberink"> Hajo Ribberink</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrification of long-haul trucks has been in discussion as a potential strategy to decarbonization. These trucks will require large batteries because of their weight and long daily driving distances. Around 245 million battery electric vehicles are predicted to be on the road by the year 2035. This huge increase in the number of electric vehicles (EVs) will require intensive mining operations for metals and other materials to manufacture millions of batteries for the EVs. These operations will add significant environmental burdens and there is a significant risk that the mining sector will not be able to meet the demand for battery materials, leading to higher prices. Since the battery is the most expensive component in the EVs, technologies that can enable electrification with smaller batteries sizes have substantial potential to reduce the material usage and associated environmental and cost burdens. One of these technologies is an ‘electrified road’ (eroad), where vehicles receive power while they are driving, for instance through an overhead catenary (OC) wire (like trolleybuses and electric trains), through wireless (inductive) chargers embedded in the road, or by connecting to an electrified rail in or on the road surface. This study assessed the total material use and associated life cycle GHG emissions of two types of eroads (overhead catenary and in-road wireless charging) for long-haul trucks in Canada and compared them to electrification using stationary plug-in fast charging. As different electrification technologies require different amounts of materials for charging infrastructure and for the truck batteries, the study included the contributions of both for the total material use. The study developed a bottom-up approach model comparing the three different charging scenarios – plug in fast chargers, overhead catenary and in-road wireless charging. The investigated materials for charging technology and batteries were copper (Cu), steel (Fe), aluminium (Al), and lithium (Li). For the plug-in fast charging technology, different charging scenarios ranging from overnight charging (350 kW) to megawatt (MW) charging (2 MW) were investigated. A 500 km of highway (1 lane of in-road charging per direction) was considered to estimate the material use for the overhead catenary and inductive charging technologies. The study considered trucks needing an 800 kWh battery under the plug-in charger scenario but only a 200 kWh battery for the OC and inductive charging scenarios. Results showed that overall the inductive charging scenario has the lowest material use followed by OC and plug-in charger scenarios respectively. The materials use for the OC and plug-in charger scenarios were 50-70% higher than for the inductive charging scenarios for the overall system including the charging infrastructure and battery. The life cycle GHG emissions from the construction and installation of the charging technology material were also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging%20technology" title="charging technology">charging technology</a>, <a href="https://publications.waset.org/abstracts/search?q=eroad" title=" eroad"> eroad</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20use" title=" material use"> material use</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead%20catenary" title=" overhead catenary"> overhead catenary</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20in%20charger" title=" plug in charger"> plug in charger</a> </p> <a href="https://publications.waset.org/abstracts/184498/material-use-and-life-cycle-ghg-emissions-of-different-electrification-options-for-long-haul-trucks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25287</span> Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiao-Yi%20Chen">Chiao-Yi Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dung-Ying%20Lin"> Dung-Ying Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pricing" title="dynamic pricing">dynamic pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20elasticity" title=" demand elasticity"> demand elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=EV%20charging" title=" EV charging"> EV charging</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20load%20balancing" title=" grid load balancing"> grid load balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/191997/optimizing-electric-vehicle-charging-networks-with-dynamic-pricing-and-demand-elasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25286</span> Design and Analysis of Wireless Charging Lane for Light Rail Transit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watcharet%20Kongwarakom">Watcharet Kongwarakom</a>, <a href="https://publications.waset.org/abstracts/search?q=Tosaphol%20Ratniyomchai"> Tosaphol Ratniyomchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanatchai%20Kulworawanichpong"> Thanatchai Kulworawanichpong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a design and analysis of wireless charging lane system (WCLS) for light rail transit (LRT) by considering the performance of wireless charging, traffic conditions and energy consumption drawn by the LRT system. The dynamic of the vehicle movement in terms of the vehicle speed profile during running on the WCLS, a dwell time during stopping at the station for taking the WCLS and the capacity of the WCLS in each section are taken into account to alignment design of the WCLS. This paper proposes a case study of the design of the WCLS into 2 sub-cases including continuous and discontinuous WCLS with the same distance of WCLS in total. The energy consumption by the LRT through the WCLS with the different designs of the WCLS is compared to find out the better configuration of those two cases by considering the best performance of the power transfer between the LRT and the WCLS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Light%20rail%20transit" title="Light rail transit">Light rail transit</a>, <a href="https://publications.waset.org/abstracts/search?q=Wireless%20charging%20lane" title=" Wireless charging lane"> Wireless charging lane</a>, <a href="https://publications.waset.org/abstracts/search?q=Energy%20consumption" title=" Energy consumption"> Energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=Power%20transfer" title=" Power transfer "> Power transfer </a> </p> <a href="https://publications.waset.org/abstracts/122597/design-and-analysis-of-wireless-charging-lane-for-light-rail-transit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25285</span> Pathway to Sustainable Shipping: Electric Ships</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wang">Wei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yannick%20Liu"> Yannick Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Zhen"> Lu Zhen</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Wang"> H. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maritime transport plays an important role in global economic development but also inevitably faces increasing pressures from all sides, such as ship operating cost reduction and environmental protection. An ideal innovation to address these pressures is electric ships. The electric ship is in the early stage. Considering the special characteristics of electric ships, i.e., travel range limit, to guarantee the efficient operation of electric ships, the service network needs to be re-designed carefully. This research designs a cost-efficient and environmentally friendly service network for electric ships, including the location of charging stations, charging plan, route planning, ship scheduling, and ship deployment. The problem is formulated as a mixed-integer linear programming model with the objective of minimizing total cost comprised of charging cost, the construction cost of charging stations, and fixed cost of ships. A case study using data of the shipping network along the Yangtze River is conducted to evaluate the performance of the model. Two operating scenarios are used: an electric ship scenario where all the transportation tasks are fulfilled by electric ships and a conventional ship scenario where all the transportation tasks are fulfilled by fuel oil ships. Results unveil that the total cost of using electric ships is only 42.8% of using conventional ships. Using electric ships can reduce 80% SOx, 93.47% NOx, 89.47% PM, and 42.62% CO2, but will consume 2.78% more time to fulfill all the transportation tasks. Extensive sensitivity analyses are also conducted for key operating factors, including battery capacity, charging speed, volume capacity, and a service time limit of transportation task. Implications from the results are as follows: 1) it is necessary to equip the ship with a large capacity battery when the number of charging stations is low; 2) battery capacity will influence the number of ships deployed on each route; 3) increasing battery capacity will make the electric ship more cost-effective; 4) charging speed does not affect charging amount and location of charging station, but will influence the schedule of ships on each route; 5) there exists an optimal volume capacity, at which all costs and total delivery time are lowest; 6) service time limit will influence ship schedule and ship cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20reduction" title="cost reduction">cost reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20ship" title=" electric ship"> electric ship</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title=" environmental protection"> environmental protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20shipping" title=" sustainable shipping"> sustainable shipping</a> </p> <a href="https://publications.waset.org/abstracts/162243/pathway-to-sustainable-shipping-electric-ships" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25284</span> Designing Electric Vehicle Charging Infrastructure to Benefit Historically-Marginalized Residents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polly%20Parkinson">Polly Parkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20Mecham"> Emma Mecham</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawn%20Groves"> Fawn Groves</a>, <a href="https://publications.waset.org/abstracts/search?q=Amy%20Wilson-Lopez"> Amy Wilson-Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivonne%20Santiago"> Ivonne Santiago</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the rush to meet electric vehicle (EV) adoption goals that address environmental and health concerns, engineering planners and community policy experts cannot separate the socioeconomic and equity factors from transportation needs. Two gaps are identified in existing research: concrete proposals that address affordable micromobility options and provide for needs of community members without cars, and community-engaged research that elevates the concerns and solutions brought forward by historically-marginalized community members. This data analysis from a recent case study in a vulnerable community indicates that because transportation decisions are inextricably linked to health, work, and housing, EV adoption must also address multifaceted human needs. Communities focused on building more electric vehicle charging stations must find ways for lower-income households to also benefit. This research engaged residents in the planning process and resulted in a template for charging stations to advance mobility justice with a range of options that purposefully benefit the whole community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20engagement" title="community engagement">community engagement</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle%20charging" title=" electric vehicle charging"> electric vehicle charging</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20justice" title=" environmental justice"> environmental justice</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20research" title=" participatory research"> participatory research</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20equity" title=" transportation equity"> transportation equity</a> </p> <a href="https://publications.waset.org/abstracts/188181/designing-electric-vehicle-charging-infrastructure-to-benefit-historically-marginalized-residents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25283</span> 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadjiba%20Mahfoudi">Nadjiba Mahfoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhafid%20Moummi"> Abdelhafid Moummi </a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20El%20Ganaoui"> Mohammed El Ganaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modeling" title=" thermal modeling"> thermal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=sensible%20heat%20storage" title=" sensible heat storage "> sensible heat storage </a> </p> <a href="https://publications.waset.org/abstracts/20693/3d-simulation-for-design-and-predicting-performance-of-a-thermal-heat-storage-facility-using-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=843">843</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=844">844</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=charging%20data&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>