CINXE.COM
Search results for: cell connection
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cell connection</title> <meta name="description" content="Search results for: cell connection"> <meta name="keywords" content="cell connection"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cell connection" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cell connection"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4893</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cell connection</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4893</span> Study of Aging Behavior of Parallel-Series Connection Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Chao">David Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Lai"> John Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvin%20Wu"> Alvin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Carl%20Wang"> Carl Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For lithium-ion batteries with multiple cell configurations, some use scenarios can cause uneven aging effects to each cell within the battery because of uneven current distribution. Hence the focus of the study is to explore the aging effect(s) on batteries with different construction designs. In order to systematically study the influence of various factors in some key battery configurations, a detailed analysis of three key battery construction factors is conducted. And those key factors are (1) terminal position; (2) cell alignment matrix; and (3) interconnect resistance between cells. In this study, the 2S2P circuitry has been set as a model multi-cell battery to set up different battery samples, and the aging behavior is studied by a cycling test to analyze the current distribution and recoverable capacity. According to the outcome of aging tests, some key findings are: (I) different cells alignment matrices can have an impact on the cycle life of the battery; (II) symmetrical structure has been identified as a critical factor that can influence the battery cycle life, and unbalanced resistance can lead to inconsistent cell aging status; (III) the terminal position has been found to contribute to the uneven current distribution, that can cause an accelerated battery aging effect; and (IV) the internal connection resistance increase can actually result in cycle life increase; however, it is noteworthy that such increase in cycle life is accompanied by a decline in battery performance. In summary, the key findings from the study can help to identify the key aging factor of multi-cell batteries, and it can be useful to effectively improve the accuracy of battery capacity predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20cells%20battery" title="multiple cells battery">multiple cells battery</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20distribution" title=" current distribution"> current distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20aging" title=" battery aging"> battery aging</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20connection" title=" cell connection"> cell connection</a> </p> <a href="https://publications.waset.org/abstracts/163782/study-of-aging-behavior-of-parallel-series-connection-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4892</span> The Experimental Study of Cold-Formed Steel Truss Connections Capacity: Screw and Adhesive Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indra%20Komara">Indra Komara</a>, <a href="https://publications.waset.org/abstracts/search?q=K%C4%B1van%C3%A7%20Ta%C5%9Fkin"> Kıvanç Taşkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Endah%20Wahyuni"> Endah Wahyuni</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyo%20Suprobo"> Priyo Suprobo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of connection tests that were composed of Cold-Formed Steel (CFS) sections were made to investigate the capacity of connections in a roof truss frame. The connection is controlled by using the two-different type of connection i.e. screws connection and adhesive. The variation of screws is also added applying 1 screw, 2 screws, and 3 screws. On the other hand, the percentage of adhesively material is increased by the total area of screws connection which is 50%, 75%, and 100%. Behaviors illustrated by each connection are examined, and the design capacities projected from the current CFS design codes are appealed to the experimental results of the connections. This research analyses the principal factors assisting in the ductile response of the CFS truss frame connection measured to propose recommendations for connection design, and novelty so that the connection respond plastically with a significant capacity for no brittle failure. Furthermore, the comparison connection was considered for the analysis of the connection capacity, which was estimated from the specimen’s maximum load capacity and the load-deformation behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=bolts" title=" bolts"> bolts</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title=" cold-formed steel"> cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=connections" title=" connections"> connections</a>, <a href="https://publications.waset.org/abstracts/search?q=truss" title=" truss"> truss</a> </p> <a href="https://publications.waset.org/abstracts/70309/the-experimental-study-of-cold-formed-steel-truss-connections-capacity-screw-and-adhesive-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4891</span> Multiple-Channel Coulter Counter for Cell Sizing and Enumeration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chen">Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jin%20Kim"> Seong-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehoon%20Chung"> Jaehoon Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High throughput cells counting and sizing are often required for biomedical applications. Here we report design, fabrication and validating of a micro-machined Coulter counter device with multiple-channel to realize such application for low cost. Multiple vertical through-holes were fabricated on a silicon chip, combined with the PDMS micro-fluidics channel that serves as the sensing channel. In order to avoid the crosstalk introduced by the electrical connection, instead of measuring the current passing through, the potential of each channel is monitored, thus the high throughput is possible. A peak of the output potential can be captured when the cell/particle is passing through the microhole. The device was validated by counting and sizing the polystyrene beads with diameter of 6 μm, 10 μm and 15 μm. With the sampling frequency to be set at 100 kHz, up to 5000 counts/sec for each channel can be realized. The counting and enumeration of MCF7 cancer cells are also demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coulter%20counter" title="Coulter counter">Coulter counter</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20enumeration" title=" cell enumeration"> cell enumeration</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20through-put" title=" high through-put"> high through-put</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20sizing" title=" cell sizing"> cell sizing</a> </p> <a href="https://publications.waset.org/abstracts/12788/multiple-channel-coulter-counter-for-cell-sizing-and-enumeration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4890</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhane%20Hamed%20Kamran">Reyhane Hamed Kamran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science, and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/154753/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4889</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narin%20Salehiyan">Narin Salehiyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/170992/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4888</span> DNA Methylation Changes Caused by Lawsone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Poborilova">Zuzana Poborilova</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20B.%20Ohlsson"> Anna B. Ohlsson</a>, <a href="https://publications.waset.org/abstracts/search?q=Torkel%20Berglund"> Torkel Berglund</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Vildova"> Anna Vildova</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Babula"> Petr Babula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lawsone is a pigment that occurs naturally in plants. It has been used as a skin and hair dye for a long time. Moreover, its different biological activities have been reported. The present study focused on the effect of lawsone on a plant cell model represented by tobacco BY-2 cell suspension culture, which is used as a model comparable with the HeLa cells. It has been shown that lawsone inhibits the cell growth in the concentration-dependent manner. In addition, changes in DNA methylation level have been determined. We observed decreasing level of DNA methylation in the presence of increasing concentrations of lawsone. These results were accompanied with overproduction of reactive oxygen species (ROS). Since epigenetic modifications can be caused by different stress factors, there could be a connection between the changes in the level of DNA methylation and ROS production caused by lawsone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20methylation" title="DNA methylation">DNA methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=lawsone" title=" lawsone"> lawsone</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthoquinone" title=" naphthoquinone"> naphthoquinone</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species "> reactive oxygen species </a> </p> <a href="https://publications.waset.org/abstracts/11365/dna-methylation-changes-caused-by-lawsone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4887</span> Some Classes of Lorentzian Alpha-Sasakian Manifolds with Respect to Quarter-Symmetric Metric Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santu%20Dey">Santu Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Bhattacharyya"> Arindam Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The object of the present paper is to study a quarter-symmetric metric connection in a Lorentzian α-Sasakian manifold. We study some curvature properties of Lorentzian α-Sasakian manifold with respect to quarter-symmetric metric connection. We investigate quasi-projectively at, Φ-symmetric, Φ-projectively at Lorentzian α-Sasakian manifolds with respect to quarter-symmetric metric connection. We also discuss Lorentzian α-Sasakian manifold admitting quartersymmetric metric connection satisfying P.S = 0, where P denote the projective curvature tensor with respect to quarter-symmetric metric connection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quarter-symmetric%20metric%20connection" title="quarter-symmetric metric connection">quarter-symmetric metric connection</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentzian%20alpha-Sasakian%20manifold" title=" Lorentzian alpha-Sasakian manifold"> Lorentzian alpha-Sasakian manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-projectively%20flat%20Lorentzian%20alpha-Sasakian%20manifold" title=" quasi-projectively flat Lorentzian alpha-Sasakian manifold"> quasi-projectively flat Lorentzian alpha-Sasakian manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=phi-symmetric%20manifold" title=" phi-symmetric manifold"> phi-symmetric manifold</a> </p> <a href="https://publications.waset.org/abstracts/66809/some-classes-of-lorentzian-alpha-sasakian-manifolds-with-respect-to-quarter-symmetric-metric-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4886</span> A Methodology of Testing Beam to Column Connection under Lateral Impact Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Rifaie">A. Al-Rifaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20W.%20Guan"> Z. W. Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Jones"> S. W. Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beam to column connection can be considered as the most important structural part that affects the response of buildings to progressive collapse. However, many studies were conducted to investigate the beam to column connection under accidental loads such as fire, blast and impact load to investigate the connection response. The study is a part of a PhD plan to investigate different types of connections under lateral impact load. The conventional test setups, such as cruciform setup, were designed to apply shear forces and bending moment on the connection, whilst, in the lateral impact case, the connection is subjected to combined tension and moment. Hence, a review is presented to introduce the previous test setup that is used to investigate the connection behaviour. Then, the design and fabrication of the novel test setup is presented. Finally, some trial test results to investigate the efficiency of the proposed setup are discussed. The final results indicate that the setup was efficient in terms of the simplicity and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connections" title="connections">connections</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title=" impact load"> impact load</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20hammer" title=" drop hammer"> drop hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20methods" title=" testing methods"> testing methods</a> </p> <a href="https://publications.waset.org/abstracts/76082/a-methodology-of-testing-beam-to-column-connection-under-lateral-impact-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4885</span> Structure Analysis of Text-Image Connection in Jalayrid Period Illustrated Manuscripts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Khani%20Oushani">Mahsa Khani Oushani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text and image are two important elements in the field of Iranian art, the text component and the image component have always been manifested together. The image narrates the text and the text is the factor in the formation of the image and they are closely related to each other. The connection between text and image is an interactive and two-way connection in the tradition of Iranian manuscript arrangement. The interaction between the narrative description and the image scene is the result of a direct and close connection between the text and the image, which in addition to the decorative aspect, also has a descriptive aspect. In this article the connection between the text element and the image element and its adaptation to the theory of Roland Barthes, the structuralism theorist, in this regard will be discussed. This study tends to investigate the question of how the connection between text and image in illustrated manuscripts of the Jalayrid period is defined according to Barthes’ theory. And what kind of proportion has the artist created in the composition between text and image. Based on the results of reviewing the data of this study, it can be inferred that in the Jalayrid period, the image has a reference connection and although it is of major importance on the page, it also maintains a close connection with the text and is placed in a special proportion. It is not necessarily balanced and symmetrical and sometimes uses imbalance for composition. This research has been done by descriptive-analytical method, which has been done by library collection method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structure" title="structure">structure</a>, <a href="https://publications.waset.org/abstracts/search?q=text" title=" text"> text</a>, <a href="https://publications.waset.org/abstracts/search?q=image" title=" image"> image</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalayrid" title=" Jalayrid"> Jalayrid</a>, <a href="https://publications.waset.org/abstracts/search?q=painter" title=" painter"> painter</a> </p> <a href="https://publications.waset.org/abstracts/138869/structure-analysis-of-text-image-connection-in-jalayrid-period-illustrated-manuscripts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4884</span> Analytical Study on the Shape of T-Type Girder Modular Bridge Connection by Using Parametric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park">Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoong%20Choi"> Jinwoong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungnam%20Hong"> Sungnam Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Kyung%20Kye"> Seung-Kyung Kye</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, to cope with the rapidly changing construction trend because of aging infrastructures, modular bridge technology has been studied actively. Modular bridge is easily constructed by assembling standardized precast structure members in the field. It will be possible to construct rapidly and reduce construction cost efficiently. However, the shape examination of the transverse connection of T-type girder newly developed between the segmented modules is not performed. Therefore, the investigation of the connection shape is needed. In this study, shape of the modular T-girder bridge transverse connection was analyzed by finite element model that was verified in study which was verification of model for transverse connection using Abaqus. Connection angle was chosen as the parameter. The result of analyses showed that optimal value of angle is 130 degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modular%20bridge" title="modular bridge">modular bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20transverse%20shape" title=" optimal transverse shape"> optimal transverse shape</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter" title=" parameter"> parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a> </p> <a href="https://publications.waset.org/abstracts/13686/analytical-study-on-the-shape-of-t-type-girder-modular-bridge-connection-by-using-parametric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">650</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4883</span> Sampled-Data Control for Fuel Cell Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Jung">H. Y. Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju%20H.%20Park"> Ju H. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Lee"> S. M. Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A sampled-data controller is presented for solid oxide fuel cell systems which is expressed by a sector bounded nonlinear model. The sector bounded nonlinear systems, which have a feedback connection with a linear dynamical system and nonlinearity satisfying certain sector type constraints. Also, the sampled-data control scheme is very useful since it is possible to handle digital controller and increasing research efforts have been devoted to sampled-data control systems with the development of modern high-speed computers. The proposed control law is obtained by solving a convex problem satisfying several linear matrix inequalities. Simulation results are given to show the effectiveness of the proposed design method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sampled-data%20control" title="sampled-data control">sampled-data control</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a> </p> <a href="https://publications.waset.org/abstracts/31067/sampled-data-control-for-fuel-cell-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4882</span> Global Analysis of HIV Virus Models with Cell-to-Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Pourbashash">Hossein Pourbashash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number R0 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV%20virus%20model" title="HIV virus model">HIV virus model</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-to-cell%20transmission" title=" cell-to-cell transmission"> cell-to-cell transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20stability" title=" global stability"> global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20compound%20matrices" title=" second compound matrices"> second compound matrices</a> </p> <a href="https://publications.waset.org/abstracts/23412/global-analysis-of-hiv-virus-models-with-cell-to-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4881</span> The Influence of Steel Connection on Fire Resistance of Composite Steel-Framed Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kadhim">Mohammed Kadhim</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaohui%20Huang"> Zhaohui Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel connections can play an important role in enhancing the robustness of structures under fire conditions. Therefore, it is significant to examine the influence of steel connections on the fire resistance of composite steel-framed buildings. In this paper, both the behavior of steel connections and their influence on composite steel frame are analyzed using the non-linear finite element computer software VULCAN at ambient and elevated temperatures. The chosen frame is subjected to ISO834 fire. The comparison between end plate connections, pinned connection, and rigid connection has been carried out. By applying different compartment fires, some cases are studied to show the behavior of steel connection when the fire is applied at certain beams. In addition, different plate thickness and deferent applied loads have been analyzed to examine the behavior of chosen steel connection under ISO834 fire. It was found from the analytical results that the beam with extended end plate is stronger and has better performance in terms of axial forces than those beams with flush end plate connection. It was also found that extended end plate connection has highest limiting temperatures compared to the flush end plate connection. In addition, it was found that the performance of end-plate connections is very close to rigid connection and very far from pinned connections. Furthermore, plate thickness has less effect on the influence of steel connection on fire resistance. In conclusion, the behavior of composite steel framed buildings is largely dependent on the steel connection due to their high impact under fire condition. It is recommended to consider the extended end-plate in the design proposes because of its higher properties compared to the flush end plate connection. Finally, this paper shows a steel connection has an important effect on the fire resistance of composite steel framed buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20steel-framed%20buildings" title="composite steel-framed buildings">composite steel-framed buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=connection%20behavior" title=" connection behavior"> connection behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=end-plate%20connections" title=" end-plate connections"> end-plate connections</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title=" finite element modeling"> finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20resistance" title=" fire resistance"> fire resistance</a> </p> <a href="https://publications.waset.org/abstracts/98028/the-influence-of-steel-connection-on-fire-resistance-of-composite-steel-framed-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4880</span> Numerical Analysis of End Plate Bolted Connection with Corrugated Beam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Sadeghian">M. A. Sadeghian</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Yang"> J. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20F.%20Liu"> Q. F. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20beam" title="corrugated beam">corrugated beam</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic%20loading" title=" monotonic loading"> monotonic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20plate%20connection" title=" end plate connection"> end plate connection</a> </p> <a href="https://publications.waset.org/abstracts/41852/numerical-analysis-of-end-plate-bolted-connection-with-corrugated-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41852.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4879</span> Utilize 5G Mobile Connection as a Node in the Proof of Authority Blockchain Used for Microtransaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frode%20van%20der%20Laak">Frode van der Laak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper contributes to the feasibility of using a 5G mobile connection as a node for a Proof of Authority (PoA) blockchain, which is used for microtransactions at the same time. It uses the phone number identity of the users that are linked to the crypto wallet address. It also proposed a consensus protocol based on Proof-of-Authority (PoA) blockchain; PoA is a permission blockchain where consensus is achieved through a set of designated authority rather than through mining, as is the case with a Proof of Work (PoW) blockchain. This report will first explain the concept of a PoA blockchain and how it works. It will then discuss the potential benefits and challenges of using a 5G mobile connection as a node in such a blockchain, and finally, the main open problem statement and proposed solutions with the requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5G" title="5G">5G</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile" title=" mobile"> mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=connection" title=" connection"> connection</a>, <a href="https://publications.waset.org/abstracts/search?q=node" title=" node"> node</a>, <a href="https://publications.waset.org/abstracts/search?q=PoA" title=" PoA"> PoA</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=microtransaction" title=" microtransaction"> microtransaction</a> </p> <a href="https://publications.waset.org/abstracts/158556/utilize-5g-mobile-connection-as-a-node-in-the-proof-of-authority-blockchain-used-for-microtransaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4878</span> Analytical Modelling of the Moment-Rotation Behavior of Top and Seat Angle Connection with Stiffeners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merve%20Sagiroglu">Merve Sagiroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earthquake-resistant steel structure design is required taking into account the behavior of beam-column connections besides the basic properties of the structure such as material and geometry. Beam-column connections play an important role in the behavior of frame systems. Taking into account the behaviour of connection in analysis and design of steel frames is important due to presenting the actual behavior of frames. So, the behavior of the connections should be well known. The most important force which transmitted by connections in the structural system is the moment. The rotational deformation is customarily expressed as a function of the moment in the connection. So, the moment-rotation curves are the best expression of behaviour of the beam-to-column connections. The designed connections form various moment-rotation curves according to the elements of connection and the shape of placement. The only way to achieve this curve is with real-scale experiments. The experiments of some connections have been carried out partially and are formed in the databank. It has been formed the models using this databank to express the behavior of connection. In this study, theoretical studies have been carried out to model a real behavior of the top and seat angles connections with angles. Two stiffeners in the top and seat angle to increase the stiffness of the connection, and two stiffeners in the beam web to prevent local buckling are used in this beam-to-column connection. Mathematical models have been performed using the database of the beam-to-column connection experiments previously by authors. Using the data of the tests, it has been aimed that analytical expressions have been developed to obtain the moment-rotation curve for the connection details whose test data are not available. The connection has been dimensioned in various shapes and the effect of the dimensions of the connection elements on the behavior has been examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=top%20and%20seat%20angle%20connection" title="top and seat angle connection">top and seat angle connection</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffener" title=" stiffener"> stiffener</a>, <a href="https://publications.waset.org/abstracts/search?q=moment-rotation%20curves" title=" moment-rotation curves"> moment-rotation curves</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20study" title=" analytical study"> analytical study</a> </p> <a href="https://publications.waset.org/abstracts/91563/analytical-modelling-of-the-moment-rotation-behavior-of-top-and-seat-angle-connection-with-stiffeners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4877</span> Transversal Connection Strengthening of T Section Beam Bridge with Brace System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chen">Chen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> T section beam bridge has been widely used in China as it is low cost and easy to erect. Some of T section beam bridges only have end diagrams and the adjacent girders are connected by wet-joint along span, which leads to the damage of transversal connection becomes a serious problem in operation and maintenance. This paper presents a brace system to strengthen the transversal connection of T section beam bridge. The strengthening effect was discussed by experiments and finite element analysis. The results show that the proposed brace system can improve load transfer between adjacent girders. Based on experiments and FEA model, displacement of T section beam with proposed brace system reduced 14.9% and 19.1% respectively. Integral rigidity increased 19.4% by static experiments. The transversal connection of T section beam bridge can be improved efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiment" title="experiment">experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=T%20section%20beam%20bridge" title=" T section beam bridge"> T section beam bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=transversal%20connection" title=" transversal connection"> transversal connection</a> </p> <a href="https://publications.waset.org/abstracts/78983/transversal-connection-strengthening-of-t-section-beam-bridge-with-brace-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4876</span> Single-Cell Visualization with Minimum Volume Embedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhenqiu%20Liu">Zhenqiu Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-cell%20RNA-seq" title="single-cell RNA-seq">single-cell RNA-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20volume%20embedding" title=" minimum volume embedding"> minimum volume embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20proximal%20gradient%20method" title=" accelerated proximal gradient method"> accelerated proximal gradient method</a> </p> <a href="https://publications.waset.org/abstracts/75071/single-cell-visualization-with-minimum-volume-embedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4875</span> Improving Inelastic Capacity of Cold-Formed Steel Beams Using Slotted Blotted Connection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzie%20Shahini">Marzie Shahini</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Bagheri%20Sabbagh"> Alireza Bagheri Sabbagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasoul%20Mirghaderi"> Rasoul Mirghaderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20C.%20Davidson"> Paul C. Davidson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of this paper is to incorporating the slotted bolted connection into the cold-formed steel (CFS) beams with aim of increasing inelastic bending capacity through bolt slip. An extensive finite element analysis was conducted on the through plate CFS bolted connections which are equipped with the slotted hole. The studied parameters in this paper included the following: CFS beam section geometry, the value of slip force, CFS beam thickness. The numerical results indicate that CFS slotted bolted connection exhibit higher inelastic capacity in terms of ductility compare to connection with standards holes. Moreover, the effect of slip force was analysed by comparing the moment-rotation curves of different models with different slip force value. As a result, as the slip force became lower, there was a tendency for the plastic strain to extend from the CFS member to the connection region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slip-critical%20bolted%20connection" title="slip-critical bolted connection">slip-critical bolted connection</a>, <a href="https://publications.waset.org/abstracts/search?q=inelastic%20capacity" title=" inelastic capacity"> inelastic capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=slotted%20holes" title=" slotted holes"> slotted holes</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title=" cold-formed steel"> cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=bolt%20slippage" title=" bolt slippage"> bolt slippage</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20force" title=" slip force"> slip force</a> </p> <a href="https://publications.waset.org/abstracts/59462/improving-inelastic-capacity-of-cold-formed-steel-beams-using-slotted-blotted-connection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4874</span> Switched Ultracapacitors for Maximizing Energy Supply</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassouh%20K.%20Jaber">Nassouh K. Jaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supercapacitors (S.C.) are presently attracting attention for driving general purpose (12VDC to 220VAC) inverters in renewable energy systems. Unfortunately, when the voltage of the S.C supplying the inverter reaches the minimal threshold of 7-8VDC the inverter shuts down leaving the remaining 40% of the valuable energy stored inside the ultracapacitor un-usable. In this work a power electronic circuit is proposed which switches 2 banks of supercapacitors from parallel connection when both are fully charged at 14VDC to serial connection when their voltages drop down to 7 volts, thus keeping the inverter working within its operating limits for a longer time and advantageously tapping almost 92% of the stored energy in the supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra%20capacitor" title="ultra capacitor">ultra capacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20ultracapacitors" title=" switched ultracapacitors"> switched ultracapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=inverter" title=" inverter"> inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitor" title=" supercapacitor"> supercapacitor</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20connection" title=" parallel connection"> parallel connection</a>, <a href="https://publications.waset.org/abstracts/search?q=serial%20connection" title=" serial connection"> serial connection</a>, <a href="https://publications.waset.org/abstracts/search?q=battery%20limitation" title=" battery limitation"> battery limitation</a> </p> <a href="https://publications.waset.org/abstracts/12182/switched-ultracapacitors-for-maximizing-energy-supply" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4873</span> Up-Regulation of SCUBE2 Expression in Co-Cultures of Human Mesenchymal Stem Cell and Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirowati%20Ali">Hirowati Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisyah%20Ellyanti"> Aisyah Ellyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rusnita"> Dewi Rusnita</a>, <a href="https://publications.waset.org/abstracts/search?q=Septelia%20Inawati%20Wanandi"> Septelia Inawati Wanandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cell has been known for its potency to be differentiated in many cells. Recently stem cell has been used for many treatment of degenerative medicine. It is still controversy whether stem cell can be used for therapy or these cells can activate cancer stem cell. SCUBE2 is a novel secreted and membrane-anchored protein which has been reported to its role in better prognosis and inhibition of cancer cell proliferation. Our study aims to observe whether stem cell can up-regulate SCUBE2 gene in MCF7 breast cancer cell line. We used in vitro study using MCF-7 cell treated with stem cell derived from placenta Wharton's jelly which has been known for its stemness and widely used. Our results showed that MCF-7 cell line grows up rapidly in 6-well culture dish. Stem cell was cultured in 6-well dish. After 50%-60% MCF-7 confluence, we co-cultured these cells with stem cells for 24 hours and 48 hours. We hypothesize SCUBE2 gene which is previously known for its higher expression in better prognosis of breast cancer, is up-regulated after stem cells addition in MCF7 culture dishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cells" title="breast cancer cells">breast cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20cancer%20cells" title=" inhibition of cancer cells"> inhibition of cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SCUBE2" title=" SCUBE2"> SCUBE2</a> </p> <a href="https://publications.waset.org/abstracts/84557/up-regulation-of-scube2-expression-in-co-cultures-of-human-mesenchymal-stem-cell-and-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4872</span> The Impacts of Internal Employees on Brand Building: A Case Study of Cell Phone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Gohar">Adnan Gohar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work aims the importance of internal employees in the making of a brand (cell phone) through customer satisfaction which basically explains the connection of internal employees with external customers. This research is designed to measure the satisfaction level of internal employees which further connects to the product evolution as a brand leaving a brand image in the eye of the external customer. The main focus is that internal employees are as important as external customers for the uplift of the product resulting in the brand. Internal employees are individual organization employees, vendors, departments, and distributors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brand%20building" title="brand building">brand building</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20satisfaction" title=" customer satisfaction"> customer satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20employees" title=" internal employees"> internal employees</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20franchise" title=" mobile franchise"> mobile franchise</a> </p> <a href="https://publications.waset.org/abstracts/76889/the-impacts-of-internal-employees-on-brand-building-a-case-study-of-cell-phone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4871</span> Experimental Study on Connection Method of Precast Beam-Column Using CFRPS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harmonis%20Rante">Harmonis Rante</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Djamaluddin"> Rudy Djamaluddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Herman%20Parung"> Herman Parung</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20Sampebulu"> Victor Sampebulu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many research of FRP strengthening on beam-column joint have been done. They used FRP as a strengthening material but not as a connection method. This paper presents a result of experimental-study on connection method of precast beam-column using CFRP sheet to investigate the possibility of CFRP sheet to be a connecting material. Six specimens were prepared and tested to investigate the behavior of CFRP-s connection capacity. The performance of two-connection method is presented in this paper. Three specimens have been tested so far, they were specimen without belt, specimen using one belt and monolith specimen as a control specimen. Result indicated that FRP joint system without belt reached higher capacity than joint system using one belt, but both are lower than monolith joint. Capacity of joint system without belt is 90.6% and 62.5% for the joint system using one belt, respectively compared to the control specimen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=belt" title="belt">belt</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP-s" title=" CFRP-s"> CFRP-s</a>, <a href="https://publications.waset.org/abstracts/search?q=connection%20method" title=" connection method"> connection method</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/41015/experimental-study-on-connection-method-of-precast-beam-column-using-cfrps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4870</span> A Numerical Study on the Connection of an SC Wall to an RC Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Epackachi">Siamak Epackachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20S.%20Whittaker"> Andrew S. Whittaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20H.%20Varma"> Amit H. Varma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are a large number of methods to connect SC walls to RC foundations. An experimental study of the cyclic nonlinear behavior of SC walls in the NEES laboratory at the University at Buffalo used a connection detail involving the post-tensioning of a steel baseplate to the SC wall to a RC foundation. This type of connection introduces flexibility that influenced substantially the global response of the SC walls. The assumption of a rigid base, which would be commonly made by practitioners, would lead to a substantial overestimation of initial stiffness. This paper presents an analytical approach to characterize the rotational flexibility and to predict the initial stiffness of flexure-critical SC wall piers with baseplate connection. The good agreement between the analytical and test results confirmed the utility of the proposed method for calculating the initial stiffness of an SC wall with baseplate connection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=steel-plate%20composite%20shear%20wall" title="steel-plate composite shear wall">steel-plate composite shear wall</a>, <a href="https://publications.waset.org/abstracts/search?q=flexure-critical%20wall" title="flexure-critical wall">flexure-critical wall</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20model" title=" analytical model"> analytical model</a> </p> <a href="https://publications.waset.org/abstracts/25769/a-numerical-study-on-the-connection-of-an-sc-wall-to-an-rc-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4869</span> Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fan%20Gao">Fan Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lior%20Pachter"> Lior Pachter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-cell" title="single-cell">single-cell</a>, <a href="https://publications.waset.org/abstracts/search?q=ATAC-seq" title=" ATAC-seq"> ATAC-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20chromatin%20landscape" title=" open chromatin landscape"> open chromatin landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatin%20interactome" title=" chromatin interactome"> chromatin interactome</a> </p> <a href="https://publications.waset.org/abstracts/137695/efficient-pre-processing-of-single-cell-assay-for-transposase-accessible-chromatin-with-high-throughput-sequencing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4868</span> Ductility of Slab-Interior Column Connections Transferring Shear and Moment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20M.%20Ben-Sasi">Omar M. Ben-Sasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ductility of slab-column connections of flat slab structures is a desirable property that should be considered when designing such connections which are susceptible to punching failure around their columns. Tests to failure on six half-scale specimens were conducted for slab-interior column connections transferring shear force and unbalanced moment. The influences on connection ductility of four parameters; namely, the moment to shear force ratio, the ratio of column side length to slab effective depth, the aspect ratio of the column cross section, and the presence of four square openings located next to column corners were investigated. The study revealed marked effects of these parameters on connection ductility. Increasing the first and second parameters, were found to be in favor of increasing connection ductility, while the third and fourth parameters were found to have negative effects on the connection ductility. These findings should, hopefully, help in designing interior connections of flat slab structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductility" title="ductility">ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20slab" title=" flat slab"> flat slab</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20force" title=" shear force"> shear force</a>, <a href="https://publications.waset.org/abstracts/search?q=moment" title=" moment"> moment</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalanced%20moment" title=" unbalanced moment"> unbalanced moment</a>, <a href="https://publications.waset.org/abstracts/search?q=punching%20failure" title=" punching failure"> punching failure</a>, <a href="https://publications.waset.org/abstracts/search?q=connection" title=" connection"> connection</a>, <a href="https://publications.waset.org/abstracts/search?q=interior-column%20connection" title=" interior-column connection"> interior-column connection</a> </p> <a href="https://publications.waset.org/abstracts/8917/ductility-of-slab-interior-column-connections-transferring-shear-and-moment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4867</span> Comparisons of Individual and Group Replacement Policies for a Series Connection System with Two Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen%20Liang%20Chang">Wen Liang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Wei%20Wang"> Mei Wei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruey%20Huei%20Yeh"> Ruey Huei Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the comparisons of individual and group replacement policies for a series connection system with two machines. Suppose that manufacturer’s production system is a series connection system which is combined by two machines. For two machines, when machines fail within the operating time, minimal repair is performed for machines by the manufacturer. The manufacturer plans to a preventive replacement for machines at a pre-specified time to maintain system normal operation. Under these maintenance policies, the maintenance cost rate models of individual and group replacement for a series connection system with two machines is derived and further, optimal preventive replacement time is obtained such that the expected total maintenance cost rate is minimized. Finally, some numerical examples are given to illustrate the influences of individual and group replacement policies to the maintenance cost rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=individual%20replacement" title="individual replacement">individual replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20replacement" title=" group replacement"> group replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20time" title=" replacement time"> replacement time</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20machines" title=" two machines"> two machines</a>, <a href="https://publications.waset.org/abstracts/search?q=series%20connection%20system" title=" series connection system"> series connection system</a> </p> <a href="https://publications.waset.org/abstracts/33308/comparisons-of-individual-and-group-replacement-policies-for-a-series-connection-system-with-two-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4866</span> Preparation of Gramine Nanosuspension and Protective Effect of Gramine on Human Oral Cell Lines by Induction of Apoptosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Suresh">K. Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Arunkumar"> R. Arunkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the preparation of gramine nano suspension and protective effect of Gramine on the apoptosis of laryngeal cancer cells cell line (HEp-2 and KB). The growth inhibition rate of Hep-2 and KB cells in vitro were measured by MTT assay and apoptosis by, levels of reactive oxygen species, mitochondrial membrane potential, morphological changes and flowcytometry. Based on the results, we determined the effective doses of gramine as 127.23µm/ml for 24 hr and 119.81 µm/ml for 48hr in hep-2 cell line and 147.58 µm ml for 24 hr and 123.74µm µm/ml for 48hr in KB cell line. cytotoxicity effects of gramine were confirmed by treatment of HEp-2 cell and KB cell with IC50 concentration of gramine resulted in sequences of events marked by the enhance the apoptosis accompanied by loss of cell viability, modulation of reactive oxygen species and cell cycle arrest through the induction of G0/G1 phase arrest on HEp-2 cells. Our study suggests that the nanosuspension of gramine possesses the more cytotoxic effect of cancer cells and a novel candidate for cancer chemoprevention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=HEp-2%20cell%20line" title=" HEp-2 cell line"> HEp-2 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=KB%20cell%20line%20mitochondria" title=" KB cell line mitochondria"> KB cell line mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=gramine" title=" gramine"> gramine</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosuspension" title=" nanosuspension"> nanosuspension</a> </p> <a href="https://publications.waset.org/abstracts/21324/preparation-of-gramine-nanosuspension-and-protective-effect-of-gramine-on-human-oral-cell-lines-by-induction-of-apoptosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4865</span> Finite Element Study of Coke Shape Deep Beam to Column Moment Connection Subjected to Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robel%20Wondimu%20Alemayehu">Robel Wondimu Alemayehu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sihwa%20Jung"> Sihwa Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Manwoo%20Park"> Manwoo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20K.%20Ju"> Young K. Ju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Following the aftermath of the 1994 Northridge earthquake, intensive research on beam to column connections is conducted, leading to the current design basis. The current design codes require the use of either a prequalified connection or a connection that passes the requirements of large-scale cyclic qualification test prior to use in intermediate or special moment frames. The second alternative is expensive both in terms of money and time. On the other hand, the maximum beam depth in most of the prequalified connections is limited to 900mm due to the reduced rotation capacity of deeper beams. However, for long span beams the need to use deeper beams may arise. In this study, a beam to column connection detail suitable for deep beams is presented. The connection detail comprises of thicker-tapered beam flange adjacent to the beam to column connection. Within the thicker-tapered flange region, two reduced beam sections are provided with the objective of forming two plastic hinges within the tapered-thicker flange region. In addition, the length, width, and thickness of the tapered-thicker flange region are proportioned in such a way that a third plastic hinge forms at the end of the tapered-thicker flange region. As a result, the total rotation demand is distributed over three plastic zones. Making it suitable for deeper beams that have lower rotation capacity at one plastic hinge. The effectiveness of this connection detail is studied through finite element analysis. For the study, a beam that has a depth of 1200mm is used. Additionally, comparison with welded unreinforced flange-welded web (WUF-W) moment connection and reduced beam section moment connection is made. The results show that the rotation capacity of a WUF-W moment connection is increased from 2.0% to 2.2% by applying the proposed moment connection detail. Furthermore, the maximum moment capacity, energy dissipation capacity and stiffness of the WUF-W moment connection is increased up to 58%, 49%, and 32% respectively. In contrast, applying the reduced beam section detail to the same WUF-W moment connection reduced the rotation capacity from 2.0% to 1.50% plus the maximum moment capacity and stiffness of the connection is reduced by 22% and 6% respectively. The proposed connection develops three plastic hinge regions as intended and it shows improved performance compared to both WUF-W moment connection and reduced beam section moment connection. Moreover, the achieved rotation capacity satisfies the minimum required for use in intermediate moment frames. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connections" title="connections">connections</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20intermediate%20moment%20frame" title=" steel intermediate moment frame"> steel intermediate moment frame</a> </p> <a href="https://publications.waset.org/abstracts/92524/finite-element-study-of-coke-shape-deep-beam-to-column-moment-connection-subjected-to-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4864</span> Study of Magnetic Nanoparticles’ Endocytosis in a Single Cell Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jefunnie%20Matahum">Jefunnie Matahum</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Kuo"> Yu-Chi Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Ming%20Su"> Chao-Ming Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzong-Rong%20Ger"> Tzong-Rong Ger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic cell labeling is of great importance in various applications in biomedical fields such as cell separation and cell sorting. Since analytical methods for quantification of cell uptake of magnetic nanoparticles (MNPs) are already well established, image analysis on single cell level still needs more characterization. This study reports an alternative non-destructive quantification methods of single-cell uptake of positively charged MNPs. Magnetophoresis experiments were performed to calculate the number of MNPs in a single cell. Mobility of magnetic cells and the area of intracellular MNP stained by Prussian blue were quantified by image processing software. ICP-MS experiments were also performed to confirm the internalization of MNPs to cells. Initial results showed that the magnetic cells incubated at 100 µg and 50 µg MNPs/mL concentration move at 18.3 and 16.7 µm/sec, respectively. There is also an increasing trend in the number and area of intracellular MNP with increasing concentration. These results could be useful in assessing the nanoparticle uptake in a single cell level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20cell" title=" single cell"> single cell</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetophoresis" title=" magnetophoresis"> magnetophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title=" image analysis"> image analysis</a> </p> <a href="https://publications.waset.org/abstracts/66948/study-of-magnetic-nanoparticles-endocytosis-in-a-single-cell-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=163">163</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=164">164</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20connection&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>