CINXE.COM
Search results for: bamboo shoots
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: bamboo shoots</title> <meta name="description" content="Search results for: bamboo shoots"> <meta name="keywords" content="bamboo shoots"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="bamboo shoots" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="bamboo shoots"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 171</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: bamboo shoots</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Development of High Fiber Biscuit with Bamboo Shoot Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beatrix%20Inah%20C.%20Mercado">Beatrix Inah C. Mercado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo shoots are the immature and edible culms from bamboos which contains high amount of dietary fibers. However, in spite of these functional properties of bamboo shoots it is still underutilized. Objectives: To develop bamboo shoot powder and incorporate it to biscuits as a source of dietary fiber and antioxidant. Materials and Methods: Bamboo shoot powder (BSP) was freeze-drying and grind and was incorporated to biscuits in 20% concentration. BSP and biscuits with BSP were analyzed for its proximate composition, dietary fiber, phytonutrients and antioxidant capacity. Results: BSP has 13.1 % moisture, 18.8% protein and 8% ash, 2.4g/100g total fat and 57.7% carbohydrate. BSP and biscuits with 20% BSP were good sources of dietary fiber containing 27.8g/100g and 7.1 g/100g, respectively. BSP is high in phytonutrient contents in terms of total polyphenols (1052mg gallic/100 g) and flavonoids (4046mg catechin/100g). Biscuits with BSP contained higher source of phytonutrients and antioxidant capacity as compared to biscuits without BSP. Sensory evaluation revealed that biscuits with BSP were more acceptable than biscuits without BSP. Conclusion: Bamboo shoots may be used as a potential functional ingredient in food products for broader application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20shoots" title="bamboo shoots">bamboo shoots</a>, <a href="https://publications.waset.org/abstracts/search?q=phytonutrients" title=" phytonutrients"> phytonutrients</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=biscuit" title=" biscuit"> biscuit</a> </p> <a href="https://publications.waset.org/abstracts/39239/development-of-high-fiber-biscuit-with-bamboo-shoot-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Enhancement Effect of Compound 4-Hydroxybenzoic Acid from Petung Bamboo (Dendrocalamus Asper) Shoots on α1β2γ2S of GABA (A) Receptor Expressed in Xenopus laevis Oocytes- Preliminary Study on Its Anti-Epileptic Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bilal">Muhammad Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amelia%20Jane%20Llyod"> Amelia Jane Llyod</a>, <a href="https://publications.waset.org/abstracts/search?q=Habsah%20Mohamad"> Habsah Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Hui%20Wong"> Jia Hui Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Aziz%20Mohamed%20Yusoff"> Abdul Aziz Mohamed Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafri%20Malin%20Abdullah"> Jafri Malin Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingli%20Zhang"> Jingli Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epilepsy is one of the major brain afflictions occurs with uncontrolled excitation of cortex; disturbed 50 million of world’s population. About 25 percent of patients subjected to adverse effects from antiepileptic drugs (AEDs) such as depression, nausea, tremors, gastrointestinal symptoms, osteoporosis, dizziness, weight change, drowsiness, fatigue are commonly observed indications; therefore, new drugs are required to cure epilepsy. GABA is principle inhibitory neurotransmitter, control excitation of the brain. Mutation or dysfunction of GABA receptor is one of the primary causes of epilepsy, which is confirmed from many acquired models of epilepsy like traumatic brain injury, kindling, and status epilepticus models of epilepsy. GABA receptor has 3 distinct types such as GABA (A), GABA (B), GABA(C).GABA (A) receptor has 20 different subunits, α1β2γ2 subunits composition of GABA (A) receptor is the most used combination of subunits for screening of compounds against epilepsy. We expressed α1β2γ2s subunits of GABA (A) Receptor in Xenopus leavis oocytes and examined the enhancement potential of 4-Hydroxybenzoic acid compound on GABA (A) receptor via two-electrode voltage clamp current recording technique. Bamboo shoots are the young, tender offspring of bamboo, which are usually harvested after a cultivating period of 2 weeks. Proteins, acids, fat, starch, carbohydrate, fatty acid, vitamin, dietary fiber, and minerals are the major constituent found systematically in bamboo shoots. These shoots reported to have anticancer, antiviral, antibacterial activity, also possess antioxidant properties due to the presence of phenolic compounds. Student t-test analysis suggested that 4- hydroxybenzoic acid positively allosteric GABA (A) receptor, increased normalized current amplitude to 1.0304±0.0464(p value 0.032) compared with vehicle. 4-Hydrobenzoic acid, a compound from Dendrocalamus Asper bamboo shoot gives new insights for future studies on bamboo shoots with motivation for extraction of more compounds to investigate their effects on human and rodents against epilepsy, insomnia, and anxiety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B11%CE%B22%CE%B32S" title="α1β2γ2S">α1β2γ2S</a>, <a href="https://publications.waset.org/abstracts/search?q=antiepileptic" title=" antiepileptic"> antiepileptic</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20shoots" title=" bamboo shoots"> bamboo shoots</a>, <a href="https://publications.waset.org/abstracts/search?q=epilepsy%20GABA%20%28A%29%20receptor" title=" epilepsy GABA (A) receptor"> epilepsy GABA (A) receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=two-microelectrode%20voltage%20clamp" title=" two-microelectrode voltage clamp"> two-microelectrode voltage clamp</a>, <a href="https://publications.waset.org/abstracts/search?q=xenopus%20laevis%20oocytes" title=" xenopus laevis oocytes"> xenopus laevis oocytes</a> </p> <a href="https://publications.waset.org/abstracts/38143/enhancement-effect-of-compound-4-hydroxybenzoic-acid-from-petung-bamboo-dendrocalamus-asper-shoots-on-a1v2gh2s-of-gaba-a-receptor-expressed-in-xenopus-laevis-oocytes-preliminary-study-on-its-anti-epileptic-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Bamboo Fibre Extraction and Its Reinforced Polymer Composite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Zakikhani">P. Zakikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Zahari"> R. Zahari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20H.%20Sultan"> M. T. H. Sultan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20Majid"> D. L. Majid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural plant fibres reinforced polymeric composite materials have been used in many fields of our lives to save the environment. Especially, bamboo fibres due to its environmental sustainability, mechanical properties, and recyclability have been utilized as reinforced polymer matrix composite in construction industries. In this review study bamboo structure and three different methods such as mechanical, chemical and combination of mechanical and chemical to extract fibres from bamboo are summarized. Each extraction method has been done base on the application of bamboo. In addition Bamboo fibre is compared with glass fibre from various aspects and in some parts it has advantages over the glass fibre. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20fibres" title="bamboo fibres">bamboo fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibres" title=" natural fibres"> natural fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20composite" title=" bio composite"> bio composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20extraction" title=" mechanical extraction"> mechanical extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20fibres" title=" glass fibres"> glass fibres</a> </p> <a href="https://publications.waset.org/abstracts/7836/bamboo-fibre-extraction-and-its-reinforced-polymer-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> The Utilization of Bamboo for Wood Bamboo Composite in Lieu of Materials Furniture: Case Study of Furniture Industry in Jepara Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nurrizka%20Ramadhan">Muhammad Nurrizka Ramadhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today,Demand for wood increase in rapid rate. Wood is widely used for many things range from building materials to furniture materials. This makes the forest area in Indonesia dropped dramatically, it is estimated that the area of Indonesiaan forest in 2020 will be only about 16 million hectares. The more forest in Indonesia loss, people are required to look for another material to subtitute wood for the furniture. Jepara, a city with the largest furniture industry in Indonesia, requires a large supply of wood, it can reach 300.000 – 500.000 cubic meters per year. Most of the furniture in Jepara use teak, mahogany, and rosewood. Though teak wood is a rare species that must be protected. Today the availability of bamboo in Indonesia is very big. With cheap price, and the period of rapid growth makes bamboo can be used as a substitute for wood for the furniture industry in the future. By making use bamboo to make wood bamboo composite to replace the use of wood for furniture material. This paper is about the use of bamboo as a substitute for wood bamboo composite for the furniture industry. Expected in future, wood can be replaced by a wood bamboo composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=furniture" title=" furniture"> furniture</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/54368/the-utilization-of-bamboo-for-wood-bamboo-composite-in-lieu-of-materials-furniture-case-study-of-furniture-industry-in-jepara-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Eco-Friendly Preservative Treated Bamboo Culm: Compressive Strength Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perminder%20JitKaur">Perminder JitKaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Satya"> Santosh Satya</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Pant"> K. K. Pant</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Naik"> S. N. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo is extensively used in construction industry. Low durability of bamboo due to fungus infestation and termites attack under storage puts certain constrains for it usage as modern structural material. Looking at many chemical formulations for bamboo treatment leading to severe harmful environment effects, research on eco-friendly preservatives for bamboo treatment has been initiated world-over. In the present studies, eco-friendly preservative for bamboo treatment has been developed. To validate its application for structural purposes, investigation of effect of treatment on compressive strength has been investigated. Neem oil(25%) integrated with copper naphthenate (0.3%) on dilution with kerosene oil impregnated into bamboo culm at 2 bar pressure, has shown weight loss of only 3.15% in soil block analysis method. The results of compressive strength analysis using The results from compressive strength analysis using HEICO Automatic Compression Testing Machine, reveal that preservative treatment has not altered the structural properties of bamboo culms. Compressive strength of control (11.72 N/mm2) and above treated samples (11.71 N/mm2) was found to be comparable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20strictus" title="D. strictus">D. strictus</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo" title=" bamboo"> bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=neem%20oil" title=" neem oil"> neem oil</a>, <a href="https://publications.waset.org/abstracts/search?q=presure%20treatment" title=" presure treatment"> presure treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/19457/eco-friendly-preservative-treated-bamboo-culm-compressive-strength-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Investigation of Antibacterial Property of Bamboo In-Terms of Percentage on Comparing with ZnO Treated Cotton Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Dakuri">Arjun Dakuri</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hayavadana"> J. Hayavadana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study includes selection of 100 % bamboo fabric and cotton fabric for the study. The 100% bamboo fabrics were of 127 g/m², and 112 g/m² and 100% cotton grey fabric were of 104 g/m². The cotton fabric was desized, scoured, bleached and then treated with ZnO (as antimicrobial agent) with 1%, 2% and 3% using pad-dry cure method, whereas the bamboo fabrics were only desized. The antimicrobial activity of bamboo and ZnO treated cotton fabrics were evaluated and compared against E. coli and S. aureus as per the standard AATCC - 147. Moisture management properties of selected fabrics were also analyzed. Further, the selected fabric samples were tested for comfort properties like bending length, tearing strength, drape-ability, and specific handle force and air permeability. It was observed that bamboo fabrics show significant antibacterial activity and the same was shown by 3% ZnO treated cotton fabric. Both cotton and bamboo fabrics show improved moisture management properties than the cotton fabric. The comfort properties of bamboo fabrics are found to be superior to cotton fabrics making it more suitable for applications in place of cotton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo" title=" bamboo"> bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort%20properties" title=" comfort properties"> comfort properties</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20management" title=" moisture management"> moisture management</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/76755/investigation-of-antibacterial-property-of-bamboo-in-terms-of-percentage-on-comparing-with-zno-treated-cotton-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Using a Hybrid Method to Eradicate Bamboo Growth along the Route of Overhead Power Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Eduful">Miriam Eduful</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Electricity Company of Ghana (ECG) is under obligation, demanded by the Public Utility and Regulation Commission to meet set performance indices. However, in certain parts of the country, bamboo related power interruptions have become a challenge. Growth rate of the bamboo is such that the cost of regular vegetation maintenance along route of the overhead power lines has become prohibitive. To address the problem, several methods and techniques of bamboo eradication have being used. Some of these methods involved application of chemical compounds that are considered inimical and dangerous to the environment. In this paper, three methods of bamboo eradication along the route of the ECG overhead power lines have been investigated. A hybrid method has been found to be very effective and ecologically friendly. The method is locally available and comparatively inexpensive to apply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=eradication" title=" eradication"> eradication</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20method" title=" hybrid method"> hybrid method</a>, <a href="https://publications.waset.org/abstracts/search?q=gly%20gold" title=" gly gold"> gly gold</a> </p> <a href="https://publications.waset.org/abstracts/72571/using-a-hybrid-method-to-eradicate-bamboo-growth-along-the-route-of-overhead-power-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> Bamboo: A Trendy and New Alternative to Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Aggangan">R. T. Aggangan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20J.%20Cabangon"> R. J. Cabangon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo is getting worldwide attention over the last 20 to 30 years due to numerous uses and it is regarded as the closest material that can be used as substitute to wood. In the domestic market, high quality bamboo products are sold in high-end markets while lower quality products are generally sold to medium and low income consumers. The global market in 2006 stands at about 7 billion US dollars and was projected to increase to US$ 17 B from 2015 to 2020. The Philippines had been actively producing and processing bamboo products for the furniture, handicrafts and construction industry. It was however in 2010 that the Philippine bamboo industry was formalized by virtue of Executive Order 879 that stated that the Philippine bamboo industry development is made a priority program of the government and created the Philippine Bamboo Industry Development Council (PBIDC) to provide the overall policy and program directions of the program for all stakeholders. At present, the most extensive use of bamboo is for the manufacture of engineered bamboo for school desks for all public schools as mandated by EO 879. Also, engineered bamboo products are used for high-end construction and furniture as well as for handicrafts. Development of cheap adhesives, preservatives, and finishing chemicals from local species of plants, development of economical methods of drying and preservation, product development and processing of lesser-used species of bamboo, development of processing tools, equipment and machineries are the strategies that will be employed to reduce the price and mainstream engineered bamboo products in the local and foreign market. In addition, processing wastes from bamboo can be recycled into fuel products such as charcoal are already in use. The more exciting possibility, however, is the production of bamboo pellets that can be used as a substitute for wood pellets for heating, cooking and generating electricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20charcoal%20and%20light%20distillates" title="bamboo charcoal and light distillates">bamboo charcoal and light distillates</a>, <a href="https://publications.waset.org/abstracts/search?q=engineered%20bamboo" title=" engineered bamboo"> engineered bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=furniture%20and%20handicraft%20industries" title=" furniture and handicraft industries"> furniture and handicraft industries</a>, <a href="https://publications.waset.org/abstracts/search?q=housing%20and%20construction" title=" housing and construction"> housing and construction</a>, <a href="https://publications.waset.org/abstracts/search?q=pellets" title=" pellets"> pellets</a> </p> <a href="https://publications.waset.org/abstracts/44311/bamboo-a-trendy-and-new-alternative-to-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Development and Characterization of Ethiopian Bamboo Fiber Polypropylene Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tigist%20Girma%20Kedane">Tigist Girma Kedane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to evaluate the properties of Ethiopian bamboo fiber polymer composites for headliner materials in the automobile industry. Accurate evaluation of its mechanical properties is thus critical for predicting its behavior during a vehicle's interior impact assessment. Conventional headliner materials are higher in weight, nonbiodegradable, expensive in cost, and unecofriendly during processing compared to the current researched materials. Three representatives of bamboo plants are harvested in three regions of bamboo species, three groups of ages, and two harvesting months. The statistical analysis was performed to validate the significant difference between the mean strength of bamboo ages, harvesting seasons, and bamboo species. Two-year-old bamboo fibers have the highest mechanical properties in all ages and November has higher mechanical properties compared to February. Injibara and Kombolcha have the highest and the lowest mechanical properties of bamboo fibers, respectively. Bamboo fiber epoxy composites have higher mechanical properties compared to bamboo fiber polypropylene composites. The flexural strength of bamboo fibre polymer composites has higher properties compared to tensile strength. Ethiopian bamboo fibers and their polymer composites have the best mechanical properties for the composite industry, which is used for headliner materials in the automobile industry compared to conventional headliner materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bampoo%20species" title="bampoo species">bampoo species</a>, <a href="https://publications.waset.org/abstracts/search?q=culm%20age" title=" culm age"> culm age</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting%20seasons" title=" harvesting seasons"> harvesting seasons</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composite" title=" polymer composite"> polymer composite</a> </p> <a href="https://publications.waset.org/abstracts/182459/development-and-characterization-of-ethiopian-bamboo-fiber-polypropylene-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Increase the Ductility of Tall Buildings Using Green Material Bamboo for Earthquake Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shef%20Amir%20Arasy">Shef Amir Arasy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2023, the world's population will be 7.8 billion, which has increased significantly in the last 20 years. Every country in the world is experiencing the impacts of climate change directly and indirectly. However, the community still needs to build massive infrastructure and buildings. The massive CO2 emissions which lead to climate change come from cement usage in construction activity. Bamboo is one of the most sustainable materials for reducing carbon emissions and releasing more than 30% oxygen compared to the mass of trees. Besides, bamboo harvest time is faster than other sustainable materials, around 3-4 years. Furthermore, Bamboo has a high tensile strength, which can provide ductility effectively to prevent damage to buildings during an earthquake. By the finite element method, this research analyzes bamboo configuration and connection for tall building structures under different earthquake frequencies and fire. The aim of this research is to provide proper design and connection of bamboo buildings that can be more reliable than concrete structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake." title=" earthquake."> earthquake.</a> </p> <a href="https://publications.waset.org/abstracts/162511/increase-the-ductility-of-tall-buildings-using-green-material-bamboo-for-earthquake-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Study Properties of Bamboo Composite after Treatment Surface by Chemical Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiatnarong%20Supapanmanee">Kiatnarong Supapanmanee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekkarin%20Phongphinittana"> Ekkarin Phongphinittana</a>, <a href="https://publications.waset.org/abstracts/search?q=Pongsak%20Nimdum"> Pongsak Nimdum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers are readily available raw materials that are widely used as composite materials. The most common problem facing many researchers with composites made from this fiber is the adhesion between the natural fiber contact surface and the matrix material. Part of the problem is due to the hydrophilic properties of natural fibers and the hydrophobic properties of the matrix material. Based on the aforementioned problems, this research selected bamboo fiber, which is a strong natural fiber in the research study. The first step was to study the effect of the mechanical properties of the pure bamboo strip by testing the tensile strength of different measurement lengths. The bamboo strip was modified surface with sodium hydroxide (NaOH) at 6wt% concentrations for different soaking periods. After surface modification, the physical and mechanical properties of the pure bamboo strip fibers were studied. The modified and unmodified bamboo strips were molded into a composite material using epoxy as a matrix to compare the mechanical properties and adhesion between the fiber surface and the material with tensile and bending tests. In addition, the results of these tests were compared with the finite element method (FEM). The results showed that the length of the bamboo strip affects the strength of the fibers, with shorter fibers causing higher tensile stress. Effects of surface modification of bamboo strip with NaOH, this chemical eliminates lignin and hemicellulose, resulting in the smaller dimension of the bamboo strip and increased density. From the pretreatment results above, it was found that the treated bamboo strip and composite material had better Ultimate tensile stress and Young's modulus. Moreover, that results in better adhesion between bamboo fiber and matrix material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20fiber" title="bamboo fiber">bamboo fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20strip" title=" bamboo strip"> bamboo strip</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title=" composite material"> composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20composite" title=" bamboo composite"> bamboo composite</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20bamboo" title=" pure bamboo"> pure bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20bamboo" title=" mechanical properties of bamboo"> mechanical properties of bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20finite%20element%20method" title=" bamboo finite element method"> bamboo finite element method</a> </p> <a href="https://publications.waset.org/abstracts/150083/study-properties-of-bamboo-composite-after-treatment-surface-by-chemical-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> In vitro Culture of Stem Node Segments of Maerua crassifolia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abobaker%20Abrahem%20M.%20Saad">Abobaker Abrahem M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Asma%20Abudasalam"> Asma Abudasalam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stem node segments were cultured on Murashige and Skoog (MS) medium. In the case of using MS+ Zeatin (1 mg/l), small shoot buds were formed directly in 70% of explants after 15 days, their length range between 0.1 to 0.3 cm after two weeks and reached 0.3 cm in length and three shoots in numbers after 4 weeks. When those small shoots were sub cultured on the same medium, they increased in length, number and reached 0.4 cm with 4 shoots, 0.4 cm with 5 shoots after six, eight and ten weeks respectively. In the case of using MS free hormones, MS+IAA (0.2mg/l) +BA (0.5mg/l), MS + kin(0.5mg/l), MS + kin (3mg/l) and MS +NAA (3mg/l) +BA (1mg/l), no sign of responses were noticed and only change in color in some cases. Different types of parenchyma cells and many layers of thick wall sclerenchyma cells were observed on MS+BA (1mg/l). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maerua" title="Maerua">Maerua</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20node" title=" stem node"> stem node</a>, <a href="https://publications.waset.org/abstracts/search?q=shoots" title=" shoots"> shoots</a>, <a href="https://publications.waset.org/abstracts/search?q=buds" title=" buds"> buds</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20vitro" title=" In vitro"> In vitro</a> </p> <a href="https://publications.waset.org/abstracts/59982/in-vitro-culture-of-stem-node-segments-of-maerua-crassifolia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Investigating the Multipurpose, Usage, and Application of Bamboo in Abuja, Nigeria’s Federal Capital Territory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Adedotun%20Oke">Michael Adedotun Oke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Nigeria, Bamboo is one of the most socioeconomically beneficial farming crops, with yearly investment returns of up to N1.6 million. Growing bamboo is a fantastic long-term investment. It may self-renew for up to 70 years and is durable, long-lasting, and environmentally friendly; through an oral interview with the sellers, usage examples, and visual depiction to support those examples, The paper was able to discuss the different uses for bamboo. The various field observations in Federal Capital Territory, including the electric poles, buildings, paper production, and decoration, from picture frames to room dividing screens, bamboo can make some elegant and exotic decorations for the home, building, furniture, cooking, agriculture, instrument, in construction for flooring, roofing designing, scaffolding, garden planting, even to control erosion and slope stabilization in erosion are observed. The use of it is multiplexed with straightforward man-made technology, in contrast. 'This study wants more innovative practices that will be able to make it lucrative for business purposes and sustainability of the process. Although there are various uses and requirements for growing bamboo successfully, it is advised to receive the proper training and in-depth understanding of the growth and management procedures. Consult an experienced bamboo farmer for help. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=use" title=" use"> use</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=socioeconomically" title=" socioeconomically"> socioeconomically</a> </p> <a href="https://publications.waset.org/abstracts/179987/investigating-the-multipurpose-usage-and-application-of-bamboo-in-abuja-nigerias-federal-capital-territory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> The Development of the Prototype of Bamboo Shading Device </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuanwan%20Tuaycharoen">Nuanwan Tuaycharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanarat%20Konisranukul"> Wanarat Konisranukul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this research was to investigate the prototype of bamboo shading device. There were two objectives of this study. The first objective was to investigate the effect of non-chemical treatments on damage of bamboo shading device by powder-post beetle and fungi. The second aim of this study was to develop a prototype of bamboo shading device. The study of the effect of non-chemical treatments on damage of bamboo shading device by powder-post beetle in laboratory showed that, among seven treatments tested, wood vinegar treatment can protect powder-post beetle better than the original method up to 92.91%. It was also found that wood vinegar treatment can show the best performance in fungi protection and work better than the original method up to 40%. The second experiment was carried out by constructing four bamboo shading devices and installing them on a building for 28 days. All aspects of shading device were investigated in terms of their beauty, durability, and ease of construction and assembly. The final prototype was developed from the lessons drawn from these tested options. In conclusion this study showed the effectiveness of some natural preservatives against insect and fungi damage. It also illustrated the characteristics of the prototype of bamboo shading device that can constructed by rural workers within one week. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=shading%20device" title=" shading device"> shading device</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title=" energy conservation"> energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20material" title=" alternative material"> alternative material</a> </p> <a href="https://publications.waset.org/abstracts/26400/the-development-of-the-prototype-of-bamboo-shading-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Experimental Investigation on Flexural Properties of Bamboo Fibres Polypropylene Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tigist%20Girma%20Kidane">Tigist Girma Kidane</a>, <a href="https://publications.waset.org/abstracts/search?q=Yalew%20Dessalegn%20Asfaw"> Yalew Dessalegn Asfaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract: The current investigation aims to measure the longitudinal and transversal three-point bending tests of bamboo fibres polypropylene composites (BFPPCs) for the application of the automobile industry. Research has not been done on the properties of Ethiopian bamboo fibres for the utilization of composite development. The samples of bamboo plants have been harvested in 3–groups of age, 2–harvesting seasons, and 3–regions of bamboo species. Roll milling machine used for the extraction of bamboo fibres which has been developed by the authors. Chemical constituents measured using gravimetric methods. Unidirectional bamboo fibres prepreg has been produced using PP and hot press machine, then BFPPCs were produced using 6 layers of prepregs at automatic hot press machine. Age, harvesting month, and bamboo species have a statistically significant effect on the longitudinal and transverse flexural strength (FS), modulus of elasticity (MOE), and failure strain at α = 0.05 as evaluated by one-way ANOVA. 2–yrs old of BFPPCs have the highest FS and MOE, whereas November has the highest value of flexural properties. The highest to the lowest FS and MOE of BFPPCs has measured in Injibara, Mekaneselam, and Kombolcha, respectively. The transverse 3-point bending test has a lower FS and MOE compared to the longitudinal direction. The chemical constituents of Injibara, Mekaneselam, and Kombolcha have the highest to the lowest, respectively. 2-years old of bamboo fibres has the highest chemical constituent. The chemical constituents improved the flexural properties. Bamboo fibres in Ethiopia can be relevant for composite development, which has been applied in the area of requiring higher flexural properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20species" title=" bamboo species"> bamboo species</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20properties" title=" flexural properties"> flexural properties</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting%20season" title=" harvesting season"> harvesting season</a>, <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title=" polypropylene"> polypropylene</a> </p> <a href="https://publications.waset.org/abstracts/183518/experimental-investigation-on-flexural-properties-of-bamboo-fibres-polypropylene-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Using Bamboo Structures for Protecting Mangrove Ecosystems: A Nature-Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourabh%20Harihar">Sourabh Harihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Henk%20Jan%20Verhagen"> Henk Jan Verhagen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nurturing of a mangrove ecosystem requires a protected coastal environment with adequate drainage of the soil substratum. In a conceptual design undertaken for a mangrove rejuvenation project along the eastern coast of Mumbai (India), various engineering alternatives have been thought of as a protective coastal structure and drainage system. One such design uses bamboo-pile walls in creating shielded compartments in the form of various layouts, coupled with bamboo drains. The bamboo-based design is found to be environmentally and economically advantageous over other designs like sand-dikes which are multiple times more expensive. Moreover, employing a natural material such as bamboo helps the structure naturally blend with the developing mangrove habitat, allaying concerns about dismantling the structure post mangrove growth. A cost-minimising and eco-friendly bamboo structure, therefore, promises to pave the way for large rehabilitation projects in future. As mangrove ecosystems in many parts of the world increasingly face the threat of destruction due to urban development and climate change, protective nature-based designs that can be built in a short duration are the need of the hour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove" title=" mangrove"> mangrove</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/65001/using-bamboo-structures-for-protecting-mangrove-ecosystems-a-nature-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sito%20Ismanti">Sito Ismanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Noriyuki%20Yasufuku"> Noriyuki Yasufuku</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20chips" title="bamboo chips">bamboo chips</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=triaxial%20compression" title=" triaxial compression"> triaxial compression</a> </p> <a href="https://publications.waset.org/abstracts/49046/effect-of-bamboo-chips-in-cemented-sand-soil-on-permeability-and-mechanical-properties-in-triaxial-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Waste to Biofuel by Torrefaction Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Chen">Jyh-Cherng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Zen%20Lin"> Yu-Zen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Zhi%20Chen"> Wei-Zhi Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Torrefaction is one of waste to energy (WTE) technologies developing in Taiwan recently, which can reduce the moisture and impurities and increase the energy density of biowaste effectively. To understand the torrefaction characteristics of different biowaste and the influences of different torrefaction conditions, four typical biowaste were selected to carry out the torrefaction experiments. The physical and chemical properties of different biowaste prior to and after torrefaction were analyzed and compared. Experimental results show that the contents of elemental carbon and caloric value of the four biowaste were significantly increased after torrefaction. The increase of combustible and caloric value in bamboo was the greatest among the four biowaste. The caloric value of bamboo can be increased from 1526 kcal/kg to 6104 kcal/kg after 300oC and 1 hour torrefaction. The caloric value of torrefied bamboo was almost four times as the original. The increase of elemental carbon content in wood was the greatest (from 41.03% to 75.24%), and the next was bamboo (from 47.07% to 74.63%). The major parameters which affected the caloric value of torrefied biowaste followed the sequence of biowaste kinds, torrefaction time, and torrefaction temperature. The optimal torrefaction conditions of the experiments were bamboo torrefied at 300oC for 3 hours, and the corresponding caloric value of torrefied bamboo was 5953 kcal/kg. This caloric value is similar to that of brown coal or bituminous coal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=torrefaction" title="torrefaction">torrefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20to%20energy" title=" waste to energy"> waste to energy</a>, <a href="https://publications.waset.org/abstracts/search?q=calorie" title=" calorie"> calorie</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a> </p> <a href="https://publications.waset.org/abstracts/10475/waste-to-biofuel-by-torrefaction-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Chemical Properties of Yushania alpina and Bamusa oldhamii Bamboo Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getu%20Dessalegn%20Asfaw">Getu Dessalegn Asfaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Yalew%20Dessalegn%20Asfaw"> Yalew Dessalegn Asfaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to examine the chemical composition of bamboo species in Ethiopia under the effect of age and culm height. The chemical composition of bamboo species in Ethiopia has not been investigated so far. The highest to the lowest cellulose and hemicellulose contents are Injibara (Y. alpina), Mekaneselam (Y. alpina), and Kombolcha (B. oldhamii), whereas lignin, extractives, and ash contents are Kombolcha, Mekanesealm, and Injibra, respectively. As a result of this research, the highest and lowest cellulose, hemicelluloses and lignin contents are at the age of 2 and 1 year old, respectively. Whereas extractives and ash contents are decreased at the age of the culm matured. The cellulose, hemicelluloses, lignin, and ash contents of the culm increase from the bottom to top along the height, however, extractive contents decrease from the bottom to top position. The cellulose content of Injibara, Kombolch, and Mekaneselam bamboo was recorded at 51±1.7–53±1.8%, 45±1.6%–48±1.5%, and 48±1.8–51±1.6%, and hemicelluloses content was measured at 20±1.2–23±1.1%, 17±1.0–19±0.9%, and 18±1.0–20±1.0%, lignin content was measured 19±1.0–21±1.1%, 27±1.2–29±1.1%, and 21±1.1–24±1.1%, extractive content was measured 3.9±0.2 –4.5±0.2%, 6.6±0.3–7.8±0.4%, and 4.7±0.2–5.2±0.1%, ash content was measured 1.6±0.1–2.1±0.1%, 2.8±0.1–3.5±0.2%, and 1.9±0.1–2.5±0.1% at the ages of 1–3 years old, respectively. This result demonstrated that bamboo species in Ethiopia can be a source of feedstock for lignocelluloses ethanol and bamboo composite production since they have higher cellulose content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20species" title=" bamboo species"> bamboo species</a>, <a href="https://publications.waset.org/abstracts/search?q=culm%20height" title=" culm height"> culm height</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20composition" title=" chemical composition"> chemical composition</a> </p> <a href="https://publications.waset.org/abstracts/159115/chemical-properties-of-yushania-alpina-and-bamusa-oldhamii-bamboo-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Synthesis and Characterization of Nanocellulose Based Bio-Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishnakant%20Bhole">Krishnakant Bhole</a>, <a href="https://publications.waset.org/abstracts/search?q=Neerakallu%20D.%20Shivakumar"> Neerakallu D. Shivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakti%20Singh%20Chauhan"> Shakti Singh Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanketh%20Tonannavar"> Sanketh Tonannavar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajath%20S"> Rajath S</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocellulose" title="nanocellulose">nanocellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=CNF" title=" CNF"> CNF</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo" title=" bamboo"> bamboo</a> </p> <a href="https://publications.waset.org/abstracts/152048/synthesis-and-characterization-of-nanocellulose-based-bio-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> Guadua Bamboo as Eco-Friendly Element in Interior Design and Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Noaman">Sarah Noaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilizing renewable resources has become extensive solution for most problems in Egypt nowadays. It plays role in environmental issues such as energy crisis, lake of natural resources and climate change. This paper focuses on the importance of working with the key concepts of creating eco-friendly spaces in Egypt by using traditional perennial plants, such as Guadua bamboo as renewable resources in structures manufacture. Egypt is in critical need to search for alternative raw materials. Thus, this paper focuses on studying the usage of neglected yet affordable materials, such as Guadua bamboo in light weight structures and digital fabrication. Guadua bamboo has been cultivated throughout in tropical and subtropical areas. In Egypt, they exist in many rural areas where people try to control their growth by using pesticides as it serves no economic purpose. This paper aims to discuss the usage of Guadua bamboo either in its original state or after fabrication in the context of interior design and architecture. The results will show the applicability of using perennial plants as complementary materials in the manufacturing processes; also the conclusion will focus the lights on the importance of re-forming shallow water plants in interior design and architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20fabrication" title="digital fabrication">digital fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=Guadua%20bamboo" title=" Guadua bamboo"> Guadua bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-waste%20material" title=" zero-waste material"> zero-waste material</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20material" title=" sustainable material"> sustainable material</a>, <a href="https://publications.waset.org/abstracts/search?q=interior%20architecture" title=" interior architecture"> interior architecture</a> </p> <a href="https://publications.waset.org/abstracts/98602/guadua-bamboo-as-eco-friendly-element-in-interior-design-and-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Experimental Investigations on the Mechanical properties of Spiny (Kawayan Tinik) Bamboo Layers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Doreen%20E.%20Candelaria">Ma. Doreen E. Candelaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Ma.%20Louise%20Margaret%20A.%20Ramos"> Ma. Louise Margaret A. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Dr.%20Jaime%20Y.%20Hernandez"> Dr. Jaime Y. Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr"> Jr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo has been introduced as a possible alternative to some construction materials nowadays. Its potential use in the field of engineering, however, is still not widely practiced due to insufficient engineering knowledge on the material’s properties and characteristics. Although there are researches and studies proving its advantages, it is still not enough to say that bamboo can sustain and provide the strength and capacity required of common structures. In line with this, a more detailed analysis was made to observe the layered structure of the bamboo, particularly the species of Kawayan Tinik. It is the main intent of this research to provide the necessary experiments to determine the tensile strength of dried bamboo samples. The test includes tensile strength parallel to fibers with samples taken at internodes only. Throughout the experiment, methods suggested by the International Organization for Standardization (ISO) were followed. The specimens were tested using 3366 INSTRON Universal Testing Machine, with a rate of loading set to 0.6 mm/min. It was then observed from the results of these experiments that dried bamboo samples recorded high layered tensile strengths, as high as 600 MPa. Likewise, along the culm’s length and across its cross section, higher tensile strength were observed at the top part and at its outer layers. Overall, the top part recorded the highest tensile strength per layer, with its outer layers having tensile strength as high as 600 MPa. The recorded tensile strength of its middle and inner layers, on the other hand, were approximately 450 MPa and 180 MPa, respectively. From this variation in tensile strength across the cross section, it may be concluded that an increase in tensile strength may be observed towards the outer periphery of the bamboo. With these preliminary investigations on the layered tensile strength of bamboo, it is highly recommended to conduct experimental investigations on the layered compressive strength properties as well. It is also suggested to conduct investigations evaluating perpendicular layered tensile strength of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20strength" title="bamboo strength">bamboo strength</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20strength%20tests" title=" layered strength tests"> layered strength tests</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20test" title=" strength test"> strength test</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test "> tensile test </a> </p> <a href="https://publications.waset.org/abstracts/24458/experimental-investigations-on-the-mechanical-properties-of-spiny-kawayan-tinik-bamboo-layers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> Case Analysis of Bamboo Based Social Enterprises in India-Improving Profitability and Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyal%20Motwani">Priyal Motwani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current market for bamboo products in India is about Rs. 21000 crores and is highly unorganised and fragmented. In this study, we have closely analysed the structure and functions of a major bamboo craft based organisation in Kerela, India and elaborated about its value chain, product mix, pricing strategy and supply chain, collaborations and competitive landscape. We have identified six major bottlenecks that are prevalent in such organisations, based on the Indian context, in relation to their product mix, asset management, and supply chain- corresponding waste management and retail network. The study has identified that the target customers for the bamboo based products and alternative revenue streams (eco-tourism, microenterprises, training), by carrying out secondary and primary research (5000 sample space), that can boost the existing revenue by 150%. We have then recommended an optimum product mix-covering premium, medium and low valued processing, for medium sized bamboo based organisations, in accordance with their capacity to maximize their revenue potential. After studying such organisations and their counter parts, the study has established an optimum retail network, considering B2B, B2C physical and online retail, to maximize their sales to their target groups. On the basis of the results obtained from the analysis of the future and present trends, our study gives recommendations to improve the revenue potential of bamboo based organisation in India and promote sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=bottlenecks" title=" bottlenecks"> bottlenecks</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20mix" title=" product mix"> product mix</a>, <a href="https://publications.waset.org/abstracts/search?q=retail%20network" title=" retail network"> retail network</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20chain" title=" value chain"> value chain</a> </p> <a href="https://publications.waset.org/abstracts/54455/case-analysis-of-bamboo-based-social-enterprises-in-india-improving-profitability-and-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Preliminary Study of Fermented Pickle of Tabah Bamboo Shoot: Gigantochloa nigrociliata (Buese) Kurz</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luh%20Putu%20T.%20Darmayanti">Luh Putu T. Darmayanti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Duwipayana"> A. A. Duwipayana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nengah%20K.%20Putra"> I. Nengah K. Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nyoman%20S.%20Antara"> Nyoman S. Antara </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tabah Bamboo (Gigantochloa nigrociliata (Buese) Kurz) is the indigenous bamboo species which grows in District of Pupuan, Tabanan at Province of Bali. Compared to the others, this shoot has low concentration of hydrocyanide acid (HCN). However, as found for almost of bamboo shoot, its seasonal availability, perishable in nature, and short-lived. This study aimed to gather information about total of lactic acid bacteria (LAB), pH, total acidity, HCN content, detection of LAB’s type involved during fermentation, and organic acids’ profiles of fermented pickles of Tabah bamboo shoot. The pickle was made by natural fermentation with 6 % salt concentration and fermentation conducted for 13 days. The result showed during the fermentation time, in the fourth day we found LAB’s number was highest as much as 72 x 107 CFU/ml and the lowest pH was 3.09. We also found decreasing in HCN from 37.8 ppm at the beginning to 20.52 ppm at the end of fermentation process. The total number of indigenous LAB isolated from the pickle are 48 strains we found 18 out of these had rod shape. For the preliminary study, all of the LAB with rod shape were detected by PCR as member of Lactobacillus spp., in which 17 strains detected as L. plantarum. The organic acids detected during the fermentation were lactic acid with the highest concentration was 0.0546 g/100 g and small amount of acetic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermentation" title="fermentation">fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=LAB" title=" LAB"> LAB</a>, <a href="https://publications.waset.org/abstracts/search?q=pickle" title=" pickle"> pickle</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabah%20Bamboo%20shoot" title=" Tabah Bamboo shoot "> Tabah Bamboo shoot </a> </p> <a href="https://publications.waset.org/abstracts/9425/preliminary-study-of-fermented-pickle-of-tabah-bamboo-shoot-gigantochloa-nigrociliata-buese-kurz" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> The Effect of Manggong Bamboo Leaves Extract (Gigantochloa manggong) on Rat (Rattus novergicus) Blood Profile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sri%20Rahayu">Sri Rahayu</a>, <a href="https://publications.waset.org/abstracts/search?q=Supriyatin"> Supriyatin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuli%20Rahma%20Dini"> Yuli Rahma Dini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the consequences of excess physical activity is the oxidative stress which resulted in damage to blood cells. Oxidative stress condition can be reduced by an exogenous antioxidant. The natural exogenous antioxidant can be extracted from Manggong bamboo (Gigantochloa manggong). This research was aim to evaluate the effect of physical exercise and Manggong bamboo (Gigantochloa manggong) leaf extract on blood profile of rats. This research was conducted in July 2013 to May 2014 using experimental method with completely randomized design (CRD) with two factors, physical exercise and Manggong bamboo leaf extract. The rats blood profile to be measured were the level of erythrocyte cells, leucocyte cells and hemoglobin. Data were analyzed with parametric statistical 2-way ANOVA test (α = 0.05). Manggong bamboo leaf extract was non toxic and contained flavonoid, triterpenoid, saponin and alkaloid. There was an effect of physical exercise and manggong bamboo leaf extract on blood profile of rats. Data obtained on physical activity, giving erythrocyte cells (2.5 million/µl) and hemoglobin (12,42g/dL) declined compared to the number of leucocyte cells increases (6,500cells/L). Extract treatment was increased the erythrocytes (5,13 million/µl) and hemoglobin level (14,72 g/dL.) while the leukocytes level were decreased (1.591,67 cells/L). The extract and physical activity treatment showed an increase in erythrocytes (2,96 million/µl) and hemoglobin (14,3 g/dL) but decrease the number of leukocytes (1.291,67 cells/L). The conclusion was that physical activity and Manggong bamboo leafs extract gaves effect on the blood profile of white rat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20%20profile%20%20of%20%20rats" title=" blood profile of rats"> blood profile of rats</a>, <a href="https://publications.waset.org/abstracts/search?q=Manggong%20bamboo%20leaf%20extract" title=" Manggong bamboo leaf extract"> Manggong bamboo leaf extract</a>, <a href="https://publications.waset.org/abstracts/search?q=leukocytes" title=" leukocytes "> leukocytes </a> </p> <a href="https://publications.waset.org/abstracts/37319/the-effect-of-manggong-bamboo-leaves-extract-gigantochloa-manggong-on-rat-rattus-novergicus-blood-profile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> Experimental Investigation of Physical Properties of Bambusa Oldhamii and Yushania Alpina on the Influence of Age and Harvesting Season</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tigist%20Girma%20Kedane">Tigist Girma Kedane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the current research work is to measure the physical properties of bamboo species in Ethiopia on the impact of age, harvesting seasons and culm height. Three representatives of bamboo plants are harvested in three groups of ages, 2 harvesting months, and 3 regions of Ethiopia. Research has not been done on the physical properties of bamboo species in Ethiopia so far. Moisture content and shrinkage of bamboo culm increase when the culm ages younger and moves from top to bottom position. The harvesting month of November has a higher moisture content and shrinkage compared to February. One year old of Injibara, Kombolcha, and Mekaneselam bamboo culm has 40%, 30%, and 33% higher moisture content, 29%, 24%, and 28% higher radial shrinkage, 32%, 37%, and 32% higher tangential shrinkage compared to 3 years old respectively. The bottom position of Injibara, Kombolcha, and Mekaneselam in November have 45%, 28%, and 25% higher moisture content, 41%, 29%, and 34% radial shrinkage, 29%, 28%, and 42% tangential shrinkage than the top position, respectively. The basic density increases as the age of the bamboo becomes older and moves from the bottom to the top position. November has the lowest basic density compared to February. 3 years old of Injibara, Kombolcha, and Mekaneselam at the age of 3 years have 32%, 50%, and 24% higher basic density compared to 1 year, whereas the top position has 35%, 26%, and 22% higher than the bottom position in February, respectively. The current research proposed that 3 years and February are suited for structural purposes and furniture making, but 1 year and November are suited for fiber extraction in the composite industry. The existence of water in the culm improves an easy extraction of the fibers without damage from the culm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20age" title="bamboo age">bamboo age</a>, <a href="https://publications.waset.org/abstracts/search?q=bamboo%20height" title=" bamboo height"> bamboo height</a>, <a href="https://publications.waset.org/abstracts/search?q=harvesting%20seasons" title=" harvesting seasons"> harvesting seasons</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a> </p> <a href="https://publications.waset.org/abstracts/182460/experimental-investigation-of-physical-properties-of-bambusa-oldhamii-and-yushania-alpina-on-the-influence-of-age-and-harvesting-season" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> Flexural Behavior of Eco-Friendly Prefabricated Low Cost Bamboo Reinforced Wall Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Puri">Vishal Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradipta%20Chakrabortty"> Pradipta Chakrabortty</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapan%20Majumdar"> Swapan Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precast concrete construction is the most commonly used technique for a rapid construction. This technique is very frequently used in the developed countries. Different guidelines required to utilize the potential of prefabricated construction are still not available in the developing countries. This causes over dependence on in-situ construction procedure which further affects the quality, scheduling, and duration of construction. Also with the ever increasing costs of building materials and their negative impact on the environment it has become imperative to look out for alternate construction materials which are cheap and sustainable. Bamboo and fly ash are alternate construction materials having great potential in the construction industry. Thus there is a great need to develop prefabricated components by utilizing the potential of these materials. Bamboo reinforced beams, bamboo reinforced columns and bamboo arches as researched previously have shown great prospects for prefabricated construction industry. But, many other prefabricated components still need to be studied and widely tested before their utilization in the prefabricated construction industry. In the present study, authors have showcased prefabricated bamboo reinforced wall panel for the prefabricated construction industry. It presents a detailed methodology for the development of such prefabricated panels. It also presents the flexural behavior of such panels as tested under flexural loads following ASTM guidelines. It was observed that these wall panels are much flexible and do not show brittle failure as observed in traditional brick walls. It was observed that prefabricated walls are about 42% cheaper as compared to conventional brick walls. It was also observed that prefabricated walls are considerably lighter in weight and are environment friendly. It was thus concluded that this type of wall panels are an excellent alternative for partition brick walls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo" title="bamboo">bamboo</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20walls" title=" prefabricated walls"> prefabricated walls</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20structure" title=" reinforced structure"> reinforced structure</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20infrastructure" title=" sustainable infrastructure"> sustainable infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/54325/flexural-behavior-of-eco-friendly-prefabricated-low-cost-bamboo-reinforced-wall-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">144</span> Multiple Shoot Induction and Plant Regeneration of Kepuh (Sterculia foetida L.) Tissue Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Titin%20Handayani">Titin Handayani</a>, <a href="https://publications.waset.org/abstracts/search?q=Endang%20Yuniastuti"> Endang Yuniastuti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kepuh (Sterculia foetida L.) is a potential plant contain mainly oil seeds that can be used as a source of alternative bioenergy and medicine. The main problem of kepuh cultivation is the limited supply of seed plants. Seeds development were very easy, but to produce fruit have to wait for approximately 5 years. The objective of this research was to obtain kepuh plants through direct in vitro regeneration. Hypocotyls and shoot tips explants were excised from sterile germinated seedlings and placed on shoot induction medium containing basal salts of Murashige and Skoog (MS) and various concentrations of plant growth regulators. The results showed that shoots induction from the apical and axillary buds on MS medium + 1.5 and 2 mg/L BAP and 0.5 and 1 mg/L IAA was growth very slowly. Increasing of BAP concentrations was increased shoot formation. The first subcultures were increased the rate of shoots growth on MS medium supplemented with 2 mg/L BAP and 0.5 mg/L IAA. The second of shoots subculture on MS medium + 1.5 to 2 mg/L BAP + 0.5 mg/L IAA was increased the number of shoots up to 4.8 in average. The best medium of shoots elongation were MS + 1 mgL-1 kinetin + 5 mg/L GA3. The highest percentage of roots (65%) occurred on MS medium with 5 mg/L IBA which average number of roots was 3.1. High percentages of survival and plants of normal appearance were obtained after five weeks of acclimatization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kepuh" title="Kepuh">Kepuh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sterculia%20foetida%20L" title=" Sterculia foetida L"> Sterculia foetida L</a>, <a href="https://publications.waset.org/abstracts/search?q=shoot%20multiplication" title=" shoot multiplication"> shoot multiplication</a>, <a href="https://publications.waset.org/abstracts/search?q=rooting" title=" rooting"> rooting</a>, <a href="https://publications.waset.org/abstracts/search?q=acclimatization" title=" acclimatization"> acclimatization</a>, <a href="https://publications.waset.org/abstracts/search?q=bioenergy" title=" bioenergy"> bioenergy</a>, <a href="https://publications.waset.org/abstracts/search?q=medicine" title=" medicine"> medicine</a> </p> <a href="https://publications.waset.org/abstracts/51658/multiple-shoot-induction-and-plant-regeneration-of-kepuh-sterculia-foetida-l-tissue-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">143</span> Rapid Proliferation of Tissue Culture Using of Olive (Olea Europea L.) cv.Zard</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Gharaipour%20Abbasabad">Majid Gharaipour Abbasabad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is studying the effects that various densities of Zeatin, and BA hormones may have on the scale of transformation of plant nodes to new shoots, among seedlings produced by seed germination, and also surveys the amount of produced shoots and their lengths, inside the specific Olive seed lab medium (OM). It is also concerned with the effects that various densities of IBA hormone, and inoculating the shoots with Agrobacterium Rhizogenez A4 can have on shoots' root production. This is a totally random research, and each attendance group has had three occurrences, and ten samples per a hectare. The average amounts have been compared using Duncan's test method, which was done in 5% level. The results indicated that the highest rate of transformation of micro samples to shoots happened in the seed germination environments, containing Zetain with 5 mg, and also 15 mg per a liter densities. (respectively, 95% and 94%), while the highest rate of plants' stem production ,in micro samples, happened in the lab medium environments with 5mg per a liter Zetain density (4.5). In lab medium environments with 15 mg Zetain per liter, a decrease was observed in the number of produced stems (3.88). According to the produced stems' lenght, the longest stem length was observed in environments with 5 mg and also 15 mg per a liter Zetain, and 25 mg per a liter BA densities (respectively, 8.45 cm, 45.66 cm, 8.53 cm). Meanwhile, the lowest amount of transformation of micro samples to shoots, the lowest number of produced shoots, and the shortest shoots were observed in the environments without any hormones (respectively, 3.32 cm, 1.13, 19.66%). The results of root production in Olive indicated that attendance groups which were exposed to different hormones did not vary, and Agrobacterium Rhizogenez A4 had no effect on them, as well. The lowest root's growth rate (22%) happened in environments without any hormones and also, in environment with Agrobacterium Rhizogenez A4 (19.66%). The largest number of roots was observed in the environments, containing Agrobacterium Rhizogenez A4 plus IBA (10 mg/l) and Agrobacterium Rhizogenez A4 plus IBA (10 mg/l), (respectively, 8.46 and 8.70), which had a significant difference with environments merely containing 10 mg and 20 mg of IBA per a litre (respectively, 3.06 and 3.2). So it can be concluded that even though Agrobacterium Rhizogenez A4 had no impact on root's growth among shoots, it had an impact on the number of produced roots. It should be noted that even when the environment contained merely Agrobacterium Rhizogenez A4 without any hormones, only (1.16) roots were produced, which is significantly different from the attendance group with hormones (1.06). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=olive-effect%20of%20hormones-germination%20of%20seed" title="olive-effect of hormones-germination of seed">olive-effect of hormones-germination of seed</a>, <a href="https://publications.waset.org/abstracts/search?q=densities%20of%20zeatin" title=" densities of zeatin"> densities of zeatin</a>, <a href="https://publications.waset.org/abstracts/search?q=BA%20hormones" title=" BA hormones"> BA hormones</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/14822/rapid-proliferation-of-tissue-culture-using-of-olive-olea-europea-l-cvzard" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">142</span> Experimental Study of Various Sandwich Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Naveen">R. Naveen</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Vanitha"> E. Vanitha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gayathri"> S. Gayathri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bamboo%20sandwich%20composite" title="bamboo sandwich composite">bamboo sandwich composite</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20sandwich%20composite" title=" metal sandwich composite"> metal sandwich composite</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20composite" title=" sandwich composite"> sandwich composite</a>, <a href="https://publications.waset.org/abstracts/search?q=v-board%20sandwich%20composite" title=" v-board sandwich composite"> v-board sandwich composite</a> </p> <a href="https://publications.waset.org/abstracts/56841/experimental-study-of-various-sandwich-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bamboo%20shoots&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bamboo%20shoots&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bamboo%20shoots&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bamboo%20shoots&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bamboo%20shoots&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=bamboo%20shoots&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>