CINXE.COM

A001969 - OEIS

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> <html> <head> <link rel="stylesheet" href="/styles.css"> <meta name="format-detection" content="telephone=no"> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta name="keywords" content="OEIS,integer sequences,Sloane" /> <title>A001969 - OEIS</title> <link rel="search" type="application/opensearchdescription+xml" title="OEIS" href="/oeis.xml"> <script> var myURL = "\/A001969" function redir() { var host = document.location.hostname; if(host != "oeis.org" && host != "127.0.0.1" && !/^([0-9.]+)$/.test(host) && host != "localhost" && host != "localhost.localdomain") { document.location = "https"+":"+"//"+"oeis"+".org/" + myURL; } } function sf() { if(document.location.pathname == "/" && document.f) document.f.q.focus(); } </script> </head> <body bgcolor=#ffffff onload="redir();sf()"> <div class=loginbar> <div class=login> <a href="/login?redirect=%2fA001969">login</a> </div> </div> <div class=center><div class=top> <center> <div class=donors> The OEIS is supported by <a href="http://oeisf.org/#DONATE">the many generous donors to the OEIS Foundation</a>. </div> <div class=banner> <a href="/"><img class=banner border="0" width="600" src="/banner2021.jpg" alt="A001969 - OEIS"></a> </div> </center> </div></div> <div class=center><div class=pagebody> <div class=searchbarcenter> <form name=f action="/search" method="GET"> <div class=searchbargreet> <div class=searchbar> <div class=searchq> <input class=searchbox maxLength=1024 name=q value="" title="Search Query"> </div> <div class=searchsubmit> <input type=submit value="Search" name=go> </div> <div class=hints> <span class=hints><a href="/hints.html">Hints</a></span> </div> </div> <div class=searchgreet> (Greetings from <a href="/welcome">The On-Line Encyclopedia of Integer Sequences</a>!) </div> </div> </form> </div> <div class=sequence> <div class=space1></div> <div class=line></div> <div class=seqhead> <div class=seqnumname> <div class=seqnum> A001969 </div> <div class=seqname> Evil numbers: nonnegative integers with an even number of 1's in their binary expansion. <br><font size=-1>(Formerly M2395 N0952)</font> </div> </div> <div class=scorerefs> 301 </div> </div> <div> <div class=seqdatabox> <div class=seqdata>0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30, 33, 34, 36, 39, 40, 43, 45, 46, 48, 51, 53, 54, 57, 58, 60, 63, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 85, 86, 89, 90, 92, 95, 96, 99, 101, 102, 105, 106, 108, 111, 113, 114, 116, 119, 120, 123, 125, 126, 129</div> <div class=seqdatalinks> (<a href="/A001969/list">list</a>; <a href="/A001969/graph">graph</a>; <a href="/search?q=A001969+-id:A001969">refs</a>; <a href="/A001969/listen">listen</a>; <a href="/history?seq=A001969">history</a>; <a href="/search?q=id:A001969&fmt=text">text</a>; <a href="/A001969/internal">internal format</a>) </div> </div> </div> <div class=entry> <div class=section> <div class=sectname>OFFSET</div> <div class=sectbody> <div class=sectline>1,2</div> </div> </div> <div class=section> <div class=sectname>COMMENTS</div> <div class=sectbody> <div class=sectline>This sequence and <a href="/A000069" title="Odious numbers: numbers with an odd number of 1's in their binary expansion.">A000069</a> give the unique solution to the problem of splitting the nonnegative integers into two classes in such a way that sums of pairs of distinct elements from either class occur with the same multiplicities [Lambek and Moser]. Cf. <a href="/A000028" title="Let k = p_1^e_1 p_2^e_2 p_3^e_3 ... be the prime factorization of n. Sequence gives k such that the sum of the numbers of 1'...">A000028</a>, <a href="/A000379" title="Numbers where total number of 1-bits in the exponents of their prime factorization is even; a 2-way classification of intege...">A000379</a>.</div> <div class=sectline>In French: les nombres pa茂ens.</div> <div class=sectline>Theorem: First differences give <a href="/A036585" title="Ternary Thue-Morse sequence: closed under a-&gt;abc, b-&gt;ac, c-&gt;b.">A036585</a>. (Observed by <a href="/wiki/User:Franklin_T._Adams-Watters">Franklin T. Adams-Watters</a>.)</div> <div class=sectline>Proof from <a href="/wiki/User:Max_Alekseyev">Max Alekseyev</a>, Aug 30 2006 (edited by <a href="/wiki/User:N._J._A._Sloane">N. J. A. Sloane</a>, Jan 05 2021): (Start)</div> <div class=sectline>Observe that if the last bit of a(n) is deleted, we get the nonnegative numbers 0, 1, 2, 3, ... in order.</div> <div class=sectline>The last bit in a(n+1) is 1 iff the number of bits in n is odd, that is, iff <a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>(n+1) is 1.</div> <div class=sectline>So, taking into account the different offsets here and in <a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>, we have a(n) = 2*(n-1) + <a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>(n-1).</div> <div class=sectline>Therefore the first differences of the present sequence equal 2 + first differences of <a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>, which equals <a href="/A036585" title="Ternary Thue-Morse sequence: closed under a-&gt;abc, b-&gt;ac, c-&gt;b.">A036585</a>. QED (End)</div> <div class=sectline>Integers k such that <a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>(k-1)=0. - <a href="/wiki/User:Benoit_Cloitre">Benoit Cloitre</a>, Nov 15 2003</div> <div class=sectline>Indices of zeros in the Thue-Morse sequence <a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a> shifted by 1. - <a href="/wiki/User:Tanya_Khovanova">Tanya Khovanova</a>, Feb 13 2009</div> <div class=sectline>Conjecture, checked up to 10^6: a(n) is also the sequence of numbers k representable as k = ror(x) XOR rol(x) (for some integer x) where ror(x)=<a href="/A038572" title="a(n) = n rotated one binary place to the right.">A038572</a>(x) is x rotated one binary place to the right, rol(x)=<a href="/A006257" title="Josephus problem: a(2*n) = 2*a(n)-1, a(2*n+1) = 2*a(n)+1.">A006257</a>(x) is x rotated one binary place to the left, and XOR is the binary exclusive-or operator. - <a href="/wiki/User:Alex_Ratushnyak">Alex Ratushnyak</a>, May 14 2016</div> <div class=sectline>From <a href="/wiki/User:Charlie_Neder">Charlie Neder</a>, Oct 07 2018: (Start)</div> <div class=sectline>Conjecture is true: ror(x) and rol(x) have an even number of 1 bits in total (= 2 * <a href="/A000120" title="1's-counting sequence: number of 1's in binary expansion of n (or the binary weight of n).">A000120</a>(x)), and XOR preserves the parity of this total, so the resulting number must have an even number of 1 bits. An x can be constructed corresponding to a(n) like so:</div> <div class=sectline>If the number of bits in a(n) is even, add a leading 0 so a(n) is 2k+1 bits long.</div> <div class=sectline>Do an inverse shuffle on a(n), then &quot;divide&quot; by 11, rotate the result k bits to the right, and shuffle to get x. (End)</div> <div class=sectline>Numbers of the form m XOR (2*m) for some m &gt;= 0. - <a href="/wiki/User:R茅my_Sigrist">R茅my Sigrist</a>, Feb 07 2021</div> <div class=sectline>The terms &quot;evil numbers&quot; and &quot;odious numbers&quot; were coined by Richard K. Guy, c. 1976 (Haque and Shallit, 2016) and appeared in the book by Berlekamp et al. (Vol. 1, 1st ed., 1982). - <a href="/wiki/User:Amiram_Eldar">Amiram Eldar</a>, Jun 08 2021</div> </div> </div> <div class=section> <div class=sectname>REFERENCES</div> <div class=sectbody> <div class=sectline>Elwyn R. Berlekamp, John H. Conway, Richard K. Guy, Winning Ways for Your Mathematical Plays, Volume 1, 2nd ed., A K Peters, 2001, chapter 14, p. 110.</div> <div class=sectline>Hugh L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, Amer. Math. Soc., 1996, p. 208.</div> <div class=sectline>Donald J. Newman, A Problem Seminar, Springer; see Problem #89.</div> <div class=sectline>Vladimir S. Shevelev, On some identities connected with the partition of the positive integers with respect to the Morse sequence, Izv. Vuzov of the North-Caucasus region, Nature sciences 4 (1997), 21-23 (Russian).</div> <div class=sectline>N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).</div> <div class=sectline>N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).</div> </div> </div> <div class=section> <div class=sectname>LINKS</div> <div class=sectbody> <div class=sectline>N. J. A. Sloane, <a href="/A001969/b001969.txt">Table of n, a(n) for n = 1..10000</a></div> <div class=sectline>Jean-Paul Allouche and Henri Cohen, <a href="http://dx.doi.org/10.1112/blms/17.6.531">Dirichlet series and curious infinite products</a>, Bull. London Math. Soc., Vol. 17 (1985), pp. 531-538.</div> <div class=sectline>Jean-Paul Allouche and Jeffrey Shallit, <a href="http://www.cs.uwaterloo.ca/~shallit/Papers/as0.ps">The ring of k-regular sequences</a>, Theoretical Computer Sci., Vol. 98 (1992), pp. 163-197; <a href="https://doi.org/10.1016/0304-3975(92)90001-V">DOI</a>.</div> <div class=sectline>Jean-Paul Allouche, Benoit Cloitre, and Vladimir Shevelev, <a href="http://arxiv.org/abs/1405.6214">Beyond odious and evil</a>, arXiv preprint arXiv:1405.6214 [math.NT], 2014.</div> <div class=sectline>Jean-Paul Allouche, Benoit Cloitre, and Vladimir Shevelev, <a href="https://doi.org/10.1007/s00010-015-0345-3">Beyond odious and evil</a>, Aequationes mathematicae, Vol. 90 (2016), pp. 341-353; <a href="http://www.math.bgu.ac.il/~shevelev/58_Beyond_J.pdf">alternative link</a>.</div> <div class=sectline>Chris Bernhardt, <a href="https://www.jstor.org/stable/27643161">Evil twins alternate with odious twins</a>, Math. Mag., Vol. 82, No. 1 (2009), pp. 57-62; <a href="https://web.archive.org/web/20181126095925/http://faculty.fairfield.edu/cbernhardt/evil%20twins.pdf">alternative link</a>.</div> <div class=sectline>Joshua N. Cooper, Dennis Eichhorn and Kevin O'Bryant, <a href="https://doi.org/10.1142/S1793042106000693">Reciprocals of binary power series</a>, International Journal of Number Theory, Vol. 2, No. 4 (2006), pp. 499-522; <a href="https://arxiv.org/abs/math/0506496">arXiv preprint</a>, arXiv:math/0506496 [math.NT], 2005.</div> <div class=sectline>Aviezri S. Fraenkel, <a href="https://doi.org/10.1016/j.disc.2011.03.032">The vile, dopey, evil and odious game players</a>, Discrete Math., Vol. 312, No. 1 (2012), pp. 42-46.</div> <div class=sectline>E. Fouvry and C. Mauduit, <a href="http://dx.doi.org/10.1007/BF01444238">Sommes des chiffres et nombres presque premiers</a>, (French) [Sums of digits and almost primes] Math. Ann., Vol. 305, No. 3 (1996), pp. 571-599. MR1397437 (97k:11029)</div> <div class=sectline>Sajed Haque, Chapter 3.2 of <a href="https://uwspace.uwaterloo.ca/bitstream/handle/10012/12234/Haque_Sajed.pdf">Discriminators of Integer Sequences</a>, thesis, University of Waterloo, Ontario, Canada, 2017. See p. 38.</div> <div class=sectline>Sajed Haque and Jeffrey Shallit, <a href="http://www.kurims.kyoto-u.ac.jp/EMIS/journals/INTEGERS/papers/q76/q76.pdf">Discriminators and k-Regular Sequences</a> Integers, Vol. 16 (2016), Article A76; <a href="https://arxiv.org/abs/1605.00092">arXiv preprint</a>, arXiv:1605.00092 [cs.DM], 2016.</div> <div class=sectline>Tanya Khovanova, <a href="http://arxiv.org/abs/1410.2193">There are no coincidences</a>, arXiv preprint 1410.2193 [math.CO], 2014.</div> <div class=sectline>J. Lambek and L. Moser, <a href="http://dx.doi.org/10.4153/CMB-1959-013-x">On some two way classifications of integers</a>, Canad. Math. Bull., Vol. 2, No. 2 (1959), pp. 85-89.</div> <div class=sectline>P. Mathonet, M. Rigo, M. Stipulanti and N. Z茅na茂di, <a href="https://arxiv.org/abs/2201.06636">On digital sequences associated with Pascal's triangle</a>, arXiv:2201.06636 [math.NT], 2022.</div> <div class=sectline>M. D. McIlroy, <a href="http://dx.doi.org/10.1137/0203020">The number of 1's in binary integers: bounds and extremal properties</a>, SIAM J. Comput., Vol. 3, No. 4 (1974), pp. 255-261.</div> <div class=sectline>Jeffrey O. Shallit, <a href="http://dx.doi.org/10.1016/0022-314X(85)90045-9">On infinite products associated with sums of digits</a>, J. Number Theory, Vol. 21, No. 2 (1985), pp. 128-134.</div> <div class=sectline>Jeffrey Shallit, <a href="https://arxiv.org/abs/2103.10904">Frobenius Numbers and Automatic Sequences</a>, arXiv:2103.10904 [math.NT], 2021.</div> <div class=sectline>Jeffrey Shallit, <a href="https://arxiv.org/abs/2112.13627">Additive Number Theory via Automata and Logic</a>, arXiv:2112.13627 [math.NT], 2021.</div> <div class=sectline>Vladimir Shevelev and Peter J. C. Moses, <a href="http://arxiv.org/abs/1207.0404">Tangent power sums and their applications</a>, arXiv preprint arXiv:1207.0404 [math.NT], 2012. - From <a href="/wiki/User:N._J._A._Sloane">N. J. A. Sloane</a>, Dec 17 2012</div> <div class=sectline>Vladimir Shevelev and Peter J. C. Moses, <a href="http://arxiv.org/abs/1209.5705">A family of digit functions with large periods</a>, arXiv preprint arXiv:1209.5705 [math.NT], 2012.</div> <div class=sectline>Vladimir Shevelev and Peter J. C. Moses, <a href="http://www.emis.de/journals/INTEGERS/papers/o64/o64.Abstract.html">Tangent power sums and their applications</a>, INTEGERS, Vol. 14 (2014) #64.</div> <div class=sectline>Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EvilNumber.html">Evil Number</a>.</div> <div class=sectline><a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a></div> <div class=sectline><a href="/index/Cor#core">Index entries for &quot;core&quot; sequences</a></div> </div> </div> <div class=section> <div class=sectname>FORMULA</div> <div class=sectbody> <div class=sectline>a(n+1) - <a href="/A001285" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A001285</a>(n) = 2n-1 has been verified for n &lt;= 400. - <a href="/wiki/User:John_W._Layman">John W. Layman</a>, May 16 2003 [This can be directly verified by comparing <a href="/wiki/User:Ralf_Stephan">Ralf Stephan</a>'s formulas for this sequence (see below) and for <a href="/A001285" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A001285</a>. - <a href="/wiki/User:Jianing_Song">Jianing Song</a>, Nov 04 2024]</div> <div class=sectline>Note that 2n+1 is in the sequence iff 2n is not and so this sequence has asymptotic density 1/2. - <a href="/wiki/User:Franklin_T._Adams-Watters">Franklin T. Adams-Watters</a>, Aug 23 2006</div> <div class=sectline>a(n) = (1/2) * (4n - 3 - (-1)^<a href="/A000120" title="1's-counting sequence: number of 1's in binary expansion of n (or the binary weight of n).">A000120</a>(n-1)). - <a href="/wiki/User:Ralf_Stephan">Ralf Stephan</a>, Sep 14 2003</div> <div class=sectline>G.f.: Sum_{k&gt;=0} (t(3+2t+3t^2)/(1-t^2)^2) * Product_{l=0..k-1} (1-x^(2^l)), where t = x^2^k. - <a href="/wiki/User:Ralf_Stephan">Ralf Stephan</a>, Mar 25 2004</div> <div class=sectline>a(2*n+1) + a(2*n) = <a href="/A017101" title="a(n) = 8n + 3.">A017101</a>(n-1) = 8*n-5.</div> <div class=sectline>a(2*n) - a(2*n-1) gives the Thue-Morse sequence (3, 1 version): 3, 1, 1, 3, 1, 3, 3, 1, 1, 3, .... <a href="/A001969" title="Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.">A001969</a>(n) + <a href="/A000069" title="Odious numbers: numbers with an odd number of 1's in their binary expansion.">A000069</a>(n) = <a href="/A016813" title="a(n) = 4*n + 1.">A016813</a>(n-1) = 4*n-3. - <a href="/wiki/User:Philippe_Del茅ham">Philippe Del茅ham</a>, Feb 04 2004</div> <div class=sectline>a(1) = 0; for n &gt; 1: a(n) = 3*n-3 - a(n/2) if n even, a(n) = a((n+1)/2)+n-1 if n odd.</div> <div class=sectline>Let b(n) = 1 if sum of digits of n is even, -1 if it is odd; then Shallit (1985) showed that Product_{n&gt;=0} ((2n+1)/(2n+2))^b(n) = 1/sqrt(2).</div> <div class=sectline>a(n) = 2n - 2 + <a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>(n-1). - <a href="/wiki/User:Franklin_T._Adams-Watters">Franklin T. Adams-Watters</a>, Aug 28 2006</div> <div class=sectline><a href="/A005590" title="a(0) = 0, a(1) = 1, a(2n) = a(n), a(2n+1) = a(n+1) - a(n).">A005590</a>(a(n-1)) &lt;= 0. - <a href="/wiki/User:Reinhard_Zumkeller">Reinhard Zumkeller</a>, Apr 11 2012</div> <div class=sectline><a href="/A106400" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A106400</a>(a(n-1)) = 1. - <a href="/wiki/User:Reinhard_Zumkeller">Reinhard Zumkeller</a>, Apr 29 2012</div> <div class=sectline>a(n) = (a(n-1) + 2) XOR <a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>(a(n-1) + 2). - <a href="/wiki/User:Falk_H眉ffner">Falk H眉ffner</a>, Jan 21 2022</div> <div class=sectline>a(n+1) = <a href="/A006068" title="a(n) is Gray-coded into n.">A006068</a>(n) XOR (2*<a href="/A006068" title="a(n) is Gray-coded into n.">A006068</a>(n)). - <a href="/wiki/User:R茅my_Sigrist">R茅my Sigrist</a>, Apr 14 2022</div> </div> </div> <div class=section> <div class=sectname>MAPLE</div> <div class=sectbody> <div class=sectline>s := proc(n) local i, j, ans; ans := [ ]; j := 0; for i from 0 while j&lt;n do if add(k, k=convert(i, base, 2)) mod 2=0 then ans := [ op(ans), i ]; j := j+1; fi; od; RETURN(ans); end; t1 := s(100); <a href="/A001969" title="Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.">A001969</a> := n-&gt;t1[n]; # s(k) gives first k terms.</div> <div class=sectline># Alternative:</div> <div class=sectline>seq(`if`(add(k, k=convert(n, base, 2))::even, n, NULL), n=0..129); # <a href="/wiki/User:Peter_Luschny">Peter Luschny</a>, Jan 15 2021</div> <div class=sectline># alternative for use outside this sequence</div> <div class=sectline>isA001969 := proc(n)</div> <div class=sectline> add(d, d=convert(n, base, 2)) ;</div> <div class=sectline> type(%, 'even') ;</div> <div class=sectline>end proc:</div> <div class=sectline><a href="/A001969" title="Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.">A001969</a> := proc(n)</div> <div class=sectline> option remember ;</div> <div class=sectline> local a;</div> <div class=sectline> if n = 0 then</div> <div class=sectline> 1;</div> <div class=sectline> else</div> <div class=sectline> for a from procname(n-1)+1 do</div> <div class=sectline> if isA001969(a) then</div> <div class=sectline> return a;</div> <div class=sectline> end if;</div> <div class=sectline> end do:</div> <div class=sectline> end if;</div> <div class=sectline>end proc:</div> <div class=sectline>seq(<a href="/A001969" title="Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.">A001969</a>(n), n=1..200) ; # <a href="/wiki/User:R._J._Mathar">R. J. Mathar</a>, Aug 07 2022</div> </div> </div> <div class=section> <div class=sectname>MATHEMATICA</div> <div class=sectbody> <div class=sectline>Select[Range[0, 300], EvenQ[DigitCount[ #, 2][[1]]] &amp;]</div> <div class=sectline>a[ n_] := If[ n &lt; 1, 0, With[{m = n - 1}, 2 m + Mod[-Total@IntegerDigits[m, 2], 2]]]; (* <a href="/wiki/User:Michael_Somos">Michael Somos</a>, Jun 09 2019 *)</div> </div> </div> <div class=section> <div class=sectname>PROG</div> <div class=sectbody> <div class=sectline>(PARI) a(n)=n-=1; 2*n+subst(Pol(binary(n)), x, 1)%2</div> <div class=sectline>(PARI) a(n)=if(n&lt;1, 0, if(n%2==0, a(n/2)+n, -a((n-1)/2)+3*n))</div> <div class=sectline>(PARI) a(n)=2*(n-1)+hammingweight(n-1)%2 \\ <a href="/wiki/User:Charles_R_Greathouse_IV">Charles R Greathouse IV</a>, Mar 22 2013</div> <div class=sectline>(Magma) [ n : n in [0..129] | IsEven(&amp;+Intseq(n, 2)) ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006</div> <div class=sectline>(Haskell)</div> <div class=sectline>a001969 n = a001969_list !! (n-1)</div> <div class=sectline>a001969_list = [x | x &lt;- [0..], even $ a000120 x]</div> <div class=sectline>-- <a href="/wiki/User:Reinhard_Zumkeller">Reinhard Zumkeller</a>, Feb 01 2012</div> <div class=sectline>(Python)</div> <div class=sectline>def ok(n): return bin(n)[2:].count('1') % 2 == 0</div> <div class=sectline>print(list(filter(ok, range(130)))) # <a href="/wiki/User:Michael_S._Branicky">Michael S. Branicky</a>, Jun 02 2021</div> <div class=sectline>(Python)</div> <div class=sectline>from itertools import chain, count, islice</div> <div class=sectline>def <a href="/A001969" title="Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.">A001969</a>_gen(): # generator of terms</div> <div class=sectline> return chain((0, ), chain.from_iterable((sorted(n^ n&lt;&lt;1 for n in range(2**l, 2**(l+1))) for l in count(0))))</div> <div class=sectline><a href="/A001969" title="Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.">A001969</a>_list = list(islice(<a href="/A001969" title="Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.">A001969</a>_gen(), 30)) # <a href="/wiki/User:Chai_Wah_Wu">Chai Wah Wu</a>, Jun 29 2022</div> <div class=sectline>(Python)</div> <div class=sectline>def <a href="/A001969" title="Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.">A001969</a>(n): return ((m:=n-1).bit_count()&amp;1)+(m&lt;&lt;1) # <a href="/wiki/User:Chai_Wah_Wu">Chai Wah Wu</a>, Mar 03 2023</div> </div> </div> <div class=section> <div class=sectname>CROSSREFS</div> <div class=sectbody> <div class=sectline>Complement of <a href="/A000069" title="Odious numbers: numbers with an odd number of 1's in their binary expansion.">A000069</a> (the odious numbers). Cf. <a href="/A133009" title="One defining property of the sequences {A, B} = {A000069, A001969} is that they are the unique pair of sets complementary wi...">A133009</a>.</div> <div class=sectline>a(n)=2*n+<a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>(n)=<a href="/A000069" title="Odious numbers: numbers with an odd number of 1's in their binary expansion.">A000069</a>(n)-(-1)^<a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>(n). Cf. <a href="/A018900" title="Sums of two distinct powers of 2.">A018900</a>.</div> <div class=sectline>The basic sequences concerning the binary expansion of n are <a href="/A000120" title="1's-counting sequence: number of 1's in binary expansion of n (or the binary weight of n).">A000120</a>, <a href="/A000788" title="Total number of 1's in binary expansions of 0, ..., n.">A000788</a>, <a href="/A000069" title="Odious numbers: numbers with an odd number of 1's in their binary expansion.">A000069</a>, <a href="/A001969" title="Evil numbers: nonnegative integers with an even number of 1's in their binary expansion.">A001969</a>, <a href="/A023416" title="Number of 0's in binary expansion of n.">A023416</a>, <a href="/A059015" title="Total number of 0's in binary expansions of 0, ..., n.">A059015</a>.</div> <div class=sectline>Cf. <a href="/A036585" title="Ternary Thue-Morse sequence: closed under a-&gt;abc, b-&gt;ac, c-&gt;b.">A036585</a> (differences), <a href="/A010060" title="Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k &gt;= 0, A_{k+1} = A_k B_k, where B_k is obtain...">A010060</a>, <a href="/A006364" title="Numbers k with an even number of 1's in binary, ignoring last bit.">A006364</a>.</div> <div class=sectline>For primes see <a href="/A027699" title="Evil primes: primes with even number of 1's in their binary expansion.">A027699</a>, also <a href="/A130593" title="Evil semiprimes.">A130593</a>.</div> <div class=sectline>Cf. <a href="/A006068" title="a(n) is Gray-coded into n.">A006068</a>, <a href="/A048724" title="Write n and 2n in binary and add them mod 2.">A048724</a>, <a href="/A059010" title="Natural numbers having an even number of nonleading zeros in their binary expansion.">A059010</a>, <a href="/A094677" title="Sum of digits is divisible by 10.">A094677</a>.</div> <div class=sectline>Sequence in context: <a href="/A165740" title="Positive integers n such that solution to the toric n X n &quot;Lights Out&quot; puzzle is not unique (up to the order of flippings; e...">A165740</a> <a href="/A241571" title="Numbers n such that 2*n+15 is not a prime.">A241571</a> <a href="/A080307" title="Multiples of the Fermat numbers 2^(2^n)+1.">A080307</a> * <a href="/A075311" title="a(1) = 1; for n &gt; 1, a(n) is the smallest number m &gt; a(n-1) such that the number of 1's in the binary expansion of m is not ...">A075311</a> <a href="/A032786" title="Numbers k such that k(k+1)(k+2)...(k+15) / (k+(k+1)+(k+2)+...+(k+15)) is an integer.">A032786</a> <a href="/A080309" title="n-th even number equals n-th multiple of a Fermat number.">A080309</a></div> <div class=sectline>Adjacent sequences: <a href="/A001966" title="v-pile counts for the 4-Wythoff game with i=2.">A001966</a> <a href="/A001967" title="u-pile positions for the 4-Wythoff game with i=3.">A001967</a> <a href="/A001968" title="v-pile positions of the 4-Wythoff game with i=3.">A001968</a> * <a href="/A001970" title="Functional determinants; partitions of partitions; Euler transform applied twice to all 1's sequence.">A001970</a> <a href="/A001971" title="Nearest integer to n^2/8.">A001971</a> <a href="/A001972" title="Expansion of 1/((1-x)^2*(1-x^4)) = 1/( (1+x)*(1+x^2)*(1-x)^3 ).">A001972</a></div> </div> </div> <div class=section> <div class=sectname>KEYWORD</div> <div class=sectbody> <div class=sectline><span title="it is very easy to produce terms of sequence">easy</span>,<span title="an important sequence">core</span>,<span title="a sequence of nonnegative numbers">nonn</span>,<span title="an exceptionally nice sequence">nice</span>,<span title="dependent on base used for sequence">base</span></div> </div> </div> <div class=section> <div class=sectname>AUTHOR</div> <div class=sectbody> <div class=sectline><a href="/wiki/User:N._J._A._Sloane">N. J. A. Sloane</a></div> </div> </div> <div class=section> <div class=sectname>EXTENSIONS</div> <div class=sectbody> <div class=sectline>More terms from Robin Trew (trew(AT)hcs.harvard.edu)</div> </div> </div> <div class=section> <div class=sectname>STATUS</div> <div class=sectbody> <div class=sectline>approved</div> </div> </div> </div> <div class=space10></div> </div> </div></div> <p> <div class=footerpad></div> <div class=footer> <center> <div class=bottom> <div class=linksbar> <a href="/">Lookup</a> <a href="/wiki/Welcome"><font color="red">Welcome</font></a> <a href="/wiki/Main_Page"><font color="red">Wiki</font></a> <a href="/wiki/Special:RequestAccount">Register</a> <a href="/play.html">Music</a> <a href="/plot2.html">Plot 2</a> <a href="/demo1.html">Demos</a> <a href="/wiki/Index_to_OEIS">Index</a> <a href="/webcam">WebCam</a> <a href="/Submit.html">Contribute</a> <a href="/eishelp2.html">Format</a> <a href="/wiki/Style_Sheet">Style Sheet</a> <a href="/transforms.html">Transforms</a> <a href="/ol.html">Superseeker</a> <a href="/recent">Recents</a> </div> <div class=linksbar> <a href="/community.html">The OEIS Community</a> </div> <div class=linksbar> Maintained by <a href="http://oeisf.org">The OEIS Foundation Inc.</a> </div> <div class=dbinfo>Last modified December 1 06:35 EST 2024. Contains 378277 sequences.</div> <div class=legal> <a href="/wiki/Legal_Documents">License Agreements, Terms of Use, Privacy Policy</a> </div> </div> </center> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10