CINXE.COM

Search results for: magnetic phase transition

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: magnetic phase transition</title> <meta name="description" content="Search results for: magnetic phase transition"> <meta name="keywords" content="magnetic phase transition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="magnetic phase transition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="magnetic phase transition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7052</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: magnetic phase transition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7052</span> Effect of Co Substitution on Structural, Magnetocaloric, Magnetic, and Electrical Properties of Sm0.6Sr0.4CoxMn1-xO3 Synthesized by Sol-gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Azab">A. A. Azab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Sm0.6Sr0.4CoxMn1-xO3 (x=0, 0.1, 0.2 and 0.3) was synthesized by sol-gel method for magnetocaloric effect (MCE) applications. XRD analysis confirmed formation of the required orthorhombic phase of perovskite, and there is crystallographic phase transition as a result of substitution. Maxwell-Wagner interfacial polarisation and Koops phenomenological theory were used to investigate and analyze the temperature and frequency dependency of the dielectric permittivity. The phase transition from the ferromagnetic to the paramagnetic state was demonstrated to be second order. Based on the isothermal magnetization curves obtained at various temperatures, the magnetic entropy change was calculated. A magnetocaloric effect (MCE) over a wide temperature range was studied by determining DSM and the relative cooling power (RCP). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric%20effect" title="magnetocaloric effect">magnetocaloric effect</a>, <a href="https://publications.waset.org/abstracts/search?q=pperovskite" title=" pperovskite"> pperovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition" title=" magnetic phase transition"> magnetic phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20permittivity" title=" dielectric permittivity"> dielectric permittivity</a> </p> <a href="https://publications.waset.org/abstracts/174054/effect-of-co-substitution-on-structural-magnetocaloric-magnetic-and-electrical-properties-of-sm06sr04coxmn1-xo3-synthesized-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7051</span> Double Magnetic Phase Transition in the Intermetallic Compound Gd₂AgSi₃</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Redrisse%20Djoumessi%20Fobasso">Redrisse Djoumessi Fobasso</a>, <a href="https://publications.waset.org/abstracts/search?q=Baidyanath%20Sahu"> Baidyanath Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20M.%20Strydom"> Andre M. Strydom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The R₂TX₃ (R = rare-earth, T = transition, and X = s and p block element) series of compounds are interesting owing to their fascinating structural and magnetic properties. In this present work, we have studied the magnetic and physical properties of the new Gd₂AgSi₃ polycrystalline compound. The sample was synthesized by the arc-melting method and confirmed to crystallize in the tetragonal α-ThSi₂-type crystal structure with space group I4/amd. Dc– and ac–magnetic susceptibility, specific heat, electrical resistivity, and magnetoresistance measurements were performed on the new compound. The structure provides a unique position in the unit cell for the magnetic trivalent Gd ion. Two magnetic phase transitions were consistently found in dc- and ac-magnetic susceptibility, heat capacity, and electrical resistivity at temperatures Tₙ₁ = 11 K and Tₙ₂ = 20 K, which is an indication of the complex magnetic behavior in this compound. The compound is found to be metamagnetic over a range of temperatures below and above Tₙ₁. From field-dependent electrical resistivity, it is confirmed that the compound shows unusual negative magnetoresistance in the antiferromagnetically ordered region. These results contribute to a better understanding of this class of materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20magnetic%20behavior" title="complex magnetic behavior">complex magnetic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=metamagnetic" title=" metamagnetic"> metamagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20magnetoresistance" title=" negative magnetoresistance"> negative magnetoresistance</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20magnetic%20phase%20transitions" title=" two magnetic phase transitions"> two magnetic phase transitions</a> </p> <a href="https://publications.waset.org/abstracts/120185/double-magnetic-phase-transition-in-the-intermetallic-compound-gd2agsi3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7050</span> Vacancy-Driven Magnetism of GdMnO₃</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mat%C3%BA%C5%A1%20Mihalik">Matúš Mihalik</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Vavra"> Martin Vavra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kornel%20Csach"> Kornel Csach</a>, <a href="https://publications.waset.org/abstracts/search?q=Mari%C3%A1n%20Mihalik"> Marián Mihalik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> GdMnO₃ belongs to orthorhombically distorted, GdFeO₃-type family of perovskite compounds. These compounds are naturally vacant and the amount of vacancies depend on the sample preparation conditions. Our GdMnO₃ samples were prepared by float zone method and the vacancies were controlled using an air, Ar and O₂ preparation atmosphere. The highest amount of vacancies was found for sample prepared in Ar atmosphere, while the sample prepared in O₂ was observed to be almost vacancy-free. The magnetic measurements indicate that the preparation atmosphere has no impact on Néel temperature (TN ~ 42 K), however, it has strong impact on the incommensurate antiferromagnetic (IC) to canted A-type weak ferromagnetic (AWF) phase transition at T1: T1 = 23.4 K; 18 K and 6.7 K for samples prepared in Ar; air and O₂ atmosphere; respectively. The hysteresis loop measured at 2 K has a butterfly-type shape with the remnant magnetization (Mr) of 0.6 µB/f.u. for Ar and air sample, while Mr = 0.3 µB/f.u. for O₂ sample. The shape of the hysteresis loop depends on the preparation atmosphere in magnetic fields up to 1.5 T, but is independent for higher magnetic fields. The coercive field of less than 0.06 T and the maximum magnetic moment of 6 µB/f.u. at magnetic field µ0H = 7 T do not depend on the preparation atmosphere. All these findings indicate that only AWF phase of GdMnO₃ compound is directly affected by the vacancies in the system, while IC phase and the field induced ferroelectric phase are not affected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetism" title="magnetism">magnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskites" title=" perovskites"> perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20preparation" title=" sample preparation"> sample preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition" title=" magnetic phase transition"> magnetic phase transition</a> </p> <a href="https://publications.waset.org/abstracts/155808/vacancy-driven-magnetism-of-gdmno3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7049</span> Thermodynamic and Magnetic Properties of Heavy Fermion UTE₂ Superconductor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habtamu%20Anagaw%20Muluneh">Habtamu Anagaw Muluneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gebregziabher%20Kahsay"> Gebregziabher Kahsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamiru%20Negussie"> Tamiru Negussie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Theoretical study of the density of state, condensation energy, specific heat, and magnetization in a spin-triplet superconductor are the main goals of this work. Utilizing the retarded double-time temperature-dependent Green's function formalism and building a model Hamiltonian for the system at hand, we were able to derive the expressions for the parameters mentioned above. The phase diagrams are plotted using MATLAB scripts. From the phase diagrams, the density of electrons increases as the excitation energy increases, and the maximum excitation energy is equal to the superconducting gap, but it decreases when the value exceeds the gap and finally becomes the same as the density of the normal state. On the other hand, the condensation energy decreases with the increase in temperature and attains its minimum value at the superconducting transition temperature but increases with the increase in superconducting transition temperature (TC) and finally becomes zero, implying the superconducting energy is equal to the normal state energy. The specific heat increases with the increase in temperature, attaining its maximum value at the TC and then undergoing a jump, showing the presence of a second-order phase transition from the superconducting state to the normal state. Finally, the magnetization of both the itinerant and localized electrons decreases with the increase in temperature and finally becomes zero at TC = 1.6 K and magnetic phase transition temperature T = 2 K, respectively, which results in a magnetic phase transition from a ferromagnetic to a paramagnetic state. Our finding is in good agreement with the previous findings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spin%20triplet%20superconductivity" title="spin triplet superconductivity">spin triplet superconductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title=" Green’s function"> Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=condensation%20energy" title=" condensation energy"> condensation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20of%20state" title=" density of state"> density of state</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20heat" title=" specific heat"> specific heat</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a> </p> <a href="https://publications.waset.org/abstracts/193014/thermodynamic-and-magnetic-properties-of-heavy-fermion-ute2-superconductor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7048</span> Investigation on Electronic and Magnetic Properties of Transition Metals Doped Zinc Selenide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bentata">S. Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abbad"> A. Abbad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Bentounes"> H. A. Bentounes</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Bouadjemi"> B. Bouadjemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The full potential linear augmented plane wave (FPLAPW) based on density-functional theory (DFT) is employed to study the electronic, magnetic and optical properties of some transition metals doped ZnSe. Calculations are carried out by varying the doped atoms. Four 3D transition elements were used as a dopant: Cr, Mn, Co and Cu in order to induce spin polarization. Our results show that, Mn and Cu-doped ZnSe could be used in spintronic devices only if additional dopants are introduced, on the contrary, transition elements showing delocalized quality such as Cr, and Co doped ZnSe might be promising candidates for application in spintronic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spin-up" title="spin-up">spin-up</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-down" title=" spin-down"> spin-down</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a> </p> <a href="https://publications.waset.org/abstracts/1433/investigation-on-electronic-and-magnetic-properties-of-transition-metals-doped-zinc-selenide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7047</span> Pressure Induced Phase Transition and Elastic Properties of Cerium Mononitride</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Namrata%20Yaduvanshi">Namrata Yaduvanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Kapoor"> Shilpa Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Pawar"> Pooja Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadhna%20Singh"> Sadhna Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, we have investigated the high-pressure structural phase transition and elastic properties of cerium mononitride. We studied theoretically the structural properties of this compound (CeN) by using the Improved Interaction Potential Model (IIPM) approach. This compound exhibits first order crystallographic phase transition from NaCl (B1) to tetragonal (BCT) phase at 37 GPa. The phase transition pressures and associated volume collapse obtained from present potential model (IIPM) show a good agreement with available theoretical data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title="phase transition">phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20collapse" title=" volume collapse"> volume collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20body%20interaction" title=" three body interaction"> three body interaction</a> </p> <a href="https://publications.waset.org/abstracts/30520/pressure-induced-phase-transition-and-elastic-properties-of-cerium-mononitride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7046</span> Pressure Induced Phase Transition of Semiconducting Alloy TlxGa1-xAs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Sarwan">Madhu Sarwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Dubey"> Ritu Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadhna%20Singh"> Sadhna Singh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have investigated the structural phase transition from Zinc-Blende (ZB) to Rock-Salt (RS) structure of TlxGa1-xAs by using Interaction Potential Model (IPM). The IPM consists of Coulomb interaction, Three-Body Interaction (TBI), Van Der Wall (vdW) interaction and overlap repulsive short range interaction. The structural phase transition has been computed by using the vegard’s law. The volume collapse is also computed for this alloy. We have also investigated the second order elastic constants with composition for the alloy TlxGa1-xAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=III-V%20alloy" title="III-V alloy">III-V alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20moduli" title=" elastic moduli"> elastic moduli</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductors" title=" semiconductors"> semiconductors</a> </p> <a href="https://publications.waset.org/abstracts/30417/pressure-induced-phase-transition-of-semiconducting-alloy-tlxga1-xas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7045</span> Microstructural Origin of Morphotropic Phase Boundary and Magnetic Ordering in the Multiferroic BiFeO3-PbTiO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bastola%20Narayan">Bastola Narayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Ranjan"> Rajeev Ranjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The morphotropic phase boundary (MPB) in the magnetoelectric (1-x)BiFeO3-(x)PbTiO3 has remained a matter of controversy ever since its discovery in 1964. The nature of the phase stabilized (single phase tetragonal or coexistence of tetragonal and rhombohedral phases) is very sensitive to the slight changes in the synthesis conditions. It thus remained an enigma as to what is the essential physical factor which is controlled by the slight difference in the synthesis conditions that finally determines, whether the phase formed will be single phase or coexistence of phases. In this paper, we demonstrate that the nature of the phase stabilized in this system is uniquely dependent on the crystallite size. The system is shown to exhibit features of abnormal grain growth (AGG) during sintering with abrupt increase in the grain size from ~ 1 micron to ~ 10 microns. The 10 micron grains exhibit pure tetragonal phase while the 1 micron grains exhibit coexistence of rhombohedral and tetragonal ferroelectric phases. The Rietveld analysis of powder neutron diffraction shows a paramagnetic to antiferromagnetic order transition inducing with crystalline size reduction from 10 micron to 1 micron. Since tetragonal phase is known to have paramagnetic order and rhombohedral phase has antiferromagnetic order in room temperature, this further strengthens our argument of size induced structure transition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=size%20driven%20MPB" title="size driven MPB">size driven MPB</a>, <a href="https://publications.waset.org/abstracts/search?q=size%20driven%20magnetic%20ordering" title=" size driven magnetic ordering"> size driven magnetic ordering</a>, <a href="https://publications.waset.org/abstracts/search?q=abnormal%20grain%20growth" title=" abnormal grain growth"> abnormal grain growth</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20formation%20in%20BF-PT%20system" title=" phase formation in BF-PT system"> phase formation in BF-PT system</a> </p> <a href="https://publications.waset.org/abstracts/31444/microstructural-origin-of-morphotropic-phase-boundary-and-magnetic-ordering-in-the-multiferroic-bifeo3-pbtio3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7044</span> Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ben%20Khlifa">H. Ben Khlifa</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Cheikhrouhou"> W. Cheikhrouhou</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20M%27nassri"> R. M&#039;nassri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganites" title="manganites">manganites</a>, <a href="https://publications.waset.org/abstracts/search?q=preparation%20methods" title=" preparation methods"> preparation methods</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric%20effect" title=" magnetocaloric effect"> magnetocaloric effect</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20and%20dielectric" title=" electrical and dielectric"> electrical and dielectric</a> </p> <a href="https://publications.waset.org/abstracts/142916/structural-magnetic-electrical-and-dielectric-properties-of-pr08na02mno3-manganite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7043</span> Critical Behaviour and Filed Dependence of Magnetic Entropy Change in K Doped Manganites Pr₀.₈Na₀.₂−ₓKₓMnO₃ (X = .10 And .15)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Ben%20Khlifa">H. Ben Khlifa</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Cheikhrouhou-Koubaa"> W. Cheikhrouhou-Koubaa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cheikhrouhou"> A. Cheikhrouhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The orthorhombic Pr₀.₈Na₀.₂−ₓKₓMnO₃ (x = 0.10 and 0.15) manganites are prepared by using the solid-state reaction at high temperatures. The critical exponents (β, γ, δ) are investigated through various techniques such as modified Arrott plot, Kouvel-Fisher method, and critical isotherm analysis based on the data of the magnetic measurements recorded around the Curie temperature. The critical exponents are derived from the magnetization data using the Kouvel-Fisher method, are found to be β = 0.32(4) and γ = 1.29(2) at TC ~ 123 K for x = 0.10 and β = 0.31(1) and γ = 1.25(2) at TC ~ 133 K for x = 0.15. The critical exponent values obtained for both samples are comparable to the values predicted by the 3D-Ising model and have also been verified by the scaling equation of state. Such results demonstrate the existence of ferromagnetic short-range order in our materials. The magnetic entropy changes of polycrystalline samples with a second-order phase transition are investigated. A large magnetic entropy change deduced from isothermal magnetization curves, is observed in our samples with a peak centered on their respective Curie temperatures (TC). The field dependence of the magnetic entropy changes are analyzed, which shows power-law dependence ΔSmax ≈ a(μ0 H)n at the transition temperature. The values of n obey the Curie Weiss law above the transition temperature. It is shown that for the investigated materials, the magnetic entropy change follows a master curve behavior. The rescaled magnetic entropy change curves for different applied fields collapse onto a single curve for both samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganites" title="manganites">manganites</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20exponents" title=" critical exponents"> critical exponents</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric" title=" magnetocaloric"> magnetocaloric</a>, <a href="https://publications.waset.org/abstracts/search?q=master%20curve" title=" master curve"> master curve</a> </p> <a href="https://publications.waset.org/abstracts/142016/critical-behaviour-and-filed-dependence-of-magnetic-entropy-change-in-k-doped-manganites-pr08na02kmno3-x-10-and-15" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7042</span> Structural, Magnetic and Magnetocaloric Properties of Iron-Doped Nd₀.₆Sr₀.₄MnO₃ Perovskite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Al-Yahmadi">Ismail Al-Yahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbasher%20Gismelseed"> Abbasher Gismelseed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Al-Mammari"> Fatma Al-Mammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Rawas"> Ahmed Al-Rawas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Yousif"> Ali Yousif</a>, <a href="https://publications.waset.org/abstracts/search?q=Imaddin%20Al-Omari"> Imaddin Al-Omari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hisham%20Widatallah"> Hisham Widatallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elzain"> Mohamed Elzain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of Fe-doping on the structural, magnetic and magnetocaloric properties of Nd₀.₆Sr₀.₄FeₓMn₁₋ₓO₃ (0≤ x ≤0.5) were investigated. The samples were synthesized by auto-combustion Sol-Gel method. The phase purity, crystallinity, and the structural properties for all prepared samples were examined by X-ray diffraction. XRD refinement indicates that the samples are crystallized in the orthorhombic single-phase with Pnma space group. Temperature dependence of magnetization measurements under a magnetic applied field of 0.02 T reveals that the samples with (x=0.0, 0.1, 0.2 and 0.3) exhibit a paramagnetic (PM) to ferromagnetic (FM) transition with decreasing temperature. The Curie temperature decreased with increasing Fe content from 256 K for x =0.0 to 80 K for x =0.3 due to increasing of antiferromagnetic superexchange (SE) interaction coupling. Moreover, the magnetization as a function of applied magnetic field (M-H) curves was measured at 2 K, and 300 K. the results of such measurements confirm the temperature dependence of magnetization measurements. The magnetic entropy change|∆SM | was evaluated using Maxwell's relation. The maximum values of the magnetic entropy change |-∆SMax |for x=0.0, 0.1, 0.2, 0.3 are found to be 15.35, 5.13, 3.36, 1.08 J/kg.K for an applied magnetic field of 9 T. Our result on magnetocaloric properties suggests that the parent sample Nd₀.₆Sr₀.₄MnO₃ could be a good refrigerant for low-temperature magnetic refrigeration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganite%20perovskite" title="manganite perovskite">manganite perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric%20effect" title=" magnetocaloric effect"> magnetocaloric effect</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20cooling%20power" title=" relative cooling power"> relative cooling power</a> </p> <a href="https://publications.waset.org/abstracts/109346/structural-magnetic-and-magnetocaloric-properties-of-iron-doped-nd06sr04mno3-perovskite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7041</span> Meta-Magnetic Properties of LaFe₁₂B₆ Type Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baptiste%20Vallet-Simond">Baptiste Vallet-Simond</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%A9opold%20V.%20B.%20Diop"> Léopold V. B. Diop</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Isnard"> Olivier Isnard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The antiferromagnetic itinerant-electron compound LaFe₁₂B₆ occupies a special place among rare-earth iron-rich intermetallic; it presents exotic magnetic and physical properties. The unusual amplitude-modulated spin configuration defined by a propagation vector k = (¼, ¼, ¼), remarkably weak Fe magnetic moment (0.43 μB) in the antiferromagnetic ground state, especially low magnetic ordering temperature TN = 36 K for an Fe-rich phase, a multicritical point in the complex magnetic phase diagram, both normal and inverse magnetocaloric effects, and huge hydrostatic pressure effects can be highlighted as the most relevant. Both antiferromagnetic (AFM) and paramagnetic (PM) states can be transformed into the ferromagnetic (FM) state via a field-induced first-order metamagnetic transition. Of particular interest is the low-temperature magnetization process. This process is discontinuous and evolves unexpected huge metamagnetic transitions consisting of a succession of steep magnetization jumps separated by plateaus, giving rise to an unusual avalanche-like behavior. The metamagnetic transition is accompanied by giant magnetoresistance and large magnetostriction. In the present work, we report on the intrinsic magnetic properties of the La₁₋ₓPrₓFe₁₂B₆ series of compounds exhibiting sharp metamagnetic transitions. The study of the structural, magnetic, magneto-transport, and magnetostrictive properties of the La₁₋ₓPrₓFe₁₂B₆ system was performed by combining a wide variety of measurement techniques. Magnetic measurements were performed up to µ0H = 10 T. It was found that the proportion of Pr had a strong influence on the magnetic properties of this series of compounds. At x=0.05, the ground state at 2K is that of an antiferromagnet, but the critical transition field Hc has been lowered from Hc = 6T at x = 0 to Hc = 2.5 Tat x=0.05. And starting from x=0.10, the ground state of this series of compounds is a coexistence of AFM and FM parts. At x=0.30, the AFM order has completely vanished, and only the FM part is left. However, we still observe meta-magnetic transitions at higher temperatures (above 100 K for x=0.30) from the paramagnetic (P) state to a forced FM state. And, of course, such transitions are accompanied by strong magneto-caloric, magnetostrictive, and magnetoresistance effects. The Curie temperatures for the probed compositions going from x=0.05 to x=0.30 were spread over the temperature range of 40 K up to 100 K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metamagnetism" title="metamagnetism">metamagnetism</a>, <a href="https://publications.waset.org/abstracts/search?q=RMB%20intermetallic" title=" RMB intermetallic"> RMB intermetallic</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-transport%20effect" title=" magneto-transport effect"> magneto-transport effect</a>, <a href="https://publications.waset.org/abstracts/search?q=metamagnetic%20transitions" title=" metamagnetic transitions"> metamagnetic transitions</a> </p> <a href="https://publications.waset.org/abstracts/144245/meta-magnetic-properties-of-lafe12b6-type-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7040</span> Stabilization of Metastable Skyrmion Phase in Polycrystalline Chiral β-Mn Type Co₇Zn₇Mn₆ Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pardeep">Pardeep</a>, <a href="https://publications.waset.org/abstracts/search?q=Yugandhar%20Bitla"> Yugandhar Bitla</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Patra"> A. K. Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Basheed"> G. A. Basheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The topological protected nanosized particle-like swirling spin textures, “skyrmion,” has been observed in various ferromagnets with chiral crystal structures like MnSi, FeGe, Cu₂OSeO₃ alloys, however the magnetic ordering in these systems takes place at very low temperatures. For skyrmion-based spintronics devices, the skyrmion phase is required to stabilize in a wide temperature – field (T - H) region. The equilibrium skyrmion phase (SkX) in Co₇Zn₇Mn₆ alloy exists in a narrow T – H region just below transition temperature (TC ~ 215 K) and can be quenched by field cooling as a metastable skyrmion phase (MSkX) below SkX region. To realize robust MSkX at 110 K, field sweep ac susceptibility χ(H) measurements were performed after the zero field cooling (ZFC) and field cooling (FC) process. In ZFC process, the sample was cooled from 320 K to 110 K in zero applied magnetic field and then field sweep measurement was performed (up to 2 T) in positive direction (black curve). The real part of ac susceptibility (χ′(H)) at 110 K in positive field direction after ZFC confirms helical to conical phase transition at low field HC₁ (= 42 mT) and conical to ferromagnetic (FM) transition at higher field HC₂ (= 300 mT). After ZFC, FC measurements were performed i.e., sample was initially cooled in zero fields from 320 to 206 K and then a sample was field cooled in the presence of 15 mT field down to the temperature 110 K. After FC process, isothermal χ(H) was measured in positive (+H, red curve) and negative (-H, blue curve) field direction with increasing and decreasing field upto 2 T. Hysteresis behavior in χ′(H), measured after ZFC and FC process, indicates the stabilization of MSkX at 110 K which is in close agreement with literature. Also, the asymmetry between field-increasing curves measured after FC process in both sides confirm the stabilization of MSkX. In the returning process from the high field polarized FM state, helical state below HC₁ is destroyed and only the conical state is observed. Thus, the robust MSkX state is stabilized below its SkX phase over a much wider T - H region by FC in polycrystalline Co₇Zn₇Mn₆ alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skyrmions" title="skyrmions">skyrmions</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20susceptibility" title=" magnetic susceptibility"> magnetic susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=metastable%20phases" title=" metastable phases"> metastable phases</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20phases" title=" topological phases"> topological phases</a> </p> <a href="https://publications.waset.org/abstracts/148961/stabilization-of-metastable-skyrmion-phase-in-polycrystalline-chiral-v-mn-type-co7zn7mn6-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7039</span> Alpha-To-Omega Phase Transition in Bulk Nanostructured Ti and (α+β) Ti Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Askar%20Kilmametov">Askar Kilmametov</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Ivanisenko"> Julia Ivanisenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Straumal"> Boris Straumal</a>, <a href="https://publications.waset.org/abstracts/search?q=Horst%20Hahn"> Horst Hahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-pressure α- to ω-phase transition was discovered in elemental Ti and Zr fifty years ago using static high pressure and then observed to appear between 2 and 12 GPa at room temperature, depending on the experimental technique, the pressure environment, and the sample purity. The fact that ω-phase is retained in a metastable state in ambient condition after the removal of the pressure has been used to check the changes in magnetic and superconductive behavior, electron band structure and mechanical properties. However, the fundamental knowledge on a combination of both mechanical treatment and high applied pressure treatments for ω-phase formation in Ti alloys is currently lacking and has to be studied in relation to improved mechanical properties of bulk nanostructured states. In the present study, nanostructured (α+β) Ti alloys containing β-stabilizing elements such as Co, Fe, Cr, Nb were performed by severe plastic deformation, namely high pressure torsion (HPT) technique. HPT-induced α- to ω-phase transformation was revealed in dependence on applied pressure and shear strains by means of X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The transformation kinetics was compared with the kinetics of pressure-induced transition. Orientation relationship between α-, β- and ω-phases was taken into consideration and analyzed according to theoretical calculation proposed earlier. The influence of initial state before HPT appeared to be considerable for subsequent α- to ω-phase transition. Thermal stability of the HPT-induced ω-phase was discussed as well in the frame of mechanical behavior of Ti and Ti-based alloys produced by shear deformation under high applied pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20nanostructured%20materials" title="bulk nanostructured materials">bulk nanostructured materials</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20phase%20transitions" title=" high pressure phase transitions"> high pressure phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/55970/alpha-to-omega-phase-transition-in-bulk-nanostructured-ti-and-av-ti-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7038</span> Target and Equalizer Design for Perpendicular Heat-Assisted Magnetic Recording</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Tueku">P. Tueku</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Supnithi"> P. Supnithi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Wongsathan"> R. Wongsathan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat-Assisted Magnetic Recording (HAMR) is one of the leading technologies identified to enable areal density beyond 1 Tb/in2 of magnetic recording systems. A key challenge to HAMR designing is accuracy of positioning, timing of the firing laser, power of the laser, thermo-magnetic head, head-disk interface and cooling system. We study the effect of HAMR parameters on transition center and transition width. The HAMR is model using Thermal Williams-Comstock (TWC) and microtrack model. The target and equalizer are designed by the minimum mean square error (MMSE). The result shows that the unit energy constraint outperforms other constraints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat-assisted%20magnetic%20recording" title="heat-assisted magnetic recording">heat-assisted magnetic recording</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20Williams-Comstock%20equation" title=" thermal Williams-Comstock equation"> thermal Williams-Comstock equation</a>, <a href="https://publications.waset.org/abstracts/search?q=microtrack%20model" title=" microtrack model"> microtrack model</a>, <a href="https://publications.waset.org/abstracts/search?q=equalizer" title=" equalizer"> equalizer</a> </p> <a href="https://publications.waset.org/abstracts/8088/target-and-equalizer-design-for-perpendicular-heat-assisted-magnetic-recording" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7037</span> Structural Evolution of Na6Mn(SO4)4 from High-Pressure Synchrotron Powder X-ray Diffraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monalisa%20Pradhan">Monalisa Pradhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajana%20Dutta"> Ajana Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Irshad%20Kariyattuparamb%20Abbas"> Irshad Kariyattuparamb Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Boby%20Joseph"> Boby Joseph</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20N.%20Guru%20Row"> T. N. Guru Row</a>, <a href="https://publications.waset.org/abstracts/search?q=Diptikanta%20Swain"> Diptikanta Swain</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopal%20K.%20Pradhan"> Gopal K. Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compounds with the Vanthoffite crystal structure having general formula Na6M(SO₄)₄ (M= Mg, Mn, Ni , Co, Fe, Cu and Zn) display a variety of intriguing physical properties intimately related to their structural arrangements. The compound Na6Mn(SO4)4 shows antiferromagnetic ordering at low temperature where the in-plane Mn-O•••O-Mn interactions facilitates antiferromagnetic ordering via a super-exchange interaction between the Mn atoms through the oxygen atoms . The inter-atomic bond distances and angles can easily be tuned by applying external pressure and can be probed using high resolution X-ray diffraction. Moreover, because the magnetic interaction among the Mn atoms are super-exchange type via Mn-O•••O-Mn path, the variation of the Mn-O•••O-Mn dihedral angle and Mn-O bond distances under high pressure inevitably affects the magnetic properties. Therefore, it is evident that high pressure studies on the magnetically ordered materials would shed light on the interplay between their structural properties and magnetic ordering. This will indeed confirm the role of buckling of the Mn-O polyhedral in understanding the origin of anti-ferromagnetism. In this context, we carried out the pressure dependent X-ray diffraction measurement in a diamond anvil cell (DAC) up to a maximum pressure of 17 GPa to study the phase transition and determine equation of state from the volume compression data. Upon increasing the pressure, we didn’t observe any new diffraction peaks or sudden discontinuity in the pressure dependences of the d values up to the maximum achieved pressure of ~17 GPa. However, it is noticed that beyond 12 GPa the a and b lattice parameters become identical while there is a discontinuity in the β value around the same pressure. This indicates a subtle transition to a pseudo-monoclinic phase. Using the third order Birch-Murnaghan equation of state (EOS) to fit the volume compression data for the entire range, we found the bulk modulus (B0) to be 44 GPa. If we consider the subtle transition at 12 GPa, we tried to fit another equation state for the volume beyond 12 GPa using the second order Birch-Murnaghan EOS. This gives a bulk modulus of ~ 34 GPa for this phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral" title="mineral">mineral</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20phase%20transition" title=" structural phase transition"> structural phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20XRD" title=" high pressure XRD"> high pressure XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=spectroscopy" title=" spectroscopy"> spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/176683/structural-evolution-of-na6mnso44-from-high-pressure-synchrotron-powder-x-ray-diffraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7036</span> Influence of Cation Substitution on Magnetic Transitions and Ordering in La2NixCo1-xMnO6 Compounds (x = 0.2 - 0.8)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine.Harbia">Amine.Harbia</a>, <a href="https://publications.waset.org/abstracts/search?q=Hicham.%20Moutaabbidb"> Hicham. Moutaabbidb</a>, <a href="https://publications.waset.org/abstracts/search?q=Yann.%20Le%20Godecb"> Yann. Le Godecb</a>, <a href="https://publications.waset.org/abstracts/search?q=Said.%20Benmokhtara"> Said. Benmokhtara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhammed.%20Moutaabbida"> Mouhammed. Moutaabbida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the structural and magnetic characteristics of newly synthesized double perovskite oxides, La₂NiₓCo1-xMnO₆, with x ranging from 0.2 to 0.8. Utilizing X-ray powder diffraction and SQUID magnetometry, we analyzed the compounds that consistently exhibit a monoclinic structure with the P21/n space group at ambient temperature. it findings reveal that as Ni2+ is progressively substituted by Co2+, there is a corresponding decrease in cell parameters, attributable to the smaller ionic radius of Ni2+ (0.69 Å) compared to Co2+ (0.74 Å). The crystal structure features octahedrally coordinated (Co/Ni)2+ and Mn4+ cations with oxygen, forming (Co/Ni)O6 and MnO6 octahedra linked via oxygen atoms along different crystallographic axes. Magnetic characterization conducted over a temperature range of 2 to 300 K in both DC and AC magnetic fields, showed a predominant paramagnetic to ferromagnetic transition between 232 K and 260 K, with the Curie temperature notably increasing with higher x values. Samples with x=0.2, 0.25, and 0.5 exhibited a secondary PM-FM transition between 200 K and 208 K. Cation ordering was quantitatively assessed, indicating a higher ordering in Ni2+-rich samples (x=0.75 and 0.8) at over 96%, whereas the sample with x=0.25 showed minimal ordering. Furthermore, the out-of-phase component of the AC susceptibility displayed frequency-dependent transitions between 65 K and 110 K, suggesting the presence of superparamagnetic domains across all samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20perovskite%20oxides" title="double perovskite oxides">double perovskite oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20transitions" title=" magnetic transitions"> magnetic transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=cation%20ordering" title=" cation ordering"> cation ordering</a>, <a href="https://publications.waset.org/abstracts/search?q=squid%20magnetometry" title=" squid magnetometry"> squid magnetometry</a> </p> <a href="https://publications.waset.org/abstracts/186377/influence-of-cation-substitution-on-magnetic-transitions-and-ordering-in-la2nixco1-xmno6-compounds-x-02-08" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7035</span> Atomistic Study of Structural and Phases Transition of TmAs Semiconductor, Using the FPLMTO Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rekab%20Djabri%20Hamza">Rekab Djabri Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Daoud%20Salah"> Daoud Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report first-principles calculations of structural and magnetic properties of TmAs compound in zinc blende(B3) and CsCl(B2), structures employing the density functional theory (DFT) within the local density approximation (LDA). We use the full potential linear muffin-tin orbitals (FP-LMTO) as implemented in the LMTART-MINDLAB code (Calculation). Results are given for lattice parameters (a), bulk modulus (B), and its first derivatives(B’) in the different structures NaCl (B1) and CsCl (B2). The most important result in this work is the prediction of the possibility of transition; from cubic rocksalt (NaCl)→ CsCl (B2) (32.96GPa) for TmAs. These results use the LDA approximation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LDA" title="LDA">LDA</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a> </p> <a href="https://publications.waset.org/abstracts/156394/atomistic-study-of-structural-and-phases-transition-of-tmas-semiconductor-using-the-fplmto-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7034</span> Thermodynamics during the Deconfining Phase Transition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amal%20Ait%20El%20Djoudi">Amal Ait El Djoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A thermodynamical model of coexisting hadronic and quark–gluon plasma (QGP) phases is used to study the thermally driven deconfining phase transition occurring between the two phases. A color singlet partition function is calculated for the QGP phase with two massless quarks, as in our previous work, but now the finite extensions of the hadrons are taken into account in the equation of state of the hadronic phase. In the present work, the finite-size effects on the system are examined by probing the behavior of some thermodynamic quantities, called response functions, as order parameter, energy density and their derivatives, on a range of temperature around the transition at different volumes. It turns out that the finiteness of the system size has as effects the rounding of the transition and the smearing of all the singularities occurring in the thermodynamic limit, and the additional finite-size effect introduced by the requirement of exact color-singletness involves a shift of the transition point. This shift as well as the smearing of the transition region and the maxima of both susceptibility and specific heat show a scaling behavior with the volume characterized by scaling exponents. Another striking result is the large similarity noted between the behavior of these response functions and that of the cumulants of the probability density. This similarity is worked to try to extract information concerning the occurring phase transition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equation%20of%20state" title="equation of state">equation of state</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=deconfining%20phase%20transition" title=" deconfining phase transition"> deconfining phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=quark%E2%80%93gluon%20plasma%20%28QGP%29" title=" quark–gluon plasma (QGP)"> quark–gluon plasma (QGP)</a> </p> <a href="https://publications.waset.org/abstracts/21464/thermodynamics-during-the-deconfining-phase-transition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7033</span> Yang-Lee Edge Singularity of the Infinite-Range Ising Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seung-Yeon%20Kim">Seung-Yeon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ising model, consisting magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising model has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising model explains the gas-liquid phase transitions accurately. However, the Ising model in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising model in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising model with that of the square-lattice Ising model in an external magnetic field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ising%20ferromagnet" title="Ising ferromagnet">Ising ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=partition%20function%20zeros" title=" partition function zeros"> partition function zeros</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang-Lee%20edge%20singularity" title=" Yang-Lee edge singularity"> Yang-Lee edge singularity</a> </p> <a href="https://publications.waset.org/abstracts/20452/yang-lee-edge-singularity-of-the-infinite-range-ising-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">739</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7032</span> Analysis of Structural Phase Stability of Strontium Sulphide under High Pressure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Kapoor">Shilpa Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Namrata%20Yaduvanshi"> Namrata Yaduvanshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Pawar"> Pooja Pawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadhna%20Singh"> Sadhna Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Three Body Interaction Potential (TBIP) model is developed to study the high pressure phase transition of SrS having NaCl (B1) structure at room temperature. This model includes the long range Columbic, three body interaction forces, short range overlap forces operative up to next nearest neighbors and zero point energy effects. We have investigated the phase transition with pressure, volume collapse and second order elastic constants and found results well suited with available experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title="phase transition">phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20order%20elastic%20constants" title=" second order elastic constants"> second order elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=three%20body%20interaction%20forces" title=" three body interaction forces"> three body interaction forces</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20collapses" title=" volume collapses"> volume collapses</a> </p> <a href="https://publications.waset.org/abstracts/30522/analysis-of-structural-phase-stability-of-strontium-sulphide-under-high-pressure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7031</span> Rheological Properties of Polymer Systems in Magnetic Field </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Soliman">T. S. Soliman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Galyas"> A. G. Galyas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Rusinova"> E. V. Rusinova</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Vshivkov"> S. A. Vshivkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquid crystals combining properties of a liquid and an anisotropic crystal substance play an important role in a science and engineering. Molecules of cellulose and its derivatives have rigid helical conformation, stabilized by intramolecular hydrogen bonds. Therefore the macromolecules of these polymers are capable to be ordered at dissolution and form liquid crystals of cholesteric type. Phase diagrams of solutions of some cellulose derivatives are known. However, little is known about the effect of a magnetic field on the viscosity of polymer solutions. The systems hydroxypropyl cellulose (HPC) – ethanol, HPC – ethylene glycol, HPC–DМАA, HPC–DMF, ethyl cellulose (EC)–ethanol, EC–DMF, were studied in the presence and absence of magnetic field. The solution viscosity was determined on a Rheotest RN 4.1 rheometer. The effect of a magnetic field on the solution properties was studied with the use of two magnets, which induces a magnetic-field-lines directed perpendicularly and parallel to the rotational axis of a rotor. Application of the magnetic field is shown to be accompanied by an increase in the additional assembly of macromolecules, as is evident from a gain in the radii of light scattering particles. In the presence of a magnetic field, the long chains of macromolecules are oriented in parallel with field lines. Such an orientation is associated with the molecular diamagnetic anisotropy of macromolecules. As a result, supramolecular particles are formed, especially in the vicinity of the region of liquid crystalline phase transition. The magnetic field leads to the increase in viscosity of solutions. The results were used to plot the concentration dependence of η/η0, where η and η0 are the viscosities of solutions in the presence and absence of a magnetic field, respectively. In this case, the values of viscosity corresponding to low shear rates were chosen because the concentration dependence of viscosity at low shear rates is typical for anisotropic systems. In the investigated composition range, the values of η/η0 are described by a curve with a maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystals" title=" liquid crystals"> liquid crystals</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20ethers" title=" cellulose ethers"> cellulose ethers</a> </p> <a href="https://publications.waset.org/abstracts/20638/rheological-properties-of-polymer-systems-in-magnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7030</span> Spin-Polarized Investigation of Ferromagnetism on Magnetic Semiconductors MnxCa1-xS in the Rock-salt Phase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Ghebouli">B. Ghebouli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ghebouli"> M. A. Ghebouli</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Choutri"> H. Choutri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fatmi"> M. Fatmi</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Louail"> L. Louail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors MnxCa1-xS in the rock-salt phase have been investigated using first-principles calculations. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of MnxCa1-xS is 4.4µB and is independent of the Mn concentration. The unfilled Mn -3d levels reduce the local magnetic moment of Mn from its free space charge value of 5µB to 4.4µB due to 3p–3d hybridization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semiconductors" title="semiconductors">semiconductors</a>, <a href="https://publications.waset.org/abstracts/search?q=Ab%20initio%20calculations" title=" Ab initio calculations"> Ab initio calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=band-structure" title=" band-structure"> band-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/13939/spin-polarized-investigation-of-ferromagnetism-on-magnetic-semiconductors-mnxca1-xs-in-the-rock-salt-phase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7029</span> Enhancement of Mechanical and Biological Properties in Wollastonite Bioceramics by MgSiO3 Addition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Hong%20Kim">Jae Hong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Cheol%20Um"> Sang Cheol Um</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kook%20Lee"> Jong Kook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strong and biocompatible wollastonite (CaSiO3) was fabricated by pressureless sintering at temperature range of 1250~ 1300 ℃ and phase transition of to β-wollastonite with an addition of MgSiO3. Starting pure α-wollastonite powder were prepared by solid state reaction, and MgSiO3 powder was added to α-wollastonite powder to induce the phase transition α to β-wollastonite over 1250℃. Sintered wollastonite samples at 1250℃ with 5 and 10 wt% MgSiO3 were α+β phase and β phase respectively, and showed higher densification rate than that of α or β-wollastonite, which are almost the same as the theoretical density. Hardness and Young’s modulus of sintered wollastonite were dependent on the apparent density and the amount of β-wollastonite. Young’s modulus (78GPa) of β-wollastonite added 10 wt% MgSiO3 was almost double time of sintered α-wollastonite. From the in-vitro test, biphasic (α+β) wollastonite with 5wt% MgSiO3 addition had good bioactivity in simulated body fluid solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-wollastonite" title="β-wollastonite">β-wollastonite</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20density" title=" high density"> high density</a>, <a href="https://publications.waset.org/abstracts/search?q=MgSiO3" title=" MgSiO3"> MgSiO3</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition "> phase transition </a> </p> <a href="https://publications.waset.org/abstracts/25438/enhancement-of-mechanical-and-biological-properties-in-wollastonite-bioceramics-by-mgsio3-addition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">581</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7028</span> Torque Magnetometry of Low Anisotropic CaCo2As2 Single Crystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kashif%20Nadeem">Kashif Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Zhang"> W. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20G.%20Qiu"> X. G. Qiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Role of Co spins in CaCo2As2 single crystal is systematically studied by using dc magnetization and magnetic torque measurements. A spin-flop transition in the antiferromagnetism (AFM) CaCo2As2 single crystal is studied by using dc magnetization and magnetic torque. Field dependent and angle dependent torque magnetometry confirmed the existence of spin-flop transition in this compound which is in agreement with the dc magnetization studies. A comparison of dc magnetization and torque magnetometry measurements for CaCo2As2 single crystal is done in detail. In conclusion, torque magnetometry can be a useful tool to study the spin flop transition in low anisotropic compounds analogous to dc magnetization studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spin%20flop%20transition" title="spin flop transition">spin flop transition</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20magnetometry" title=" torque magnetometry"> torque magnetometry</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization" title=" magnetization"> magnetization</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropic" title=" anisotropic"> anisotropic</a> </p> <a href="https://publications.waset.org/abstracts/24659/torque-magnetometry-of-low-anisotropic-caco2as2-single-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7027</span> Full-Potential Investigation of the Electronic and Magnetic Properties of CdCoTe and CdMnTe Diluted Magnetic Semiconductors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Zitouni">A.Zitouni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.Bentata"> S.Bentata</a>, <a href="https://publications.waset.org/abstracts/search?q=B.Bouadjemi"> B.Bouadjemi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.Lantri"> T.Lantri</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Benstaali"> W. Benstaali</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.Aziz"> Z.Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.Cherid"> S.Cherid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the structural, electronic and magnetic properties of the diluted magnetic semiconductors (DMSs) CdCoTe and CdMnTe in the zinc blende phase with 25% of Co and Mn. The calculations are performed by the recent ab initio full potential augmented plane waves (FP_L/APW) method within the spin polarized density-functional theory (DFT) and the generalized gradient approximation GGA. Structural properties are determined from the total energy calculations and we found that these compounds are stable in the ferromagnetic phase. We discuss the electronic structures, total and partial densities of states and total magnetic moments. The calculated densities of states presented in this study identify the half-metallic of CdCoTe and CdMnTe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title="electronic structure">electronic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=half-metallic" title=" half-metallic"> half-metallic</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20moment" title=" magnetic moment"> magnetic moment</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20and%20partial%20densities%20of%20states" title=" total and partial densities of states"> total and partial densities of states</a> </p> <a href="https://publications.waset.org/abstracts/33106/full-potential-investigation-of-the-electronic-and-magnetic-properties-of-cdcote-and-cdmnte-diluted-magnetic-semiconductors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7026</span> The Influence of Structural Disorder and Phonon on Metal-To-Insulator Transition of VO₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang-Wook%20Han">Sang-Wook Han</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Hui%20Hwang"> In-Hui Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenlan%20Jin"> Zhenlan Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-In%20Park"> Chang-In Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We used temperature-dependent X-Ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO₂ films. A direct comparison of simultaneously-measured resistance and XAFS from the VO₂ films showed that the thermally-driven structural phase transition (SPT) occurred prior to the metal-insulator transition (MIT) during heating, whereas these changed simultaneously during cooling. XAFS revealed a significant increase in the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO₂ due to the phonons of the V-V arrays along the direction in a metallic phase. A substantial amount of structural disorder existing on the V-V pairs along the c-axis in both M₁ and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder observed on all atomic sites at the SPT prevents the migration of the V 3d¹ electrons, resulting in a Mott insulator in the M₂-phase VO₂. The anomalous structural disorder, particularly, at vanadium sites, effectively affects the migration of metallic electrons, resulting in the Mott insulating properties in M₂ phase and a non-congruence of the SPT, MIT, and local density of state. The thermally-induced phonons in the {111} direction assist the delocalization of the V 3d¹ electrons in the R phase VO₂ and the electrons likely migrate via the V-V array in the {111} direction as well as the V-V dimerization along the c-axis. This study clarifies that the tetragonal symmetry is essentially important for the metallic phase in VO₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal-insulator%20transition" title="metal-insulator transition">metal-insulator transition</a>, <a href="https://publications.waset.org/abstracts/search?q=XAFS" title=" XAFS"> XAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=VO%E2%82%82" title=" VO₂"> VO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=structural-phase%20transition" title=" structural-phase transition"> structural-phase transition</a> </p> <a href="https://publications.waset.org/abstracts/79779/the-influence-of-structural-disorder-and-phonon-on-metal-to-insulator-transition-of-vo2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7025</span> Electronic and Magnetic Properties of the Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃ and Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃ Perovskites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sari%20Aouatef">Sari Aouatef</a>, <a href="https://publications.waset.org/abstracts/search?q=Larabi%20Amina"> Larabi Amina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> First-principles calculations within density functional theory based are used to investigate the influence of doped rare earth elements on some properties of perovskite systems Dy₀.₀₆₂₅Y₀.₉₃₇₅FeO₃ and Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃. The electronic and magnetic properties are studied by means of the full-potential linearized augmented plane wave method with Vasp code. The calculated densities of states presented in this work identify the semiconducting behavior for Dy₀.₁₂₅ Y₀.₈₇₅ FeO₃, and the semi-metallic behavior for Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃. Besides, to investigate magnetic properties of several compounds, four magnetic configurations are considered (ferromagnetic (FM), antiferromagnetic type A (A-AFM), antiferromagnetic type C (C-AFM) and antiferromagnetic type G (G-AFM). By doping the Dy element, the system shows different changes in the magnetic order and electronic structure. It is found that Dy₀.₀₆₂₅Y₀.₉₃₇₅ FeO₃ exhibits the strongest magnetic change corresponding to the transition to the ferromagnetic order with the largest magnetic moment of 4.997. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Perovskites" title=" Perovskites"> Perovskites</a>, <a href="https://publications.waset.org/abstracts/search?q=multiferroic" title=" multiferroic"> multiferroic</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/144435/electronic-and-magnetic-properties-of-the-dy00625y09375-feo3-and-dy0125-y0875-feo3-perovskites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7024</span> Characterization of Zn-Ni Alloy Elaborated Under Low and High Magnetic Field Immersed in Corrosive Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabiha%20Chouchane">Sabiha Chouchane</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzedine%20Hani"> Azzedine Hani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Paul%20Chopart"> Jean-Paul Chopart</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Levesque"> Alexandra Levesque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrodeposition of Zn-Ni alloy is mostly studied for its high degree of corrosion and mechanical properties. In this work, the zinc–nickel alloy coatings elaborated from sulfate bath have been carried out under low and high applied magnetic field. The effect of alloy stuctural parameters upon corrosion behavior is studied. It has been found that the magnetically induced convection changes the phase composition, promoting the zinc phase in spite of the γ-Ni₅Zn₂₁. Low magnetic field acts also on the morphology of the deposits as a levelling agent and a refiner by lowering the deposit roughness Ra and the spot size. For alloy obtained with low magnetic field (up to 1T) superimposition, surface morphology modification has no significant influence on corrosion behavior whereas for low nickel content alloy, the modification of phase composition, induced by applied magnetic field, favours higher polarization resistance. When high magnetic field amplitude is involved (up to12T), the phase composition modifications are the same that for low applied B and the morphology is not largely modified. In this case, the hydrogen reduction current dramatically decreases that leads to a large shift of the corrosion potential. It is suggested that the surface reactivity of electrodeposited alloys depends on the magnetically induced convection that is efficient during the codeposition process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title="magnetic field">magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn-Ni%20alloy" title=" Zn-Ni alloy"> Zn-Ni alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosive%20medium" title=" corrosive medium"> corrosive medium</a> </p> <a href="https://publications.waset.org/abstracts/184683/characterization-of-zn-ni-alloy-elaborated-under-low-and-high-magnetic-field-immersed-in-corrosive-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7023</span> Exploring Spin Reorientation Transition and Berry Curvature Driven Anomalous Hall Effect in Quasi-2D vdW Ferromagnet Fe4GeTe2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyabrata%20Bera">Satyabrata Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=Mintu%20Mondal"> Mintu Mondal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional (2D) ferromagnetic materials have garnered significant attention due to their potential to host intriguing scientific phenomena such as the anomalous Hall effect, anomalous Nernst effect, and high transport spin polarization. This study focuses on the investigation of air-stable van der Waals(vdW) ferromagnets, FeGeTe₂ (FₙGT with n = 3, 4, and 5). Particular emphasis is placed on the Fe4GeTe2 (F4GT) compound, which exhibits a complex and fascinating magnetic behavior characterized by two distinct transitions: (i) paramagnetic (PM) to ferromagnetic (FM) around T C ∼ 270 K, and (ii) another spins reorientation transition (SRT) at T SRT ∼ 100 K . Scaling analysis of magnetocaloric effect confirms the second-order character of the ferromagnetic transition, while the same analysis at T SRT suggests that SRT is first-order phase transition. Moreover, the F4GT exhibits a large anomalous Hall conductivity (AHC), ∼ 490 S/cm at 2 K . The near-quadratic behavior of the anomalous Hall resistivity with the longitudinal resistivity suggests that a dominant AHC contribution arises from an intrinsic Berry curvature (BC) mechanism. Electronic structure calculations reveal a significant BC resulting from SOC-induced gapped nodal lines around the Fermi level, thereby giving rise to large AHC. Additionally, we reported exceptionally large anomalous Hall angle (≃ 10.6%) and Hall factor (≃ 0.22 V −1 ) values, the largest observed within this vdW family. The findings presented here, provide valuable insights into the fascinating magnetic and transport properties of 2D ferromagnetic materials, in particular, FₙGT family. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20vdW%20ferromagnet" title="2D vdW ferromagnet">2D vdW ferromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20reorientation%20transition" title=" spin reorientation transition"> spin reorientation transition</a>, <a href="https://publications.waset.org/abstracts/search?q=anomalous%20hall%20effect" title=" anomalous hall effect"> anomalous hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=berry%20curvature" title=" berry curvature"> berry curvature</a> </p> <a href="https://publications.waset.org/abstracts/178827/exploring-spin-reorientation-transition-and-berry-curvature-driven-anomalous-hall-effect-in-quasi-2d-vdw-ferromagnet-fe4gete2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=235">235</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=236">236</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=magnetic%20phase%20transition&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10