CINXE.COM
Search results for: Dereje Regasa
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Dereje Regasa</title> <meta name="description" content="Search results for: Dereje Regasa"> <meta name="keywords" content="Dereje Regasa"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Dereje Regasa" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Dereje Regasa"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Dereje Regasa</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Agroecology Approaches Towards Sustainable Agriculture and Food System: Reviewing and Exploring Selected Policies and Strategic Documents through an Agroecological Lens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Regasa">Dereje Regasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global food system is at a crossroads, which requires prompt action to minimize the effects of the crises. Agroecology is gaining prominence due to its contributions to sustainable food systems. To support efforts in mitigating the crises, the Food and Agriculture Organization (FAO) established alternative approaches for sustainable agri-food systems. Agroecological elements and principles were developed to guide and support measures that countries need to achieve the Sustainable Development Goals (SDGs). The SDGs require the systemic integration of practices for a smart intensification or adaptation of traditional or industrial agriculture. As one of the countries working towards SDGs, the agricultural practices in Ethiopia need to be guided by these agroecological elements and principles. Aiming at the identification of challenging aspects of a sustainable agri-food system and the characterization of an enabling environment for agroecology, as well as exploring to what extent the existing policies and strategies support the agroecological transition process, five policy and strategy documents were reviewed. These documents are the Rural Development Policy and Strategy, the Environment Policy, the Biodiversity Policy, and the Soil Strategy of the Ministry of Agriculture (MoA). Using the Agroecology Criteria Tool (ACT), the contents were reviewed, focusing on agroecological requirements and the inclusion of sustainable practices. ACT is designed to support a self-assessment of elements supporting agroecology. For each element, binary values were assigned based on the inclusion of the minimum requirements index and then validated through discussion with the document owners. The results showed that the documents were well below the requirements for an agroecological transition of the agri-food system. The Rural Development Policy and Strategy only suffice to 83% in Human and Social Value. It does not support the transition concerning the other elements. The Biodiversity Policy and Soil Strategy suffice regarding the inclusion of Co-creation and Sharing of knowledge (100%), while the remaining elements were not considered sufficiently. In contrast, the Environment Policy supports the transition with three elements accounting for 100%. These are Resilience, Recycling, and Human and Social Care. However, when the four documents were combined, elements such as Synergies, Diversity, Efficiency, Human and Social value, Responsible governance, and Co-creation and Sharing of knowledge were identified as fully supportive (100%). This showed that the policies and strategies complemented one another to a certain extent. However, the evaluation results call for improvements concerning elements like Culture and food traditions, Circular and solidarity economy, Resilience, Recycling, and Regulation and balance since the majority of the elements were not sufficiently observed. Consequently, guidance for the smart intensification of local practices is needed, as well as traditional knowledge enriched with advanced technologies. Ethiopian agricultural and environmental policies and strategies should provide sufficient support and guidance for the intensification of sustainable practices and should provide a framework for an agroecological transition towards a sustainable agri-food system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroecology" title="agroecology">agroecology</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20food%20system" title=" sustainable food system"> sustainable food system</a>, <a href="https://publications.waset.org/abstracts/search?q=transition" title=" transition"> transition</a> </p> <a href="https://publications.waset.org/abstracts/157075/agroecology-approaches-towards-sustainable-agriculture-and-food-system-reviewing-and-exploring-selected-policies-and-strategic-documents-through-an-agroecological-lens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Family Planning Use among Women Living with HIV in Malawi: Analysis from Malawi DHS-2010 Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Habte">Dereje Habte</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20Namasasu"> Jane Namasasu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The aim of the analysis was to assess the practice of family planning (FP) among HIV-infected women and the influence of women’s awareness of HIV-positive status in the practice of FP. Methods: The analysis was made among 489 non-pregnant, sexually active, fecund women living with HIV. Result: Of the 489 confirmed HIV positive women, 184 (37.6%) reported that they knew they are HIV positive. The number of women with current use and unmet need of any family planning method were found to be 251 (51.2%) and 107 (21.9%) respectively. Women’s knowledge of HIV-positive status (AOR: 2.32(1.54,3.50)), secondary and above education (AOR: 2.36(1.16,4.78)), presence of 3-4 (AOR: 2.60(1.08,6.28)) and more than four alive children (AOR: 3.03(1.18,7.82)) were significantly associated with current use of family planning. Conclusion: Women’s awareness of HIV-positive status was found to significantly predict family planning practice among women living with HIV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=family%20planning" title="family planning">family planning</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV" title=" HIV"> HIV</a>, <a href="https://publications.waset.org/abstracts/search?q=Malawi" title=" Malawi"> Malawi</a>, <a href="https://publications.waset.org/abstracts/search?q=women" title=" women "> women </a> </p> <a href="https://publications.waset.org/abstracts/17688/family-planning-use-among-women-living-with-hiv-in-malawi-analysis-from-malawi-dhs-2010-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">601</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Determinants of Artificial Intelligence Capabilities in Healthcare: The Case of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Ferede">Dereje Ferede</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20Negash"> Solomon Negash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial Intelligence (AI) is a key enabler and driver to transform and revolutionize the healthcare industries. However, utilizing AI and achieving these benefits is challenging for different sectors in wide-ranging, more difficult for developing economy healthcare. Due to this, real-world clinical execution and implementation of AI have not yet aged. We believe that examining the determinants is key to addressing these challenges. Furthermore, the literature does not yet particularize determinants of AI capabilities and ways of empowering the healthcare ecosystem to develop AI capabilities in a developing economy. Thus, this study aims to position AI as a digital transformation weapon for the healthcare ecosystem by examining AI capability determinants and providing insights on better empowering the healthcare industry to develop AI capabilities. To do so, we base on the technology-organization-environment (TOE) model and will apply a mixed research approach. We will conclude with recommendations based on findings for future practitioners and researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=capability" title=" capability"> capability</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title=" digital transformation"> digital transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=developing%20economies" title=" developing economies"> developing economies</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a> </p> <a href="https://publications.waset.org/abstracts/161027/determinants-of-artificial-intelligence-capabilities-in-healthcare-the-case-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Petrology and Hydrothermal Alteration Mineral Distribution of Wells La-9D and La-10D in Aluto Geothermal Field, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Moges%20Azbite">Dereje Moges Azbite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory analysis of igneous rocks is performed with the help of the main oxide plots. The lithology of the two wells was identified using the main oxides obtained using the XRF method. Twenty-four (24) cutting samples with different degrees of alteration were analyzed to determine and identify the rock types by plotting these well samples on special diagrams and correlating with the regional rocks. The results for the analysis of the main oxides and trace elements of 24 samples are presented. Alteration analysis in the two well samples was conducted for 21 samples from two wells for identifying clay minerals. Bulk sample analysis indicated quartz, illite & micas, calcite, cristobalite, smectite, pyrite, epidote, alunite, chlorite, wairakite, diaspore, and kaolin minerals present in both wells. Hydrothermal clay minerals such as illite, chlorite, smectite, and kaoline minerals were identified in both wells by X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=igneous%20rocks" title="igneous rocks">igneous rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20oxides" title=" major oxides"> major oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer%20elements" title=" tracer elements"> tracer elements</a>, <a href="https://publications.waset.org/abstracts/search?q=XRF" title=" XRF"> XRF</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=alteration%20minerals" title=" alteration minerals"> alteration minerals</a> </p> <a href="https://publications.waset.org/abstracts/164354/petrology-and-hydrothermal-alteration-mineral-distribution-of-wells-la-9d-and-la-10d-in-aluto-geothermal-field-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Petrology and Hydrothermal Alteration Mineral Distribution of Wells LA-9D and LA-10D in Aluto Geothermal Field, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Moges%20Azbite">Dereje Moges Azbite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laboratory analysis of igneous rocks is performed with the help of the main oxide plots. The lithology of the two wells was identified using the main oxides obtained using the XRF method. Twenty-four (24) cutting samples with different degrees of alteration were analyzed to determine and identify the rock types by plotting these well samples on special diagrams and correlating with the regional rocks. The results for the analysis of the main oxides and trace elements of 24 samples are presented. Alteration analysis in the two well samples was conducted for 21 samples from two wells for identifying clay minerals. Bulk sample analysis indicated quartz, illite & micas, calcite, cristobalite, smectite, pyrite, epidote, alunite, chlorite, wairakite, diaspore and kaolin minerals present in both wells. Hydrothermal clay minerals such as illite, chlorite, smectite and kaoline minerals were identified in both wells by X-ray diffraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto%20geothermal%20field" title="auto geothermal field">auto geothermal field</a>, <a href="https://publications.waset.org/abstracts/search?q=igneous%20rocks" title=" igneous rocks"> igneous rocks</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20oxides" title=" major oxides"> major oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=tracer%20elements" title="tracer elements">tracer elements</a>, <a href="https://publications.waset.org/abstracts/search?q=XRF" title=" XRF"> XRF</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=alteration%20minerals" title=" alteration minerals"> alteration minerals</a> </p> <a href="https://publications.waset.org/abstracts/142062/petrology-and-hydrothermal-alteration-mineral-distribution-of-wells-la-9d-and-la-10d-in-aluto-geothermal-field-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Assessment of Association Between Microalbuminuria and Lung Function Test Among the Community of Jimma Town</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diriba%20Dereje">Diriba Dereje</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cardiac and renal disease are the most prevalent chronic non-communicable diseases (CNCD) affecting the community in a significant manner. The best and recommended method in halting CNCD is by working on prevention as early as possible. This is only possible if early surrogate markers are identified. As part of the stated solution, this study will identify an association between microalbuminuria (an early surrogate marker of renal and cardiac disease) and lung function test among adult in the community. Objective: The main aim of this study was to assess an association between microalbuminuria (an early surrogate marker of renal and cardiac disease) and lung function test among adult in the community. Methodology: Community based cross sectional study was conducted among 384 adult in Jimma town. A systematic sampling technique was used in selecting participants to the study. In searching for the possible association, binary and multivariate logistic regression and t-test was conducted. Finally, the association between microalbuminuria and lung function test was well stated in the form of figures and written description. Result and Conclusion: A significant association was found between microalbuminuria and different lung function test parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalbuminuria" title="microalbuminuria">microalbuminuria</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20function" title=" lung function"> lung function</a>, <a href="https://publications.waset.org/abstracts/search?q=association" title=" association"> association</a>, <a href="https://publications.waset.org/abstracts/search?q=test" title=" test"> test</a> </p> <a href="https://publications.waset.org/abstracts/141176/assessment-of-association-between-microalbuminuria-and-lung-function-test-among-the-community-of-jimma-town" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dessie%20Tibebe">Dessie Tibebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Muluken%20Asmare"> Muluken Asmare</a>, <a href="https://publications.waset.org/abstracts/search?q=Marye%20Mulugeta"> Marye Mulugeta</a>, <a href="https://publications.waset.org/abstracts/search?q=Yezbie%20Kassa"> Yezbie Kassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zerubabel%20Moges"> Zerubabel Moges</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Yenealem"> Dereje Yenealem</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarekegn%20Fentie"> Tarekegn Fentie</a>, <a href="https://publications.waset.org/abstracts/search?q=Agmas%20Amare"> Agmas Amare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=tannery%20effluent" title=" tannery effluent"> tannery effluent</a> </p> <a href="https://publications.waset.org/abstracts/174363/electrochemical-treatment-and-chemical-analyses-of-tannery-wastewater-using-sacrificial-aluminum-electrode-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Treatment and Characterization of Cadmium Metal From Textile Factory Wastewater by Electrochemical Process Using Aluminum Plate Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dessie%20Tibebe">Dessie Tibebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeshifana%20Ayenew"> Yeshifana Ayenew</a>, <a href="https://publications.waset.org/abstracts/search?q=Marye%20Mulugeta"> Marye Mulugeta</a>, <a href="https://publications.waset.org/abstracts/search?q=Yezbie%20Kassa"> Yezbie Kassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zerubabel%20Moges"> Zerubabel Moges</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Yenealem"> Dereje Yenealem</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarekegn%20Fentie"> Tarekegn Fentie</a>, <a href="https://publications.waset.org/abstracts/search?q=Agmas%20Amare"> Agmas Amare</a>, <a href="https://publications.waset.org/abstracts/search?q=Hailu%20Sheferaw%20Ayele"> Hailu Sheferaw Ayele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrochemical treatment technology is a technique used for wastewater treatment due to its ability to eliminate impurities that are not easily removed by chemical processes. The objective of the study is the treatment and characterization of textile wastewater by an electrochemical process. The results obtained at various operational parameters indicated that at 20 minutes of electrochemical process at ( pH =7), initial concentration 10 mg/L, current density 37.5 mA/cm², voltage 9 v and temperature 25⁰C the highest removal efficiency was achieved. The kinetics of removal of selected metal by electrochemical treatment has been successfully described by the first-order rate equation. The results of microscopic techniques using SEM for the scarified electrode before treatment were uniform and smooth, but after the electrochemical process, the morphology was completely changed. This is due to the detection of the adsorbed aluminum hydroxide coming from adsorption of the conducting electrolyte, chemicals used in the experiments, alloying and the scrap impurities of the anode and cathode. The FTIR spectroscopic analysis broad bands at 3450 cm-¹ representing O-H functional groups, while the presence of H-O-H and Al-H groups are indicated by the bands at 2850-2750 cm-¹ and 1099 representing C-H functional groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title="electrochemical">electrochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20wastewater" title=" textile wastewater"> textile wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20efficiency" title=" removal efficiency"> removal efficiency</a> </p> <a href="https://publications.waset.org/abstracts/174364/treatment-and-characterization-of-cadmium-metal-from-textile-factory-wastewater-by-electrochemical-process-using-aluminum-plate-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Factors Affecting Households' Decision to Allocate Credit for Livestock Production: Evidence from Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaleb%20Shiferaw">Kaleb Shiferaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Berhanu%20Geberemedhin"> Berhanu Geberemedhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Legesse"> Dereje Legesse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to credit is often viewed as a key to transform semi-subsistence smallholders into market oriented producers. However, only a few studies have examined factors that affect farmers’ decision to allocate credit on farm activities in general and livestock production in particular. A trivariate probit model with double selection is employed to identify factors that affect farmers’ decision to allocate credit on livestock production using data collected from smallholder farmers in Ethiopia. After controlling for two sample selection bias – taking credit for the production season and decision to allocate credit on farm activities – land ownership and access to a livestock centered extension service are found to have a significant (p<0.001) effect on farmers decision to use credit for livestock production. The result showed farmers with large land holding, and access to a livestock centered extension services are more likely to utilize credit for livestock production. However since the effect of land ownership squared is negative the effect of land ownership for those who own a large plot of land lessens. The study highlights the fact that improving access to credit does not automatically translate into more productive households. Improving farmers’ access to credit should be followed by a focused extension services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=livestock%20production" title="livestock production">livestock production</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20access" title=" credit access"> credit access</a>, <a href="https://publications.waset.org/abstracts/search?q=credit%20allocation" title=" credit allocation"> credit allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20decision" title=" household decision"> household decision</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20sample%20selection" title=" double sample selection"> double sample selection</a> </p> <a href="https://publications.waset.org/abstracts/46627/factors-affecting-households-decision-to-allocate-credit-for-livestock-production-evidence-from-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> A Review on Potential Utilization of Water Hyacinth (Eichhornia crassipes) as Livestock Feed with Particular Emphasis to Developing Countries in Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shigdaf%20Mekuriaw">Shigdaf Mekuriaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Firew%20Tegegne"> Firew Tegegne</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tsunekawa"> A. Tsunekawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Tewabe"> Dereje Tewabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to make a comprehensive review on the use of water hyacinth (Eichhornia crassipes) as a potential livestock feed and argue its utilization as complementary strategy to other control methods. Water Hyacinth is one of the most noxious plant invaders of rivers and lakes. Such weeds cause environmental disaster and interfere with economic and recreational activities such as water transportation and fishing. Economic impacts of the weed in seven African countries have been estimated at between 20-50 million US$ every year. It would, therefore, be prudent to suggest utilization as a complementary control method. The majority of people in developing countries are dependent on traditional and inefficient crop-livestock production system that constrains their ability to enhance economic productivity and quality of life. Livestock in developing countries faces shortage of feed, especially during the long dry seasons. Existing literature shows the use of water hyacinth as livestock and fish feed. The chemical composition of water hyacinth varies considerably. Due to its relatively high crude protein (CP) content (5.8-20.0%), water hyacinth can be considered as a potential protein supplement for livestock which commonly feed cereal crop residues whose contribution as source of feed is increasing in Africa. Though the effects of anti-nutritional factors (ANFs) present in water hyacinth is not investigated, their concentrations are not above threshold hinder its utilization as livestock feed. In conclusion, water hyacinth could provide large quantities of nutritious feed for animals. Like other feeds, water hyacinth may not be offered as a sole feed and based on existing literature its optimum inclusion level reaches 50%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Africa" title="Africa">Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock%20feed" title=" livestock feed"> livestock feed</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20bodies" title=" water bodies"> water bodies</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hyacinth%20and%20weed%20control%20method" title=" water hyacinth and weed control method"> water hyacinth and weed control method</a> </p> <a href="https://publications.waset.org/abstracts/43297/a-review-on-potential-utilization-of-water-hyacinth-eichhornia-crassipes-as-livestock-feed-with-particular-emphasis-to-developing-countries-in-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Petrogenesis of the Neoproterozoic Rocks of Megele Area, Asosa, Western Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Oljira">Temesgen Oljira</a>, <a href="https://publications.waset.org/abstracts/search?q=Olugbenga%20Akindeji%20Okunlola"> Olugbenga Akindeji Okunlola</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinade%20Shadrach%20Olatunji"> Akinade Shadrach Olatunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Ayalew"> Dereje Ayalew</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekele%20Ayele%20Bedada"> Bekele Ayele Bedada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Western Ethiopian Shield (WES) is underlain by volcano-sedimentary terranes, gneissic terranes, and ophiolitic rocks intruded by different granitoid bodies. For the past few years, Neoproterozoic rocks of the Megele area in the western part of the WES have been explored. Understanding the geology of the area and assessing the mineralized area's economic potential requires petrological, geochemical, and geological characterization of the Neoproterozoic granitoids and associated metavolcanic rocks. Thus, the geological, geochemical, and petrogenetic features of Neoproterozoic granitoids and associated metavolcanic rocks were elucidated using a combination of field mapping, petrological, and geochemical study. The Megele area is part of a low-grade volcano-sedimentary zone that has been intruded by mafic (dolerite dyke) and granitoid intrusions (granodiorite, diorite, granite gneiss). The granodiorite, associated diorite, and granite gneiss are calc-alkaline, peraluminous to slightly metaluminous, S-type granitoids formed in volcanic arc subduction (VAG) to syn-collisional (syn-COLD) tectonic setting by fractionation of LREE-enriched, HREE-depleted basaltic magma with considerable crustal input. While the metabasalt is sub-alkaline (tholeiitic), metaluminous bodies are generated at the mid-oceanic ridge tectonic setting by partially melting HREE-depleted and LREE-enriched basaltic magma. The reworking of sediment-loaded crustal blocks at depth in a subduction zone resulted in the production of S-type granitoids. This basaltic magma was supplied from an LREE-enriched, HREE-depleted mantle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20crystallization" title="fractional crystallization">fractional crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=geochemistry" title=" geochemistry"> geochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=Megele" title=" Megele"> Megele</a>, <a href="https://publications.waset.org/abstracts/search?q=petrogenesis" title=" petrogenesis"> petrogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=s-type%20granite" title=" s-type granite"> s-type granite</a> </p> <a href="https://publications.waset.org/abstracts/149624/petrogenesis-of-the-neoproterozoic-rocks-of-megele-area-asosa-western-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Oxygen and Sulfur Isotope Composition of Gold Bearing Granite Gneiss and Quartz Veins of Megele Area, Western Ethiopia: Implication for Fluid Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Oljira">Temesgen Oljira</a>, <a href="https://publications.waset.org/abstracts/search?q=Olugbenga%20Akindeji%20Okunlola"> Olugbenga Akindeji Okunlola</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinade%20Shadrach%20Olatunji"> Akinade Shadrach Olatunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Dereje%20Ayalew"> Dereje Ayalew</a>, <a href="https://publications.waset.org/abstracts/search?q=Bekele%20A.%20Bedada"> Bekele A. Bedada</a>, <a href="https://publications.waset.org/abstracts/search?q=Tasin%20Godlove%20Bafon"> Tasin Godlove Bafon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Megele area gold-bearing Neoproterozoic rocks in the Western Ethiopian Shield has been under exploration for the last few decades. The geochemical and ore petrological characterization of the gold-bearing granite gneiss and associated quartz vein is crucial in understanding the gold's genesis. The present study concerns the ore petrological, geochemical, and stable O2 and S characterization of the gold-bearing granite gneiss and associated quartz vein. This area is known for its long history of placer gold mining. The presence of quartz veins of different generations and orientations, visible sulfide mineralization, and oxidation suggests that the Megele area is geologically fertile for mineralization. The Au and base metals analysis also indicate that Megele area rocks are characterized by Cu (2-22 ppm av. 7.83 ppm), Zn (2-53 ppm av. 29.33 ppm), Co (1-27 ppm av. 13.33 ppm), Ni (2-16 ppm av. 10 ppm), Pb (5-10 ppm av. 8.33 ppm), Au (1-5 ppb av. 2.11 ppb), Ag (0.5 ppm), As (5-12 ppm av. 7.83 ppm), Cd (0.5ppm), Li (0.5 ppm), Mo (1-4 ppm av. 1.6 ppm), Sc (5-13 ppm av. 9.3 ppm), and Tl (10 ppm). The oxygen isotope (δ18O) values of gold-bearing granite gneiss and associated quartz veins range from +8.6 to +11.5 ‰, suggesting the mixing of metamorphic water with magmatic water within the ore-forming fluid. The Sulfur isotope (δ34S) values of gold-bearing granite gneiss range from -1.92 to -0.45 ‰ (mean value of -1.13 ‰) indicating the narrow range of value. This suggests that the sulfides have been precipitated from the fluid system originating from a single source of the magmatic component under sulfur isotopic fractionation equilibrium condition. The tectonic setting of the host rocks, the occurrence of ore bodies, mineral assemblages of the host rocks and proposed ore-forming fluids of the Megele area gold prospects have similarities with features of orogenic gold deposit. The δ18O and δ34S isotopic values also suggested a metamorphic origin with the magmatic components. Thus, the Megele gold prospect could be related to an orogenic gold deposit related to metamorphism and associated intrusions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20source" title="fluid source">fluid source</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20mineralization" title=" gold mineralization"> gold mineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20isotope" title=" oxygen isotope"> oxygen isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20isotope" title=" stable isotope"> stable isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20isotope" title=" sulfur isotope"> sulfur isotope</a> </p> <a href="https://publications.waset.org/abstracts/169023/oxygen-and-sulfur-isotope-composition-of-gold-bearing-granite-gneiss-and-quartz-veins-of-megele-area-western-ethiopia-implication-for-fluid-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>