CINXE.COM

Document Zbl 1428.34001 - zbMATH Open

<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <title>Document Zbl 1428.34001 - zbMATH Open</title> <meta name="viewport" content="width=device-width, minimum-scale=0.1, maximum-scale=5.0"> <meta name="robots" content="noarchive, noindex"> <meta name="referrer" content="origin-when-cross-origin"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap-theme.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.css" rel="stylesheet" media="screen,print"> <link rel="stylesheet" href="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/css/bootstrap-select.min.css"> <link href="/static/css/smoothness/jquery-ui-1.10.1.custom.min.css" rel="stylesheet" media="screen"> <link href="/static/styles.css?v=20241024" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/zbMathJax/v0.1.38/zbmathjax.css" rel="stylesheet" media="screen,print"> <link rel="shortcut icon" href="/static/zbmath.ico"> <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "Organization", "url": "https://zbmath.org/", "logo": "https://zbmath.org/static/zbMATH.png" } </script> </head> <body> <div id="line"></div> <span id="clear" style="cursor: pointer;">&times;</span> <div id="page"> <div id="head"> <nav id="menu" class="navbar navbar-default"> <div class="container-fluid"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#zbnav" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand" href="#"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open logo"> </a> </div> <div id="zbnav" class="collapse navbar-collapse"> <ul class="nav navbar-nav pages"> <li class="about"> <a href="/about/">About</a> </li> <li class="frequently-asked-questions"> <a href="/frequently-asked-questions/">FAQ</a> </li> <li class="general-help"> <a href="/general-help/">General Help</a> </li> <li class="reviewer-service"> <a href="https://zbmath.org/reviewer-service/" target="_self" >Reviewer Service</a> </li> <li> <a href="/tools-and-resources/">Tools &amp; Resources</a> </li> <li class="contact"> <a href="/contact/">Contact</a> </li> </ul> <ul class="nav navbar-nav navbar-right prefs"> <li class="preferences dropdown"> <a data-toggle="dropdown" href="#">Preferences <i class="caret"></i></a> <ul class="dropdown-menu preferences"> <li> <form id="preferences" class="navbar-form" method="post" action="/preferences/" onsubmit="return confirm('This website uses cookies for the purposes of storing preference information on your device. Do you agree to this?\n\nPlease refer to our Privacy Policy to learn more about our use of cookies.')" > <input type="hidden" name="path" value="/1428.34001?"> <span class=""> <label class="title">Search Form</label> <div class="form-group"> <input id="search-multi-line" type="radio" name="search" value="multi-line" checked> <label for="search-multi-line" class="radio">Multi-Line Search (default)</label> </div> <div class="form-group"> <input id="search-one-line" type="radio" name="search" value="one-line"> <label for="search-one-line" class="radio">One-Line Search</label> </div> </span> <span class="count"> <label class="title">Hits per Page</label> <div class="form-group"> <input id="count-10" type="radio" name="count" value="10"> <label for="count-10" class="radio">10</label> </div> <div class="form-group"> <input id="count-20" type="radio" name="count" value="20"> <label for="count-20" class="radio">20</label> </div> <div class="form-group"> <input id="count-50" type="radio" name="count" value="50"> <label for="count-50" class="radio">50</label> </div> <div class="form-group"> <input id="count-100" type="radio" name="count" value="100" checked> <label for="count-100" class="radio">100 (default)</label> </div> <div class="form-group"> <input id="count-200" type="radio" name="count" value="200"> <label for="count-200" class="radio">200</label> </div> </span> <span class="format"> <label class="title">Display Format</label> <div class="form-group"> <input id="format-mathjax" type="radio" name="format" value="mathjax" checked> <label for="format-mathjax" class="radio">MathJax (default)</label> </div> <div class="form-group"> <input id="format-amstex" type="radio" name="format" value="latex"> <label for="format-amstex" class="radio">LaTeX</label> </div> </span> <span class="ranking"> <label class="title">Documents Sorting</label> <div class="form-group"> <input id="documents-ranking-default" type="radio" name="documents_ranking" value="date" checked> <label for="documents-ranking-default" class="radio">Newest first (default)</label> </div> <div class="form-group"> <input id="documents-ranking-references" type="radio" name="documents_ranking" value="references"> <label for="documents-ranking-references" class="radio">Citations</label> </div> <div class="form-group"> <input id="documents-ranking-relevance" type="radio" name="documents_ranking" value="relevance"> <label for="documents-ranking-relevance" class="radio">Relevance</label> </div> </span> <span class="ranking"> <label class="title">Authors Sorting</label> <div class="form-group"> <input id="authors-ranking-default" type="radio" name="authors_ranking" value="alpha" checked> <label for="authors-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="authors-ranking-references" type="radio" name="authors_ranking" value="references"> <label for="authors-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Serials Sorting</label> <div class="form-group"> <input id="serials-ranking-default" type="radio" name="serials_ranking" value="alpha" checked> <label for="serials-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="serials-ranking-references" type="radio" name="serials_ranking" value="references"> <label for="serials-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Software Sorting</label> <div class="form-group"> <input id="software-ranking-default" type="radio" name="software_ranking" value="references" checked> <label for="software-ranking-default" class="radio">Citations (default)</label> </div> <div class="form-group"> <input id="software-ranking-alpha" type="radio" name="software_ranking" value="alpha"> <label for="software-ranking-alpha" class="radio">Alphabetically</label> </div> </span> <button type="submit" class="btn btn-default">OK</button> <div class="clearfix"> </form> </li> </ul> </li> </ul> </div> </div> </nav> <div id="tabs"> <h1 class="logo"> <a class="logo" href="/"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open &mdash; the first resource for mathematics" > </a> </h1> <nav> <ul class="nav nav-tabs"> <li class="tab-documents active"> <a href="/">Documents</a> </li> <li class="tab-authors"> <a href="/authors/">Authors</a> </li> <li class="tab-serials"> <a href="/serials/">Serials</a> </li> <li class="tab-software"> <a href="/software/">Software</a> </li> <li class="tab-classification"> <a href="/classification/">Classification</a> </li> <li class="tab-formulae"> <a href="/formulae/">Formulæ</a> </li> </ul> </nav> <div class="clearfix"></div> </div> <div class="content-fixed"> <div class="content-formular"> <div style="display: none;"> <div class="row ml-0"id="multi-line-new-line" style="display: none;"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-0-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-0-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input"> <span class="multi-line-value" id="multi-line-type-range"><span style="padding-left: 5px;">from</span> <input name="ml-0-v1" class="form-control multi-line-input" type="text" value="" aria-label="value"> until <input name="ml-0-v2" class="form-control multi-line-input" type="text" value="" aria-label="value"></span> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-la" placeholder="use name or ISO code"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-rv" placeholder="enter name or zbMATH reviewer number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-an" placeholder="Zbl, JFM or ERAM number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-en" placeholder="e.g. DOI, ISBN, arXiv ID"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-sw" placeholder="use * to find all documents using software"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-br" placeholder="find documents about the life or work of a person"> <span class="multi-line-value" id="multi-line-type-multiselect-db"> <select class="multi-line-selectpicker" data-width="100%" multiple> <option value="zbl">Zbl</option> <option value="arxiv">arXiv</option> <option value="jfm">JFM</option> <option value="eram">ERAM</option> </select> <input type="hidden" class="multi-line-input" name="ml-0-v" value=""> </span> </div> <form name="documents" method="GET" action="/" autocomplete="off"> <div class="documents multi-line" style="display: none;"> <div class="forms"> <ul class="nav forms"> <li class="one-line"> <span tabindex="0" class="glyphicon glyphicon-question-sign" title="One-Line Search allows for free logical combinations of search fields" aria-label="One-Line Search allows for free logical combinations of search fields" data-placement="bottom"></span>&nbsp;<a style="display: inline-block;" href="#">One-Line Search <span class="glyphicon glyphicon-search"></span></a> </li> </ul> </div> <div class="clearfix"></div> <div class="container-fluid"> <input type="hidden" id="multi-line-ml" name="ml" value="3"> <div id="multi-line-row-wrapper"> <div class="row ml-1"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-1-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-1-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-1-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-2"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-2-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au" selected>Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-2-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-2-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-3"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-3-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti" selected>Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-3-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><div id="multi-line-plus"> <a href="#"><span class="glyphicon glyphicon-plus" aria-hidden="true"></span> add line</a> </div></div> </div> </div> <div class="row"> <div class="col-xs-12 form-inline"> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-test" style="visibility: hidden; position: fixed;"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label title="search for Articles in Journals"> <input type="checkbox" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label title="search for arXiv Preprints"> <input type="checkbox" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-real"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label for="dt-j" title="search for Articles in Journals"> <input type="checkbox" id="dt-j" name="dt" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label for="dt-a" title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" id="dt-a" name="dt" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label for="dt-b" title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" id="dt-b" name="dt" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label for="dt-p" title="search for arXiv Preprints"> <input type="checkbox" id="dt-p" name="dt" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> </div> </div> <div class="row"> <div class="col-xs-12 buttons"> <a tabindex="0" class="btn btn-default clear-all">Reset all <span class="glyphicon glyphicon-remove"></span></a> <div class="submit"> <button class="btn btn-default search" type="submit">Search <span class="glyphicon glyphicon-search"></span></button> </div> </div> </div> </div> </div> </form> <form class="form-inline" name="documents" method="GET" action="/"> <div class="documents one-line" style="display: block;"> <div class="forms"> <ul class="nav forms"> <li class="multi-line"><a href="#">New Multi-Line Search <span class="glyphicon glyphicon-list"></span></a></li> </ul> </div> <div id="search-row" class="input-group box"> <span> <div id="search-field"> <input class="query form-control" type="text" name="q" value="an:1428.34001" aria-label="Search for documents" placeholder="Search for documents" autocomplete="off"> </div> <div class="search-buttons input-group-btn"> <div class="btn-group"> <button class="btn btn-default search" type="submit"><span class="virtual">Search</span> <span class="glyphicon glyphicon-search" style="top: 2px;"></span></button> </div> </div> </span> <span> <div class="search-buttons input-group-btn"> <div class="btn-group"> <div class="btn-group fields"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Fields <i class="caret"></i></button> <ul id="fields" class="dropdown-menu pull-right"> <li><a href="#"><span class="token item">any:</span><span>&nbsp;</span>anywhere (default)</a></li> <li><a href="#"><span class="token item">ab:</span><span>&nbsp;&nbsp;</span>review text</a></li> <li><a href="#"><span class="token item">an:</span><span>&nbsp;&nbsp;</span>zbmath id</a></li> <li><a href="#"><span class="token item">any:</span><span>&nbsp;&nbsp;</span>anywhere</a></li> <li><a href="#"><span class="token item">au:</span><span>&nbsp;&nbsp;</span>contributor name</a></li> <li><a href="#"><span class="token item">br:</span><span>&nbsp;&nbsp;</span>biographic reference name</a></li> <li><a href="#"><span class="token item">cc:</span><span>&nbsp;&nbsp;</span>msc title</a></li> <li><a href="#"><span class="token item">dt:</span><span>&nbsp;&nbsp;</span>document type</a></li> <li><a href="#"><span class="token item">doi:</span><span>&nbsp;&nbsp;</span>doi</a></li> <li><a href="#"><span class="token item">en:</span><span>&nbsp;&nbsp;</span>external id</a></li> <li><a href="#"><span class="token item">la:</span><span>&nbsp;&nbsp;</span>language</a></li> <li><a href="#"><span class="token item">pu:</span><span>&nbsp;&nbsp;</span>publisher</a></li> <li><a href="#"><span class="token item">py:</span><span>&nbsp;&nbsp;</span>year</a></li> <li><a href="#"><span class="token item">rv:</span><span>&nbsp;&nbsp;</span>reviewer name</a></li> <li><a href="#"><span class="token item">so:</span><span>&nbsp;&nbsp;</span>source</a></li> <li><a href="#"><span class="token item">sw:</span><span>&nbsp;&nbsp;</span>software name</a></li> <li><a href="#"><span class="token item">ti:</span><span>&nbsp;&nbsp;</span>title</a></li> <li><a href="#"><span class="token item">ut:</span><span>&nbsp;&nbsp;</span>keyword</a></li> </ul> </div> <div class="btn-group operators"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Operators <i class="caret"></i></button> <ul id="operators" class="dropdown-menu pull-right"> <li><a href="#"><span class="token">a&nbsp;<span class="item">&</span>&nbsp;b&nbsp;</span><span>&nbsp;</span>logical and (default)</a></li> <li><a href="#"><span class="token">a&nbsp;<span class="item">|</span>&nbsp;b&nbsp;</span><span>&nbsp;</span>logical or</a></li> <li><a href="#"><span class="token"><span class="item">!</span>ab&nbsp;&nbsp;&nbsp;</span><span>&nbsp;</span>logical not</a></li> <li><a href="#"><span class="token">abc<span class="item">*</span>&nbsp;&nbsp;</span><span>&nbsp;</span>right wildcard</a></li> <li><a href="#"><span class="token"><span class="item">"</span>ab&nbsp;c<span class="item">"</span></span><span>&nbsp;</span>phrase</a></li> <li><a href="#"><span class="token"><span class="item">(</span>ab&nbsp;c<span class="item">)</span></span><span>&nbsp;</span>parentheses</a></li> </ul> </div> </div> </div> <div class="special"> <ul class="nav help-button"> <li class="dropdown pull-right"> <a href="#">Help <i class="caret"></i></a> </li> </ul> </div> </span> </div> <div class="help"><h2>Examples</h2> <div id="help-terms" role="table"> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Geometry">Geometry</a></span> <span class="search-explanation" role="cell" role="cell">Search for the term <em>Geometry</em> in <strong>any</strong> field. Queries are <strong>case-independent</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Funct%2A">Funct*</a></span> <span class="search-explanation" role="cell"><strong>Wildcard</strong> queries are specified by <strong><u>*</u></strong> (e.g. <em>functions</em>, <em>functorial</em>, etc.). Otherwise the search is <strong>exact</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Topological+group%22">"Topological group"</a></span> <span class="search-explanation" role="cell"><strong>Phrases</strong> (multi-words) should be set in <u>"</u>straight quotation marks<u>"</u>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=au%3A+Bourbaki+%26+ti%3A+Algebra">au: Bourbaki &amp; ti: Algebra</a></span> <span class="search-explanation" role="cell">Search for <strong><u>au</u>thor</strong> and <strong><u>ti</u>tle</strong>. The <strong>and-operator &amp;</strong> is default and can be omitted.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Chebyshev+%7C+Tschebyscheff">Chebyshev | Tschebyscheff</a></span> <span class="search-explanation" role="cell">The <strong>or-operator |</strong> allows to search for <em>Chebyshev</em> or <em>Tschebyscheff</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Quasi%2A+map%2A+py%3A+1989">Quasi* map* py: 1989</a></span> <span class="search-explanation" role="cell">The resulting documents have <strong><u>p</u>ublication <u>y</u>ear</strong> <em>1989</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=so%3A+Eur%2A+J%2A+Mat%2A+Soc%2A+cc%3A+14">so: Eur* J* Mat* Soc* cc: 14</a></span> <span class="search-explanation" role="cell">Search for publications in a particular <strong><u>so</u>urce</strong> with a <strong>Mathematics Subject <u>C</u>lassification <u>c</u>ode (<u>cc</u>)</strong> in <em>14</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Partial+diff%2A+eq%2A%22+%21+elliptic">"Partial diff* eq*" ! elliptic</a></span> <span class="search-explanation" role="cell">The <strong>not</strong>-operator <strong>!</strong> eliminates all results containing the word <em>elliptic</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=dt%3A+b+%26+au%3A+Hilbert">dt: b &amp; au: Hilbert</a></span> <span class="search-explanation" role="cell">The <strong><u>d</u>ocument <u>t</u>ype</strong> is set to books; alternatively: <u>j</u> for <strong>journal articles</strong>, <u>a</u> for <strong>book articles</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=py%3A+2000-2015+cc%3A+%2894A+%7C+11T%29">py: 2000-2015 cc: (94A | 11T)</a></span> <span class="search-explanation" role="cell">Number <strong>ranges</strong> are accepted. Terms can be grouped within <strong><u>(</u>parentheses<u>)</u></strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=la%3A+chinese">la: chinese</a></span> <span class="search-explanation" role="cell">Find documents in a given <strong><u>la</u>nguage</strong>. <a href="http://en.wikipedia.org/wiki/ISO_639-1">ISO 639-1</a> language codes can also be used.</span> </div> </div> <div id="help-fields"> <h2>Fields</h2> <table> <tr> <td class="nowrap padding" role="rowheader"><strong>any</strong></td> <td class="padding">anywhere</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>an</strong></td> <td class="padding">internal document identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>au</strong></td> <td class="padding">author, editor</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ai</strong></td> <td class="padding">internal author identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ti</strong></td> <td class="padding">title</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>la</strong></td> <td class="padding">language</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>so</strong></td> <td class="padding">source</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ab</strong></td> <td class="padding">review, abstract</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>py</strong></td> <td class="padding">publication year</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>rv</strong></td> <td class="padding">reviewer</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>cc</strong></td> <td class="padding">MSC code</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ut</strong></td> <td class="padding">uncontrolled term</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>dt</strong></td> <td class="padding" colspan="4">document type (<strong>j</strong>: journal article; <strong>b</strong>: book; <strong>a</strong>: book article)</td> </tr> </table> </div> <div id="help-operators"> <h2>Operators</h2> <table> <tr> <td class="nowrap padding" role="rowheader">a <strong>&amp;</strong> b</td> <td class="padding">logic and</td> </tr> <tr> <td class="nowrap padding" role="rowheader">a <strong>|</strong> b</td> <td class="padding">logic or</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>!</strong>ab</td> <td class="padding">logic not</td> </tr> <tr> <td class="nowrap padding" role="rowheader">abc<strong>*</strong></td> <td class="padding">right wildcard</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>"</strong>ab c<strong>"</strong></td> <td class="padding">phrase</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>(</strong>ab c<strong>)</strong></td> <td class="padding">parentheses</td> </tr> </table> </div> <p> See also our <a href="/general-help/">General Help</a>. </p></div> </div> </form> <div class="clearfix"></div> </div> <div class="content-shadow"></div> </div> </div> <div id="body"> <div id="main"> <div class="messages"> </div> <div id="documents"> <div class="content-main"> <div class="content-item"><div class="item"> <article> <div class="author"><a href="/authors/sun.hongguang" title="Author Profile">Sun, HongGuang</a>; <a href="/authors/chang.ailian" title="Author Profile">Chang, Ailian</a>; <a href="/authors/zhang.yong.18" title="Author Profile">Zhang, Yong</a>; <a href="/authors/chen.wen" title="Author Profile">Chen, Wen</a></div> <h2 class="title"> <strong>A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications.</strong> <i>(English)</i> <a class="label nowrap" href="/1428.34001">Zbl 1428.34001</a> </h2> <div class="source"> <a href="/serials/2462" title="Journal Profile">Fract. Calc. Appl. Anal.</a> <a href="/?q=in%3A439540" title="Articles in this Issue">22, No. 1, 27-59 (2019)</a>. </div> <div class="abstract">Summary: Variable-order (VO) fractional differential equations (FDEs) with a time \((t)\), space \((x)\) or other variables dependent order have been successfully applied to investigate time and/or space dependent dynamics. This study aims to provide a survey of the recent relevant literature and findings in primary definitions, models, numerical methods and their applications. This review first offers an overview over the existing definitions proposed from different physical and application backgrounds, and then reviews several widely used numerical schemes in simulation. Moreover, as a powerful mathematical tool, the VO-FDE models have been remarkably acknowledged as an alternative and precise approach in effectively describing real-world phenomena. Hereby, we also make a brief summary on different physical models and typical applications. This review is expected to help the readers for the selection of appropriate definition, model and numerical method to solve specific physical and engineering problems.</div> <div class="clear"></div> <br> <div class="citations"><div class="clear"><a href="/?q=rf%3A7115416">Cited in <strong>145</strong> Documents</a></div></div> <div class="classification"> <h3>MSC:</h3> <table><tr> <td> <a class="mono" href="/classification/?q=cc%3A34-02" title="MSC2020">34-02</a> </td> <td class="space"> Research exposition (monographs, survey articles) pertaining to ordinary differential equations </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A26A33" title="MSC2020">26A33</a> </td> <td class="space"> Fractional derivatives and integrals </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A34A08" title="MSC2020">34A08</a> </td> <td class="space"> Fractional ordinary differential equations </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A34A45" title="MSC2020">34A45</a> </td> <td class="space"> Theoretical approximation of solutions to ordinary differential equations </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A35R11" title="MSC2020">35R11</a> </td> <td class="space"> Fractional partial differential equations </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A65-02" title="MSC2020">65-02</a> </td> <td class="space"> Research exposition (monographs, survey articles) pertaining to numerical analysis </td> </tr></table> </div><div class="keywords"> <h3>Keywords:</h3><a href="/?q=ut%3Avariable-order">variable-order</a>; <a href="/?q=ut%3Afractional+calculus">fractional calculus</a>; <a href="/?q=ut%3Afractional+differential+equations">fractional differential equations</a>; <a href="/?q=ut%3Anumerical+methods">numerical methods</a>; <a href="/?q=ut%3Aapplications">applications</a></div> <div class="software"> <h3>Software:</h3><a href="/software/8377">FODE</a></div> <!-- Modal used to show zbmath metadata in different output formats--> <div class="modal fade" id="metadataModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> <h4 class="modal-title" id="myModalLabel">Cite</h4> </div> <div class="modal-body"> <div class="form-group"> <label for="select-output" class="control-label">Format</label> <select id="select-output" class="form-control" aria-label="Select Metadata format"></select> </div> <div class="form-group"> <label for="metadataText" class="control-label">Result</label> <textarea class="form-control" id="metadataText" rows="10" style="min-width: 100%;max-width: 100%"></textarea> </div> <div id="metadata-alert" class="alert alert-danger" role="alert" style="display: none;"> <!-- alert for connection errors etc --> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary" onclick="copyMetadata()">Copy to clipboard</button> <button type="button" class="btn btn-default" data-dismiss="modal">Close</button> </div> </div> </div> </div> <div class="functions clearfix"> <div class="function"> <!-- Button trigger metadata modal --> <a type="button" class="btn btn-default btn-xs pdf" data-toggle="modal" data-target="#metadataModal" data-itemtype="Zbl" data-itemname="Zbl 1428.34001" data-ciurl="/ci/07115416" data-biburl="/bibtex/07115416.bib" data-amsurl="/amsrefs/07115416.bib" data-xmlurl="/xml/07115416.xml" > Cite </a> <a class="btn btn-default btn-xs pdf" data-container="body" type="button" href="/pdf/07115416.pdf" title="Zbl 1428.34001 as PDF">Review PDF</a> </div> <div class="fulltexts"> <span class="fulltext">Full Text:</span> <a class="btn btn-default btn-xs" type="button" href="https://doi.org/10.1515/fca-2019-0003" aria-label="DOI for “A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications”" title="10.1515/fca-2019-0003">DOI</a> </div> <div class="sfx" style="float: right;"> </div> </div> <div class="references"> <h3>References:</h3> <table><tr> <td>[1]</td> <td class="space">R. Almeida, N.R.O. Bastos, M.T.T. Monteiro, A fractional Malthusian growth model with variable order using an optimization approach. Stat. Optim. Inf. Comput. <span class="zbmathjax-textbf">6</span>, No 1 (2018), 4-11.; Almeida, R.; Bastos, N. R.O.; Monteiro, M. T.T., A fractional Malthusian growth model with variable order using an optimization approach, Stat. Optim. Inf. Comput., 6, 1, 4-11 (2018)</td> </tr><tr> <td>[2]</td> <td class="space">R. Almeida, D. Tavares, D.F.M. Torres, The Variable-Order Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology, Springer, Cham (2018).; Almeida, R.; Tavares, D.; Torres, D. F.M., The Variable-Order Fractional Calculus of Variations (2018) &middot; <a href="/1402.49002" class="nowrap">Zbl 1402.49002</a></td> </tr><tr> <td>[3]</td> <td class="space">R. Almeida, D.F.M. Torres, Computing Hadamard type operators of variable fractional order. Appl. Math. Comput. <span class="zbmathjax-textbf">257</span> (2015), 74-88.; Almeida, R.; Torres, D. F.M., Computing Hadamard type operators of variable fractional order, Appl. Math. Comput., 257, 74-88 (2015) &middot; <a href="/1338.26004" class="nowrap">Zbl 1338.26004</a></td> </tr><tr> <td>[4]</td> <td class="space">V.V. Anh, J.M. Angulo, M.D. Ruiz-Medina, Diffusion on multifractals. Nonlinear Anal.-Theor. <span class="zbmathjax-textbf">63</span>, No 5 (2005), 2043-2056.; Anh, V. V.; Angulo, J. M.; Ruiz-Medina, M. D., Diffusion on multifractals, Nonlinear Anal.-Theor., 63, 5, 2043-2056 (2005) &middot; <a href="/1224.60111" class="nowrap">Zbl 1224.60111</a></td> </tr><tr> <td>[5]</td> <td class="space">A. Atangana, On the stability and convergence of the time-fractional variable order telegraph equation. J. Comput. Phys. <span class="zbmathjax-textbf">293</span>, No C (2015), 104-114.; Atangana, A., On the stability and convergence of the time-fractional variable order telegraph equation, J. Comput. Phys., 293, C, 104-114 (2015) &middot; <a href="/1349.65263" class="nowrap">Zbl 1349.65263</a></td> </tr><tr> <td>[6]</td> <td class="space">A. Atangana, J.F. Botha, A generalized groundwater flow equation using the concept of variable-order derivative. Bound. Value Probl. <span class="zbmathjax-textbf">2013</span>, No 1 (2013), # 53.; Atangana, A.; Botha, J. F., A generalized groundwater flow equation using the concept of variable-order derivative, Bound. Value Probl., 2013, 1, # 53 (2013) &middot; <a href="/1291.35206" class="nowrap">Zbl 1291.35206</a></td> </tr><tr> <td>[7]</td> <td class="space">A. Atangana, A.H. Cloot, Stability and convergence of the space fractional variable-order Schrödinger equation. Adv. Differ. Equ. <span class="zbmathjax-textbf">2013</span>, No 1 (2013), 1-10.; Atangana, A.; Cloot, A. H., Stability and convergence of the space fractional variable-order Schrödinger equation, Adv. Differ. Equ., 2013, 1, 1-10 (2013) &middot; <a href="/1380.35157" class="nowrap">Zbl 1380.35157</a></td> </tr><tr> <td>[8]</td> <td class="space">A.A. Awotunde, R.A. Ghanam, N.E. Tatar, Artificial boundary condition for a modified fractional diffusion problem. Bound. Value Probl. <span class="zbmathjax-textbf">2015</span>, No 1 (2015), # 20.; Awotunde, A. A.; Ghanam, R. A.; Tatar, N. E., Artificial boundary condition for a modified fractional diffusion problem, Bound. Value Probl., 2015, 1, # 20 (2015) &middot; <a href="/1515.35306" class="nowrap">Zbl 1515.35306</a></td> </tr><tr> <td>[9]</td> <td class="space">R.L. Bagley, The thermorheologically complex material. J. Acoust. Soc. Am. <span class="zbmathjax-textbf">90</span>, No 7 (1991), 797-806.; Bagley, R. L., The thermorheologically complex material, J. Acoust. Soc. Am., 90, 7, 797-806 (1991) &middot; <a href="/0825.73052" class="nowrap">Zbl 0825.73052</a></td> </tr><tr> <td>[10]</td> <td class="space">P. Balasubramaniam, P. Muthukumar, K. Ratnavelu, Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system. Nonlinear Dynam. <span class="zbmathjax-textbf">80</span>, No 1-2 (2015), 249-267.; Balasubramaniam, P.; Muthukumar, P.; Ratnavelu, K., Theoretical and practical applications of fuzzy fractional integral sliding mode control for fractional-order dynamical system, Nonlinear Dynam., 80, 1-2, 249-267 (2015) &middot; <a href="/1345.93071" class="nowrap">Zbl 1345.93071</a></td> </tr><tr> <td>[11]</td> <td class="space">A.H. Bhrawy, M.A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dynam. <span class="zbmathjax-textbf">80</span>, No 1-2 (2015), 101-116.; Bhrawy, A. H.; Zaky, M. A., Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dynam., 80, 1-2, 101-116 (2015) &middot; <a href="/1345.65060" class="nowrap">Zbl 1345.65060</a></td> </tr><tr> <td>[12]</td> <td class="space">A.H. Bhrawy, M.A. Zaky, Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dynam. <span class="zbmathjax-textbf">85</span>, No 3 (2016), 1815-1823.; Bhrawy, A. H.; Zaky, M. A., Numerical algorithm for the variable-order Caputo fractional functional differential equation, Nonlinear Dynam., 85, 3, 1815-1823 (2016) &middot; <a href="/1349.65505" class="nowrap">Zbl 1349.65505</a></td> </tr><tr> <td>[13]</td> <td class="space">A.H. Bhrawy, M.A. Zaky, An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations. Appl. Numer. Math. <span class="zbmathjax-textbf">111</span> (2017), 197-218.; Bhrawy, A. H.; Zaky, M. A., An improved collocation method for multi-dimensional space-time variable-order fractional Schrödinger equations, Appl. Numer. Math., 111, 197-218 (2017) &middot; <a href="/1353.65106" class="nowrap">Zbl 1353.65106</a></td> </tr><tr> <td>[14]</td> <td class="space">Y. Bouras, D. Zorica, T.M. Atanacković, Z. Vrcelj, A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete. Appl. Math. Model. <span class="zbmathjax-textbf">55</span> (2018), 551-568.; Bouras, Y.; Zorica, D.; Atanacković, T. M.; Vrcelj, Z., A non-linear thermo-viscoelastic rheological model based on fractional derivatives for high temperature creep in concrete, Appl. Math. Model., 55, 551-568 (2018) &middot; <a href="/1480.74041" class="nowrap">Zbl 1480.74041</a></td> </tr><tr> <td>[15]</td> <td class="space">D.W. Brzeziński, P. Ostalczyk, About accuracy increase of fractional order derivative and integral computations by applying the Grünwald-Letnikov formula. Commun. Nonlinear Sci. <span class="zbmathjax-textbf">40</span> (2016), 151-162.; Brzeziński, D. W.; Ostalczyk, P., About accuracy increase of fractional order derivative and integral computations by applying the Grünwald-Letnikov formula, Commun. Nonlinear Sci., 40, 151-162 (2016) &middot; <a href="/1510.65048" class="nowrap">Zbl 1510.65048</a></td> </tr><tr> <td>[16]</td> <td class="space">W. Cai, W. Chen, J. Fang, S. Holm, A survey on fractional derivative modeling of power-law frequency-dependent viscous dissipative and scattering attenuation in acoustic wave propagation. Appl. Mech. Rev. <span class="zbmathjax-textbf">70</span>, No 3 (2018), # 030802.; Cai, W.; Chen, W.; Fang, J.; Holm, S., A survey on fractional derivative modeling of power-law frequency-dependent viscous dissipative and scattering attenuation in acoustic wave propagation, Appl. Mech. Rev., 70, 3, # 030802 (2018)</td> </tr><tr> <td>[17]</td> <td class="space">J. Cao, Y. Qiu, A high order numerical scheme for variable order fractional ordinary differential equation. Appl. Math. Lett. <span class="zbmathjax-textbf">61</span> (2016), 88-94.; Cao, J.; Qiu, Y., A high order numerical scheme for variable order fractional ordinary differential equation, Appl. Math. Lett., 61, 88-94 (2016) &middot; <a href="/1347.65119" class="nowrap">Zbl 1347.65119</a></td> </tr><tr> <td>[18]</td> <td class="space">A. Chang, H. Sun, Time-space fractional derivative models for CO2 transport in heterogeneous media. Fract. Calc. Appl. Anal. <span class="zbmathjax-textbf">21</span>, No 1 (2018), 151-173; ; .; Chang, A.; Sun, H., Time-space fractional derivative models for CO2 transport in heterogeneous media, Fract. Calc. Appl. Anal., 21, 1, 151-173 (2018) &middot; <a href="/1439.35522" class="nowrap">Zbl 1439.35522</a>&nbsp;&middot; <a href="https://doi.org/10.1515/fca-2018-0010" class="nowrap">doi:10.1515/fca-2018-0010</a></td> </tr><tr> <td>[19]</td> <td class="space">A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Fractional diffusion in inhomogeneous media. J. Phys. A: Gen. Phys. <span class="zbmathjax-textbf">38</span>, No 42 (2005), 679-684.; Chechkin, A. V.; Gorenflo, R.; Sokolov, I. M., Fractional diffusion in inhomogeneous media, J. Phys. A: Gen. Phys., 38, 42, 679-684 (2005) &middot; <a href="/1082.76097" class="nowrap">Zbl 1082.76097</a></td> </tr><tr> <td>[20]</td> <td class="space">Y. Chen, C. Chen, Numerical simulation with the second order compact approximation of first order derivative for the modified fractional diffusion equation. Appl. Math. Comput. <span class="zbmathjax-textbf">320</span> (2018), 319-330.; Chen, Y.; Chen, C., Numerical simulation with the second order compact approximation of first order derivative for the modified fractional diffusion equation, Appl. Math. Comput., 320, 319-330 (2018) &middot; <a href="/1427.65151" class="nowrap">Zbl 1427.65151</a></td> </tr><tr> <td>[21]</td> <td class="space">C. Chen, F. Liu, V. Anh, I. Turner, Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. <span class="zbmathjax-textbf">32</span>, No 4 (2010), 1740-1760.; Chen, C.; Liu, F.; Anh, V.; Turner, I., Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation, SIAM J. Sci. Comput., 32, 4, 1740-1760 (2010) &middot; <a href="/1217.26011" class="nowrap">Zbl 1217.26011</a></td> </tr><tr> <td>[22]</td> <td class="space">S. Chen, F. Liu, K. Burrage, Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. <span class="zbmathjax-textbf">68</span>, No 12 (2014), 2133-2141.; Chen, S.; Liu, F.; Burrage, K., Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media, Comput. Math. Appl., 68, 12, 2133-2141 (2014) &middot; <a href="/1369.35105" class="nowrap">Zbl 1369.35105</a></td> </tr><tr> <td>[23]</td> <td class="space">Y. Chen, L. Liu, B. Li, Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl. Math. Comput. <span class="zbmathjax-textbf">238</span>, No 7 (2014), 329-341.; Chen, Y.; Liu, L.; Li, B.; Sun, Y., Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238, 7, 329-341 (2014) &middot; <a href="/1334.65167" class="nowrap">Zbl 1334.65167</a></td> </tr><tr> <td>[24]</td> <td class="space">Y. Chen, L. Liu, D. Liu, D. Boutat, Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials. Ain Shams Eng. J. <span class="zbmathjax-textbf">9</span>, No 4 (2018), 1235-1241.; Chen, Y.; Liu, L.; Liu, D.; Boutat, D., Numerical study of a class of variable order nonlinear fractional differential equation in terms of Bernstein polynomials, Ain Shams Eng. J., 9, 4, 1235-1241 (2018)</td> </tr><tr> <td>[25]</td> <td class="space">H. Chen, H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math. <span class="zbmathjax-textbf">296</span> (2015), 480-498.; Chen, H.; Wang, H., Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation, J. Comput. Appl. Math., 296, 480-498 (2015) &middot; <a href="/1342.65168" class="nowrap">Zbl 1342.65168</a></td> </tr><tr> <td>[26]</td> <td class="space">Y. Chen, Y. Wei, D. Liu, D. Boutat, X. Chen, Variable-order fractional numerical differentiation for noisy signals by wavelet denoising. J. Comput. Phys. <span class="zbmathjax-textbf">311</span> (2016), 338-347.; Chen, Y.; Wei, Y.; Liu, D.; Boutat, D.; Chen, X., Variable-order fractional numerical differentiation for noisy signals by wavelet denoising, J. Comput. Phys., 311, 338-347 (2016) &middot; <a href="/1349.65087" class="nowrap">Zbl 1349.65087</a></td> </tr><tr> <td>[27]</td> <td class="space">Y. Chen, Y. Wei, D. Liu, H. Yu, Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. Appl. Math. Lett. <span class="zbmathjax-textbf">46</span> (2015), 83-88.; Chen, Y.; Wei, Y.; Liu, D.; Yu, H., Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets, Appl. Math. Lett., 46, 83-88 (2015) &middot; <a href="/1329.65172" class="nowrap">Zbl 1329.65172</a></td> </tr><tr> <td>[28]</td> <td class="space">W. Chen, J. Zhang, J. Zhang, A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures. Fract. Calc. Appl. Anal. <span class="zbmathjax-textbf">16</span>, No 1 (2013), 76-92; ; .; Chen, W.; Zhang, J.; Zhang, J., A variable-order time-fractional derivative model for chloride ions sub-diffusion in concrete structures, Fract. Calc. Appl. Anal., 16, 1, 76-92 (2013) &middot; <a href="/1312.76058" class="nowrap">Zbl 1312.76058</a>&nbsp;&middot; <a href="https://doi.org/10.2478/s13540-013-0006-y" class="nowrap">doi:10.2478/s13540-013-0006-y</a></td> </tr><tr> <td>[29]</td> <td class="space">T.S.Y. Choong, T.N. Wong, T.G. Chuah, A. Idris, Film-pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon. J. Colloid Interf. Sci. <span class="zbmathjax-textbf">301</span>, No 2 (2006), 436-440.; Choong, T. S.Y.; Wong, T. N.; Chuah, T. G.; Idris, A., Film-pore-concentration-dependent surface diffusion model for the adsorption of dye onto palm kernel shell activated carbon, J. Colloid Interf. Sci., 301, 2, 436-440 (2006)</td> </tr><tr> <td>[30]</td> <td class="space">C.F.M. Coimbra, Mechanics with variable-order differential operators. Ann. Der Phys. <span class="zbmathjax-textbf">12</span>, No (11-12) (2003), 692-703.; Coimbra, C. F.M., Mechanics with variable-order differential operators, Ann. Der Phys., 12, 11-12, 692-703 (2003) &middot; <a href="/1103.26301" class="nowrap">Zbl 1103.26301</a></td> </tr><tr> <td>[31]</td> <td class="space">C.F.M. Coimbra, D. ĽEsperance, R.A. Lambert, J.D. Trolinger, R.H. Rangel, An experimental study on stationary history effects in high-frequency Stokes flows. J. Fluid Mech. <span class="zbmathjax-textbf">504</span>, No 504 (2004), 353-363.; Coimbra, C. F.M.; ĽEsperance, D.; Lambert, R. A.; Trolinger, J. D.; Rangel, R. H., An experimental study on stationary history effects in high-frequency Stokes flows, J. Fluid Mech., 504, 504, 353-363 (2004) &middot; <a href="/1116.76303" class="nowrap">Zbl 1116.76303</a></td> </tr><tr> <td>[32]</td> <td class="space">C.F.M. Coimbra, R.H. Rangel, Spherical particle motion in harmonic Stokes flows. AIAA J. <span class="zbmathjax-textbf">39</span>, No 9 (2015), 1673-1682.; Coimbra, C. F.M.; Rangel, R. H., Spherical particle motion in harmonic Stokes flows, AIAA J., 39, 9, 1673-1682 (2015)</td> </tr><tr> <td>[33]</td> <td class="space">G.R.J. Cooper, D.R. Cowan, Filtering using variable order vertical derivatives. Comput. Geosci. <span class="zbmathjax-textbf">30</span>, No 5 (2004), 455-459.; Cooper, G. R.J.; Cowan, D. R., Filtering using variable order vertical derivatives, Comput. Geosci., 30, 5, 455-459 (2004)</td> </tr><tr> <td>[34]</td> <td class="space">A. Dabiri, B.P. Moghaddam, J.A.T. Machado, Optimal variable-order fractional PID controllers for dynamical systems. J. Comput. Appl. Math. <span class="zbmathjax-textbf">339</span> (2018), 40-48.; Dabiri, A.; Moghaddam, B. P.; Machado, J. A.T., Optimal variable-order fractional PID controllers for dynamical systems, J. Comput. Appl. Math., 339, 40-48 (2018) &middot; <a href="/1392.49033" class="nowrap">Zbl 1392.49033</a></td> </tr><tr> <td>[35]</td> <td class="space">W. Deng, Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. <span class="zbmathjax-textbf">227</span>, No 2 (2007), 1510-1522.; Deng, W., Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., 227, 2, 1510-1522 (2007) &middot; <a href="/1388.35095" class="nowrap">Zbl 1388.35095</a></td> </tr><tr> <td>[36]</td> <td class="space">G. Diaz, C.F.M. Coimbra, Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dynam. <span class="zbmathjax-textbf">56</span>, No 1 (2009), 145-157.; Diaz, G.; Coimbra, C. F.M., Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation, Nonlinear Dynam., 56, 1, 145-157 (2009) &middot; <a href="/1170.70012" class="nowrap">Zbl 1170.70012</a></td> </tr><tr> <td>[37]</td> <td class="space">G. Diaz, C.F.M. Coimbra, Dynamics and control of nonlinear variable order oscillators. Ch. 6, in: Nonlinear Dynamics (Ed. T. Evans), InTech (2010), 129-144.; Diaz, G.; Coimbra, C. F.M.; Evans, T., Nonlinear Dynamics, 129-144 (2010)</td> </tr><tr> <td>[38]</td> <td class="space">Z. Fu, W. Chen, L. Ling, Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Bound. Elem. <span class="zbmathjax-textbf">57</span> (2015), 37-46.; Fu, Z.; Chen, W.; Ling, L., Method of approximate particular solutions for constant- and variable-order fractional diffusion models, Eng. Anal. Bound. Elem., 57, 37-46 (2015) &middot; <a href="/1403.65087" class="nowrap">Zbl 1403.65087</a></td> </tr><tr> <td>[39]</td> <td class="space">Z. Ge, C. Ou, Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal. Chaos Soliton. Fract. <span class="zbmathjax-textbf">35</span>, No 4 (2008), 705-717.; Ge, Z.; Ou, C., Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal, Chaos Soliton. Fract., 35, 4, 705-717 (2008)</td> </tr><tr> <td>[40]</td> <td class="space">D.N. Gerasimov, V.A. Kondratieva, O.A. Sinkevich, An anomalous non-self-similar infiltration and fractional diffusion equation. Phys. D Nonlinear Phenom. <span class="zbmathjax-textbf">239</span>, No 16 (2010), 1593-1597.; Gerasimov, D. N.; Kondratieva, V. A.; Sinkevich, O. A., An anomalous non-self-similar infiltration and fractional diffusion equation, Phys. D Nonlinear Phenom., 239, 16, 1593-1597 (2010) &middot; <a href="/1193.76142" class="nowrap">Zbl 1193.76142</a></td> </tr><tr> <td>[41]</td> <td class="space">W.G. Glöckle, T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J. <span class="zbmathjax-textbf">68</span>, No 1 (1995), 46-53.; Glöckle, W. G.; Nonnenmacher, T. F., A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68, 1, 46-53 (1995) &middot; <a href="/0960.82534" class="nowrap">Zbl 0960.82534</a></td> </tr><tr> <td>[42]</td> <td class="space">J.F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys. A<span class="zbmathjax-textbf">494</span> (2018), 52-75.; Gómez-Aguilar, J. F., Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations, Phys. A, 494, 52-75 (2018) &middot; <a href="/1514.92041" class="nowrap">Zbl 1514.92041</a></td> </tr><tr> <td>[43]</td> <td class="space">R.M. Hafez, Y.H. Youssri, Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation. Comput. Appl. Math. <span class="zbmathjax-textbf">37</span>, No 4 (2018), 5315-5333.; Hafez, R. M.; Youssri, Y. H., Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation, Comput. Appl. Math., 37, 4, 5315-5333 (2018) &middot; <a href="/1404.65195" class="nowrap">Zbl 1404.65195</a></td> </tr><tr> <td>[44]</td> <td class="space">G. He, M. Luo, Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control. Appl. Math. Mech. <span class="zbmathjax-textbf">33</span>, No 5 (2012), 567-582.; He, G.; Luo, M., Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control, Appl. Math. Mech., 33, 5, 567-582 (2012) &middot; <a href="/1266.34022" class="nowrap">Zbl 1266.34022</a></td> </tr><tr> <td>[45]</td> <td class="space">R. Herrmann, Uniqueness of the fractional derivative definition. arXiv Preprint, arXiv:1303.2939 (2013).; Herrmann, R., Uniqueness of the fractional derivative definition, arXiv Preprint, arXiv:1303.2939 (2013) &middot; <a href="/1278.81156" class="nowrap">Zbl 1278.81156</a></td> </tr><tr> <td>[46]</td> <td class="space">M.H. Heydari, Z. Avazzadeh, A new wavelet method for variable-order fractional optimal control problems. Asian J. Control<span class="zbmathjax-textbf">20</span>, No 5 (2017), 1-14.; Heydari, M. H.; Avazzadeh, Z., A new wavelet method for variable-order fractional optimal control problems, Asian J. Control, 20, 5, 1-14 (2017) &middot; <a href="/1386.35405" class="nowrap">Zbl 1386.35405</a></td> </tr><tr> <td>[47]</td> <td class="space">M.H. Heydari, Z. Avazzadeh, An operational matrix method for solving variable-order fractional biharmonic equation. Comput. Appl. Math. <span class="zbmathjax-textbf">37</span>, No 4 (2018), 4397-4411.; Heydari, M. H.; Avazzadeh, Z., An operational matrix method for solving variable-order fractional biharmonic equation, Comput. Appl. Math., 37, 4, 4397-4411 (2018) &middot; <a href="/1402.65125" class="nowrap">Zbl 1402.65125</a></td> </tr><tr> <td>[48]</td> <td class="space">Y. Hong, J. Lin, W. Chen, Simulation of thermal field in mass concrete structures with cooling pipes by the localized radial basis function collocation method. Int. J. Heat Mass Tran. <span class="zbmathjax-textbf">129</span> (2019), 449-459.; Hong, Y.; Lin, J.; Chen, W., Simulation of thermal field in mass concrete structures with cooling pipes by the localized radial basis function collocation method, Int. J. Heat Mass Tran., 129, 449-459 (2019)</td> </tr><tr> <td>[49]</td> <td class="space">D. Ingman, J. Suzdalnitsky, Control of damping oscillations by fractional differential operator with time-dependent order. Comput. Method. Appl. Mech. Eng. <span class="zbmathjax-textbf">193</span>, No 52 (2004), 5585-5595.; Ingman, D.; Suzdalnitsky, J., Control of damping oscillations by fractional differential operator with time-dependent order, Comput. Method. Appl. Mech. Eng., 193, 52, 5585-5595 (2004) &middot; <a href="/1079.70020" class="nowrap">Zbl 1079.70020</a></td> </tr><tr> <td>[50]</td> <td class="space">D. Ingman, J. Suzdalnitsky, M. Zeifman, Constitutive dynamic-order model for nonlinear contact phenomena. J. Appl. Mech. <span class="zbmathjax-textbf">67</span>, No 2 (2000), 383-390.; Ingman, D.; Suzdalnitsky, J.; Zeifman, M., Constitutive dynamic-order model for nonlinear contact phenomena, J. Appl. Mech., 67, 2, 383-390 (2000) &middot; <a href="/1110.74493" class="nowrap">Zbl 1110.74493</a></td> </tr><tr> <td>[51]</td> <td class="space">Y. Jia, M. Xu, Y. Lin, A numerical solution for variable order fractional functional differential equation. Appl. Math. Lett. <span class="zbmathjax-textbf">64</span> (2017), 125-130.; Jia, Y.; Xu, M.; Lin, Y., A numerical solution for variable order fractional functional differential equation, Appl. Math. Lett., 64, 125-130 (2017) &middot; <a href="/1353.65067" class="nowrap">Zbl 1353.65067</a></td> </tr><tr> <td>[52]</td> <td class="space">W. Jiang, H. Li, A space-time spectral collocation method for the two-dimensional variable-order fractional percolation equations. Comput. Math. Appl. <span class="zbmathjax-textbf">75</span>, No 10 (2018), 3508-3520.; Jiang, W.; Li, H., A space-time spectral collocation method for the two-dimensional variable-order fractional percolation equations, Comput. Math. Appl., 75, 10, 3508-3520 (2018) &middot; <a href="/1419.65081" class="nowrap">Zbl 1419.65081</a></td> </tr><tr> <td>[53]</td> <td class="space">W. Jiang, N. Liu, A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model. Appl. Numer. Math. <span class="zbmathjax-textbf">119</span> (2017), 18-32.; Jiang, W.; Liu, N., A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model, Appl. Numer. Math., 119, 18-32 (2017) &middot; <a href="/1432.65155" class="nowrap">Zbl 1432.65155</a></td> </tr><tr> <td>[54]</td> <td class="space">S. Jiang, J. Zhang, Z. Qian, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. <span class="zbmathjax-textbf">21</span>, No 3 (2017), 650-678.; Jiang, S.; Zhang, J.; Qian, Z.; Zhang, Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21, 3, 650-678 (2017) &middot; <a href="/1488.65247" class="nowrap">Zbl 1488.65247</a></td> </tr><tr> <td>[55]</td> <td class="space">S.N. Kamenia, J.D. Djidaa, A. Atangana, Modelling the movement of groundwater pollution with variable order derivative. J. Nonlinear Sci. Appl. <span class="zbmathjax-textbf">10</span> (2017), 5422-5432.; Kamenia, S. N.; Djidaa, J. D.; Atangana, A., Modelling the movement of groundwater pollution with variable order derivative, J. Nonlinear Sci. Appl., 10, 5422-5432 (2017) &middot; <a href="/1412.34031" class="nowrap">Zbl 1412.34031</a></td> </tr><tr> <td>[56]</td> <td class="space">A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. {Elsevier} (2006).; Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006) &middot; <a href="/1092.45003" class="nowrap">Zbl 1092.45003</a></td> </tr><tr> <td>[57]</td> <td class="space">Y.L. Kobelev, L.Y. Kobelev, Y.L. Klimontovich, Statistical physics of dynamic systems with variable memory. Dokl. Phys. <span class="zbmathjax-textbf">48</span>, No 6 (2003), 285-289.; Kobelev, Y. L.; Kobelev, L. Y.; Klimontovich, Y. L., Statistical physics of dynamic systems with variable memory, Dokl. Phys., 48, 6, 285-289 (2003) &middot; <a href="/1073.82569" class="nowrap">Zbl 1073.82569</a></td> </tr><tr> <td>[58]</td> <td class="space">Y.L. Kobelev, L.Y. Kobelev, Y.L. Klimontovich, Anomalous diffusion with time-and coordinate-dependent memory. Dokl. Phys. <span class="zbmathjax-textbf">48</span>, No 6 (2003), 264-268.; Kobelev, Y. L.; Kobelev, L. Y.; Klimontovich, Y. L., Anomalous diffusion with time-and coordinate-dependent memory, Dokl. Phys., 48, 6, 264-268 (2003) &middot; <a href="/1073.35522" class="nowrap">Zbl 1073.35522</a></td> </tr><tr> <td>[59]</td> <td class="space">P. Kumar, S.K. Chaudhary, Analysis of fractional order control system with performance and stability. Int. J. Eng. Sci. Tech. <span class="zbmathjax-textbf">9</span>, No 5 (2017), 408-416.; Kumar, P.; Chaudhary, S. K., Analysis of fractional order control system with performance and stability, Int. J. Eng. Sci. Tech., 9, 5, 408-416 (2017) &middot; <a href="/1473.62026" class="nowrap">Zbl 1473.62026</a></td> </tr><tr> <td>[60]</td> <td class="space">T.A.M. Langlands, B.I. Henry, Fractional chemotaxis diffusion equations. Phys. Rev. E<span class="zbmathjax-textbf">81</span> (2010), # 051102.; Langlands, T. A.M.; Henry, B. I., Fractional chemotaxis diffusion equations, Phys. Rev. E, 81, # 051102 (2010) &middot; <a href="/1221.60047" class="nowrap">Zbl 1221.60047</a></td> </tr><tr> <td>[61]</td> <td class="space">J.R. Leith, Fractal scaling of fractional diffusion processes. Signal Process. <span class="zbmathjax-textbf">83</span>, No 11 (2003), 2397-2409.; Leith, J. R., Fractal scaling of fractional diffusion processes, Signal Process., 83, 11, 2397-2409 (2003) &middot; <a href="/1145.94360" class="nowrap">Zbl 1145.94360</a></td> </tr><tr> <td>[62]</td> <td class="space">Z. Li, H. Wang, R. Xiao, S. Yang, A variable-order fractional differential equation model of shape memory polymers. Chaos Soliton. Fract. <span class="zbmathjax-textbf">102</span> (2017), 473-485.; Li, Z.; Wang, H.; Xiao, R.; Yang, S., A variable-order fractional differential equation model of shape memory polymers, Chaos Soliton. Fract., 102, 473-485 (2017)</td> </tr><tr> <td>[63]</td> <td class="space">X. Li, B. Wu, A numerical technique for variable fractional functional boundary value problems. Appl. Math. Lett. <span class="zbmathjax-textbf">43</span> (2015), 108-113.; Li, X.; Wu, B., A numerical technique for variable fractional functional boundary value problems, Appl. Math. Lett., 43, 108-113 (2015) &middot; <a href="/1315.65060" class="nowrap">Zbl 1315.65060</a></td> </tr><tr> <td>[64]</td> <td class="space">X. Li, B. Wu, A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations. J. Comput. Appl. Math. <span class="zbmathjax-textbf">311</span> (2016), 387-393.; Li, X.; Wu, B., A new reproducing kernel method for variable order fractional boundary value problems for functional differential equations, J. Comput. Appl. Math., 311, 387-393 (2016) &middot; <a href="/1382.65210" class="nowrap">Zbl 1382.65210</a></td> </tr><tr> <td>[65]</td> <td class="space">R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. <span class="zbmathjax-textbf">212</span>, No 2 (2009), 435-445.; Lin, R.; Liu, F.; Anh, V.; Turner, I., Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation, Appl. Math. Comput., 212, 2, 435-445 (2009) &middot; <a href="/1171.65101" class="nowrap">Zbl 1171.65101</a></td> </tr><tr> <td>[66]</td> <td class="space">C.F. Lorenzo, T.T. Hartley, Variable order and distributed order fractional operators. Nonlinear Dynam. <span class="zbmathjax-textbf">29</span>, No 1 (2002), 57-98.; Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dynam., 29, 1, 57-98 (2002) &middot; <a href="/1018.93007" class="nowrap">Zbl 1018.93007</a></td> </tr><tr> <td>[67]</td> <td class="space">C.F. Lorenzo, T.T. Hartley, Initialization, conceptualization, and application in the generalized fractional calculus. Crit. Rev. Biomed. Eng. <span class="zbmathjax-textbf">35</span>, No 6 (2007), 477-553.; Lorenzo, C. F.; Hartley, T. T., Initialization, conceptualization, and application in the generalized fractional calculus, Crit. Rev. Biomed. Eng., 35, 6, 477-553 (2007)</td> </tr><tr> <td>[68]</td> <td class="space">R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. <span class="zbmathjax-textbf">190</span>, No 2 (2008), 255-270.; Magin, R. L.; Abdullah, O.; Baleanu, D.; Zhou, X. J., Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation, J. Magn. Reson., 190, 2, 255-270 (2008)</td> </tr><tr> <td>[69]</td> <td class="space">M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. <span class="zbmathjax-textbf">51</span>, No 1 (2006), 80-90.; Meerschaert, M. M.; Tadjeran, C., Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 51, 1, 80-90 (2006) &middot; <a href="/1086.65087" class="nowrap">Zbl 1086.65087</a></td> </tr><tr> <td>[70]</td> <td class="space">R. Meng, D. Yin, C. Zhou, H. Wu, Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior. Appl. Math. Model. <span class="zbmathjax-textbf">40</span>, No 1 (2016), 398-406.; Meng, R.; Yin, D.; Zhou, C.; Wu, H., Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior, Appl. Math. Model., 40, 1, 398-406 (2016) &middot; <a href="/1443.74084" class="nowrap">Zbl 1443.74084</a></td> </tr><tr> <td>[71]</td> <td class="space">R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. <span class="zbmathjax-textbf">339</span>, No 1 (2000), 1-77.; Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) &middot; <a href="/0984.82032" class="nowrap">Zbl 0984.82032</a></td> </tr><tr> <td>[72]</td> <td class="space">B.P. Moghaddam, J.A.T. Machado, A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations. Comput. Math. Appl. <span class="zbmathjax-textbf">73</span>, (2017), 1262-1269.; Moghaddam, B. P.; Machado, J. A.T., A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations, Comput. Math. Appl., 73, 1262-1269 (2017) &middot; <a href="/1412.65084" class="nowrap">Zbl 1412.65084</a></td> </tr><tr> <td>[73]</td> <td class="space">B.P. Moghaddam, J.A.T. Machado, H. Behforooz, An integro quadratic spline approach for a class of variable-order fractional initial value problems. Chaos Soliton. Fract. <span class="zbmathjax-textbf">102</span>, Suppl. C (2017), 354-360.; Moghaddam, B. P.; Machado, J. A.T.; Behforooz, H., An integro quadratic spline approach for a class of variable-order fractional initial value problems, Chaos Soliton. Fract., 102, Suppl. C, 354-360 (2017) &middot; <a href="/1422.65131" class="nowrap">Zbl 1422.65131</a></td> </tr><tr> <td>[74]</td> <td class="space">P. Muthukumar, P. Balasubramaniam, Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dynam. <span class="zbmathjax-textbf">74</span>, No 4 (2013), 1169-1181.; Muthukumar, P.; Balasubramaniam, P., Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography, Nonlinear Dynam., 74, 4, 1169-1181 (2013) &middot; <a href="/1284.34065" class="nowrap">Zbl 1284.34065</a></td> </tr><tr> <td>[75]</td> <td class="space">P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization and an application of a novel fractional order King Cobra chaotic system. Chaos<span class="zbmathjax-textbf">24</span>, No 3 (2014), # 033105.; Muthukumar, P.; Balasubramaniam, P.; Ratnavelu, K., Synchronization and an application of a novel fractional order King Cobra chaotic system, Chaos, 24, 3, # 033105 (2014) &middot; <a href="/1374.34015" class="nowrap">Zbl 1374.34015</a></td> </tr><tr> <td>[76]</td> <td class="space">P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES). Nonlinear Dynam. <span class="zbmathjax-textbf">77</span>, No 4 (2014), 1547-1559.; Muthukumar, P.; Balasubramaniam, P.; Ratnavelu, K., Synchronization of a novel fractional order stretch-twist-fold (STF) flow chaotic system and its application to a new authenticated encryption scheme (AES), Nonlinear Dynam., 77, 4, 1547-1559 (2014) &middot; <a href="/1331.37044" class="nowrap">Zbl 1331.37044</a></td> </tr><tr> <td>[77]</td> <td class="space">P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its application to an affine cipher using date of birth (DOB). Nonlinear Dynam. <span class="zbmathjax-textbf">80</span>, No 4 (2015), 1883-1897.; Muthukumar, P.; Balasubramaniam, P.; Ratnavelu, K., Fast projective synchronization of fractional order chaotic and reverse chaotic systems with its application to an affine cipher using date of birth (DOB), Nonlinear Dynam., 80, 4, 1883-1897 (2015) &middot; <a href="/1345.93078" class="nowrap">Zbl 1345.93078</a></td> </tr><tr> <td>[78]</td> <td class="space">J. Pinheiro Neto, R. Moura Coelho, D. Valério, S. Vinga, D. Sierociuk, W. Malesza, M. Macias, A. Dzieliński, Variable order differential models of bone remodelling. IFAC Int. Fed. Autom. Control<span class="zbmathjax-textbf">50</span>, No 1 (2017), 8066-8071.; Pinheiro Neto, J.; Moura Coelho, R.; Valério, D.; Vinga, S.; Sierociuk, D.; Malesza, W.; Macias, M.; Dzieliński, A., Variable order differential models of bone remodelling, IFAC Int. Fed. Autom. Control, 50, 1, 8066-8071 (2017) &middot; <a href="/1409.92088" class="nowrap">Zbl 1409.92088</a></td> </tr><tr> <td>[79]</td> <td class="space">S. Nimmo, A.K. Evans, The effects of continuously varying the fractional differential order of chaotic nonlinear systems. Chaos Soliton. Fract. <span class="zbmathjax-textbf">10</span>, No 7 (1999), 1111-1118.; Nimmo, S.; Evans, A. K., The effects of continuously varying the fractional differential order of chaotic nonlinear systems, Chaos Soliton. Fract., 10, 7, 1111-1118 (1999) &middot; <a href="/0980.34032" class="nowrap">Zbl 0980.34032</a></td> </tr><tr> <td>[80]</td> <td class="space">A.D. Obembe, M.E. Hossain, S.A. Abu-Khamsin, Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Petrol. Sci. Eng. <span class="zbmathjax-textbf">152</span> (2017), 391-405.; Obembe, A. D.; Hossain, M. E.; Abu-Khamsin, S. A., Variable-order derivative time fractional diffusion model for heterogeneous porous media, J. Petrol. Sci. Eng., 152, 391-405 (2017) &middot; <a href="/1409.76141" class="nowrap">Zbl 1409.76141</a></td> </tr><tr> <td>[81]</td> <td class="space">H.T.C. Pedro, M.H. Kobayashi, J.M.C. Pereira, C.F.M. Coimbra, Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere. J. Vib. Control<span class="zbmathjax-textbf">14</span>, No (9-10) (2008), 1659-1672.; Pedro, H. T.C.; Kobayashi, M. H.; Pereira, J. M.C.; Coimbra, C. F.M., Variable order modeling of diffusive-convective effects on the oscillatory flow past a sphere, J. Vib. Control, 14, 9-10, 1659-1672 (2008) &middot; <a href="/1229.76099" class="nowrap">Zbl 1229.76099</a></td> </tr><tr> <td>[82]</td> <td class="space">I. Podlubny, Fractional Differential Equations. Academic Press, San Diego etc. (1999).; Podlubny, I., Fractional Differential Equations (1999) &middot; <a href="/0924.34008" class="nowrap">Zbl 0924.34008</a></td> </tr><tr> <td>[83]</td> <td class="space">I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. <span class="zbmathjax-textbf">5</span>, No 4 (2002), 230-237.; Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5, 4, 230-237 (2002) &middot; <a href="/1042.26003" class="nowrap">Zbl 1042.26003</a></td> </tr><tr> <td>[84]</td> <td class="space">Y. Povstenko, J. Klekot, The Dirichlet problem for the time-fractional advection-diffusion equation in a line segment. Bound. Value Probl. <span class="zbmathjax-textbf">2016</span>, No 1 (2016), # 89.; Povstenko, Y.; Klekot, J., The Dirichlet problem for the time-fractional advection-diffusion equation in a line segment, Bound. Value Probl., 2016, 1, # 89 (2016) &middot; <a href="/1386.35454" class="nowrap">Zbl 1386.35454</a></td> </tr><tr> <td>[85]</td> <td class="space">L.E.S. Ramirez, C.F.M. Coimbra, A variable order constitutive relation for viscoelasticity. Ann. Der Phys. <span class="zbmathjax-textbf">16</span>, No 7-8 (2007), 543-552.; Ramirez, L. E.S.; Coimbra, C. F.M., A variable order constitutive relation for viscoelasticity, Ann. Der Phys., 16, 7-8, 543-552 (2007) &middot; <a href="/1159.74008" class="nowrap">Zbl 1159.74008</a></td> </tr><tr> <td>[86]</td> <td class="space">A. Razminia, A.F. Dizaji, V.J. Majd, Solution existence for non-autonomous variable-order fractional differential equations. Math. Comput. Model. <span class="zbmathjax-textbf">55</span>, No 3 (2012), 1106-1117.; Razminia, A.; Dizaji, A. F.; Majd, V. J., Solution existence for non-autonomous variable-order fractional differential equations, Math. Comput. Model., 55, 3, 1106-1117 (2012) &middot; <a href="/1255.34008" class="nowrap">Zbl 1255.34008</a></td> </tr><tr> <td>[87]</td> <td class="space">M.D. Ruiz-Medina, V.V. Anh, J.M. Angulo, Fractional generalized random fields of variable order. Stoch. Anal. Appl. <span class="zbmathjax-textbf">22</span>, No 3 (2004), 775-799.; Ruiz-Medina, M. D.; Anh, V. V.; Angulo, J. M., Fractional generalized random fields of variable order, Stoch. Anal. Appl., 22, 3, 775-799 (2004) &middot; <a href="/1069.60040" class="nowrap">Zbl 1069.60040</a></td> </tr><tr> <td>[88]</td> <td class="space">S.G. Samko, Fractional integration and differentiation of variable order. Anal. Math. <span class="zbmathjax-textbf">21</span>, No 3 (1995), 213-236.; Samko, S. G., Fractional integration and differentiation of variable order, Anal. Math., 21, 3, 213-236 (1995) &middot; <a href="/0838.26006" class="nowrap">Zbl 0838.26006</a></td> </tr><tr> <td>[89]</td> <td class="space">S.G. Samko, B. Ross, Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct. <span class="zbmathjax-textbf">1</span>, No 4 (1993), 277-300.; Samko, S. G.; Ross, B., Integration and differentiation to a variable fractional order, Integr. Transf. Spec. Funct., 1, 4, 277-300 (1993) &middot; <a href="/0820.26003" class="nowrap">Zbl 0820.26003</a></td> </tr><tr> <td>[90]</td> <td class="space">S. Shen, F. Liu, J. Chen, I. Turner, V. Anh, Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. <span class="zbmathjax-textbf">218</span>, No 22 (2011), 10861-10870.; Shen, S.; Liu, F.; Chen, J.; Turner, I.; Anh, V., Numerical techniques for the variable order time fractional diffusion equation, Appl. Math. Comput., 218, 22, 10861-10870 (2011) &middot; <a href="/1280.65089" class="nowrap">Zbl 1280.65089</a></td> </tr><tr> <td>[91]</td> <td class="space">H. Sheng, H.G. Sun, Y.Q. Chen, T. Qiu, Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Process. <span class="zbmathjax-textbf">91</span>, No 7 (2011), 1645-1650.; Sheng, H.; Sun, H. G.; Chen, Y. Q.; Qiu, T., Synthesis of multifractional Gaussian noises based on variable-order fractional operators, Signal Process., 91, 7, 1645-1650 (2011) &middot; <a href="/1213.94049" class="nowrap">Zbl 1213.94049</a></td> </tr><tr> <td>[92]</td> <td class="space">H. Sheng, H.G. Sun, C. Coopmans, Y. Chen, G.W. Bohannan, A Physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. <span class="zbmathjax-textbf">193</span>, No 1 (2011), 93-104.; Sheng, H.; Sun, H. G.; Coopmans, C.; Chen, Y.; Bohannan, G. W., A Physical experimental study of variable-order fractional integrator and differentiator, Eur. Phys. J. Spec. Top., 193, 1, 93-104 (2011)</td> </tr><tr> <td>[93]</td> <td class="space">D. Sierociuk, A. Dzieliński, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. <span class="zbmathjax-textbf">371</span>, No 1990 (2013), # 20120146.; Sierociuk, D.; Dzieliński, A.; Sarwas, G.; Petras, I.; Podlubny, I.; Skovranek, T., Modelling heat transfer in heterogeneous media using fractional calculus, Philos. Trans., 371, 1990, # 20120146 (2013) &middot; <a href="/1382.80004" class="nowrap">Zbl 1382.80004</a></td> </tr><tr> <td>[94]</td> <td class="space">D. Sierociuk, W. Malesza, M. Macias, Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. <span class="zbmathjax-textbf">39</span>, No 13 (2014), 3876-3888.; Sierociuk, D.; Malesza, W.; Macias, M., Derivation, interpretation, and analog modelling of fractional variable order derivative definition, Appl. Math. Model., 39, 13, 3876-3888 (2014) &middot; <a href="/1443.26003" class="nowrap">Zbl 1443.26003</a></td> </tr><tr> <td>[95]</td> <td class="space">D. Sierociuk, W. Malesza, M. Macias, On the recursive fractional variable-order derivative: Equivalent switching strategy, duality, and analog modeling. Circ. Syst. Signal Process. <span class="zbmathjax-textbf">34</span>, No 4 (2015), 1077-1113.; Sierociuk, D.; Malesza, W.; Macias, M., On the recursive fractional variable-order derivative: Equivalent switching strategy, duality, and analog modeling, Circ. Syst. Signal Process., 34, 4, 1077-1113 (2015) &middot; <a href="/1342.94132" class="nowrap">Zbl 1342.94132</a></td> </tr><tr> <td>[96]</td> <td class="space">W. Smit, H.D. Vries, Rheological models containing fractional derivatives. Rheol. Acta<span class="zbmathjax-textbf">9</span>, No 4 (1970), 525-534.; Smit, W.; Vries, H. D., Rheological models containing fractional derivatives, Rheol. Acta, 9, 4, 525-534 (1970)</td> </tr><tr> <td>[97]</td> <td class="space">I.M. Sokolov, J. Klafter, From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos<span class="zbmathjax-textbf">15</span>, No 2 (2005), # 26103.; Sokolov, I. M.; Klafter, J., From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion, Chaos, 15, 2, # 26103 (2005) &middot; <a href="/1080.82022" class="nowrap">Zbl 1080.82022</a></td> </tr><tr> <td>[98]</td> <td class="space">I.M. Sokolov, J. Klafter, Field-induced dispersion in subdiffusion. Phys. Rev. Lett. <span class="zbmathjax-textbf">97</span>, No 14 (2006), # 140602.; Sokolov, I. M.; Klafter, J., Field-induced dispersion in subdiffusion, Phys. Rev. Lett., 97, 14, # 140602 (2006) &middot; <a href="/1142.82364" class="nowrap">Zbl 1142.82364</a></td> </tr><tr> <td>[99]</td> <td class="space">J.E. Solís-Pérez, J.F. Gómez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws. Chaos Soliton. Fract. <span class="zbmathjax-textbf">114</span> (2018), 175-185.; Solís-Pérez, J. E.; Gómez-Aguilar, J. F.; Atangana, A., Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos Soliton. Fract., 114, 175-185 (2018) &middot; <a href="/1415.65148" class="nowrap">Zbl 1415.65148</a></td> </tr><tr> <td>[100]</td> <td class="space">C.M. Soon, C.F.M. Coimbra, M.H. Kobayashi, The variable viscoelasticity oscillator. Ann. Der. Phys. <span class="zbmathjax-textbf">14</span>, No 14 (2005), 378-389.; Soon, C. M.; Coimbra, C. F.M.; Kobayashi, M. H., The variable viscoelasticity oscillator, Ann. Der. Phys., 14, 14, 378-389 (2005) &middot; <a href="/1125.74316" class="nowrap">Zbl 1125.74316</a></td> </tr><tr> <td>[101]</td> <td class="space">P. Straka, Variable order fractional Fokker-Planck equations derived from continuous time random walks. Phys. A<span class="zbmathjax-textbf">503</span> (2018), 451-463.; Straka, P., Variable order fractional Fokker-Planck equations derived from continuous time random walks, Phys. A, 503, 451-463 (2018) &middot; <a href="/1514.60114" class="nowrap">Zbl 1514.60114</a></td> </tr><tr> <td>[102]</td> <td class="space">H.G. Sun, Y. Chen, W. Chen, Random-order fractional differential equation models. Signal Process. <span class="zbmathjax-textbf">91</span>, No 3 (2011), 525-530.; Sun, H. G.; Chen, Y.; Chen, W., Random-order fractional differential equation models, Signal Process., 91, 3, 525-530 (2011) &middot; <a href="/1203.94056" class="nowrap">Zbl 1203.94056</a></td> </tr><tr> <td>[103]</td> <td class="space">H.G. Sun, W. Chen, Y. Chen, Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A<span class="zbmathjax-textbf">388</span>, No 21 (2009), 4586-4592.; Sun, H. G.; Chen, W.; Chen, Y., Variable-order fractional differential operators in anomalous diffusion modeling, Phys. A, 388, 21, 4586-4592 (2009)</td> </tr><tr> <td>[104]</td> <td class="space">H.G. Sun, W. Chen, C. Li, Y. Chen, Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurcat. Chaos<span class="zbmathjax-textbf">22</span>, No 4 (2012), # 1250085.; Sun, H. G.; Chen, W.; Li, C.; Chen, Y., Finite difference schemes for variable-order time fractional diffusion equation, Int. J. Bifurcat. Chaos, 22, 4, # 1250085 (2012) &middot; <a href="/1258.65079" class="nowrap">Zbl 1258.65079</a></td> </tr><tr> <td>[105]</td> <td class="space">H.G. Sun, W. Chen, H. Sheng, Y. Chen, On mean square displacement behaviors of anomalous diffusions with variable and random orders. Phys. Lett. A<span class="zbmathjax-textbf">374</span>, No 7 (2010), 906-910.; Sun, H. G.; Chen, W.; Sheng, H.; Chen, Y., On mean square displacement behaviors of anomalous diffusions with variable and random orders, Phys. Lett. A, 374, 7, 906-910 (2010) &middot; <a href="/1235.82018" class="nowrap">Zbl 1235.82018</a></td> </tr><tr> <td>[106]</td> <td class="space">H.G. Sun, W. Chen, H. Wei, Y. Chen, A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. Spec. Top. <span class="zbmathjax-textbf">193</span>, No 1 (2011), 185-192.; Sun, H. G.; Chen, W.; Wei, H.; Chen, Y., A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems, Eur. Phys. J. Spec. Top., 193, 1, 185-192 (2011)</td> </tr><tr> <td>[107]</td> <td class="space">H.G. Sun, S. Hu, Y. Chen, C. Wen, Z. Yu, A dynamic-order fractional dynamic system. Chinese Phys. Lett. <span class="zbmathjax-textbf">30</span>, No 4 (2013), 365-367.; Sun, H. G.; Hu, S.; Chen, Y.; Wen, C.; Yu, Z., A dynamic-order fractional dynamic system, Chinese Phys. Lett., 30, 4, 365-367 (2013)</td> </tr><tr> <td>[108]</td> <td class="space">H.G. Sun, X. Song, Y. Chen, A class of fractional dynamic systems with fuzzy order. In: Intelligent Control and Automation IEEE<span class="zbmathjax-textbf">20</span>, No 1 (2010), 197-201.; Sun, H. G.; Song, X.; Chen, Y., A class of fractional dynamic systems with fuzzy order, Intelligent Control and Automation IEEE, 20, 1, 197-201 (2010)</td> </tr><tr> <td>[109]</td> <td class="space">H.G. Sun, Y. Zhang, W. Chen, D.M. Reeves, Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. <span class="zbmathjax-textbf">157</span> (2014), 47-58.; Sun, H. G.; Zhang, Y.; Chen, W.; Reeves, D. M., Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media, J. Contam. Hydrol., 157, 47-58 (2014)</td> </tr><tr> <td>[110]</td> <td class="space">J. Suzdalnitsky, D. Ingman, Application of differential operator with servo-order function in model of viscoelastic deformation process. J. Eng. Mech. <span class="zbmathjax-textbf">131</span>, No 7 (2005), 763-767.; Suzdalnitsky, J.; Ingman, D., Application of differential operator with servo-order function in model of viscoelastic deformation process, J. Eng. Mech., 131, 7, 763-767 (2005) &middot; <a href="/1020.74049" class="nowrap">Zbl 1020.74049</a></td> </tr><tr> <td>[111]</td> <td class="space">N.H. Sweilam, S.M. Al-Mekhlafi, Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives. J. Adv. Res. <span class="zbmathjax-textbf">7</span>, No 2 (2016), 271-283.; Sweilam, N. H.; Al-Mekhlafi, S. M., Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives, J. Adv. Res., 7, 2, 271-283 (2016) &middot; <a href="/1353.49029" class="nowrap">Zbl 1353.49029</a></td> </tr><tr> <td>[112]</td> <td class="space">N.H. Sweilam, M.M. Khader, H.M. Almarwm, Numerical studies for the variable-order nonlinear fractional wave equation. Fract. Calc. Appl. Anal. <span class="zbmathjax-textbf">15</span>, No 4 (2012), 669-683; ; .; Sweilam, N. H.; Khader, M. M.; Almarwm, H. M., Numerical studies for the variable-order nonlinear fractional wave equation, Fract. Calc. Appl. Anal., 15, 4, 669-683 (2012) &middot; <a href="/1312.65139" class="nowrap">Zbl 1312.65139</a>&nbsp;&middot; <a href="https://doi.org/10.2478/s13540-012-0045-9" class="nowrap">doi:10.2478/s13540-012-0045-9</a></td> </tr><tr> <td>[113]</td> <td class="space">N.H. Sweilam, T.A. Rahman Assiri, Numerical simulations for the space-time variable order nonlinear fractional wave equation. J. Appl. Math. <span class="zbmathjax-textbf">2013</span>, No 2013 (2013), 183-189.; Sweilam, N. H.; Rahman Assiri, T. A., Numerical simulations for the space-time variable order nonlinear fractional wave equation, J. Appl. Math., 2013, 2013, 183-189 (2013) &middot; <a href="/1271.65123" class="nowrap">Zbl 1271.65123</a></td> </tr><tr> <td>[114]</td> <td class="space">D. Tavares, R. Almeida, D.F.M. Torres, Caputo derivatives of fractional variable order: Numerical approximations. Commun. Nonlinear Sci. <span class="zbmathjax-textbf">35</span> (2016), 69-87.; Tavares, D.; Almeida, R.; Torres, D. F.M., Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci., 35, 69-87 (2016) &middot; <a href="/1538.65275" class="nowrap">Zbl 1538.65275</a></td> </tr><tr> <td>[115]</td> <td class="space">A. Tayebi, Y. Shekari, M.H. Heydari, A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J. Comput. Phys. <span class="zbmathjax-textbf">340</span> (2017), 655-669.; Tayebi, A.; Shekari, Y.; Heydari, M. H., A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J. Comput. Phys., 340, 655-669 (2017) &middot; <a href="/1380.65185" class="nowrap">Zbl 1380.65185</a></td> </tr><tr> <td>[116]</td> <td class="space">C.C. Tseng, Design of variable and adaptive fractional order FIR differentiators. Signal Process. <span class="zbmathjax-textbf">86</span>, No 10 (2018), 2554-2566.; Tseng, C. C., Design of variable and adaptive fractional order FIR differentiators, Signal Process., 86, 10, 2554-2566 (2018) &middot; <a href="/1172.94495" class="nowrap">Zbl 1172.94495</a></td> </tr><tr> <td>[117]</td> <td class="space">S. Umarov, S. Steinberg, Variable order differential equations and diffusion processes with changing modes. Z. für Anal. Und Ihre Anwend. <span class="zbmathjax-textbf">28</span>, No 4 (2010), 431-450.; Umarov, S.; Steinberg, S., Variable order differential equations and diffusion processes with changing modes, Z. für Anal. Und Ihre Anwend., 28, 4, 431-450 (2010) &middot; <a href="/1181.35359" class="nowrap">Zbl 1181.35359</a></td> </tr><tr> <td>[118]</td> <td class="space">D. Valério, J. Sá da Costa, Variable-order fractional derivatives and their numerical approximations. Signal Process. <span class="zbmathjax-textbf">91</span>, No 3 (2011), 470-483.; Valério, D.; Sá da Costa, J., Variable-order fractional derivatives and their numerical approximations, Signal Process., 91, 3, 470-483 (2011) &middot; <a href="/1203.94060" class="nowrap">Zbl 1203.94060</a></td> </tr><tr> <td>[119]</td> <td class="space">F. Wang, Q. Hua, C. Liu, Boundary function method for inverse geometry problem in two-dimensional anisotropic heat conduction equation. Appl. Math. Lett. <span class="zbmathjax-textbf">84</span> (2018), 130-136.; Wang, F.; Hua, Q.; Liu, C., Boundary function method for inverse geometry problem in two-dimensional anisotropic heat conduction equation, Appl. Math. Lett., 84, 130-136 (2018) &middot; <a href="/1524.80018" class="nowrap">Zbl 1524.80018</a></td> </tr><tr> <td>[120]</td> <td class="space">S. Wang, R. Wu, Dynamic analysis of a 5D fractional-order hyperchaotic system. Int. J. Control Autom. Syst. <span class="zbmathjax-textbf">15</span>, No 3 (2017), 1003-1010.; Wang, S.; Wu, R., Dynamic analysis of a 5D fractional-order hyperchaotic system, Int. J. Control Autom. Syst., 15, 3, 1003-1010 (2017)</td> </tr><tr> <td>[121]</td> <td class="space">S. Wei, W. Chen, Y. Zhang, H. Wei, R.M. Garrard, A local radial basis function collocation method to solve the variable-order time fractional diffusion equation in a two-dimensional irregular domain. Numer. Method. Part. Differ. Equ. <span class="zbmathjax-textbf">34</span>, No 4 (2018), 1209-1223.; Wei, S.; Chen, W.; Zhang, Y.; Wei, H.; Garrard, R. M., A local radial basis function collocation method to solve the variable-order time fractional diffusion equation in a two-dimensional irregular domain, Numer. Method. Part. Differ. Equ., 34, 4, 1209-1223 (2018) &middot; <a href="/1407.65231" class="nowrap">Zbl 1407.65231</a></td> </tr><tr> <td>[122]</td> <td class="space">G. Wu, D. Baleanu, H. Xie, S. Zeng, Lattice fractional diffusion equation of random order. Math. Method. Appl. Sci. <span class="zbmathjax-textbf">40</span>, No 17 (2015), 6054-6060.; Wu, G.; Baleanu, D.; Xie, H.; Zeng, S., Lattice fractional diffusion equation of random order, Math. Method. Appl. Sci., 40, 17, 6054-6060 (2015) &middot; <a href="/1375.35616" class="nowrap">Zbl 1375.35616</a></td> </tr><tr> <td>[123]</td> <td class="space">F. Wu, J. Liu, J. Wang, An improved Maxwell creep model for rock based on variable-order fractional derivatives. Environ. Earth Sci. <span class="zbmathjax-textbf">73</span>, No 11 (2015), 6965-6971.; Wu, F.; Liu, J.; Wang, J., An improved Maxwell creep model for rock based on variable-order fractional derivatives, Environ. Earth Sci., 73, 11, 6965-6971 (2015)</td> </tr><tr> <td>[124]</td> <td class="space">T. Xu, S. Lü, W. Chen, H. Chen, Finite difference scheme for multi-term variable-order fractional diffusion equation. Adv. Differ. Equ. <span class="zbmathjax-textbf">2018</span>, No 1 (2018), # 103.; Xu, T.; Lü, S.; Chen, W.; Chen, H., Finite difference scheme for multi-term variable-order fractional diffusion equation, Adv. Differ. Equ., 2018, 1, # 103 (2018) &middot; <a href="/1445.65041" class="nowrap">Zbl 1445.65041</a></td> </tr><tr> <td>[125]</td> <td class="space">W. Xu, H.G. Sun, W. Chen, H. Chen. Transport properties of concrete-like granular materials interacted by their microstructures and particle components. Int. J. Mod. Phys. B<span class="zbmathjax-textbf">32</span>, No 18 (2018), # 1840011.; Xu, W.; Sun, H. G.; Chen, W.; Chen, H., Transport properties of concrete-like granular materials interacted by their microstructures and particle components, Int. J. Mod. Phys. B, 32, 18, # 1840011 (2018)</td> </tr><tr> <td>[126]</td> <td class="space">X. Yang, C. Li, T. Huang, Q. Song, Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Appl. Math. Comput. <span class="zbmathjax-textbf">293</span> (2017), 416-422.; Yang, X.; Li, C.; Huang, T.; Song, Q., Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses, Appl. Math. Comput., 293, 416-422 (2017) &middot; <a href="/1411.34023" class="nowrap">Zbl 1411.34023</a></td> </tr><tr> <td>[127]</td> <td class="space">X. Yang, J.A.T. Machado, A new fractional operator of variable order: application in the description of anomalous diffusion. Phys. A<span class="zbmathjax-textbf">481</span> (2017), 276-283.; Yang, X.; Machado, J. A.T., A new fractional operator of variable order: application in the description of anomalous diffusion, Phys. A, 481, 276-283 (2017) &middot; <a href="/1495.35204" class="nowrap">Zbl 1495.35204</a></td> </tr><tr> <td>[128]</td> <td class="space">J. Yang, H. Yao, B. Wu, An efficient numerical method for variable order fractional functional differential equation. Appl. Math. Lett. <span class="zbmathjax-textbf">76</span> (2018), 221-226.; Yang, J.; Yao, H.; Wu, B., An efficient numerical method for variable order fractional functional differential equation, Appl. Math. Lett., 76, 221-226 (2018) &middot; <a href="/1377.65078" class="nowrap">Zbl 1377.65078</a></td> </tr><tr> <td>[129]</td> <td class="space">A. Yildirim, S.T. Mohyud-Din, Analytical approach to space- and time-fractional Burgers equations. Chinese Phys. Lett. <span class="zbmathjax-textbf">27</span>, No 9 (2010), 38-41.; Yildirim, A.; Mohyud-Din, S. T., Analytical approach to space- and time-fractional Burgers equations, Chinese Phys. Lett., 27, 9, 38-41 (2010) &middot; <a href="/1292.65081" class="nowrap">Zbl 1292.65081</a></td> </tr><tr> <td>[130]</td> <td class="space">D. Yin, Y. Li, H. Wu, X. Duan, Fractional description of mechanical property evolution of soft soils during creep. Water Sci. Eng. <span class="zbmathjax-textbf">6</span>, No 4 (2013), 446-455.; Yin, D.; Li, Y.; Wu, H.; Duan, X., Fractional description of mechanical property evolution of soft soils during creep, Water Sci. Eng., 6, 4, 446-455 (2013)</td> </tr><tr> <td>[131]</td> <td class="space">S.B. Yuste, L. Acedo, An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. <span class="zbmathjax-textbf">42</span>, No 5 (2005), 1862-1874.; Yuste, S. B.; Acedo, L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 5, 1862-1874 (2005) &middot; <a href="/1119.65379" class="nowrap">Zbl 1119.65379</a></td> </tr><tr> <td>[132]</td> <td class="space">M.A. Zaky, E.H. Doha, T.M. Taha, D. Baleanu, New recursive approximations for variable-order fractional operators with applications. Math. Model. Anal. <span class="zbmathjax-textbf">2</span>, No 2018 (2018), 1-28.; Zaky, M. A.; Doha, E. H.; Taha, T. M.; Baleanu, D., New recursive approximations for variable-order fractional operators with applications, Math. Model. Anal., 2, 2018, 1-28 (2018) &middot; <a href="/1488.42118" class="nowrap">Zbl 1488.42118</a></td> </tr><tr> <td>[133]</td> <td class="space">M. Zayernouri, G.E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. <span class="zbmathjax-textbf">293</span>, No C (2015), 312-338.; Zayernouri, M.; Karniadakis, G. E., Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293, C, 312-338 (2015) &middot; <a href="/1349.65531" class="nowrap">Zbl 1349.65531</a></td> </tr><tr> <td>[134]</td> <td class="space">F. Zeng, Z. Zhang, G.E. Karniadakis, A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations. SIAM J. Sci. Comput. <span class="zbmathjax-textbf">37</span>, No 6 (2015), 2710-2732.; Zeng, F.; Zhang, Z.; Karniadakis, G. E., A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations, SIAM J. Sci. Comput., 37, 6, 2710-2732 (2015) &middot; <a href="/1339.65197" class="nowrap">Zbl 1339.65197</a></td> </tr><tr> <td>[135]</td> <td class="space">L. Zhang, S. Li, Regularity of weak solutions of the Cauchy problem to a fractional porous medium equation. Bound. Value Probl. <span class="zbmathjax-textbf">2015</span>, No 1 (2015), 1-6.; Zhang, L.; Li, S., Regularity of weak solutions of the Cauchy problem to a fractional porous medium equation, Bound. Value Probl., 2015, 1, 1-6 (2015) &middot; <a href="/1310.26008" class="nowrap">Zbl 1310.26008</a></td> </tr><tr> <td>[136]</td> <td class="space">H. Zhang, F. Liu, The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions, Numer. Math. A J. Chinese Univ. (Engl. Ser.)<span class="zbmathjax-textbf">16</span>, No 2 (2007), # 181.; Zhang, H.; Liu, F., The fundamental solutions of the space, space-time Riesz fractional partial differential equations with periodic conditions, Numer. Math. A J. Chinese Univ. (Engl. Ser.), 16, 2, # 181 (2007) &middot; <a href="/1174.35328" class="nowrap">Zbl 1174.35328</a></td> </tr><tr> <td>[137]</td> <td class="space">H. Zhang, F. Liu, M.S. Phanikumar, M.M. Meerschaert, A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model. Comput. Math. Appl. <span class="zbmathjax-textbf">66</span>, No 5 (2013), 693-701.; Zhang, H.; Liu, F.; Phanikumar, M. S.; Meerschaert, M. M., A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl., 66, 5, 693-701 (2013) &middot; <a href="/1350.65092" class="nowrap">Zbl 1350.65092</a></td> </tr><tr> <td>[138]</td> <td class="space">X. Zhao, Z. Sun, G.E. Karniadakis, Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys. <span class="zbmathjax-textbf">293</span> (2015), 184-200.; Zhao, X.; Sun, Z.; Karniadakis, G. E., Second-order approximations for variable order fractional derivatives: Algorithms and applications, J. Comput. Phys., 293, 184-200 (2015) &middot; <a href="/1349.65092" class="nowrap">Zbl 1349.65092</a></td> </tr><tr> <td>[139]</td> <td class="space">P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. <span class="zbmathjax-textbf">47</span>, No 3 (2009), 1760-1781.; Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term, SIAM J. Numer. Anal., 47, 3, 1760-1781 (2009) &middot; <a href="/1204.26013" class="nowrap">Zbl 1204.26013</a></td> </tr></table> <div class="reference_disclaimer"> This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH&nbsp;Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching. </div> </div></article> </div></div> </div> </div> <div class="clearfix"></div> </div> </div> <div id="foot"><div class="copyright"> &copy; 2025 <a target="fiz" href="https://www.fiz-karlsruhe.de/en">FIZ Karlsruhe GmbH</a> <a href="/privacy-policy/">Privacy Policy</a> <a href="/legal-notices/">Legal Notices</a> <a href="/terms-conditions/">Terms &amp; Conditions</a> <div class="info"> <ul class="nav"> <li class="mastodon"> <a href="https://mathstodon.xyz/@zbMATH" target="_blank" class="no-new-tab-icon"> <img src="/static/mastodon.png" title="zbMATH at Mathstodon (opens in new tab)" alt="Mastodon logo"> </a> </li> </ul> </div> </div> <div class="clearfix" style="height: 0px;"></div> </div> </div> <script src="https://static.zbmath.org/contrib/jquery/1.9.1/jquery.min.js"></script> <script src="https://static.zbmath.org/contrib/jquery-caret/1.5.2/jquery.caret.min.js"></script> <script src="/static/js/jquery-ui-1.10.1.custom.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap/v3.3.7zb1/js/bootstrap.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.js"></script> <script src="https://static.zbmath.org/contrib/retina/unknown/retina.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/js/bootstrap-select.min.js"></script> <script> var SCRIPT_ROOT = ""; </script> <script src="/static/scripts.js?v=20240926"> </script> <script src="https://static.zbmath.org/contrib/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { preferredFont: "TeX", availableFonts: [ "STIX", "TeX" ], linebreaks: { automatic: true }, EqnChunk: (MathJax.Hub.Browser.isMobile ? 10 : 50) }, tex2jax: { processEscapes: true, ignoreClass: "tex2jax_ignore|dno" }, TeX: { Macros: { Aut: "\\operatorname{Aut}", Hom: "\\operatorname{Hom}" }, noUndefined: { attributes: { mathcolor: "#039", //"red", mathbackground: "white", //"#FFEEEE", mathsize: "90%" } } }, messageStyle: "none" }); </script> <script type="text/javascript"> $(document).ready(function() { $("#MathInput").stop(true, true).keyup(function() { $.ajax({ url: "/mwsq/", type: "POST", data: { query : $("#MathInput").val() }, dataType: "text" }) .done(function(xml) { $("#MathPreview").html(xml); $(window).resize(); }); }); var press = jQuery.Event("keyup"); press.ctrlKey = false; press.which = 40; $("#MathInput").trigger(press); }); </script> <div id="new_tab_icon" style="display: none">&nbsp;<span class="glyphicon glyphicon-new-window" aria-hidden="true"></span><span class="sr-only">(opens in new tab)</span></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10