CINXE.COM
Euclidean vector - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Euclidean vector - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"3c572c02-5ebf-4c43-88fa-428a8818fe7d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Euclidean_vector","wgTitle":"Euclidean vector","wgCurRevisionId":1253482264,"wgRevisionId":1253482264,"wgArticleId":32533,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Articles needing additional references from December 2021","All articles needing additional references","Wikipedia articles that are too technical from December 2021","All articles that are too technical","Articles with multiple maintenance issues","CS1: long volume value","Commons category link is on Wikidata","Kinematics","Abstract algebra","Vector calculus","Linear algebra","Concepts in physics", "Vectors (mathematics and physics)","Analytic geometry","Euclidean geometry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Euclidean_vector","wgRelevantArticleId":32533,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Vector_addition","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgInternalRedirectTargetUrl":"/wiki/Euclidean_vector#Addition_and_subtraction","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false, "wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q44528","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage": "ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/1200px-Vector_from_A_to_B.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="478"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/800px-Vector_from_A_to_B.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="319"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/640px-Vector_from_A_to_B.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="255"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Euclidean vector - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Euclidean_vector#Addition_and_subtraction"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Euclidean_vector&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Euclidean_vector#Addition_and_subtraction"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Euclidean_vector rootpage-Euclidean_vector skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Euclidean+vector" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Euclidean+vector" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Euclidean+vector" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Euclidean+vector" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Overview" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Overview"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Overview</span> </div> </a> <button aria-controls="toc-Overview-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Overview subsection</span> </button> <ul id="toc-Overview-sublist" class="vector-toc-list"> <li id="toc-Further_information" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Further_information"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Further information</span> </div> </a> <ul id="toc-Further_information-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_in_one_dimension" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_in_one_dimension"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Examples in one dimension</span> </div> </a> <ul id="toc-Examples_in_one_dimension-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_physics_and_engineering" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_physics_and_engineering"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>In physics and engineering</span> </div> </a> <ul id="toc-In_physics_and_engineering-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-In_Cartesian_space" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#In_Cartesian_space"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>In Cartesian space</span> </div> </a> <ul id="toc-In_Cartesian_space-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Euclidean_and_affine_vectors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Euclidean_and_affine_vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Euclidean and affine vectors</span> </div> </a> <ul id="toc-Euclidean_and_affine_vectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Generalizations</span> </div> </a> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Representations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Representations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Representations</span> </div> </a> <button aria-controls="toc-Representations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Representations subsection</span> </button> <ul id="toc-Representations-sublist" class="vector-toc-list"> <li id="toc-Decomposition_or_resolution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Decomposition_or_resolution"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Decomposition or resolution</span> </div> </a> <ul id="toc-Decomposition_or_resolution-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties_and_operations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties_and_operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Properties and operations</span> </div> </a> <button aria-controls="toc-Properties_and_operations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties and operations subsection</span> </button> <ul id="toc-Properties_and_operations-sublist" class="vector-toc-list"> <li id="toc-Equality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Equality"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Equality</span> </div> </a> <ul id="toc-Equality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Opposite,_parallel,_and_antiparallel_vectors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Opposite,_parallel,_and_antiparallel_vectors"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Opposite, parallel, and antiparallel vectors</span> </div> </a> <ul id="toc-Opposite,_parallel,_and_antiparallel_vectors-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Addition_and_subtraction" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Addition_and_subtraction"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Addition and subtraction</span> </div> </a> <ul id="toc-Addition_and_subtraction-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Scalar_multiplication" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Scalar_multiplication"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Scalar multiplication</span> </div> </a> <ul id="toc-Scalar_multiplication-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Length" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Length"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Length</span> </div> </a> <ul id="toc-Length-sublist" class="vector-toc-list"> <li id="toc-Unit_vector" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Unit_vector"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5.1</span> <span>Unit vector</span> </div> </a> <ul id="toc-Unit_vector-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Zero_vector" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Zero_vector"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5.2</span> <span>Zero vector</span> </div> </a> <ul id="toc-Zero_vector-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Dot_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Dot_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Dot product</span> </div> </a> <ul id="toc-Dot_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cross_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cross_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.7</span> <span>Cross product</span> </div> </a> <ul id="toc-Cross_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Scalar_triple_product" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Scalar_triple_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.8</span> <span>Scalar triple product</span> </div> </a> <ul id="toc-Scalar_triple_product-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conversion_between_multiple_Cartesian_bases" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conversion_between_multiple_Cartesian_bases"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.9</span> <span>Conversion between multiple Cartesian bases</span> </div> </a> <ul id="toc-Conversion_between_multiple_Cartesian_bases-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_dimensions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_dimensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.10</span> <span>Other dimensions</span> </div> </a> <ul id="toc-Other_dimensions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Physics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Physics"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Physics</span> </div> </a> <button aria-controls="toc-Physics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Physics subsection</span> </button> <ul id="toc-Physics-sublist" class="vector-toc-list"> <li id="toc-Length_and_units" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Length_and_units"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Length and units</span> </div> </a> <ul id="toc-Length_and_units-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Vector-valued_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Vector-valued_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Vector-valued functions</span> </div> </a> <ul id="toc-Vector-valued_functions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Position,_velocity_and_acceleration" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Position,_velocity_and_acceleration"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Position, velocity and acceleration</span> </div> </a> <ul id="toc-Position,_velocity_and_acceleration-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Force,_energy,_work" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Force,_energy,_work"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Force, energy, work</span> </div> </a> <ul id="toc-Force,_energy,_work-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Vectors,_pseudovectors,_and_transformations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Vectors,_pseudovectors,_and_transformations"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Vectors, pseudovectors, and transformations</span> </div> </a> <ul id="toc-Vectors,_pseudovectors,_and_transformations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Mathematical_treatments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematical_treatments"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Mathematical treatments</span> </div> </a> <ul id="toc-Mathematical_treatments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Physical_treatments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Physical_treatments"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>Physical treatments</span> </div> </a> <ul id="toc-Physical_treatments-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Euclidean vector</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 95 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-95" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">95 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Vektor_(Wiskunde)" title="Vektor (Wiskunde) – Afrikaans" lang="af" hreflang="af" data-title="Vektor (Wiskunde)" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Vektor" title="Vektor – Alemannic" lang="gsw" hreflang="gsw" data-title="Vektor" data-language-autonym="Alemannisch" data-language-local-name="Alemannic" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-am mw-list-item"><a href="https://am.wikipedia.org/wiki/%E1%8C%A8%E1%88%A8%E1%88%AD" title="ጨረር – Amharic" lang="am" hreflang="am" data-title="ጨረር" data-language-autonym="አማርኛ" data-language-local-name="Amharic" class="interlanguage-link-target"><span>አማርኛ</span></a></li><li class="interlanguage-link interwiki-smn mw-list-item"><a href="https://smn.wikipedia.org/wiki/Vektor" title="Vektor – Inari Sami" lang="smn" hreflang="smn" data-title="Vektor" data-language-autonym="Anarâškielâ" data-language-local-name="Inari Sami" class="interlanguage-link-target"><span>Anarâškielâ</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AA%D8%AC%D9%87" title="متجه – Arabic" lang="ar" hreflang="ar" data-title="متجه" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Vector" title="Vector – Asturian" lang="ast" hreflang="ast" data-title="Vector" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Vektor_(h%C9%99nd%C9%99s%C9%99)" title="Vektor (həndəsə) – Azerbaijani" lang="az" hreflang="az" data-title="Vektor (həndəsə)" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%DB%8C%D8%A4%D9%86%D8%A6%DB%8C_(%D9%87%D9%86%D8%AF%D8%B3%D9%87)" title="یؤنئی (هندسه) – South Azerbaijani" lang="azb" hreflang="azb" data-title="یؤنئی (هندسه)" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B8%E0%A6%A6%E0%A6%BF%E0%A6%95_%E0%A6%B0%E0%A6%BE%E0%A6%B6%E0%A6%BF" title="সদিক রাশি – Bangla" lang="bn" hreflang="bn" data-title="সদিক রাশি" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Hi%C3%B2ng-li%C5%8Dng" title="Hiòng-liōng – Minnan" lang="nan" hreflang="nan" data-title="Hiòng-liōng" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Вектор (геометрия) – Bashkir" lang="ba" hreflang="ba" data-title="Вектор (геометрия)" data-language-autonym="Башҡортса" data-language-local-name="Bashkir" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%B0%D1%80_(%D0%BC%D0%B0%D1%82%D1%8D%D0%BC%D0%B0%D1%82%D1%8B%D0%BA%D0%B0)" title="Вектар (матэматыка) – Belarusian" lang="be" hreflang="be" data-title="Вектар (матэматыка)" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%92%D1%8D%D0%BA%D1%82%D0%B0%D1%80" title="Вэктар – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Вэктар" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – Bulgarian" lang="bg" hreflang="bg" data-title="Вектор" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Euklidski_vektor" title="Euklidski vektor – Bosnian" lang="bs" hreflang="bs" data-title="Euklidski vektor" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Vector_(matem%C3%A0tiques)" title="Vector (matemàtiques) – Catalan" lang="ca" hreflang="ca" data-title="Vector (matemàtiques)" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8)" title="Вектор (геометри) – Chuvash" lang="cv" hreflang="cv" data-title="Вектор (геометри)" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Vektor" title="Vektor – Czech" lang="cs" hreflang="cs" data-title="Vektor" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Fector" title="Fector – Welsh" lang="cy" hreflang="cy" data-title="Fector" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Vektor_(geometri)" title="Vektor (geometri) – Danish" lang="da" hreflang="da" data-title="Vektor (geometri)" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Vektor" title="Vektor – German" lang="de" hreflang="de" data-title="Vektor" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Vektor" title="Vektor – Estonian" lang="et" hreflang="et" data-title="Vektor" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%95%CF%85%CE%BA%CE%BB%CE%B5%CE%AF%CE%B4%CE%B5%CE%B9%CE%BF_%CE%B4%CE%B9%CE%AC%CE%BD%CF%85%CF%83%CE%BC%CE%B1" title="Ευκλείδειο διάνυσμα – Greek" lang="el" hreflang="el" data-title="Ευκλείδειο διάνυσμα" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-myv mw-list-item"><a href="https://myv.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Вектор (геометрия) – Erzya" lang="myv" hreflang="myv" data-title="Вектор (геометрия)" data-language-autonym="Эрзянь" data-language-local-name="Erzya" class="interlanguage-link-target"><span>Эрзянь</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Vector" title="Vector – Spanish" lang="es" hreflang="es" data-title="Vector" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Vektoro" title="Vektoro – Esperanto" lang="eo" hreflang="eo" data-title="Vektoro" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Bektore_(matematika)" title="Bektore (matematika) – Basque" lang="eu" hreflang="eu" data-title="Bektore (matematika)" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A8%D8%B1%D8%AF%D8%A7%D8%B1_%D8%A7%D9%82%D9%84%DB%8C%D8%AF%D8%B3%DB%8C" title="بردار اقلیدسی – Persian" lang="fa" hreflang="fa" data-title="بردار اقلیدسی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Vecteur_euclidien" title="Vecteur euclidien – French" lang="fr" hreflang="fr" data-title="Vecteur euclidien" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Veicteoir" title="Veicteoir – Irish" lang="ga" hreflang="ga" data-title="Veicteoir" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gd mw-list-item"><a href="https://gd.wikipedia.org/wiki/Bheactor" title="Bheactor – Scottish Gaelic" lang="gd" hreflang="gd" data-title="Bheactor" data-language-autonym="Gàidhlig" data-language-local-name="Scottish Gaelic" class="interlanguage-link-target"><span>Gàidhlig</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Vector" title="Vector – Galician" lang="gl" hreflang="gl" data-title="Vector" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9C%A0%ED%81%B4%EB%A6%AC%EB%93%9C_%EB%B2%A1%ED%84%B0" title="유클리드 벡터 – Korean" lang="ko" hreflang="ko" data-title="유클리드 벡터" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%A6%E0%A4%BF%E0%A4%B6_%E0%A4%B0%E0%A4%BE%E0%A4%B6%E0%A4%BF" title="सदिश राशि – Hindi" lang="hi" hreflang="hi" data-title="सदिश राशि" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Vektor" title="Vektor – Croatian" lang="hr" hreflang="hr" data-title="Vektor" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Vektoro" title="Vektoro – Ido" lang="io" hreflang="io" data-title="Vektoro" data-language-autonym="Ido" data-language-local-name="Ido" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Vektor_Euklides" title="Vektor Euklides – Indonesian" lang="id" hreflang="id" data-title="Vektor Euklides" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Vigur_(st%C3%A6r%C3%B0fr%C3%A6%C3%B0i)" title="Vigur (stærðfræði) – Icelandic" lang="is" hreflang="is" data-title="Vigur (stærðfræði)" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Vettore_(matematica)" title="Vettore (matematica) – Italian" lang="it" hreflang="it" data-title="Vettore (matematica)" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%95%D7%A7%D7%98%D7%95%D7%A8_%D7%90%D7%95%D7%A7%D7%9C%D7%99%D7%93%D7%99" title="וקטור אוקלידי – Hebrew" lang="he" hreflang="he" data-title="וקטור אוקלידי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%95%E1%83%94%E1%83%A5%E1%83%A2%E1%83%9D%E1%83%A0%E1%83%98" title="ვექტორი – Georgian" lang="ka" hreflang="ka" data-title="ვექტორი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – Kazakh" lang="kk" hreflang="kk" data-title="Вектор" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Vekt%C3%A8" title="Vektè – Haitian Creole" lang="ht" hreflang="ht" data-title="Vektè" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Vector_(mathematica)" title="Vector (mathematica) – Latin" lang="la" hreflang="la" data-title="Vector (mathematica)" data-language-autonym="Latina" data-language-local-name="Latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Vektors" title="Vektors – Latvian" lang="lv" hreflang="lv" data-title="Vektors" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Vektorius" title="Vektorius – Lithuanian" lang="lt" hreflang="lt" data-title="Vektorius" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Vettor_(matematega)" title="Vettor (matematega) – Lombard" lang="lmo" hreflang="lmo" data-title="Vettor (matematega)" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Vektor" title="Vektor – Hungarian" lang="hu" hreflang="hu" data-title="Vektor" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk badge-Q17437796 badge-featuredarticle mw-list-item" title="featured article badge"><a href="https://mk.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – Macedonian" lang="mk" hreflang="mk" data-title="Вектор" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B8%E0%B4%A6%E0%B4%BF%E0%B4%B6%E0%B4%82_(%E0%B4%9C%E0%B5%8D%E0%B4%AF%E0%B4%BE%E0%B4%AE%E0%B4%BF%E0%B4%A4%E0%B4%BF)" title="സദിശം (ജ്യാമിതി) – Malayalam" lang="ml" hreflang="ml" data-title="സദിശം (ജ്യാമിതി)" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Vettur_ewklidju" title="Vettur ewklidju – Maltese" lang="mt" hreflang="mt" data-title="Vettur ewklidju" data-language-autonym="Malti" data-language-local-name="Maltese" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Vektor" title="Vektor – Malay" lang="ms" hreflang="ms" data-title="Vektor" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-cdo mw-list-item"><a href="https://cdo.wikipedia.org/wiki/Hi%C3%B3ng-li%C3%B4ng" title="Hióng-liông – Mindong" lang="cdo" hreflang="cdo" data-title="Hióng-liông" data-language-autonym="閩東語 / Mìng-dĕ̤ng-ngṳ̄" data-language-local-name="Mindong" class="interlanguage-link-target"><span>閩東語 / Mìng-dĕ̤ng-ngṳ̄</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%B8%D0%B9%D0%BD_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Евклидийн вектор – Mongolian" lang="mn" hreflang="mn" data-title="Евклидийн вектор" data-language-autonym="Монгол" data-language-local-name="Mongolian" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Vector_(wiskunde)" title="Vector (wiskunde) – Dutch" lang="nl" hreflang="nl" data-title="Vector (wiskunde)" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%A9%BA%E9%96%93%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB" title="空間ベクトル – Japanese" lang="ja" hreflang="ja" data-title="空間ベクトル" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Vektor" title="Vektor – Northern Frisian" lang="frr" hreflang="frr" data-title="Vektor" data-language-autonym="Nordfriisk" data-language-local-name="Northern Frisian" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Vektor_(matematikk)" title="Vektor (matematikk) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Vektor (matematikk)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Vektor" title="Vektor – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Vektor" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Вектор" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-om mw-list-item"><a href="https://om.wikipedia.org/wiki/Kalqabee" title="Kalqabee – Oromo" lang="om" hreflang="om" data-title="Kalqabee" data-language-autonym="Oromoo" data-language-local-name="Oromo" class="interlanguage-link-target"><span>Oromoo</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Vektor_(matematika)" title="Vektor (matematika) – Uzbek" lang="uz" hreflang="uz" data-title="Vektor (matematika)" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-ps mw-list-item"><a href="https://ps.wikipedia.org/wiki/%D8%AF_%D8%A7%D9%82%D9%84%D9%8A%D8%AF%D8%B3_%D9%84%D9%88%D8%B1%DB%8C" title="د اقليدس لوری – Pashto" lang="ps" hreflang="ps" data-title="د اقليدس لوری" data-language-autonym="پښتو" data-language-local-name="Pashto" class="interlanguage-link-target"><span>پښتو</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Vetor" title="Vetor – Piedmontese" lang="pms" hreflang="pms" data-title="Vetor" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Vekter" title="Vekter – Low German" lang="nds" hreflang="nds" data-title="Vekter" data-language-autonym="Plattdüütsch" data-language-local-name="Low German" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wektor" title="Wektor – Polish" lang="pl" hreflang="pl" data-title="Wektor" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Vetor_(matem%C3%A1tica)" title="Vetor (matemática) – Portuguese" lang="pt" hreflang="pt" data-title="Vetor (matemática)" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Vector_euclidian" title="Vector euclidian – Romanian" lang="ro" hreflang="ro" data-title="Vector euclidian" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Вектор (геометрия) – Russian" lang="ru" hreflang="ru" data-title="Вектор (геометрия)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Вектор (геометрия) – Yakut" lang="sah" hreflang="sah" data-title="Вектор (геометрия)" data-language-autonym="Саха тыла" data-language-local-name="Yakut" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Vektori" title="Vektori – Albanian" lang="sq" hreflang="sq" data-title="Vektori" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Vettura_euclideu" title="Vettura euclideu – Sicilian" lang="scn" hreflang="scn" data-title="Vettura euclideu" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B6%BA%E0%B7%94%E0%B6%9A%E0%B7%8A%E0%B6%BD%E0%B7%92%E0%B6%A9%E0%B7%92%E0%B6%BA%E0%B7%8F%E0%B6%B1%E0%B7%94_%E0%B6%AF%E0%B7%9B%E0%B7%81%E0%B7%92%E0%B6%9A%E0%B6%BA" title="යුක්ලිඩියානු දෛශිකය – Sinhala" lang="si" hreflang="si" data-title="යුක්ලිඩියානු දෛශිකය" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Vector" title="Vector – Simple English" lang="en-simple" hreflang="en-simple" data-title="Vector" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Vektor_(matematika)" title="Vektor (matematika) – Slovak" lang="sk" hreflang="sk" data-title="Vektor (matematika)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Vektor_(matematika)" title="Vektor (matematika) – Slovenian" lang="sl" hreflang="sl" data-title="Vektor (matematika)" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Wekt%C5%AFr" title="Wektůr – Silesian" lang="szl" hreflang="szl" data-title="Wektůr" data-language-autonym="Ślůnski" data-language-local-name="Silesian" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%A6%D8%A7%DA%95%D8%A7%D8%B3%D8%AA%DB%95%D8%A8%DA%95%DB%8C_%D8%A6%DB%8C%D9%82%D9%84%DB%8C%D8%AF%D8%B3%DB%8C" title="ئاڕاستەبڕی ئیقلیدسی – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ئاڕاستەبڕی ئیقلیدسی" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Вектор – Serbian" lang="sr" hreflang="sr" data-title="Вектор" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Vektor" title="Vektor – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Vektor" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/V%C3%A9ktor_(rohangan)" title="Véktor (rohangan) – Sundanese" lang="su" hreflang="su" data-title="Véktor (rohangan)" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Vektori" title="Vektori – Finnish" lang="fi" hreflang="fi" data-title="Vektori" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Vektor" title="Vektor – Swedish" lang="sv" hreflang="sv" data-title="Vektor" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Euclidyanong_bektor" title="Euclidyanong bektor – Tagalog" lang="tl" hreflang="tl" data-title="Euclidyanong bektor" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AE%BF%E0%AE%9A%E0%AF%88%E0%AE%AF%E0%AE%A9%E0%AF%8D" title="திசையன் – Tamil" lang="ta" hreflang="ta" data-title="திசையன்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B9%80%E0%B8%A7%E0%B8%81%E0%B9%80%E0%B8%95%E0%B8%AD%E0%B8%A3%E0%B9%8C" title="เวกเตอร์ – Thai" lang="th" hreflang="th" data-title="เวกเตอร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Vekt%C3%B6r" title="Vektör – Turkish" lang="tr" hreflang="tr" data-title="Vektör" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Wektor_ululyklar" title="Wektor ululyklar – Turkmen" lang="tk" hreflang="tk" data-title="Wektor ululyklar" data-language-autonym="Türkmençe" data-language-local-name="Turkmen" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D1%96%D0%B4%D1%96%D0%B2_%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80" title="Евклідів вектор – Ukrainian" lang="uk" hreflang="uk" data-title="Евклідів вектор" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A7%D9%82%D9%84%DB%8C%D8%AF%D8%B3%DB%8C_%D8%B3%D9%85%D8%AA%DB%8C%DB%81" title="اقلیدسی سمتیہ – Urdu" lang="ur" hreflang="ur" data-title="اقلیدسی سمتیہ" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Vect%C6%A1" title="Vectơ – Vietnamese" lang="vi" hreflang="vi" data-title="Vectơ" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%90%91%E9%87%8F" title="向量 – Wu" lang="wuu" hreflang="wuu" data-title="向量" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%95%D7%95%D7%A2%D7%A7%D7%98%D7%90%D7%A8" title="וועקטאר – Yiddish" lang="yi" hreflang="yi" data-title="וועקטאר" data-language-autonym="ייִדיש" data-language-local-name="Yiddish" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%90%91%E9%87%8F" title="向量 – Cantonese" lang="yue" hreflang="yue" data-title="向量" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%90%91%E9%87%8F" title="向量 – Chinese" lang="zh" hreflang="zh" data-title="向量" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44528#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Euclidean_vector" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Euclidean_vector" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Euclidean_vector"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Euclidean_vector&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Euclidean_vector&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Euclidean_vector"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Euclidean_vector&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Euclidean_vector&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Euclidean_vector" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Euclidean_vector" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Euclidean_vector&oldid=1253482264" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Euclidean_vector&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Euclidean_vector&id=1253482264&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEuclidean_vector%23Addition_and_subtraction"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEuclidean_vector%23Addition_and_subtraction"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Euclidean_vector&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Euclidean_vector&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Vectors" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikibooks mw-list-item"><a href="https://en.wikibooks.org/wiki/Vectors" hreflang="en"><span>Wikibooks</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/Euclidean_vector" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q44528" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Vector_addition&redirect=no" class="mw-redirect" title="Vector addition">Vector addition</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Geometric object that has length and direction</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For mathematical vectors in general, see <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector (mathematics and physics)</a>. For other uses, see <a href="/wiki/Vector_(disambiguation)" class="mw-redirect mw-disambig" title="Vector (disambiguation)">Vector (disambiguation)</a>.</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_from_A_to_B.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/220px-Vector_from_A_to_B.svg.png" decoding="async" width="220" height="88" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/330px-Vector_from_A_to_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/440px-Vector_from_A_to_B.svg.png 2x" data-file-width="512" data-file-height="204" /></a><figcaption>A vector pointing from <i>A</i> to <i>B</i></figcaption></figure> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, <a href="/wiki/Physics" title="Physics">physics</a>, and <a href="/wiki/Engineering" title="Engineering">engineering</a>, a <b>Euclidean vector</b> or simply a <b>vector</b> (sometimes called a <b>geometric vector</b><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> or <b>spatial vector</b><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>) is a geometric object that has <a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">magnitude</a> (or <a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">length</a>) and <a href="/wiki/Direction_(geometry)" title="Direction (geometry)">direction</a>. Euclidean vectors can be added and scaled to form a <a href="/wiki/Vector_space" title="Vector space">vector space</a>. A <i><a href="/wiki/Vector_quantity" title="Vector quantity">vector quantity</a></i> is a vector-valued <a href="/wiki/Physical_quantity" title="Physical quantity">physical quantity</a>, including <a href="/wiki/Units_of_measurement" class="mw-redirect" title="Units of measurement">units of measurement</a> and possibly a <a href="/wiki/Support_(mathematics)" title="Support (mathematics)">support</a>, formulated as a <i><a href="/wiki/Directed_line_segment" class="mw-redirect" title="Directed line segment">directed line segment</a></i>. A vector is frequently depicted graphically as an arrow connecting an <i>initial point</i> <i>A</i> with a <i>terminal point</i> <i>B</i>,<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> and denoted by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\stackrel {\longrightarrow }{AB}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>A</mi> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">⟶<!-- ⟶ --></mo> </mrow> </mover> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\stackrel {\longrightarrow }{AB}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1685a314ff2cd5e06977ddfa3475af7e0f8da120" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.452ex; height:3.676ex;" alt="{\textstyle {\stackrel {\longrightarrow }{AB}}.}"></span> </p><p>A vector is what is needed to "carry" the point <i>A</i> to the point <i>B</i>; the Latin word <i>vector</i> means "carrier".<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> It was first used by 18th century astronomers investigating planetary revolution around the Sun.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> The magnitude of the vector is the distance between the two points, and the direction refers to the direction of <a href="/wiki/Displacement_(geometry)" title="Displacement (geometry)">displacement</a> from <i>A</i> to <i>B</i>. Many <a href="/wiki/Algebraic_operation" title="Algebraic operation">algebraic operations</a> on <a href="/wiki/Real_number" title="Real number">real numbers</a> such as <a href="/wiki/Addition" title="Addition">addition</a>, <a href="/wiki/Subtraction" title="Subtraction">subtraction</a>, <a href="/wiki/Multiplication" title="Multiplication">multiplication</a>, and <a href="/wiki/Additive_inverse" title="Additive inverse">negation</a> have close analogues for vectors,<sup id="cite_ref-:1_6-0" class="reference"><a href="#cite_note-:1-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> operations which obey the familiar algebraic laws of <a href="/wiki/Commutativity" class="mw-redirect" title="Commutativity">commutativity</a>, <a href="/wiki/Associativity" class="mw-redirect" title="Associativity">associativity</a>, and <a href="/wiki/Distributivity" class="mw-redirect" title="Distributivity">distributivity</a>. These operations and associated laws qualify <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean</a> vectors as an example of the more generalized concept of vectors defined simply as elements of a <a href="/wiki/Vector_space" title="Vector space">vector space</a>. </p><p>Vectors play an important role in <a href="/wiki/Physics" title="Physics">physics</a>: the <a href="/wiki/Velocity" title="Velocity">velocity</a> and <a href="/wiki/Acceleration" title="Acceleration">acceleration</a> of a moving object and the <a href="/wiki/Force" title="Force">forces</a> acting on it can all be described with vectors.<sup id="cite_ref-:2_7-0" class="reference"><a href="#cite_note-:2-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Many other physical quantities can be usefully thought of as vectors. Although most of them do not represent distances (except, for example, <a href="/wiki/Position_(vector)" class="mw-redirect" title="Position (vector)">position</a> or <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement</a>), their magnitude and direction can still be represented by the length and direction of an arrow. The mathematical representation of a physical vector depends on the <a href="/wiki/Coordinate_system" title="Coordinate system">coordinate system</a> used to describe it. Other vector-like objects that describe <a href="/wiki/Physical_quantities" class="mw-redirect" title="Physical quantities">physical quantities</a> and transform in a similar way under changes of the coordinate system include <a href="/wiki/Pseudovector" title="Pseudovector">pseudovectors</a> and <a href="/wiki/Tensor" title="Tensor">tensors</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The vector concept, as it is known today, is the result of a gradual development over a period of more than 200 years. About a dozen people contributed significantly to its development.<sup id="cite_ref-Crowe_9-0" class="reference"><a href="#cite_note-Crowe-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> In 1835, <a href="/wiki/Giusto_Bellavitis" title="Giusto Bellavitis">Giusto Bellavitis</a> abstracted the basic idea when he established the concept of <a href="/wiki/Equipollence_(geometry)" title="Equipollence (geometry)">equipollence</a>. Working in a Euclidean plane, he made equipollent any pair of <a href="/wiki/Parallel_(geometry)" title="Parallel (geometry)">parallel</a> line segments of the same length and orientation. Essentially, he realized an <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence relation</a> on the pairs of points (bipoints) in the plane, and thus erected the first space of vectors in the plane.<sup id="cite_ref-Crowe_9-1" class="reference"><a href="#cite_note-Crowe-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup class="reference nowrap"><span title="Page / location: 52–4">: 52–4 </span></sup> The term <i>vector</i> was introduced by <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">William Rowan Hamilton</a> as part of a <a href="/wiki/Quaternion" title="Quaternion">quaternion</a>, which is a sum <span class="texhtml"><i>q</i> = <i>s</i> + <i>v</i></span> of a <a href="/wiki/Real_number" title="Real number">real number</a> <span class="texhtml"><i>s</i></span> (also called <i>scalar</i>) and a 3-dimensional <i>vector</i>. Like Bellavitis, Hamilton viewed vectors as representative of <a href="/wiki/Equivalence_class" title="Equivalence class">classes</a> of equipollent directed segments. As <a href="/wiki/Complex_number" title="Complex number">complex numbers</a> use an <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a> to complement the <a href="/wiki/Real_line" class="mw-redirect" title="Real line">real line</a>, Hamilton considered the vector <span class="texhtml"><i>v</i></span> to be the <i>imaginary part</i> of a quaternion:<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>The algebraically imaginary part, being geometrically constructed by a straight line, or radius vector, which has, in general, for each determined quaternion, a determined length and determined direction in space, may be called the vector part, or simply the vector of the quaternion.</p></blockquote> <p>Several other mathematicians developed vector-like systems in the middle of the nineteenth century, including <a href="/wiki/Augustin_Cauchy" class="mw-redirect" title="Augustin Cauchy">Augustin Cauchy</a>, <a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a>, <a href="/wiki/August_M%C3%B6bius" class="mw-redirect" title="August Möbius">August Möbius</a>, <a href="/wiki/Comte_de_Saint-Venant" class="mw-redirect" title="Comte de Saint-Venant">Comte de Saint-Venant</a>, and <a href="/wiki/Matthew_O%27Brien_(mathematician)" title="Matthew O'Brien (mathematician)">Matthew O'Brien</a>. Grassmann's 1840 work <i>Theorie der Ebbe und Flut</i> (Theory of the Ebb and Flow) was the first system of spatial analysis that is similar to today's system, and had ideas corresponding to the cross product, scalar product and vector differentiation. Grassmann's work was largely neglected until the 1870s.<sup id="cite_ref-Crowe_9-2" class="reference"><a href="#cite_note-Crowe-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Peter_Guthrie_Tait" title="Peter Guthrie Tait">Peter Guthrie Tait</a> carried the quaternion standard after Hamilton. His 1867 <i>Elementary Treatise of Quaternions</i> included extensive treatment of the nabla or <a href="/wiki/Del" title="Del">del operator</a> ∇. In 1878, <i><a href="/wiki/Elements_of_Dynamic" title="Elements of Dynamic">Elements of Dynamic</a></i> was published by <a href="/wiki/William_Kingdon_Clifford" title="William Kingdon Clifford">William Kingdon Clifford</a>. Clifford simplified the quaternion study by isolating the <a href="/wiki/Dot_product" title="Dot product">dot product</a> and <a href="/wiki/Cross_product" title="Cross product">cross product</a> of two vectors from the complete quaternion product. This approach made vector calculations available to engineers—and others working in three dimensions and skeptical of the fourth. </p><p><a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">Josiah Willard Gibbs</a>, who was exposed to quaternions through <a href="/wiki/James_Clerk_Maxwell" title="James Clerk Maxwell">James Clerk Maxwell</a>'s <i>Treatise on Electricity and Magnetism</i>, separated off their vector part for independent treatment. The first half of Gibbs's <i>Elements of Vector Analysis</i>, published in 1881, presents what is essentially the modern system of vector analysis.<sup id="cite_ref-Crowe_9-3" class="reference"><a href="#cite_note-Crowe-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_6-1" class="reference"><a href="#cite_note-:1-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> In 1901, <a href="/wiki/Edwin_Bidwell_Wilson" title="Edwin Bidwell Wilson">Edwin Bidwell Wilson</a> published <i><a href="/wiki/Vector_Analysis" title="Vector Analysis">Vector Analysis</a></i>, adapted from Gibbs's lectures, which banished any mention of quaternions in the development of vector calculus. </p> <div class="mw-heading mw-heading2"><h2 id="Overview">Overview</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=2" title="Edit section: Overview"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Physics" title="Physics">physics</a> and <a href="/wiki/Engineering" title="Engineering">engineering</a>, a vector is typically regarded as a geometric entity characterized by a <a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">magnitude</a> and a <a href="/wiki/Relative_direction" class="mw-redirect" title="Relative direction">relative direction</a>. It is formally defined as a <a href="/wiki/Directed_line_segment" class="mw-redirect" title="Directed line segment">directed line segment</a>, or arrow, in a <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> In <a href="/wiki/Pure_mathematics" title="Pure mathematics">pure mathematics</a>, a <a href="/wiki/Vector_(mathematics)" class="mw-redirect" title="Vector (mathematics)">vector</a> is defined more generally as any element of a <a href="/wiki/Vector_space" title="Vector space">vector space</a>. In this context, vectors are abstract entities which may or may not be characterized by a magnitude and a direction. This generalized definition implies that the above-mentioned geometric entities are a special kind of abstract vectors, as they are elements of a special kind of vector space called <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>. This particular article is about vectors strictly defined as arrows in Euclidean space. When it becomes necessary to distinguish these special vectors from vectors as defined in pure mathematics, they are sometimes referred to as <i><b>geometric</b></i>, <i><b>spatial</b></i>, or <i><b>Euclidean</b></i> vectors. </p><p>A Euclidean vector may possess a definite <i>initial point</i> and <i>terminal point</i>; such a condition may be emphasized calling the result a <i><b>bound vector</b></i>.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> When only the magnitude and direction of the vector matter, and the particular initial or terminal points are of no importance, the vector is called a <i><b>free vector</b></i>. The distinction between bound and free vectors is especially relevant in mechanics, where a <a href="/wiki/Force" title="Force">force</a> applied to a body has a point of contact (see <a href="/wiki/Resultant_force" title="Resultant force">resultant force</a> and <a href="/wiki/Couple_(mechanics)" title="Couple (mechanics)">couple</a>). </p><p>Two arrows <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\stackrel {\,\longrightarrow }{AB}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>A</mi> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mo stretchy="false">⟶<!-- ⟶ --></mo> </mrow> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\stackrel {\,\longrightarrow }{AB}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2179c2609a938b5de1169073fc640e951d75055e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.193ex; height:3.676ex;" alt="{\displaystyle {\stackrel {\,\longrightarrow }{AB}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\stackrel {\,\longrightarrow }{A'B'}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <msup> <mi>A</mi> <mo>′</mo> </msup> <msup> <mi>B</mi> <mo>′</mo> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="thinmathspace" /> <mo stretchy="false">⟶<!-- ⟶ --></mo> </mrow> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\stackrel {\,\longrightarrow }{A'B'}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ac8509a59a3dda4c0bc75836afe7b7b42994d0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.877ex; height:4.009ex;" alt="{\displaystyle {\stackrel {\,\longrightarrow }{A'B'}}}"></span> in space represent the same free vector if they have the same magnitude and direction: that is, they are <a href="/wiki/Equipollence_(geometry)" title="Equipollence (geometry)">equipollent</a> if the quadrilateral <i>ABB′A′</i> is a <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a>. If the Euclidean space is equipped with a choice of <a href="/wiki/Origin_(mathematics)" title="Origin (mathematics)">origin</a>, then a free vector is equivalent to the bound vector of the same magnitude and direction whose initial point is the origin. </p><p>The term <i>vector</i> also has generalizations to higher dimensions, and to more formal approaches with much wider applications. </p> <div class="mw-heading mw-heading3"><h3 id="Further_information">Further information</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=3" title="Edit section: Further information"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In classical <a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a> (i.e., <a href="/wiki/Synthetic_geometry" title="Synthetic geometry">synthetic geometry</a>), vectors were introduced (during the 19th century) as <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence classes</a> under <a href="/wiki/Equipollence_(geometry)" title="Equipollence (geometry)">equipollence</a>, of <a href="/wiki/Ordered_pair" title="Ordered pair">ordered pairs</a> of points; two pairs <span class="texhtml">(<i>A</i>, <i>B</i>)</span> and <span class="texhtml">(<i>C</i>, <i>D</i>)</span> being equipollent if the points <span class="texhtml"><i>A</i>, <i>B</i>, <i>D</i>, <i>C</i></span>, in this order, form a <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a>. Such an equivalence class is called a <i>vector</i>, more precisely, a Euclidean vector.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> The equivalence class of <span class="texhtml">(<i>A</i>, <i>B</i>)</span> is often denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {AB}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>B</mi> </mrow> <mo>→<!-- → --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {AB}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c6456460139935ea147f2f27e5f3c406584eab2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-top: -0.372ex; width:4.284ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {AB}}.}"></span> </p><p>A Euclidean vector is thus an equivalence class of directed segments with the same magnitude (e.g., the length of the <a href="/wiki/Line_segment" title="Line segment">line segment</a> <span class="texhtml">(<i>A</i>, <i>B</i>)</span>) and same direction (e.g., the direction from <span class="texhtml mvar" style="font-style:italic;">A</span> to <span class="texhtml mvar" style="font-style:italic;">B</span>).<sup id="cite_ref-1.1:_Vectors_14-0" class="reference"><a href="#cite_note-1.1:_Vectors-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> In physics, Euclidean vectors are used to represent physical quantities that have both magnitude and direction, but are not located at a specific place, in contrast to <a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">scalars</a>, which have no direction.<sup id="cite_ref-:2_7-1" class="reference"><a href="#cite_note-:2-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> For example, <a href="/wiki/Velocity" title="Velocity">velocity</a>, <a href="/wiki/Force" title="Force">forces</a> and <a href="/wiki/Acceleration" title="Acceleration">acceleration</a> are represented by vectors. </p><p>In modern geometry, Euclidean spaces are often defined from <a href="/wiki/Linear_algebra" title="Linear algebra">linear algebra</a>. More precisely, a Euclidean space <span class="texhtml mvar" style="font-style:italic;">E</span> is defined as a set to which is associated an <a href="/wiki/Inner_product_space" title="Inner product space">inner product space</a> of finite dimension over the reals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {E}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>→<!-- → --></mo> </mover> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {E}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bc2d2ae2efe2b4092a3b8feac33a91c240943fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.203ex; height:4.009ex;" alt="{\displaystyle {\overrightarrow {E}},}"></span> and a <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">group action</a> of the <a href="/wiki/Additive_group" title="Additive group">additive group</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {E}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>→<!-- → --></mo> </mover> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {E}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bc2d2ae2efe2b4092a3b8feac33a91c240943fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.203ex; height:4.009ex;" alt="{\displaystyle {\overrightarrow {E}},}"></span> which is <a href="/wiki/Free_action" class="mw-redirect" title="Free action">free</a> and <a href="/wiki/Transitive_action" class="mw-redirect" title="Transitive action">transitive</a> (See <a href="/wiki/Affine_space" title="Affine space">Affine space</a> for details of this construction). The elements of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>→<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d664d9d5a70d17f42f3b274eb2e79037cf3bcae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.557ex; height:3.676ex;" alt="{\displaystyle {\overrightarrow {E}}}"></span> are called <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translations</a>. It has been proven that the two definitions of Euclidean spaces are equivalent, and that the equivalence classes under equipollence may be identified with translations. </p><p>Sometimes, Euclidean vectors are considered without reference to a Euclidean space. In this case, a Euclidean vector is an element of a normed vector space of finite dimension over the reals, or, typically, an element of the <a href="/wiki/Real_coordinate_space" title="Real coordinate space">real coordinate space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> equipped with the <a href="/wiki/Dot_product" title="Dot product">dot product</a>. This makes sense, as the addition in such a vector space acts freely and transitively on the vector space itself. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> is a Euclidean space, with itself as an associated vector space, and the dot product as an inner product. </p><p>The Euclidean space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c510b63578322050121fe966f2e5770bea43308d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}}"></span> is often presented as <i>the</i> <a href="/wiki/Standard_Euclidean_space" class="mw-redirect" title="Standard Euclidean space">standard Euclidean space</a> of dimension <span class="texhtml mvar" style="font-style:italic;">n</span>. This is motivated by the fact that every Euclidean space of dimension <span class="texhtml mvar" style="font-style:italic;">n</span> is <a href="/wiki/Isomorphism" title="Isomorphism">isomorphic</a> to the Euclidean space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76ef548febfc9981762740107858be9e3a5576c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.543ex; height:2.343ex;" alt="{\displaystyle \mathbb {R} ^{n}.}"></span> More precisely, given such a Euclidean space, one may choose any point <span class="texhtml mvar" style="font-style:italic;">O</span> as an <a href="/wiki/Origin_(geometry)" class="mw-redirect" title="Origin (geometry)">origin</a>. By <a href="/wiki/Gram%E2%80%93Schmidt_process" title="Gram–Schmidt process">Gram–Schmidt process</a>, one may also find an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> of the associated vector space (a basis such that the inner product of two basis vectors is 0 if they are different and 1 if they are equal). This defines <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> of any point <span class="texhtml mvar" style="font-style:italic;">P</span> of the space, as the coordinates on this basis of the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {OP}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>P</mi> </mrow> <mo>→<!-- → --></mo> </mover> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {OP}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/046b84f7e442fc1a9e43ec90a06c900c8897040d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-top: -0.4ex; width:4.46ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {OP}}.}"></span> These choices define an isomorphism of the given Euclidean space onto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7035fcb9fe3ebecc6bc9f372f82d0352202c8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.543ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{n},}"></span> by mapping any point to the <a href="/wiki/Tuple" title="Tuple"><span class="texhtml mvar" style="font-style:italic;">n</span>-tuple</a> of its Cartesian coordinates, and every vector to its <a href="/wiki/Coordinate_vector" title="Coordinate vector">coordinate vector</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Examples_in_one_dimension">Examples in one dimension</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=4" title="Edit section: Examples in one dimension"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since the physicist's concept of <a href="/wiki/Force_(physics)" class="mw-redirect" title="Force (physics)">force</a> has a direction and a magnitude, it may be seen as a vector. As an example, consider a rightward force <i>F</i> of 15 <a href="/wiki/Newton_(unit)" title="Newton (unit)">newtons</a>. If the positive <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">axis</a> is also directed rightward, then <i>F</i> is represented by the vector 15 N, and if positive points leftward, then the vector for <i>F</i> is −15 N. In either case, the magnitude of the vector is 15 N. Likewise, the vector representation of a displacement Δ<i>s</i> of 4 <a href="/wiki/Meter_(unit)" class="mw-redirect" title="Meter (unit)">meters</a> would be 4 m or −4 m, depending on its direction, and its magnitude would be 4 m regardless. </p> <div class="mw-heading mw-heading3"><h3 id="In_physics_and_engineering">In physics and engineering</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=5" title="Edit section: In physics and engineering"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Vectors are fundamental in the physical sciences. They can be used to represent any quantity that has magnitude, has direction, and which adheres to the rules of vector addition. An example is <a href="/wiki/Velocity" title="Velocity">velocity</a>, the magnitude of which is <a href="/wiki/Speed" title="Speed">speed</a>. For instance, the velocity <i>5 meters per second upward</i> could be represented by the vector (0, 5) (in 2 dimensions with the positive <i>y</i>-axis as 'up'). Another quantity represented by a vector is <a href="/wiki/Force" title="Force">force</a>, since it has a magnitude and direction and follows the rules of vector addition.<sup id="cite_ref-:2_7-2" class="reference"><a href="#cite_note-:2-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Vectors also describe many other physical quantities, such as linear displacement, <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement</a>, linear acceleration, <a href="/wiki/Angular_acceleration" title="Angular acceleration">angular acceleration</a>, <a href="/wiki/Linear_momentum" class="mw-redirect" title="Linear momentum">linear momentum</a>, and <a href="/wiki/Angular_momentum" title="Angular momentum">angular momentum</a>. Other physical vectors, such as the <a href="/wiki/Electric_field" title="Electric field">electric</a> and <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a>, are represented as a system of vectors at each point of a physical space; that is, a <a href="/wiki/Vector_field" title="Vector field">vector field</a>. Examples of quantities that have magnitude and direction, but fail to follow the rules of vector addition, are angular displacement and electric current. Consequently, these are not vectors. </p> <div class="mw-heading mw-heading3"><h3 id="In_Cartesian_space">In Cartesian space</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=6" title="Edit section: In Cartesian space"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a>, a bound vector can be represented by identifying the coordinates of its initial and terminal point. For instance, the points <span class="texhtml"><i>A</i> = (1, 0, 0)</span> and <span class="texhtml"><i>B</i> = (0, 1, 0)</span> in space determine the bound vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {AB}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mi>B</mi> </mrow> <mo>→<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {AB}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b245e60e48c3c8f577aaf9512a1bdf3049cc6207" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-top: -0.372ex; width:3.637ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {AB}}}"></span> pointing from the point <span class="texhtml"><i>x</i> = 1</span> on the <i>x</i>-axis to the point <span class="texhtml"><i>y</i> = 1</span> on the <i>y</i>-axis. </p><p>In Cartesian coordinates, a free vector may be thought of in terms of a corresponding bound vector, in this sense, whose initial point has the coordinates of the origin <span class="texhtml"><i>O</i> = (0, 0, 0)</span>. It is then determined by the coordinates of that bound vector's terminal point. Thus the free vector represented by (1, 0, 0) is a vector of unit length—pointing along the direction of the positive <i>x</i>-axis. </p><p>This coordinate representation of free vectors allows their algebraic features to be expressed in a convenient numerical fashion. For example, the sum of the two (free) vectors (1, 2, 3) and (−2, 0, 4) is the (free) vector <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,2,3)+(-2,0,4)=(1-2,2+0,3+4)=(-1,2,7)\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mo>,</mo> <mn>2</mn> <mo>+</mo> <mn>0</mn> <mo>,</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>7</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,2,3)+(-2,0,4)=(1-2,2+0,3+4)=(-1,2,7)\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/395f67c1c338c7aa8c27e074664e25e3e8684260" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.154ex; height:2.843ex;" alt="{\displaystyle (1,2,3)+(-2,0,4)=(1-2,2+0,3+4)=(-1,2,7)\,.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Euclidean_and_affine_vectors">Euclidean and affine vectors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=7" title="Edit section: Euclidean and affine vectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the geometrical and physical settings, it is sometimes possible to associate, in a natural way, a <i>length</i> or magnitude and a direction to vectors. In addition, the notion of direction is strictly associated with the notion of an <i>angle</i> between two vectors. If the <a href="/wiki/Dot_product" title="Dot product">dot product</a> of two vectors is defined—a scalar-valued product of two vectors—then it is also possible to define a length; the dot product gives a convenient algebraic characterization of both angle (a function of the dot product between any two non-zero vectors) and length (the square root of the dot product of a vector by itself). In three dimensions, it is further possible to define the <a href="/wiki/Cross_product" title="Cross product">cross product</a>, which supplies an algebraic characterization of the <a href="/wiki/Area" title="Area">area</a> and <a href="/wiki/Orientation_(geometry)" title="Orientation (geometry)">orientation</a> in space of the <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a> defined by two vectors (used as sides of the parallelogram). In any dimension (and, in particular, higher dimensions), it is possible to define the <a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">exterior product</a>, which (among other things) supplies an algebraic characterization of the area and orientation in space of the <i>n</i>-dimensional <a href="/wiki/Parallelepiped#Parallelotope" title="Parallelepiped">parallelotope</a> defined by <i>n</i> vectors. </p><p>In a <a href="/wiki/Pseudo-Euclidean_space" title="Pseudo-Euclidean space">pseudo-Euclidean space</a>, a vector's squared length can be positive, negative, or zero. An important example is <a href="/wiki/Minkowski_space" title="Minkowski space">Minkowski space</a> (which is important to our understanding of <a href="/wiki/Special_relativity" title="Special relativity">special relativity</a>). </p><p>However, it is not always possible or desirable to define the length of a vector. This more general type of spatial vector is the subject of <a href="/wiki/Vector_space" title="Vector space">vector spaces</a> (for free vectors) and <a href="/wiki/Affine_space" title="Affine space">affine spaces</a> (for bound vectors, as each represented by an ordered pair of "points"). One physical example comes from <a href="/wiki/Thermodynamics" title="Thermodynamics">thermodynamics</a>, where many quantities of interest can be considered vectors in a space with no notion of length or angle.<sup id="cite_ref-thermo-forms_15-0" class="reference"><a href="#cite_note-thermo-forms-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Generalizations">Generalizations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=8" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In physics, as well as mathematics, a vector is often identified with a <a href="/wiki/Tuple" title="Tuple">tuple</a> of components, or list of numbers, that act as scalar coefficients for a set of <a href="/wiki/Basis_vector" class="mw-redirect" title="Basis vector">basis vectors</a>. When the basis is transformed, for example by rotation or stretching, then the components of any vector in terms of that basis also transform in an opposite sense. The vector itself has not changed, but the basis has, so the components of the vector must change to compensate. The vector is called <i>covariant</i> or <i>contravariant</i>, depending on how the transformation of the vector's components is related to the transformation of the basis. In general, contravariant vectors are "regular vectors" with units of distance (such as a displacement), or distance times some other unit (such as velocity or acceleration); covariant vectors, on the other hand, have units of one-over-distance such as <a href="/wiki/Gradient" title="Gradient">gradient</a>. If you change units (a special case of a <a href="/wiki/Change_of_basis" title="Change of basis">change of basis</a>) from meters to millimeters, a scale factor of 1/1000, a displacement of 1 m becomes 1000 mm—a contravariant change in numerical value. In contrast, a gradient of 1 <a href="/wiki/Kelvin" title="Kelvin">K</a>/m becomes 0.001 K/mm—a covariant change in value (for more, see <a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">covariance and contravariance of vectors</a>). <a href="/wiki/Tensor" title="Tensor">Tensors</a> are another type of quantity that behave in this way; a vector is one type of <a href="/wiki/Tensor" title="Tensor">tensor</a>. </p><p>In pure <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a vector is any element of a <a href="/wiki/Vector_space" title="Vector space">vector space</a> over some <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> and is often represented as a <a href="/wiki/Coordinate_vector" title="Coordinate vector">coordinate vector</a>. The vectors described in this article are a very special case of this general definition, because they are contravariant with respect to the ambient space. Contravariance captures the physical intuition behind the idea that a vector has "magnitude and direction". </p> <div class="mw-heading mw-heading2"><h2 id="Representations">Representations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=9" title="Edit section: Representations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Vector_representation" class="mw-redirect" title="Vector representation">Vector representation</a></div> <figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:Vector_from_A_to_B.svg" class="mw-file-description" title="Vector arrow pointing from A to B"><img alt="Vector arrow pointing from A to B" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/200px-Vector_from_A_to_B.svg.png" decoding="async" width="200" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/300px-Vector_from_A_to_B.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/Vector_from_A_to_B.svg/400px-Vector_from_A_to_B.svg.png 2x" data-file-width="512" data-file-height="204" /></a><figcaption>Vector arrow pointing from <i>A</i> to <i>B</i></figcaption></figure> <p>Vectors are usually denoted in <a href="/wiki/Lowercase" class="mw-redirect" title="Lowercase">lowercase</a> boldface, as in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261e20fe101de02a771021d9d4466c0ad3e352d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.485ex; height:1.676ex;" alt="{\displaystyle \mathbf {u} }"></span><b>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span></b> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {w} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">w</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {w} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20795664b5b048744a2fd88977851104cc5816f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.931ex; height:1.676ex;" alt="{\displaystyle \mathbf {w} }"></span>, or in lowercase italic boldface, as in <i><b>a</b></i>. (<a href="/wiki/Uppercase" class="mw-redirect" title="Uppercase">Uppercase</a> letters are typically used to represent <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>.) Other conventions include <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/546e6615827e17295718741fd0b86f639a947f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:2.343ex;" alt="{\displaystyle {\vec {a}}}"></span> or <u><i>a</i></u>, especially in handwriting. Alternatively, some use a <a href="/wiki/Tilde" title="Tilde">tilde</a> (~) or a wavy underline drawn beneath the symbol, e.g. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underset {^{\sim }}{a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>a</mi> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∼<!-- ∼ --></mo> </mrow> </msup> </munder> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underset {^{\sim }}{a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e6b9a3a6bfaeccd24d9e4c2c6a4a47d1daba994" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:1.23ex; height:3.343ex;" alt="{\displaystyle {\underset {^{\sim }}{a}}}"></span>, which is a convention for indicating boldface type. If the vector represents a directed <a href="/wiki/Distance" title="Distance">distance</a> or <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement</a> from a point <i>A</i> to a point <i>B</i> (see figure), it can also be denoted as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\stackrel {\longrightarrow }{AB}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>A</mi> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">⟶<!-- ⟶ --></mo> </mrow> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\stackrel {\longrightarrow }{AB}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a7763711eb7a45cb0644b415e054d5d352fea9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.806ex; height:3.676ex;" alt="{\displaystyle {\stackrel {\longrightarrow }{AB}}}"></span> or <u><i>AB</i></u>. In <a href="/wiki/German_language" title="German language">German</a> literature, it was especially common to represent vectors with small <a href="/wiki/Fraktur" title="Fraktur">fraktur</a> letters such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathfrak {a}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathfrak {a}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16f656feeddb5d98500bb4d3fc31038d0b87484b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:1.676ex;" alt="{\displaystyle {\mathfrak {a}}}"></span>. </p><p>Vectors are usually shown in graphs or other diagrams as arrows (directed <a href="/wiki/Line_segment" title="Line segment">line segments</a>), as illustrated in the figure. Here, the point <i>A</i> is called the <i>origin</i>, <i>tail</i>, <i>base</i>, or <i>initial point</i>, and the point <i>B</i> is called the <i>head</i>, <i>tip</i>, <i>endpoint</i>, <i>terminal point</i> or <i>final point</i>. The length of the arrow is proportional to the vector's <a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">magnitude</a>, while the direction in which the arrow points indicates the vector's direction. </p> <figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:Notation_for_vectors_in_or_out_of_a_plane.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Notation_for_vectors_in_or_out_of_a_plane.svg/200px-Notation_for_vectors_in_or_out_of_a_plane.svg.png" decoding="async" width="200" height="76" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Notation_for_vectors_in_or_out_of_a_plane.svg/300px-Notation_for_vectors_in_or_out_of_a_plane.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Notation_for_vectors_in_or_out_of_a_plane.svg/400px-Notation_for_vectors_in_or_out_of_a_plane.svg.png 2x" data-file-width="512" data-file-height="195" /></a><figcaption></figcaption></figure> <p>On a two-dimensional diagram, a vector <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a> to the <a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">plane</a> of the diagram is sometimes desired. These vectors are commonly shown as small circles. A circle with a dot at its centre (Unicode U+2299 ⊙) indicates a vector pointing out of the front of the diagram, toward the viewer. A circle with a cross inscribed in it (Unicode U+2297 ⊗) indicates a vector pointing into and behind the diagram. These can be thought of as viewing the tip of an <a href="/wiki/Arrow_(weapon)" class="mw-redirect" title="Arrow (weapon)">arrow</a> head on and viewing the flights of an arrow from the back. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Position_vector.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Position_vector.svg/220px-Position_vector.svg.png" decoding="async" width="220" height="185" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Position_vector.svg/330px-Position_vector.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5d/Position_vector.svg/440px-Position_vector.svg.png 2x" data-file-width="619" data-file-height="520" /></a><figcaption>A vector in the Cartesian plane, showing the position of a point <i>A</i> with coordinates (2, 3).</figcaption></figure> <figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/File:3D_Vector.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/3D_Vector.svg/300px-3D_Vector.svg.png" decoding="async" width="300" height="284" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fd/3D_Vector.svg/450px-3D_Vector.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fd/3D_Vector.svg/600px-3D_Vector.svg.png 2x" data-file-width="555" data-file-height="525" /></a><figcaption></figcaption></figure> <p>In order to calculate with vectors, the graphical representation may be too cumbersome. Vectors in an <i>n</i>-dimensional Euclidean space can be represented as <a href="/wiki/Coordinate_vector" title="Coordinate vector">coordinate vectors</a> in a <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a>. The endpoint of a vector can be identified with an ordered list of <i>n</i> real numbers (<i>n</i>-<a href="/wiki/Tuple" title="Tuple">tuple</a>). These numbers are the <a href="/wiki/Cartesian_coordinate" class="mw-redirect" title="Cartesian coordinate">coordinates</a> of the endpoint of the vector, with respect to a given <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a>, and are typically called the <i><a href="/wiki/Scalar_component" class="mw-redirect" title="Scalar component">scalar components</a></i> (or <i>scalar projections</i>) of the vector on the axes of the coordinate system. </p><p>As an example in two dimensions (see figure), the vector from the origin <i>O</i> = (0, 0) to the point <i>A</i> = (2, 3) is simply written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =(2,3).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =(2,3).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5001e44c736b0318f2649daae132396a64161f8e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.213ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} =(2,3).}"></span> </p><p>The notion that the tail of the vector coincides with the origin is implicit and easily understood. Thus, the more explicit notation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overrightarrow {OA}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>O</mi> <mi>A</mi> </mrow> <mo>→<!-- → --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overrightarrow {OA}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/539359d530829a937dd5af1779649b4b64e8c315" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-top: -0.372ex; width:3.646ex; height:3.843ex;" alt="{\displaystyle {\overrightarrow {OA}}}"></span> is usually deemed not necessary (and is indeed rarely used). </p><p>In <i>three dimensional</i> Euclidean space (or <span class="texhtml"><b>R</b><sup>3</sup></span>), vectors are identified with triples of scalar components: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =(a_{1},a_{2},a_{3}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =(a_{1},a_{2},a_{3}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c18784ddaa0173f5999217c41042ed4185e208c9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.774ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} =(a_{1},a_{2},a_{3}).}"></span> also written, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =(a_{x},a_{y},a_{z}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =(a_{x},a_{y},a_{z}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6df2fe880895742cd837fedea74ce84cb8b5a7c9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.835ex; height:3.009ex;" alt="{\displaystyle \mathbf {a} =(a_{x},a_{y},a_{z}).}"></span> </p><p>This can be generalised to <i>n-dimensional</i> Euclidean space (or <span class="texhtml"><b>R</b><sup><i>n</i></sup></span>). <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =(a_{1},a_{2},a_{3},\cdots ,a_{n-1},a_{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mo>⋯<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =(a_{1},a_{2},a_{3},\cdots ,a_{n-1},a_{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aee2cc863741dd87bd21da529140dd2d1814a66" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.983ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} =(a_{1},a_{2},a_{3},\cdots ,a_{n-1},a_{n}).}"></span> </p><p>These numbers are often arranged into a <a href="/wiki/Column_vector" class="mw-redirect" title="Column vector">column vector</a> or <a href="/wiki/Row_vector" class="mw-redirect" title="Row vector">row vector</a>, particularly when dealing with <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>, as follows: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ={\begin{bmatrix}a_{1}\\a_{2}\\a_{3}\\\end{bmatrix}}=[a_{1}\ a_{2}\ a_{3}]^{\operatorname {T} }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mtext> </mtext> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mtext> </mtext> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ={\begin{bmatrix}a_{1}\\a_{2}\\a_{3}\\\end{bmatrix}}=[a_{1}\ a_{2}\ a_{3}]^{\operatorname {T} }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a4d592431150c7ec8a51217d87dae2ed1224df2" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:25.005ex; height:9.176ex;" alt="{\displaystyle \mathbf {a} ={\begin{bmatrix}a_{1}\\a_{2}\\a_{3}\\\end{bmatrix}}=[a_{1}\ a_{2}\ a_{3}]^{\operatorname {T} }.}"></span> </p><p>Another way to represent a vector in <i>n</i>-dimensions is to introduce the <a href="/wiki/Standard_basis" title="Standard basis">standard basis</a> vectors. For instance, in three dimensions, there are three of them: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {e} }_{1}=(1,0,0),\ {\mathbf {e} }_{2}=(0,1,0),\ {\mathbf {e} }_{3}=(0,0,1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {e} }_{1}=(1,0,0),\ {\mathbf {e} }_{2}=(0,1,0),\ {\mathbf {e} }_{3}=(0,0,1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53cdade7939c4e4253dd603a282cec0382bc2478" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.103ex; height:2.843ex;" alt="{\displaystyle {\mathbf {e} }_{1}=(1,0,0),\ {\mathbf {e} }_{2}=(0,1,0),\ {\mathbf {e} }_{3}=(0,0,1).}"></span> These have the intuitive interpretation as vectors of unit length pointing up the <i>x</i>-, <i>y</i>-, and <i>z</i>-axis of a <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a>, respectively. In terms of these, any vector <b>a</b> in <span class="texhtml"><b>R</b><sup>3</sup></span> can be expressed in the form: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =(a_{1},a_{2},a_{3})=a_{1}(1,0,0)+a_{2}(0,1,0)+a_{3}(0,0,1),\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =(a_{1},a_{2},a_{3})=a_{1}(1,0,0)+a_{2}(0,1,0)+a_{3}(0,0,1),\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/268dbb49eebf0c6e7c7dd045b2ffaaf747c34228" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:54.467ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} =(a_{1},a_{2},a_{3})=a_{1}(1,0,0)+a_{2}(0,1,0)+a_{3}(0,0,1),\ }"></span> </p><p>or <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =\mathbf {a} _{1}+\mathbf {a} _{2}+\mathbf {a} _{3}=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =\mathbf {a} _{1}+\mathbf {a} _{2}+\mathbf {a} _{3}=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3f2f7062ce588b0524ae0df3917fdc55edb0303" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:40.256ex; height:2.343ex;" alt="{\displaystyle \mathbf {a} =\mathbf {a} _{1}+\mathbf {a} _{2}+\mathbf {a} _{3}=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3},}"></span> </p><p>where <b>a</b><sub>1</sub>, <b>a</b><sub>2</sub>, <b>a</b><sub>3</sub> are called the <b><a href="/wiki/Vector_component" class="mw-redirect" title="Vector component">vector components</a></b> (or <b>vector projections</b>) of <b>a</b> on the basis vectors or, equivalently, on the corresponding Cartesian axes <i>x</i>, <i>y</i>, and <i>z</i> (see figure), while <i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub> are the respective <a href="/wiki/Scalar_component" class="mw-redirect" title="Scalar component">scalar components</a> (or scalar projections). </p><p>In introductory physics textbooks, the standard basis vectors are often denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d0ff20e01dd78f8f2149bcd2193013bd4aa8035" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.037ex; height:2.509ex;" alt="{\displaystyle \mathbf {i} ,\mathbf {j} ,\mathbf {k} }"></span> instead (or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {x}} ,\mathbf {\hat {y}} ,\mathbf {\hat {z}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">x</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">y</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">z</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {x}} ,\mathbf {\hat {y}} ,\mathbf {\hat {z}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b4bb94515ac2abba6ffb1834cbb612f5ac1c8cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.226ex; height:2.676ex;" alt="{\displaystyle \mathbf {\hat {x}} ,\mathbf {\hat {y}} ,\mathbf {\hat {z}} }"></span>, in which the <a href="/wiki/Hat_symbol" class="mw-redirect" title="Hat symbol">hat symbol</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow /> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f14f8d3f0cad618cfbc607ffbc6a3ce4c0b04c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.337ex; height:2.009ex;" alt="{\displaystyle \mathbf {\hat {}} }"></span> typically denotes <a href="/wiki/Unit_vector" title="Unit vector">unit vectors</a>). In this case, the scalar and vector components are denoted respectively <i>a<sub>x</sub></i>, <i>a<sub>y</sub></i>, <i>a<sub>z</sub></i>, and <b>a</b><sub><i>x</i></sub>, <b>a</b><sub><i>y</i></sub>, <b>a</b><sub><i>z</i></sub> (note the difference in boldface). Thus, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =\mathbf {a} _{x}+\mathbf {a} _{y}+\mathbf {a} _{z}=a_{x}{\mathbf {i} }+a_{y}{\mathbf {j} }+a_{z}{\mathbf {k} }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">i</mi> </mrow> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">j</mi> </mrow> </mrow> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">k</mi> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =\mathbf {a} _{x}+\mathbf {a} _{y}+\mathbf {a} _{z}=a_{x}{\mathbf {i} }+a_{y}{\mathbf {j} }+a_{z}{\mathbf {k} }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba5af3348216e4fc1a4780df716905ae87fe664b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:36.509ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} =\mathbf {a} _{x}+\mathbf {a} _{y}+\mathbf {a} _{z}=a_{x}{\mathbf {i} }+a_{y}{\mathbf {j} }+a_{z}{\mathbf {k} }.}"></span> </p><p>The notation <b>e</b><sub><i>i</i></sub> is compatible with the <a href="/wiki/Index_notation" title="Index notation">index notation</a> and the <a href="/wiki/Summation_convention" class="mw-redirect" title="Summation convention">summation convention</a> commonly used in higher level mathematics, physics, and engineering. </p> <div class="mw-heading mw-heading3"><h3 id="Decomposition_or_resolution"><span class="anchor" id="Vector_component"></span><span class="anchor" id="Decomposition"></span> Decomposition or resolution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=10" title="Edit section: Decomposition or resolution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis (linear algebra)</a></div> <p>As explained <a href="#Representations">above</a>, a vector is often described by a set of vector components that <a href="#Addition_and_subtraction">add up</a> to form the given vector. Typically, these components are the <a href="/wiki/Vector_projection" title="Vector projection">projections</a> of the vector on a set of mutually perpendicular reference axes (basis vectors). The vector is said to be <i>decomposed</i> or <i>resolved with respect to</i> that set. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Surface_normal_tangent.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Surface_normal_tangent.svg/220px-Surface_normal_tangent.svg.png" decoding="async" width="220" height="213" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Surface_normal_tangent.svg/330px-Surface_normal_tangent.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7a/Surface_normal_tangent.svg/440px-Surface_normal_tangent.svg.png 2x" data-file-width="1314" data-file-height="1272" /></a><figcaption>Illustration of tangential and normal components of a vector to a surface.</figcaption></figure> <p>The decomposition or resolution<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> of a vector into components is not unique, because it depends on the choice of the axes on which the vector is projected. </p><p>Moreover, the use of Cartesian unit vectors such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {x}} ,\mathbf {\hat {y}} ,\mathbf {\hat {z}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">x</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">y</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">z</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {x}} ,\mathbf {\hat {y}} ,\mathbf {\hat {z}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b4bb94515ac2abba6ffb1834cbb612f5ac1c8cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.226ex; height:2.676ex;" alt="{\displaystyle \mathbf {\hat {x}} ,\mathbf {\hat {y}} ,\mathbf {\hat {z}} }"></span> as a <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a> in which to represent a vector is not mandated. Vectors can also be expressed in terms of an arbitrary basis, including the unit vectors of a <a href="/wiki/Cylindrical_coordinate_system" title="Cylindrical coordinate system">cylindrical coordinate system</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {\hat {\rho }}},{\boldsymbol {\hat {\phi }}},\mathbf {\hat {z}} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ρ<!-- ρ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ϕ<!-- ϕ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">z</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {\hat {\rho }}},{\boldsymbol {\hat {\phi }}},\mathbf {\hat {z}} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbbbc1a17868784aee9302ab09c31546fab97fc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.725ex; height:3.176ex;" alt="{\displaystyle {\boldsymbol {\hat {\rho }}},{\boldsymbol {\hat {\phi }}},\mathbf {\hat {z}} }"></span>) or <a href="/wiki/Spherical_coordinate_system" title="Spherical coordinate system">spherical coordinate system</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {r}} ,{\boldsymbol {\hat {\theta }}},{\boldsymbol {\hat {\phi }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">r</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">θ<!-- θ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold-italic">ϕ<!-- ϕ --></mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {r}} ,{\boldsymbol {\hat {\theta }}},{\boldsymbol {\hat {\phi }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/970a17c6353d2f80eac9f031defd481dcad9f328" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.682ex; height:3.176ex;" alt="{\displaystyle \mathbf {\hat {r}} ,{\boldsymbol {\hat {\theta }}},{\boldsymbol {\hat {\phi }}}}"></span>). The latter two choices are more convenient for solving problems which possess cylindrical or spherical symmetry, respectively. </p><p>The choice of a basis does not affect the properties of a vector or its behaviour under transformations. </p><p>A vector can also be broken up with respect to "non-fixed" basis vectors that change their <a href="/wiki/Orientation_(geometry)" title="Orientation (geometry)">orientation</a> as a function of time or space. For example, a vector in three-dimensional space can be decomposed with respect to two axes, respectively <i>normal</i>, and <i>tangent</i> to a surface (see figure). Moreover, the <i>radial</i> and <i><a href="/wiki/Tangential_component" class="mw-redirect" title="Tangential component">tangential components</a></i> of a vector relate to the <i><a href="/wiki/Radius" title="Radius">radius</a> of <a href="/wiki/Rotation" title="Rotation">rotation</a></i> of an object. The former is <a href="/wiki/Parallel_(geometry)" title="Parallel (geometry)">parallel</a> to the radius and the latter is <a href="/wiki/Perpendicular" title="Perpendicular">orthogonal</a> to it.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p><p>In these cases, each of the components may be in turn decomposed with respect to a fixed coordinate system or basis set (e.g., a <i>global</i> coordinate system, or <a href="/wiki/Inertial_reference_frame" class="mw-redirect" title="Inertial reference frame">inertial reference frame</a>). </p> <div class="mw-heading mw-heading2"><h2 id="Properties_and_operations">Properties and operations<span class="anchor" id="Properties"></span><span class="anchor" id="Operations"></span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=11" title="Edit section: Properties and operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Vector_notation#Operations" title="Vector notation">Vector notation § Operations</a></div> <p>The following section uses the <a href="/wiki/Cartesian_coordinate_system" title="Cartesian coordinate system">Cartesian coordinate system</a> with basis vectors <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {e} }_{1}=(1,0,0),\ {\mathbf {e} }_{2}=(0,1,0),\ {\mathbf {e} }_{3}=(0,0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mtext> </mtext> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {e} }_{1}=(1,0,0),\ {\mathbf {e} }_{2}=(0,1,0),\ {\mathbf {e} }_{3}=(0,0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d77f8f673c1e19acc6cccfe93fcef18dfcfec24" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.456ex; height:2.843ex;" alt="{\displaystyle {\mathbf {e} }_{1}=(1,0,0),\ {\mathbf {e} }_{2}=(0,1,0),\ {\mathbf {e} }_{3}=(0,0,1)}"></span> and assumes that all vectors have the origin as a common base point. A vector <b>a</b> will be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {a} }=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {a} }=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b08e072138a1b57a0e67d7dd81d4af72c627bb14" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.416ex; height:2.343ex;" alt="{\displaystyle {\mathbf {a} }=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Equality">Equality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=12" title="Edit section: Equality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two vectors are said to be equal if they have the same magnitude and direction. Equivalently they will be equal if their coordinates are equal. So two vectors <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {a} }=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {a} }=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/571d07f851ee25f218183363b7fec7266dfdf2fa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.769ex; height:2.343ex;" alt="{\displaystyle {\mathbf {a} }=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {b} }=b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2}+b_{3}{\mathbf {e} }_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {b} }=b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2}+b_{3}{\mathbf {e} }_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46acc2a3f76856b4d526262d5eb74f023ef4cc79" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.258ex; height:2.509ex;" alt="{\displaystyle {\mathbf {b} }=b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2}+b_{3}{\mathbf {e} }_{3}}"></span> are equal if <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}=b_{1},\quad a_{2}=b_{2},\quad a_{3}=b_{3}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}=b_{1},\quad a_{2}=b_{2},\quad a_{3}=b_{3}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f1d6d86c8b6e7368ef58bdbda9d37ce5e80421e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:30.05ex; height:2.509ex;" alt="{\displaystyle a_{1}=b_{1},\quad a_{2}=b_{2},\quad a_{3}=b_{3}.\,}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Opposite,_parallel,_and_antiparallel_vectors"><span id="Opposite.2C_parallel.2C_and_antiparallel_vectors"></span>Opposite, parallel, and antiparallel vectors <span class="anchor" id="antiparallel"></span><span class="anchor" id="opposite"></span><span class="anchor" id="parallel"></span></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=13" title="Edit section: Opposite, parallel, and antiparallel vectors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Two vectors are <i>opposite</i> if they have the same magnitude but <a href="/wiki/Opposite_direction_(geometry)" class="mw-redirect" title="Opposite direction (geometry)">opposite direction</a>;<sup id="cite_ref-HMCS_18-0" class="reference"><a href="#cite_note-HMCS-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> so two vectors </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {a} }=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {a} }=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/571d07f851ee25f218183363b7fec7266dfdf2fa" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.769ex; height:2.343ex;" alt="{\displaystyle {\mathbf {a} }=a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}}"></span> </p><p>and </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {b} }=b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2}+b_{3}{\mathbf {e} }_{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {b} }=b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2}+b_{3}{\mathbf {e} }_{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46acc2a3f76856b4d526262d5eb74f023ef4cc79" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.258ex; height:2.509ex;" alt="{\displaystyle {\mathbf {b} }=b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2}+b_{3}{\mathbf {e} }_{3}}"></span> </p><p>are opposite if </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1}=-b_{1},\quad a_{2}=-b_{2},\quad a_{3}=-b_{3}.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1}=-b_{1},\quad a_{2}=-b_{2},\quad a_{3}=-b_{3}.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46645191ae5f74b974be506f04eebc83fbdb5456" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:35.474ex; height:2.509ex;" alt="{\displaystyle a_{1}=-b_{1},\quad a_{2}=-b_{2},\quad a_{3}=-b_{3}.\,}"></span> </p><p>Two vectors are <i><a href="/wiki/Equidirectional" class="mw-redirect" title="Equidirectional">equidirectional</a></i> (or <i>codirectional</i>) if they have the same direction but not necessarily the same magnitude.<sup id="cite_ref-HMCS_18-1" class="reference"><a href="#cite_note-HMCS-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> Two vectors are <i>parallel</i> if they have either the same or opposite direction, but not necessarily the same magnitude; two vectors are <i>antiparallel</i> if they have strictly opposite direction, but not necessarily the same magnitude.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Addition_and_subtraction">Addition and subtraction</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=14" title="Edit section: Addition and subtraction"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Vector_space" title="Vector space">Vector space</a></div> <p>The sum of <b>a</b> and <b>b</b> of two vectors may be defined as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} +\mathbf {b} =(a_{1}+b_{1})\mathbf {e} _{1}+(a_{2}+b_{2})\mathbf {e} _{2}+(a_{3}+b_{3})\mathbf {e} _{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} +\mathbf {b} =(a_{1}+b_{1})\mathbf {e} _{1}+(a_{2}+b_{2})\mathbf {e} _{2}+(a_{3}+b_{3})\mathbf {e} _{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3682ea299d3f0678c45b23ac9c850c30221a502" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.846ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} +\mathbf {b} =(a_{1}+b_{1})\mathbf {e} _{1}+(a_{2}+b_{2})\mathbf {e} _{2}+(a_{3}+b_{3})\mathbf {e} _{3}.}"></span> The resulting vector is sometimes called the <b>resultant vector</b> of <b>a</b> and <b>b</b>. </p><p>The addition may be represented graphically by placing the tail of the arrow <b>b</b> at the head of the arrow <b>a</b>, and then drawing an arrow from the tail of <b>a</b> to the head of <b>b</b>. The new arrow drawn represents the vector <b>a</b> + <b>b</b>, as illustrated below:<sup id="cite_ref-:2_7-3" class="reference"><a href="#cite_note-:2-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Vector_addition.svg" class="mw-file-description" title="The addition of two vectors a and b"><img alt="The addition of two vectors a and b" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/Vector_addition.svg/250px-Vector_addition.svg.png" decoding="async" width="250" height="132" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/28/Vector_addition.svg/375px-Vector_addition.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/28/Vector_addition.svg/500px-Vector_addition.svg.png 2x" data-file-width="445" data-file-height="235" /></a><figcaption>The addition of two vectors <b>a</b> and <b>b</b></figcaption></figure> <p>This addition method is sometimes called the <i>parallelogram rule</i> because <b>a</b> and <b>b</b> form the sides of a <a href="/wiki/Parallelogram" title="Parallelogram">parallelogram</a> and <b>a</b> + <b>b</b> is one of the diagonals. If <b>a</b> and <b>b</b> are bound vectors that have the same base point, this point will also be the base point of <b>a</b> + <b>b</b>. One can check geometrically that <b>a</b> + <b>b</b> = <b>b</b> + <b>a</b> and (<b>a</b> + <b>b</b>) + <b>c</b> = <b>a</b> + (<b>b</b> + <b>c</b>). </p><p>The difference of <b>a</b> and <b>b</b> is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} -\mathbf {b} =(a_{1}-b_{1})\mathbf {e} _{1}+(a_{2}-b_{2})\mathbf {e} _{2}+(a_{3}-b_{3})\mathbf {e} _{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} -\mathbf {b} =(a_{1}-b_{1})\mathbf {e} _{1}+(a_{2}-b_{2})\mathbf {e} _{2}+(a_{3}-b_{3})\mathbf {e} _{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bb76515e11d90d5c929eccdc1185530a18d6fee" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:48.846ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} -\mathbf {b} =(a_{1}-b_{1})\mathbf {e} _{1}+(a_{2}-b_{2})\mathbf {e} _{2}+(a_{3}-b_{3})\mathbf {e} _{3}.}"></span> </p><p>Subtraction of two vectors can be geometrically illustrated as follows: to subtract <b>b</b> from <b>a</b>, place the tails of <b>a</b> and <b>b</b> at the same point, and then draw an arrow from the head of <b>b</b> to the head of <b>a</b>. This new arrow represents the vector <b>(-b)</b> + <b>a</b>, with <b>(-b)</b> being the opposite of <b>b</b>, see drawing. And <b>(-b)</b> + <b>a</b> = <b>a</b> − <b>b</b>. </p> <figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Vector_subtraction.svg" class="mw-file-description" title="The subtraction of two vectors a and b"><img alt="The subtraction of two vectors a and b" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Vector_subtraction.svg/125px-Vector_subtraction.svg.png" decoding="async" width="125" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/24/Vector_subtraction.svg/188px-Vector_subtraction.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/24/Vector_subtraction.svg/250px-Vector_subtraction.svg.png 2x" data-file-width="206" data-file-height="149" /></a><figcaption>The subtraction of two vectors <b>a</b> and <b>b</b></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Scalar_multiplication">Scalar multiplication</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=15" title="Edit section: Scalar multiplication"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Scalar_multiplication" title="Scalar multiplication">Scalar multiplication</a></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Scalar_multiplication_by_r%3D3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Scalar_multiplication_by_r%3D3.svg/250px-Scalar_multiplication_by_r%3D3.svg.png" decoding="async" width="250" height="139" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Scalar_multiplication_by_r%3D3.svg/375px-Scalar_multiplication_by_r%3D3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Scalar_multiplication_by_r%3D3.svg/500px-Scalar_multiplication_by_r%3D3.svg.png 2x" data-file-width="622" data-file-height="345" /></a><figcaption>Scalar multiplication of a vector by a factor of 3 stretches the vector out.</figcaption></figure> <p>A vector may also be multiplied, or re-<i>scaled</i>, by any <a href="/wiki/Real_number" title="Real number">real number</a> <i>r</i>. In the context of <a href="/wiki/Vector_analysis" class="mw-redirect" title="Vector analysis">conventional vector algebra</a>, these real numbers are often called <b>scalars</b> (from <i>scale</i>) to distinguish them from vectors. The operation of multiplying a vector by a scalar is called <i>scalar multiplication</i>. The resulting vector is </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r\mathbf {a} =(ra_{1})\mathbf {e} _{1}+(ra_{2})\mathbf {e} _{2}+(ra_{3})\mathbf {e} _{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>r</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mi>r</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <mi>r</mi> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r\mathbf {a} =(ra_{1})\mathbf {e} _{1}+(ra_{2})\mathbf {e} _{2}+(ra_{3})\mathbf {e} _{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a6af27c3cb5dbb6d4a2d3a24156647daf72b9cd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.038ex; height:2.843ex;" alt="{\displaystyle r\mathbf {a} =(ra_{1})\mathbf {e} _{1}+(ra_{2})\mathbf {e} _{2}+(ra_{3})\mathbf {e} _{3}.}"></span> </p><p>Intuitively, multiplying by a scalar <i>r</i> stretches a vector out by a factor of <i>r</i>. Geometrically, this can be visualized (at least in the case when <i>r</i> is an integer) as placing <i>r</i> copies of the vector in a line where the endpoint of one vector is the initial point of the next vector. </p><p>If <i>r</i> is negative, then the vector changes direction: it flips around by an angle of 180°. Two examples (<i>r</i> = −1 and <i>r</i> = 2) are given below: </p> <figure class="mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Scalar_multiplication_of_vectors2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Scalar_multiplication_of_vectors2.svg/250px-Scalar_multiplication_of_vectors2.svg.png" decoding="async" width="250" height="105" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Scalar_multiplication_of_vectors2.svg/375px-Scalar_multiplication_of_vectors2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Scalar_multiplication_of_vectors2.svg/500px-Scalar_multiplication_of_vectors2.svg.png 2x" data-file-width="617" data-file-height="258" /></a><figcaption>The scalar multiplications −<b>a</b> and 2<b>a</b> of a vector <b>a</b></figcaption></figure> <p>Scalar multiplication is <a href="/wiki/Distributivity" class="mw-redirect" title="Distributivity">distributive</a> over vector addition in the following sense: <i>r</i>(<b>a</b> + <b>b</b>) = <i>r</i><b>a</b> + <i>r</i><b>b</b> for all vectors <b>a</b> and <b>b</b> and all scalars <i>r</i>. One can also show that <b>a</b> − <b>b</b> = <b>a</b> + (−1)<b>b</b>. </p> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading3"><h3 id="Length">Length</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=16" title="Edit section: Length"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i><a href="/wiki/Length" title="Length">length</a></i>, <i><a href="/wiki/Magnitude_(mathematics)" title="Magnitude (mathematics)">magnitude</a></i> or <i><a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">norm</a></i> of the vector <b>a</b> is denoted by ‖<b>a</b>‖ or, less commonly, |<b>a</b>|, which is not to be confused with the <a href="/wiki/Absolute_value" title="Absolute value">absolute value</a> (a scalar "norm"). </p><p>The length of the vector <b>a</b> can be computed with the <i><a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">Euclidean norm</a></i>, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\mathbf {a} \right\|={\sqrt {a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\mathbf {a} \right\|={\sqrt {a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2686039adcb3b7ba6cc03dee2af6d9844ac8ab08" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.226ex; height:4.843ex;" alt="{\displaystyle \left\|\mathbf {a} \right\|={\sqrt {a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}},}"></span> </p><p>which is a consequence of the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a> since the basis vectors <b>e</b><sub>1</sub>, <b>e</b><sub>2</sub>, <b>e</b><sub>3</sub> are orthogonal unit vectors. </p><p>This happens to be equal to the square root of the <a href="/wiki/Dot_product" title="Dot product">dot product</a>, discussed below, of the vector with itself: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\|\mathbf {a} \right\|={\sqrt {\mathbf {a} \cdot \mathbf {a} }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\|\mathbf {a} \right\|={\sqrt {\mathbf {a} \cdot \mathbf {a} }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c4cb3ee58fb36ab48d1a8f195b51f50b830b899" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.584ex; height:3.009ex;" alt="{\displaystyle \left\|\mathbf {a} \right\|={\sqrt {\mathbf {a} \cdot \mathbf {a} }}.}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Unit_vector">Unit vector</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=17" title="Edit section: Unit vector"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Vector_normalization.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Vector_normalization.svg/220px-Vector_normalization.svg.png" decoding="async" width="220" height="388" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Vector_normalization.svg/330px-Vector_normalization.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Vector_normalization.svg/440px-Vector_normalization.svg.png 2x" data-file-width="85" data-file-height="150" /></a><figcaption>The normalization of a vector <b>a</b> into a unit vector <b>â</b></figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Unit_vector" title="Unit vector">Unit vector</a></div> <p>A <i>unit vector</i> is any vector with a length of one; normally unit vectors are used simply to indicate direction. A vector of arbitrary length can be divided by its length to create a unit vector.<sup id="cite_ref-1.1:_Vectors_14-1" class="reference"><a href="#cite_note-1.1:_Vectors-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> This is known as <i>normalizing</i> a vector. A unit vector is often indicated with a hat as in <b>â</b>. </p><p>To normalize a vector <span class="nowrap"><b>a</b> = (<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, <i>a</i><sub>3</sub>)</span>, scale the vector by the reciprocal of its length ‖<b>a</b>‖. That is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {\hat {a}} ={\frac {\mathbf {a} }{\left\|\mathbf {a} \right\|}}={\frac {a_{1}}{\left\|\mathbf {a} \right\|}}\mathbf {e} _{1}+{\frac {a_{2}}{\left\|\mathbf {a} \right\|}}\mathbf {e} _{2}+{\frac {a_{3}}{\left\|\mathbf {a} \right\|}}\mathbf {e} _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="bold">a</mi> <mo mathvariant="bold" stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {\hat {a}} ={\frac {\mathbf {a} }{\left\|\mathbf {a} \right\|}}={\frac {a_{1}}{\left\|\mathbf {a} \right\|}}\mathbf {e} _{1}+{\frac {a_{2}}{\left\|\mathbf {a} \right\|}}\mathbf {e} _{2}+{\frac {a_{3}}{\left\|\mathbf {a} \right\|}}\mathbf {e} _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62a68ef5514253b0c663439482c0559a5f8654c1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:37.895ex; height:5.509ex;" alt="{\displaystyle \mathbf {\hat {a}} ={\frac {\mathbf {a} }{\left\|\mathbf {a} \right\|}}={\frac {a_{1}}{\left\|\mathbf {a} \right\|}}\mathbf {e} _{1}+{\frac {a_{2}}{\left\|\mathbf {a} \right\|}}\mathbf {e} _{2}+{\frac {a_{3}}{\left\|\mathbf {a} \right\|}}\mathbf {e} _{3}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Zero_vector">Zero vector</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=18" title="Edit section: Zero vector"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Zero_vector" class="mw-redirect" title="Zero vector">Zero vector</a></div> <p>The <i>zero vector</i> is the vector with length zero. Written out in coordinates, the vector is <span class="nowrap">(0, 0, 0)</span>, and it is commonly denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\vec {0}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo stretchy="false">→<!-- → --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\vec {0}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e76498919cf387316fc79d04120c59a8d430ef36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.843ex;" alt="{\displaystyle {\vec {0}}}"></span>, <b>0</b>, or simply 0. Unlike any other vector, it has an arbitrary or indeterminate direction, and cannot be normalized (that is, there is no unit vector that is a multiple of the zero vector). The sum of the zero vector with any vector <b>a</b> is <b>a</b> (that is, <span class="nowrap"><b>0</b> + <b>a</b> = <b>a</b></span>). </p> <div class="mw-heading mw-heading3"><h3 id="Dot_product">Dot product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=19" title="Edit section: Dot product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Dot_product" title="Dot product">Dot product</a></div> <p>The <i>dot product</i> of two vectors <b>a</b> and <b>b</b> (sometimes called the <i><a href="/wiki/Inner_product_space" title="Inner product space">inner product</a></i>, or, since its result is a scalar, the <i>scalar product</i>) is denoted by <b>a</b> ∙ <b>b,</b> and is defined as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \cdot \mathbf {b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\cos \theta ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>θ<!-- θ --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \cdot \mathbf {b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\cos \theta ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ed1f590c477f4f86793ed25a3f20c3633f742ee" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.007ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \cdot \mathbf {b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\cos \theta ,}"></span> </p><p>where <i>θ</i> is the measure of the <a href="/wiki/Angle" title="Angle">angle</a> between <b>a</b> and <b>b</b> (see <a href="/wiki/Trigonometric_function" class="mw-redirect" title="Trigonometric function">trigonometric function</a> for an explanation of cosine). Geometrically, this means that <b>a</b> and <b>b</b> are drawn with a common start point, and then the length of <b>a</b> is multiplied with the length of the component of <b>b</b> that points in the same direction as <b>a</b>. </p><p>The dot product can also be defined as the sum of the products of the components of each vector as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \cdot \mathbf {b} =a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \cdot \mathbf {b} =a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44ce07b770fcc78bba136f6d7386d8255dfdc24a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:26.898ex; height:2.509ex;" alt="{\displaystyle \mathbf {a} \cdot \mathbf {b} =a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Cross_product">Cross product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=20" title="Edit section: Cross product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Cross_product" title="Cross product">Cross product</a></div> <p>The <i>cross product</i> (also called the <i>vector product</i> or <i>outer product</i>) is only meaningful in three or <a href="/wiki/Seven-dimensional_cross_product" title="Seven-dimensional cross product">seven</a> dimensions. The cross product differs from the dot product primarily in that the result of the cross product of two vectors is a vector. The cross product, denoted <b>a</b> × <b>b</b>, is a vector perpendicular to both <b>a</b> and <b>b</b> and is defined as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \times \mathbf {b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\sin(\theta )\,\mathbf {n} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>=</mo> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> <mrow> <mo symmetric="true">‖</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo symmetric="true">‖</mo> </mrow> <mi>sin</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>θ<!-- θ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \times \mathbf {b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\sin(\theta )\,\mathbf {n} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5f960bc321540bc12366effa5a23ef5b5839c00" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.56ex; height:2.843ex;" alt="{\displaystyle \mathbf {a} \times \mathbf {b} =\left\|\mathbf {a} \right\|\left\|\mathbf {b} \right\|\sin(\theta )\,\mathbf {n} }"></span> </p><p>where <i>θ</i> is the measure of the angle between <b>a</b> and <b>b</b>, and <b>n</b> is a unit vector <a href="/wiki/Perpendicular" title="Perpendicular">perpendicular</a> to both <b>a</b> and <b>b</b> which completes a <a href="/wiki/Right-hand_rule" title="Right-hand rule">right-handed</a> system. The right-handedness constraint is necessary because there exist <i>two</i> unit vectors that are perpendicular to both <b>a</b> and <b>b</b>, namely, <b>n</b> and (−<b>n</b>). </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Cross_product_vector.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Cross_product_vector.svg/220px-Cross_product_vector.svg.png" decoding="async" width="220" height="306" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Cross_product_vector.svg/330px-Cross_product_vector.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Cross_product_vector.svg/440px-Cross_product_vector.svg.png 2x" data-file-width="484" data-file-height="673" /></a><figcaption>An illustration of the cross product</figcaption></figure> <p>The cross product <b>a</b> × <b>b</b> is defined so that <b>a</b>, <b>b</b>, and <b>a</b> × <b>b</b> also becomes a right-handed system (although <b>a</b> and <b>b</b> are not necessarily <a href="/wiki/Orthogonal" class="mw-redirect" title="Orthogonal">orthogonal</a>). This is the <a href="/wiki/Right-hand_rule" title="Right-hand rule">right-hand rule</a>. </p><p>The length of <b>a</b> × <b>b</b> can be interpreted as the area of the parallelogram having <b>a</b> and <b>b</b> as sides. </p><p>The cross product can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {a} }\times {\mathbf {b} }=(a_{2}b_{3}-a_{3}b_{2}){\mathbf {e} }_{1}+(a_{3}b_{1}-a_{1}b_{3}){\mathbf {e} }_{2}+(a_{1}b_{2}-a_{2}b_{1}){\mathbf {e} }_{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {a} }\times {\mathbf {b} }=(a_{2}b_{3}-a_{3}b_{2}){\mathbf {e} }_{1}+(a_{3}b_{1}-a_{1}b_{3}){\mathbf {e} }_{2}+(a_{1}b_{2}-a_{2}b_{1}){\mathbf {e} }_{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce12e7e392236285ffa70787e1a32ba02eb46477" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:61.854ex; height:2.843ex;" alt="{\displaystyle {\mathbf {a} }\times {\mathbf {b} }=(a_{2}b_{3}-a_{3}b_{2}){\mathbf {e} }_{1}+(a_{3}b_{1}-a_{1}b_{3}){\mathbf {e} }_{2}+(a_{1}b_{2}-a_{2}b_{1}){\mathbf {e} }_{3}.}"></span> </p><p>For arbitrary choices of spatial orientation (that is, allowing for left-handed as well as right-handed coordinate systems) the cross product of two vectors is a <a href="/wiki/Pseudovector" title="Pseudovector">pseudovector</a> instead of a vector (see below). </p> <div class="mw-heading mw-heading3"><h3 id="Scalar_triple_product">Scalar triple product</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=21" title="Edit section: Scalar triple product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Triple_product#Scalar_triple_product" title="Triple product">Scalar triple product</a></div> <p>The <i>scalar triple product</i> (also called the <i>box product</i> or <i>mixed triple product</i>) is not really a new operator, but a way of applying the other two multiplication operators to three vectors. The scalar triple product is sometimes denoted by (<b>a</b> <b>b</b> <b>c</b>) and defined as: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )=\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>×<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )=\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1142a3702cba81e25f47ce126fd78ef9c048c636" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.99ex; height:2.843ex;" alt="{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )=\mathbf {a} \cdot (\mathbf {b} \times \mathbf {c} ).}"></span> </p><p>It has three primary uses. First, the absolute value of the box product is the volume of the <a href="/wiki/Parallelepiped" title="Parallelepiped">parallelepiped</a> which has edges that are defined by the three vectors. Second, the scalar triple product is zero if and only if the three vectors are <a href="/wiki/Linear_independence" title="Linear independence">linearly dependent</a>, which can be easily proved by considering that in order for the three vectors to not make a volume, they must all lie in the same plane. Third, the box product is positive if and only if the three vectors <b>a</b>, <b>b</b> and <b>c</b> are right-handed. </p><p>In components (<i>with respect to a right-handed orthonormal basis</i>), if the three vectors are thought of as rows (or columns, but in the same order), the scalar triple product is simply the <a href="/wiki/Determinant" title="Determinant">determinant</a> of the 3-by-3 <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> having the three vectors as rows <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )={\begin{vmatrix}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\\\end{vmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )={\begin{vmatrix}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\\\end{vmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dc03ef4e187e8ecb9b630bc0e65cde5d6b92ce3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:23.584ex; height:9.176ex;" alt="{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )={\begin{vmatrix}a_{1}&a_{2}&a_{3}\\b_{1}&b_{2}&b_{3}\\c_{1}&c_{2}&c_{3}\\\end{vmatrix}}}"></span> </p><p>The scalar triple product is linear in all three entries and anti-symmetric in the following sense: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )=(\mathbf {c} \ \mathbf {a} \ \mathbf {b} )=(\mathbf {b} \ \mathbf {c} \ \mathbf {a} )=-(\mathbf {a} \ \mathbf {c} \ \mathbf {b} )=-(\mathbf {b} \ \mathbf {a} \ \mathbf {c} )=-(\mathbf {c} \ \mathbf {b} \ \mathbf {a} ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">c</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mtext> </mtext> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )=(\mathbf {c} \ \mathbf {a} \ \mathbf {b} )=(\mathbf {b} \ \mathbf {c} \ \mathbf {a} )=-(\mathbf {a} \ \mathbf {c} \ \mathbf {b} )=-(\mathbf {b} \ \mathbf {a} \ \mathbf {c} )=-(\mathbf {c} \ \mathbf {b} \ \mathbf {a} ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63a6b0bcae5b0dd570e8b5cd01d52f846a0e9671" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:63.224ex; height:2.843ex;" alt="{\displaystyle (\mathbf {a} \ \mathbf {b} \ \mathbf {c} )=(\mathbf {c} \ \mathbf {a} \ \mathbf {b} )=(\mathbf {b} \ \mathbf {c} \ \mathbf {a} )=-(\mathbf {a} \ \mathbf {c} \ \mathbf {b} )=-(\mathbf {b} \ \mathbf {a} \ \mathbf {c} )=-(\mathbf {c} \ \mathbf {b} \ \mathbf {a} ).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Conversion_between_multiple_Cartesian_bases">Conversion between multiple Cartesian bases</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=22" title="Edit section: Conversion between multiple Cartesian bases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>All examples thus far have dealt with vectors expressed in terms of the same basis, namely, the <i>e</i> basis {<b>e</b><sub>1</sub>, <b>e</b><sub>2</sub>, <b>e</b><sub>3</sub>}. However, a vector can be expressed in terms of any number of different bases that are not necessarily aligned with each other, and still remain the same vector. In the <i>e</i> basis, a vector <b>a</b> is expressed, by definition, as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mi>p</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>r</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a46c240c9e8f84359b11b3dff1e56bebfc254771" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.851ex; height:2.343ex;" alt="{\displaystyle \mathbf {a} =p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3}.}"></span> </p><p>The scalar components in the <i>e</i> basis are, by definition, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}p&=\mathbf {a} \cdot \mathbf {e} _{1},\\q&=\mathbf {a} \cdot \mathbf {e} _{2},\\r&=\mathbf {a} \cdot \mathbf {e} _{3}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}p&=\mathbf {a} \cdot \mathbf {e} _{1},\\q&=\mathbf {a} \cdot \mathbf {e} _{2},\\r&=\mathbf {a} \cdot \mathbf {e} _{3}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74449bf4fb2f63ec6ca7ac4e9f2788ce61085114" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:10.924ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}p&=\mathbf {a} \cdot \mathbf {e} _{1},\\q&=\mathbf {a} \cdot \mathbf {e} _{2},\\r&=\mathbf {a} \cdot \mathbf {e} _{3}.\end{aligned}}}"></span> </p><p>In another orthonormal basis <i>n</i> = {<b>n</b><sub>1</sub>, <b>n</b><sub>2</sub>, <b>n</b><sub>3</sub>} that is not necessarily aligned with <i>e</i>, the vector <b>a</b> is expressed as </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =u\mathbf {n} _{1}+v\mathbf {n} _{2}+w\mathbf {n} _{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mi>u</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>v</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>w</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =u\mathbf {n} _{1}+v\mathbf {n} _{2}+w\mathbf {n} _{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd34d6a3c3de06410b0ec5cab533e4bde2e7970b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.819ex; height:2.343ex;" alt="{\displaystyle \mathbf {a} =u\mathbf {n} _{1}+v\mathbf {n} _{2}+w\mathbf {n} _{3}}"></span> </p><p>and the scalar components in the <i>n</i> basis are, by definition, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}u&=\mathbf {a} \cdot \mathbf {n} _{1},\\v&=\mathbf {a} \cdot \mathbf {n} _{2},\\w&=\mathbf {a} \cdot \mathbf {n} _{3}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>u</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>v</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>w</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}u&=\mathbf {a} \cdot \mathbf {n} _{1},\\v&=\mathbf {a} \cdot \mathbf {n} _{2},\\w&=\mathbf {a} \cdot \mathbf {n} _{3}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6a797db7222828618b8ba3ad66b9a573b620b3a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:11.679ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}u&=\mathbf {a} \cdot \mathbf {n} _{1},\\v&=\mathbf {a} \cdot \mathbf {n} _{2},\\w&=\mathbf {a} \cdot \mathbf {n} _{3}.\end{aligned}}}"></span> </p><p>The values of <i>p</i>, <i>q</i>, <i>r</i>, and <i>u</i>, <i>v</i>, <i>w</i> relate to the unit vectors in such a way that the resulting vector sum is exactly the same physical vector <b>a</b> in both cases. It is common to encounter vectors known in terms of different bases (for example, one basis fixed to the Earth and a second basis fixed to a moving vehicle). In such a case it is necessary to develop a method to convert between bases so the basic vector operations such as addition and subtraction can be performed. One way to express <i>u</i>, <i>v</i>, <i>w</i> in terms of <i>p</i>, <i>q</i>, <i>r</i> is to use column matrices along with a <a href="/wiki/Direction_cosine_matrix" class="mw-redirect" title="Direction cosine matrix">direction cosine matrix</a> containing the information that relates the two bases. Such an expression can be formed by substitution of the above equations to form </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}u&=(p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3})\cdot \mathbf {n} _{1},\\v&=(p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3})\cdot \mathbf {n} _{2},\\w&=(p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3})\cdot \mathbf {n} _{3}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>u</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>p</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>r</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>v</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>p</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>r</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>w</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>p</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>r</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}u&=(p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3})\cdot \mathbf {n} _{1},\\v&=(p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3})\cdot \mathbf {n} _{2},\\w&=(p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3})\cdot \mathbf {n} _{3}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2371694817f9e0249e7eea50ea39d77e83c1cf1d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:27.995ex; height:9.176ex;" alt="{\displaystyle {\begin{aligned}u&=(p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3})\cdot \mathbf {n} _{1},\\v&=(p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3})\cdot \mathbf {n} _{2},\\w&=(p\mathbf {e} _{1}+q\mathbf {e} _{2}+r\mathbf {e} _{3})\cdot \mathbf {n} _{3}.\end{aligned}}}"></span> </p><p>Distributing the dot-multiplication gives </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}u&=p\mathbf {e} _{1}\cdot \mathbf {n} _{1}+q\mathbf {e} _{2}\cdot \mathbf {n} _{1}+r\mathbf {e} _{3}\cdot \mathbf {n} _{1},\\v&=p\mathbf {e} _{1}\cdot \mathbf {n} _{2}+q\mathbf {e} _{2}\cdot \mathbf {n} _{2}+r\mathbf {e} _{3}\cdot \mathbf {n} _{2},\\w&=p\mathbf {e} _{1}\cdot \mathbf {n} _{3}+q\mathbf {e} _{2}\cdot \mathbf {n} _{3}+r\mathbf {e} _{3}\cdot \mathbf {n} _{3}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>u</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>p</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>r</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>v</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>p</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>r</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>w</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>p</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mi>q</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mi>r</mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}u&=p\mathbf {e} _{1}\cdot \mathbf {n} _{1}+q\mathbf {e} _{2}\cdot \mathbf {n} _{1}+r\mathbf {e} _{3}\cdot \mathbf {n} _{1},\\v&=p\mathbf {e} _{1}\cdot \mathbf {n} _{2}+q\mathbf {e} _{2}\cdot \mathbf {n} _{2}+r\mathbf {e} _{3}\cdot \mathbf {n} _{2},\\w&=p\mathbf {e} _{1}\cdot \mathbf {n} _{3}+q\mathbf {e} _{2}\cdot \mathbf {n} _{3}+r\mathbf {e} _{3}\cdot \mathbf {n} _{3}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48df5046307a14d986fd95da5c0f5866b5d4d581" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:34.623ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}u&=p\mathbf {e} _{1}\cdot \mathbf {n} _{1}+q\mathbf {e} _{2}\cdot \mathbf {n} _{1}+r\mathbf {e} _{3}\cdot \mathbf {n} _{1},\\v&=p\mathbf {e} _{1}\cdot \mathbf {n} _{2}+q\mathbf {e} _{2}\cdot \mathbf {n} _{2}+r\mathbf {e} _{3}\cdot \mathbf {n} _{2},\\w&=p\mathbf {e} _{1}\cdot \mathbf {n} _{3}+q\mathbf {e} _{2}\cdot \mathbf {n} _{3}+r\mathbf {e} _{3}\cdot \mathbf {n} _{3}.\end{aligned}}}"></span> </p><p>Replacing each dot product with a unique scalar gives </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}u&=c_{11}p+c_{12}q+c_{13}r,\\v&=c_{21}p+c_{22}q+c_{23}r,\\w&=c_{31}p+c_{32}q+c_{33}r,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>u</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mi>p</mi> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mi>q</mi> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> <mi>r</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>v</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mi>p</mi> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mi>q</mi> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> <mi>r</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>w</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> <mi>p</mi> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mi>q</mi> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> <mi>r</mi> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}u&=c_{11}p+c_{12}q+c_{13}r,\\v&=c_{21}p+c_{22}q+c_{23}r,\\w&=c_{31}p+c_{32}q+c_{33}r,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22c0c84c599131801b1fbce8212e2c50de3cb0ae" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:23.779ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}u&=c_{11}p+c_{12}q+c_{13}r,\\v&=c_{21}p+c_{22}q+c_{23}r,\\w&=c_{31}p+c_{32}q+c_{33}r,\end{aligned}}}"></span> </p><p>and these equations can be expressed as the single matrix equation </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}u\\v\\w\\\end{bmatrix}}={\begin{bmatrix}c_{11}&c_{12}&c_{13}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{bmatrix}}{\begin{bmatrix}p\\q\\r\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>u</mi> </mtd> </mtr> <mtr> <mtd> <mi>v</mi> </mtd> </mtr> <mtr> <mtd> <mi>w</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}u\\v\\w\\\end{bmatrix}}={\begin{bmatrix}c_{11}&c_{12}&c_{13}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{bmatrix}}{\begin{bmatrix}p\\q\\r\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69e8d252551f929b5ae4363e78a596eba80ef366" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:31.43ex; height:9.176ex;" alt="{\displaystyle {\begin{bmatrix}u\\v\\w\\\end{bmatrix}}={\begin{bmatrix}c_{11}&c_{12}&c_{13}\\c_{21}&c_{22}&c_{23}\\c_{31}&c_{32}&c_{33}\end{bmatrix}}{\begin{bmatrix}p\\q\\r\end{bmatrix}}.}"></span> </p><p>This matrix equation relates the scalar components of <b>a</b> in the <i>n</i> basis (<i>u</i>,<i>v</i>, and <i>w</i>) with those in the <i>e</i> basis (<i>p</i>, <i>q</i>, and <i>r</i>). Each matrix element <i>c</i><sub><i>jk</i></sub> is the <a href="/wiki/Direction_cosine#Cartesian_coordinates" title="Direction cosine">direction cosine</a> relating <b>n</b><sub><i>j</i></sub> to <b>e</b><sub><i>k</i></sub>.<sup id="cite_ref-dynon16_20-0" class="reference"><a href="#cite_note-dynon16-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> The term <i>direction cosine</i> refers to the <a href="/wiki/Cosine" class="mw-redirect" title="Cosine">cosine</a> of the angle between two unit vectors, which is also equal to their <a href="#Dot_product">dot product</a>.<sup id="cite_ref-dynon16_20-1" class="reference"><a href="#cite_note-dynon16-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> Therefore, </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}c_{11}&=\mathbf {n} _{1}\cdot \mathbf {e} _{1}\\c_{12}&=\mathbf {n} _{1}\cdot \mathbf {e} _{2}\\c_{13}&=\mathbf {n} _{1}\cdot \mathbf {e} _{3}\\c_{21}&=\mathbf {n} _{2}\cdot \mathbf {e} _{1}\\c_{22}&=\mathbf {n} _{2}\cdot \mathbf {e} _{2}\\c_{23}&=\mathbf {n} _{2}\cdot \mathbf {e} _{3}\\c_{31}&=\mathbf {n} _{3}\cdot \mathbf {e} _{1}\\c_{32}&=\mathbf {n} _{3}\cdot \mathbf {e} _{2}\\c_{33}&=\mathbf {n} _{3}\cdot \mathbf {e} _{3}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}c_{11}&=\mathbf {n} _{1}\cdot \mathbf {e} _{1}\\c_{12}&=\mathbf {n} _{1}\cdot \mathbf {e} _{2}\\c_{13}&=\mathbf {n} _{1}\cdot \mathbf {e} _{3}\\c_{21}&=\mathbf {n} _{2}\cdot \mathbf {e} _{1}\\c_{22}&=\mathbf {n} _{2}\cdot \mathbf {e} _{2}\\c_{23}&=\mathbf {n} _{2}\cdot \mathbf {e} _{3}\\c_{31}&=\mathbf {n} _{3}\cdot \mathbf {e} _{1}\\c_{32}&=\mathbf {n} _{3}\cdot \mathbf {e} _{2}\\c_{33}&=\mathbf {n} _{3}\cdot \mathbf {e} _{3}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/925d7bd0f1cf143a0082cca66933b943e0d5b27b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.838ex; width:13.231ex; height:26.843ex;" alt="{\displaystyle {\begin{aligned}c_{11}&=\mathbf {n} _{1}\cdot \mathbf {e} _{1}\\c_{12}&=\mathbf {n} _{1}\cdot \mathbf {e} _{2}\\c_{13}&=\mathbf {n} _{1}\cdot \mathbf {e} _{3}\\c_{21}&=\mathbf {n} _{2}\cdot \mathbf {e} _{1}\\c_{22}&=\mathbf {n} _{2}\cdot \mathbf {e} _{2}\\c_{23}&=\mathbf {n} _{2}\cdot \mathbf {e} _{3}\\c_{31}&=\mathbf {n} _{3}\cdot \mathbf {e} _{1}\\c_{32}&=\mathbf {n} _{3}\cdot \mathbf {e} _{2}\\c_{33}&=\mathbf {n} _{3}\cdot \mathbf {e} _{3}\end{aligned}}}"></span> </p><p>By referring collectively to <b>e</b><sub>1</sub>, <b>e</b><sub>2</sub>, <b>e</b><sub>3</sub> as the <i>e</i> basis and to <b>n</b><sub>1</sub>, <b>n</b><sub>2</sub>, <b>n</b><sub>3</sub> as the <i>n</i> basis, the matrix containing all the <i>c</i><sub><i>jk</i></sub> is known as the "<a href="/wiki/Transformation_matrix" title="Transformation matrix">transformation matrix</a> from <i>e</i> to <i>n</i>", or the "<a href="/wiki/Rotation_matrix" title="Rotation matrix">rotation matrix</a> from <i>e</i> to <i>n</i>" (because it can be imagined as the "rotation" of a vector from one basis to another), or the "direction cosine matrix from <i>e</i> to <i>n</i>"<sup id="cite_ref-dynon16_20-2" class="reference"><a href="#cite_note-dynon16-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> (because it contains direction cosines). The properties of a rotation matrix are such that its <a href="/wiki/Matrix_inverse" class="mw-redirect" title="Matrix inverse">inverse</a> is equal to its <a href="/wiki/Matrix_transpose" class="mw-redirect" title="Matrix transpose">transpose</a>. This means that the "rotation matrix from <i>e</i> to <i>n</i>" is the transpose of "rotation matrix from <i>n</i> to <i>e</i>". </p><p>The properties of a direction cosine matrix, C are:<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> </p> <ul><li>the determinant is unity, |C| = 1;</li> <li>the inverse is equal to the transpose;</li> <li>the rows and columns are orthogonal unit vectors, therefore their dot products are zero.</li></ul> <p>The advantage of this method is that a direction cosine matrix can usually be obtained independently by using <a href="/wiki/Euler_angles" title="Euler angles">Euler angles</a> or a <a href="/wiki/Quaternion" title="Quaternion">quaternion</a> to relate the two vector bases, so the basis conversions can be performed directly, without having to work out all the dot products described above. </p><p>By applying several matrix multiplications in succession, any vector can be expressed in any basis so long as the set of direction cosines is known relating the successive bases.<sup id="cite_ref-dynon16_20-3" class="reference"><a href="#cite_note-dynon16-20"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Other_dimensions">Other dimensions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=23" title="Edit section: Other dimensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>With the exception of the cross and triple products, the above formulae generalise to two dimensions and higher dimensions. For example, addition generalises to two dimensions as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2})+(b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2})=(a_{1}+b_{1}){\mathbf {e} }_{1}+(a_{2}+b_{2}){\mathbf {e} }_{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2})+(b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2})=(a_{1}+b_{1}){\mathbf {e} }_{1}+(a_{2}+b_{2}){\mathbf {e} }_{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4946d7e35e5891a754e03b29e4a426fa37b5403a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:59.045ex; height:2.843ex;" alt="{\displaystyle (a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2})+(b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2})=(a_{1}+b_{1}){\mathbf {e} }_{1}+(a_{2}+b_{2}){\mathbf {e} }_{2},}"></span> and in four dimensions as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}+a_{4}{\mathbf {e} }_{4})&+(b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2}+b_{3}{\mathbf {e} }_{3}+b_{4}{\mathbf {e} }_{4})=\\(a_{1}+b_{1}){\mathbf {e} }_{1}+(a_{2}+b_{2}){\mathbf {e} }_{2}&+(a_{3}+b_{3}){\mathbf {e} }_{3}+(a_{4}+b_{4}){\mathbf {e} }_{4}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}(a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}+a_{4}{\mathbf {e} }_{4})&+(b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2}+b_{3}{\mathbf {e} }_{3}+b_{4}{\mathbf {e} }_{4})=\\(a_{1}+b_{1}){\mathbf {e} }_{1}+(a_{2}+b_{2}){\mathbf {e} }_{2}&+(a_{3}+b_{3}){\mathbf {e} }_{3}+(a_{4}+b_{4}){\mathbf {e} }_{4}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e10d177a606e88d6d2e4207e81c0707f358f02f4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:62.285ex; height:6.176ex;" alt="{\displaystyle {\begin{aligned}(a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2}+a_{3}{\mathbf {e} }_{3}+a_{4}{\mathbf {e} }_{4})&+(b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2}+b_{3}{\mathbf {e} }_{3}+b_{4}{\mathbf {e} }_{4})=\\(a_{1}+b_{1}){\mathbf {e} }_{1}+(a_{2}+b_{2}){\mathbf {e} }_{2}&+(a_{3}+b_{3}){\mathbf {e} }_{3}+(a_{4}+b_{4}){\mathbf {e} }_{4}.\end{aligned}}}"></span> </p><p>The cross product does not readily generalise to other dimensions, though the closely related <a href="/wiki/Exterior_algebra#Areas_in_the_plane" title="Exterior algebra">exterior product</a> does, whose result is a <a href="/wiki/Bivector" title="Bivector">bivector</a>. In two dimensions this is simply a <a href="/wiki/Pseudoscalar" title="Pseudoscalar">pseudoscalar</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2})\wedge (b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2})=(a_{1}b_{2}-a_{2}b_{1})\mathbf {e} _{1}\mathbf {e} _{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2})\wedge (b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2})=(a_{1}b_{2}-a_{2}b_{1})\mathbf {e} _{1}\mathbf {e} _{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7140e34ca636b3531bf2e6500b62a6c237bb11ea" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.297ex; height:2.843ex;" alt="{\displaystyle (a_{1}{\mathbf {e} }_{1}+a_{2}{\mathbf {e} }_{2})\wedge (b_{1}{\mathbf {e} }_{1}+b_{2}{\mathbf {e} }_{2})=(a_{1}b_{2}-a_{2}b_{1})\mathbf {e} _{1}\mathbf {e} _{2}.}"></span> </p><p>A <a href="/wiki/Seven-dimensional_cross_product" title="Seven-dimensional cross product">seven-dimensional cross product</a> is similar to the cross product in that its result is a vector orthogonal to the two arguments; there is however no natural way of selecting one of the possible such products. </p> <div class="mw-heading mw-heading2"><h2 id="Physics">Physics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=24" title="Edit section: Physics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Vector_quantity" title="Vector quantity">Vector quantity</a></div> <p>Vectors have many uses in physics and other sciences. </p> <div class="mw-heading mw-heading3"><h3 id="Length_and_units">Length and units</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=25" title="Edit section: Length and units"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In abstract vector spaces, the length of the arrow depends on a <a href="/wiki/Dimensionless_number" class="mw-redirect" title="Dimensionless number">dimensionless</a> <a href="/wiki/Scale_(measurement)" class="mw-redirect" title="Scale (measurement)">scale</a>. If it represents, for example, a force, the "scale" is of <a href="/wiki/Dimensional_analysis" title="Dimensional analysis">physical dimension</a> length/force. Thus there is typically consistency in scale among quantities of the same dimension, but otherwise scale ratios may vary; for example, if "1 newton" and "5 m" are both represented with an arrow of 2 cm, the scales are 1 m:50 N and 1:250 respectively. Equal length of vectors of different dimension has no particular significance unless there is some <a href="/wiki/Proportionality_constant" class="mw-redirect" title="Proportionality constant">proportionality constant</a> inherent in the system that the diagram represents. Also length of a unit vector (of dimension length, not length/force, etc.) has no coordinate-system-invariant significance. </p> <div class="mw-heading mw-heading3"><h3 id="Vector-valued_functions">Vector-valued functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=26" title="Edit section: Vector-valued functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Vector-valued_function" title="Vector-valued function">Vector-valued function</a></div> <p>Often in areas of physics and mathematics, a vector evolves in time, meaning that it depends on a time parameter <i>t</i>. For instance, if <b>r</b> represents the position vector of a particle, then <b>r</b>(<i>t</i>) gives a <a href="/wiki/Parametric_equation" title="Parametric equation">parametric</a> representation of the trajectory of the particle. Vector-valued functions can be <a href="/wiki/Derivative" title="Derivative">differentiated</a> and <a href="/wiki/Integral" title="Integral">integrated</a> by differentiating or integrating the components of the vector, and many of the familiar rules from <a href="/wiki/Calculus" title="Calculus">calculus</a> continue to hold for the derivative and integral of vector-valued functions. </p> <div class="mw-heading mw-heading3"><h3 id="Position,_velocity_and_acceleration"><span id="Position.2C_velocity_and_acceleration"></span>Position, velocity and acceleration</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=27" title="Edit section: Position, velocity and acceleration"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The position of a point <b>x</b> = (<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>) in three-dimensional space can be represented as a <a href="/wiki/Position_vector" class="mw-redirect" title="Position vector">position vector</a> whose base point is the origin <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {x} }=x_{1}{\mathbf {e} }_{1}+x_{2}{\mathbf {e} }_{2}+x_{3}{\mathbf {e} }_{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {x} }=x_{1}{\mathbf {e} }_{1}+x_{2}{\mathbf {e} }_{2}+x_{3}{\mathbf {e} }_{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d1e4478308e8abaecb2607a9e650c40aaf416f1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.827ex; height:2.343ex;" alt="{\displaystyle {\mathbf {x} }=x_{1}{\mathbf {e} }_{1}+x_{2}{\mathbf {e} }_{2}+x_{3}{\mathbf {e} }_{3}.}"></span> The position vector has dimensions of <a href="/wiki/Length" title="Length">length</a>. </p><p>Given two points <b>x</b> = (<i>x</i><sub>1</sub>, <i>x</i><sub>2</sub>, <i>x</i><sub>3</sub>), <b>y</b> = (<i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>, <i>y</i><sub>3</sub>) their <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement</a> is a vector <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {y} }-{\mathbf {x} }=(y_{1}-x_{1}){\mathbf {e} }_{1}+(y_{2}-x_{2}){\mathbf {e} }_{2}+(y_{3}-x_{3}){\mathbf {e} }_{3}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">y</mi> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {y} }-{\mathbf {x} }=(y_{1}-x_{1}){\mathbf {e} }_{1}+(y_{2}-x_{2}){\mathbf {e} }_{2}+(y_{3}-x_{3}){\mathbf {e} }_{3}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c8d27c3febb9395a2c9c6dca51915b7be8a8d6d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.608ex; height:2.843ex;" alt="{\displaystyle {\mathbf {y} }-{\mathbf {x} }=(y_{1}-x_{1}){\mathbf {e} }_{1}+(y_{2}-x_{2}){\mathbf {e} }_{2}+(y_{3}-x_{3}){\mathbf {e} }_{3}.}"></span> which specifies the position of <i>y</i> relative to <i>x</i>. The length of this vector gives the straight-line distance from <i>x</i> to <i>y</i>. Displacement has the dimensions of length. </p><p>The <a href="/wiki/Velocity" title="Velocity">velocity</a> <b>v</b> of a point or particle is a vector, its length gives the <a href="/wiki/Speed" title="Speed">speed</a>. For constant velocity the position at time <i>t</i> will be <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {x} }_{t}=t{\mathbf {v} }+{\mathbf {x} }_{0},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {x} }_{t}=t{\mathbf {v} }+{\mathbf {x} }_{0},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/102b1e6c157766985713b2c1109e4befa92a0eca" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.538ex; height:2.343ex;" alt="{\displaystyle {\mathbf {x} }_{t}=t{\mathbf {v} }+{\mathbf {x} }_{0},}"></span> where <b>x</b><sub>0</sub> is the position at time <i>t</i> = 0. Velocity is the <a href="#Ordinary_derivative">time derivative</a> of position. Its dimensions are length/time. </p><p><a href="/wiki/Acceleration" title="Acceleration">Acceleration</a> <b>a</b> of a point is vector which is the <a href="#Ordinary_derivative">time derivative</a> of velocity. Its dimensions are length/time<sup>2</sup>. </p> <div class="mw-heading mw-heading3"><h3 id="Force,_energy,_work"><span id="Force.2C_energy.2C_work"></span>Force, energy, work</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=28" title="Edit section: Force, energy, work"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Force" title="Force">Force</a> is a vector with dimensions of mass×length/time<sup>2</sup> (N m s <sup>-2</sup>) and <a href="/wiki/Newton%27s_second_law" class="mw-redirect" title="Newton's second law">Newton's second law</a> is the scalar multiplication <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {F} }=m{\mathbf {a} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {F} }=m{\mathbf {a} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9f5c3c08d9e2e6deb106bf363e700c2ef8f5f4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.121ex; height:2.176ex;" alt="{\displaystyle {\mathbf {F} }=m{\mathbf {a} }}"></span> </p><p>Work is the dot product of <a href="/wiki/Force" title="Force">force</a> and <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W={\mathbf {F} }\cdot ({\mathbf {x} }_{2}-{\mathbf {x} }_{1}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mrow> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W={\mathbf {F} }\cdot ({\mathbf {x} }_{2}-{\mathbf {x} }_{1}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fcc39192e97647804450d30c54f360b246d5822" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.122ex; height:2.843ex;" alt="{\displaystyle W={\mathbf {F} }\cdot ({\mathbf {x} }_{2}-{\mathbf {x} }_{1}).}"></span> </p> <div class="mw-heading mw-heading2"><h2 id="Vectors,_pseudovectors,_and_transformations"><span id="Vectors.2C_pseudovectors.2C_and_transformations"></span>Vectors, pseudovectors, and transformations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=29" title="Edit section: Vectors, pseudovectors, and transformations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r1248332772">.mw-parser-output .multiple-issues-text{width:95%;margin:0.2em 0}.mw-parser-output .multiple-issues-text>.mw-collapsible-content{margin-top:0.3em}.mw-parser-output .compact-ambox .ambox{border:none;border-collapse:collapse;background-color:transparent;margin:0 0 0 1.6em!important;padding:0!important;width:auto;display:block}body.mediawiki .mw-parser-output .compact-ambox .ambox.mbox-small-left{font-size:100%;width:auto;margin:0}.mw-parser-output .compact-ambox .ambox .mbox-text{padding:0!important;margin:0!important}.mw-parser-output .compact-ambox .ambox .mbox-text-span{display:list-item;line-height:1.5em;list-style-type:disc}body.skin-minerva .mw-parser-output .multiple-issues-text>.mw-collapsible-toggle,.mw-parser-output .compact-ambox .ambox .mbox-image,.mw-parser-output .compact-ambox .ambox .mbox-imageright,.mw-parser-output .compact-ambox .ambox .mbox-empty-cell,.mw-parser-output .compact-ambox .hide-when-compact{display:none}</style><table class="box-Multiple_issues plainlinks metadata ambox ambox-content ambox-multiple_issues compact-ambox" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/40px-Ambox_important.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/60px-Ambox_important.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/b/b4/Ambox_important.svg/80px-Ambox_important.svg.png 2x" data-file-width="40" data-file-height="40" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span"><div class="multiple-issues-text mw-collapsible"><b>This section has multiple issues.</b> Please help <b><a href="/wiki/Special:EditPage/Euclidean_vector" title="Special:EditPage/Euclidean vector">improve it</a></b> or discuss these issues on the <b><a href="/wiki/Talk:Euclidean_vector" title="Talk:Euclidean vector">talk page</a></b>. <small><i>(<a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove these messages</a>)</i></small> <div class="mw-collapsible-content"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Euclidean_vector" title="Special:EditPage/Euclidean vector">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">December 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Technical plainlinks metadata ambox ambox-style ambox-technical" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>may be too technical for most readers to understand</b>.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Euclidean_vector&action=edit">help improve it</a> to <a href="/wiki/Wikipedia:Make_technical_articles_understandable" title="Wikipedia:Make technical articles understandable">make it understandable to non-experts</a>, without removing the technical details.</span> <span class="date-container"><i>(<span class="date">December 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> </div> </div><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>An alternative characterization of Euclidean vectors, especially in physics, describes them as lists of quantities which behave in a certain way under a <a href="/wiki/Coordinate_system" title="Coordinate system">coordinate transformation</a>. A <i>contravariant vector</i> is required to have components that "transform opposite to the basis" under changes of <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a>. The vector itself does not change when the basis is transformed; instead, the components of the vector make a change that cancels the change in the basis. In other words, if the reference axes (and the basis derived from it) were rotated in one direction, the component representation of the vector would rotate in the opposite way to generate the same final vector. Similarly, if the reference axes were stretched in one direction, the components of the vector would reduce in an exactly compensating way. Mathematically, if the basis undergoes a transformation described by an <a href="/wiki/Invertible_matrix" title="Invertible matrix">invertible matrix</a> <i>M</i>, so that a coordinate vector <b>x</b> is transformed to <span class="nowrap"><b>x</b>′ = <i>M</i><b>x</b></span>, then a contravariant vector <b>v</b> must be similarly transformed via <span class="nowrap"><b>v</b>′ = <i>M</i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d21ba9ae71e157827da571c142bb49c24b78e1a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:2.333ex; height:2.509ex;" alt="{\displaystyle ^{-1}}"></span><b>v</b></span>. This important requirement is what distinguishes a contravariant vector from any other triple of physically meaningful quantities. For example, if <i>v</i> consists of the <i>x</i>, <i>y</i>, and <i>z</i>-components of <a href="/wiki/Velocity" title="Velocity">velocity</a>, then <i>v</i> is a contravariant vector: if the coordinates of space are stretched, rotated, or twisted, then the components of the velocity transform in the same way. On the other hand, for instance, a triple consisting of the length, width, and height of a rectangular box could make up the three components of an abstract <a href="/wiki/Vector_space" title="Vector space">vector</a>, but this vector would not be contravariant, since rotating the box does not change the box's length, width, and height. Examples of contravariant vectors include <a href="/wiki/Displacement_(vector)" class="mw-redirect" title="Displacement (vector)">displacement</a>, <a href="/wiki/Velocity" title="Velocity">velocity</a>, <a href="/wiki/Electric_field" title="Electric field">electric field</a>, <a href="/wiki/Momentum" title="Momentum">momentum</a>, <a href="/wiki/Force" title="Force">force</a>, and <a href="/wiki/Acceleration" title="Acceleration">acceleration</a>. </p><p>In the language of <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a>, the requirement that the components of a vector transform according to the same matrix of the coordinate transition is equivalent to defining a <i>contravariant vector</i> to be a <a href="/wiki/Tensor" title="Tensor">tensor</a> of <a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">contravariant</a> rank one. Alternatively, a contravariant vector is defined to be a <a href="/wiki/Tangent_space" title="Tangent space">tangent vector</a>, and the rules for transforming a contravariant vector follow from the <a href="/wiki/Chain_rule" title="Chain rule">chain rule</a>. </p><p>Some vectors transform like contravariant vectors, except that when they are reflected through a mirror, they flip <em>and</em> gain a minus sign. A transformation that switches right-handedness to left-handedness and vice versa like a mirror does is said to change the <i><a href="/wiki/Orientation_(space)" class="mw-redirect" title="Orientation (space)">orientation</a></i> of space. A vector which gains a minus sign when the orientation of space changes is called a <i><a href="/wiki/Pseudovector" title="Pseudovector">pseudovector</a></i> or an <i>axial vector</i>. Ordinary vectors are sometimes called <i>true vectors</i> or <i>polar vectors</i> to distinguish them from pseudovectors. Pseudovectors occur most frequently as the <a href="/wiki/Cross_product" title="Cross product">cross product</a> of two ordinary vectors. </p><p>One example of a pseudovector is <a href="/wiki/Angular_velocity" title="Angular velocity">angular velocity</a>. Driving in a <a href="/wiki/Car" title="Car">car</a>, and looking forward, each of the <a href="/wiki/Wheel" title="Wheel">wheels</a> has an angular velocity vector pointing to the left. If the world is reflected in a mirror which switches the left and right side of the car, the <i>reflection</i> of this angular velocity vector points to the right, but the <em>actual</em> angular velocity vector of the wheel still points to the left, corresponding to the minus sign. Other examples of pseudovectors include <a href="/wiki/Magnetic_field" title="Magnetic field">magnetic field</a>, <a href="/wiki/Torque" title="Torque">torque</a>, or more generally any cross product of two (true) vectors. </p><p>This distinction between vectors and pseudovectors is often ignored, but it becomes important in studying <a href="/wiki/Symmetry" title="Symmetry">symmetry</a> properties. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=30" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 25em;"> <ul><li><a href="/wiki/Affine_space" title="Affine space">Affine space</a>, which distinguishes between vectors and <a href="/wiki/Point_(geometry)" title="Point (geometry)">points</a></li> <li><a href="/wiki/Banach_space" title="Banach space">Banach space</a></li> <li><a href="/wiki/Clifford_algebra" title="Clifford algebra">Clifford algebra</a></li> <li><a href="/wiki/Complex_number" title="Complex number">Complex number</a></li> <li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Four-vector" title="Four-vector">Four-vector</a>, a non-Euclidean vector in Minkowski space (i.e. four-dimensional spacetime), important in <a href="/wiki/Theory_of_relativity" title="Theory of relativity">relativity</a></li> <li><a href="/wiki/Function_space" title="Function space">Function space</a></li> <li><a href="/wiki/Grassmann" class="mw-redirect" title="Grassmann">Grassmann</a>'s <i>Ausdehnungslehre</i></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a></li> <li><a href="/wiki/Normal_vector" class="mw-redirect" title="Normal vector">Normal vector</a></li> <li><a href="/wiki/Null_vector" title="Null vector">Null vector</a></li> <li><a href="/wiki/Parity_(physics)" title="Parity (physics)">Parity (physics)</a></li> <li><a href="/wiki/Position_(geometry)" title="Position (geometry)">Position (geometry)</a></li> <li><a href="/wiki/Pseudovector" title="Pseudovector">Pseudovector</a></li> <li><a href="/wiki/Quaternion" title="Quaternion">Quaternion</a></li> <li><a href="/wiki/Tangential_and_normal_components" title="Tangential and normal components">Tangential and normal components</a> (of a vector)</li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li> <li><a href="/wiki/Unit_vector" title="Unit vector">Unit vector</a></li> <li><a href="/wiki/Vector_bundle" title="Vector bundle">Vector bundle</a></li> <li><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></li> <li><a href="/wiki/Vector_notation" title="Vector notation">Vector notation</a></li> <li><a href="/wiki/Vector-valued_function" title="Vector-valued function">Vector-valued function</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=31" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">"Can be brought to the same straight line by means of parallel displacement".<sup id="cite_ref-HMCS_18-2" class="reference"><a href="#cite_note-HMCS-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup></span> </li> </ol></div></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFIvanov2001">Ivanov 2001</a></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFHeinbockel2001">Heinbockel 2001</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFItô1993">Itô 1993</a>, p. 1678; <a href="#CITEREFPedoe1988">Pedoe 1988</a></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Latin: vectus, <a href="/wiki/Perfect_participle" class="mw-redirect" title="Perfect participle">perfect participle</a> of vehere, "to carry"/ <i>veho</i> = "I carry". For historical development of the word <i>vector</i>, see <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFReference-OED-vector_n." class="citation encyclopaedia cs1"><span class="id-lock-subscription" title="Paid subscription required"><a rel="nofollow" class="external text" href="https://www.oed.com/search/dictionary/?q=vector+%27%27n.%27%27">"vector <i>n.</i>"</a></span>. <i><a href="/wiki/Oxford_English_Dictionary" title="Oxford English Dictionary">Oxford English Dictionary</a></i> (Online ed.). <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=vector+n.&rft.btitle=Oxford+English+Dictionary&rft.edition=Online&rft.pub=Oxford+University+Press&rft_id=https%3A%2F%2Fwww.oed.com%2Fsearch%2Fdictionary%2F%3Fq%3Dvector%2B%2527%2527n.%2527%2527&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span> <span style="font-size:0.95em; font-size:95%; color: var( --color-subtle, #555 )">(Subscription or <a rel="nofollow" class="external text" href="https://www.oed.com/public/login/loggingin#withyourlibrary">participating institution membership</a> required.)</span> and <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJeff_Miller" class="citation web cs1">Jeff Miller. <a rel="nofollow" class="external text" href="http://jeff560.tripod.com/v.html">"Earliest Known Uses of Some of the Words of Mathematics"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2007-05-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Earliest+Known+Uses+of+Some+of+the+Words+of+Mathematics&rft.au=Jeff+Miller&rft_id=http%3A%2F%2Fjeff560.tripod.com%2Fv.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><i>The Oxford English Dictionary</i> (2nd. ed.). London: Clarendon Press. 2001. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780195219425" title="Special:BookSources/9780195219425"><bdi>9780195219425</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Oxford+English+Dictionary.&rft.place=London&rft.edition=2nd.&rft.pub=Clarendon+Press&rft.date=2001&rft.isbn=9780195219425&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></span> </li> <li id="cite_note-:1-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_6-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.britannica.com/science/vector-mathematics">"vector | Definition & Facts"</a>. <i>Encyclopedia Britannica</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Encyclopedia+Britannica&rft.atitle=vector+%7C+Definition+%26+Facts&rft_id=https%3A%2F%2Fwww.britannica.com%2Fscience%2Fvector-mathematics&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></span> </li> <li id="cite_note-:2-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:2_7-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/algebra/vectors.html">"Vectors"</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=www.mathsisfun.com&rft.atitle=Vectors&rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Falgebra%2Fvectors.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Vector.html">"Vector"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=Vector&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FVector.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></span> </li> <li id="cite_note-Crowe-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Crowe_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Crowe_9-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Crowe_9-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Crowe_9-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/Michael_J._Crowe" title="Michael J. Crowe">Michael J. Crowe</a>, <a href="/wiki/A_History_of_Vector_Analysis" title="A History of Vector Analysis">A History of Vector Analysis</a>; see also his <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20040126161844/http://www.nku.edu/~curtin/crowe_oresme.pdf">"lecture notes"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.nku.edu/~curtin/crowe_oresme.pdf">the original</a> <span class="cs1-format">(PDF)</span> on January 26, 2004<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-09-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=lecture+notes&rft_id=http%3A%2F%2Fwww.nku.edu%2F~curtin%2Fcrowe_oresme.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span> on the subject.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text">W. R. Hamilton (1846) <i>London, Edinburgh & Dublin Philosophical Magazine</i> 3rd series 29 27</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><a href="#CITEREFItô1993">Itô 1993</a>, p. 1678</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Formerly known as <i>located vector</i>. See <a href="#CITEREFLang1986">Lang 1986</a>, p. 9.</span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">In some old texts, the pair <span class="texhtml">(<i>A</i>, <i>B</i>)</span> is called a <i>bound vector</i>, and its equivalence class is called a <i>free vector</i>.</span> </li> <li id="cite_note-1.1:_Vectors-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-1.1:_Vectors_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-1.1:_Vectors_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.libretexts.org/Bookshelves/Calculus/Supplemental_Modules_(Calculus)/Vector_Calculus/1%3A_Vector_Basics/1.1%3A_Vectors">"1.1: Vectors"</a>. <i>Mathematics LibreTexts</i>. 2013-11-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2020-08-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Mathematics+LibreTexts&rft.atitle=1.1%3A+Vectors&rft.date=2013-11-07&rft_id=https%3A%2F%2Fmath.libretexts.org%2FBookshelves%2FCalculus%2FSupplemental_Modules_%28Calculus%29%2FVector_Calculus%2F1%253A_Vector_Basics%2F1.1%253A_Vectors&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></span> </li> <li id="cite_note-thermo-forms-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-thermo-forms_15-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.av8n.com/physics/thermo-forms.htm">Thermodynamics and Differential Forms</a></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a href="/wiki/Josiah_Willard_Gibbs" title="Josiah Willard Gibbs">Gibbs, J.W.</a> (1901). <i>Vector Analysis: A Text-book for the Use of Students of Mathematics and Physics, Founded upon the Lectures of J. Willard Gibbs</i>, by E.B. Wilson, Chares Scribner's Sons, New York, p. 15: "Any vector <span class="texhtml"><b>r</b></span> coplanar with two non-collinear vectors <span class="texhtml"><b>a</b></span> and <span class="texhtml"><b>b</b></span> may be resolved into two components parallel to <span class="texhtml"><b>a</b></span> and <span class="texhtml"><b>b</b></span> respectively. This resolution may be accomplished by constructing the parallelogram ..."</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20070122155954/http://www.physics.uoguelph.ca/tutorials/torque/Q.torque.intro.angacc.html">"U. Guelph Physics Dept., "Torque and Angular Acceleration"<span class="cs1-kern-right"></span>"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.physics.uoguelph.ca/tutorials/torque/Q.torque.intro.angacc.html">the original</a> on 2007-01-22<span class="reference-accessdate">. Retrieved <span class="nowrap">2007-01-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=U.+Guelph+Physics+Dept.%2C+%22Torque+and+Angular+Acceleration%22&rft_id=http%3A%2F%2Fwww.physics.uoguelph.ca%2Ftutorials%2Ftorque%2FQ.torque.intro.angacc.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></span> </li> <li id="cite_note-HMCS-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-HMCS_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-HMCS_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-HMCS_18-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarrisStöcker1998" class="citation book cs1">Harris, John W.; Stöcker, Horst (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=DnKLkOb_YfIC&pg=PA332"><i>Handbook of mathematics and computational science</i></a>. Birkhäuser. Chapter 6, p. 332. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-94746-9" title="Special:BookSources/0-387-94746-9"><bdi>0-387-94746-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Handbook+of+mathematics+and+computational+science&rft.pages=Chapter+6%2C+p.+332&rft.pub=Birkh%C3%A4user&rft.date=1998&rft.isbn=0-387-94746-9&rft.aulast=Harris&rft.aufirst=John+W.&rft.au=St%C3%B6cker%2C+Horst&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DDnKLkOb_YfIC%26pg%3DPA332&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></span> </li> <li id="cite_note-dynon16-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-dynon16_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-dynon16_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-dynon16_20-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-dynon16_20-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFKaneLevinson1996">Kane & Levinson 1996</a>, pp. 20–22</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRogers2007" class="citation book cs1">Rogers, Robert M. (2007). <i>Applied mathematics in integrated navigation systems</i> (3rd ed.). Reston, Va.: American Institute of Aeronautics and Astronautics. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781563479274" title="Special:BookSources/9781563479274"><bdi>9781563479274</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/652389481">652389481</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Applied+mathematics+in+integrated+navigation+systems&rft.place=Reston%2C+Va.&rft.edition=3rd&rft.pub=American+Institute+of+Aeronautics+and+Astronautics&rft.date=2007&rft_id=info%3Aoclcnum%2F652389481&rft.isbn=9781563479274&rft.aulast=Rogers&rft.aufirst=Robert+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=32" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Mathematical_treatments">Mathematical treatments</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=33" title="Edit section: Mathematical treatments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol1967" class="citation book cs1 cs1-prop-long-vol"><a href="/wiki/Tom_Apostol" class="mw-redirect" title="Tom Apostol">Apostol, Tom</a> (1967). <a rel="nofollow" class="external text" href="https://archive.org/details/calculus01apos"><i>Calculus</i></a>. Vol. 1: One-Variable Calculus with an Introduction to Linear Algebra. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-00005-1" title="Special:BookSources/978-0-471-00005-1"><bdi>978-0-471-00005-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus&rft.pub=Wiley&rft.date=1967&rft.isbn=978-0-471-00005-1&rft.aulast=Apostol&rft.aufirst=Tom&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculus01apos&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol1969" class="citation book cs1 cs1-prop-long-vol"><a href="/wiki/Tom_Apostol" class="mw-redirect" title="Tom Apostol">Apostol, Tom</a> (1969). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/calculus01apos"><i>Calculus</i></a></span>. Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-00007-5" title="Special:BookSources/978-0-471-00007-5"><bdi>978-0-471-00007-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus&rft.pub=Wiley&rft.date=1969&rft.isbn=978-0-471-00007-5&rft.aulast=Apostol&rft.aufirst=Tom&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcalculus01apos&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeinbockel2001" class="citation cs2">Heinbockel, J. H. (2001), <a rel="nofollow" class="external text" href="http://www.math.odu.edu/~jhh/counter2.html"><i>Introduction to Tensor Calculus and Continuum Mechanics</i></a>, Trafford Publishing, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-55369-133-4" title="Special:BookSources/1-55369-133-4"><bdi>1-55369-133-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Tensor+Calculus+and+Continuum+Mechanics&rft.pub=Trafford+Publishing&rft.date=2001&rft.isbn=1-55369-133-4&rft.aulast=Heinbockel&rft.aufirst=J.+H.&rft_id=http%3A%2F%2Fwww.math.odu.edu%2F~jhh%2Fcounter2.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFItô1993" class="citation cs2">Itô, Kiyosi (1993), <i>Encyclopedic Dictionary of Mathematics</i> (2nd ed.), <a href="/wiki/MIT_Press" title="MIT Press">MIT Press</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-262-59020-4" title="Special:BookSources/978-0-262-59020-4"><bdi>978-0-262-59020-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopedic+Dictionary+of+Mathematics&rft.edition=2nd&rft.pub=MIT+Press&rft.date=1993&rft.isbn=978-0-262-59020-4&rft.aulast=It%C3%B4&rft.aufirst=Kiyosi&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIvanov2001" class="citation cs2">Ivanov, A.B. (2001) [1994], <a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Vector">"Vector"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Vector&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft.aulast=Ivanov&rft.aufirst=A.B.&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DVector&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaneLevinson1996" class="citation cs2">Kane, Thomas R.; Levinson, David A. (1996), <i>Dynamics Online</i>, Sunnyvale, California: OnLine Dynamics</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Dynamics+Online&rft.place=Sunnyvale%2C+California&rft.pub=OnLine+Dynamics&rft.date=1996&rft.aulast=Kane&rft.aufirst=Thomas+R.&rft.au=Levinson%2C+David+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLang1986" class="citation book cs1"><a href="/wiki/Serge_Lang" title="Serge Lang">Lang, Serge</a> (1986). <i>Introduction to Linear Algebra</i> (2nd ed.). Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-96205-0" title="Special:BookSources/0-387-96205-0"><bdi>0-387-96205-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Linear+Algebra&rft.edition=2nd&rft.pub=Springer&rft.date=1986&rft.isbn=0-387-96205-0&rft.aulast=Lang&rft.aufirst=Serge&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPedoe1988" class="citation book cs1"><a href="/wiki/Daniel_Pedoe" title="Daniel Pedoe">Pedoe, Daniel</a> (1988). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/geometrycomprehe0000pedo"><i>Geometry: A comprehensive course</i></a></span>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-486-65812-0" title="Special:BookSources/0-486-65812-0"><bdi>0-486-65812-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometry%3A+A+comprehensive+course&rft.pub=Dover&rft.date=1988&rft.isbn=0-486-65812-0&rft.aulast=Pedoe&rft.aufirst=Daniel&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fgeometrycomprehe0000pedo&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Physical_treatments">Physical treatments</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=34" title="Edit section: Physical treatments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAris1990" class="citation book cs1">Aris, R. (1990). <a rel="nofollow" class="external text" href="https://archive.org/details/vectorstensorsba00aris"><i>Vectors, Tensors and the Basic Equations of Fluid Mechanics</i></a>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-486-66110-0" title="Special:BookSources/978-0-486-66110-0"><bdi>978-0-486-66110-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vectors%2C+Tensors+and+the+Basic+Equations+of+Fluid+Mechanics&rft.pub=Dover&rft.date=1990&rft.isbn=978-0-486-66110-0&rft.aulast=Aris&rft.aufirst=R.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fvectorstensorsba00aris&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeynmanLeightonSands2005" class="citation book cs1"><a href="/wiki/Richard_Feynman" title="Richard Feynman">Feynman, Richard</a>; Leighton, R.; Sands, M. (2005). "Chapter 11". <a href="/wiki/The_Feynman_Lectures_on_Physics" title="The Feynman Lectures on Physics"><i>The Feynman Lectures on Physics</i></a>. Vol. I (2nd ed.). Addison Wesley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8053-9046-9" title="Special:BookSources/978-0-8053-9046-9"><bdi>978-0-8053-9046-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Chapter+11&rft.btitle=The+Feynman+Lectures+on+Physics&rft.edition=2nd&rft.pub=Addison+Wesley&rft.date=2005&rft.isbn=978-0-8053-9046-9&rft.aulast=Feynman&rft.aufirst=Richard&rft.au=Leighton%2C+R.&rft.au=Sands%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Euclidean_vector&action=edit&section=35" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/Euclidean_vector" class="extiw" title="q:Special:Search/Euclidean vector">Euclidean vector</a></b></i>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Vectors" class="extiw" title="commons:Category:Vectors">Vectors</a></span>.</div></div> </div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1235681985"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237033735"><div class="side-box side-box-right plainlinks sistersitebox"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1126788409"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/40px-Wikibooks-logo-en-noslogan.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/60px-Wikibooks-logo-en-noslogan.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/df/Wikibooks-logo-en-noslogan.svg/80px-Wikibooks-logo-en-noslogan.svg.png 2x" data-file-width="400" data-file-height="400" /></span></span></div> <div class="side-box-text plainlist">The Wikibook <i><a href="https://en.wikibooks.org/wiki/Waves" class="extiw" title="wikibooks:Waves">Waves</a></i> has a page on the topic of: <i><b><a href="https://en.wikibooks.org/wiki/Waves/Vectors" class="extiw" title="wikibooks:Waves/Vectors">Vectors</a></b></i></div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Vector">"Vector"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Vector&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DVector&rfr_id=info%3Asid%2Fen.wikipedia.org%3AEuclidean+vector" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120801005307/http://wwwppd.nrl.navy.mil/nrlformulary/vector_identities.pdf">Online vector identities</a> (<a href="/wiki/Portable_Document_Format" class="mw-redirect" title="Portable Document Format">PDF</a>)</li> <li><a rel="nofollow" class="external text" href="http://www.marco-learningsystems.com/pages/roche/introvectors.htm">Introducing Vectors</a> A conceptual introduction (<a href="/wiki/Applied_mathematics" title="Applied mathematics">applied mathematics</a>)</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Linear_algebra" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Linear_algebra" title="Template:Linear algebra"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Linear_algebra" title="Template talk:Linear algebra"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Linear_algebra" title="Special:EditPage/Template:Linear algebra"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Linear_algebra" style="font-size:114%;margin:0 4em"><a href="/wiki/Linear_algebra" title="Linear algebra">Linear algebra</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><a href="/wiki/Outline_of_linear_algebra" title="Outline of linear algebra">Outline</a></li> <li><a href="/wiki/Glossary_of_linear_algebra" title="Glossary of linear algebra">Glossary</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Scalar_(mathematics)" title="Scalar (mathematics)">Scalar</a></li> <li><a class="mw-selflink selflink">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li> <li><a href="/wiki/Scalar_multiplication" title="Scalar multiplication">Scalar multiplication</a></li> <li><a href="/wiki/Vector_projection" title="Vector projection">Vector projection</a></li> <li><a href="/wiki/Linear_span" title="Linear span">Linear span</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Projection_(linear_algebra)" title="Projection (linear algebra)">Linear projection</a></li> <li><a href="/wiki/Linear_independence" title="Linear independence">Linear independence</a></li> <li><a href="/wiki/Linear_combination" title="Linear combination">Linear combination</a></li> <li><a href="/wiki/Multilinear_map" title="Multilinear map">Multilinear map</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Change_of_basis" title="Change of basis">Change of basis</a></li> <li><a href="/wiki/Row_and_column_vectors" title="Row and column vectors">Row and column vectors</a></li> <li><a href="/wiki/Row_and_column_spaces" title="Row and column spaces">Row and column spaces</a></li> <li><a href="/wiki/Kernel_(linear_algebra)" title="Kernel (linear algebra)">Kernel</a></li> <li><a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">Eigenvalues and eigenvectors</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a></li> <li><a href="/wiki/System_of_linear_equations" title="System of linear equations">Linear equations</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="6" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/Euclidean_space" title="Euclidean space"><img alt="Three dimensional Euclidean space" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/80px-Linear_subspaces_with_shading.svg.png" decoding="async" width="80" height="58" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/120px-Linear_subspaces_with_shading.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Linear_subspaces_with_shading.svg/160px-Linear_subspaces_with_shading.svg.png 2x" data-file-width="325" data-file-height="236" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrices</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Block_matrix" title="Block matrix">Block</a></li> <li><a href="/wiki/Matrix_decomposition" title="Matrix decomposition">Decomposition</a></li> <li><a href="/wiki/Invertible_matrix" title="Invertible matrix">Invertible</a></li> <li><a href="/wiki/Minor_(linear_algebra)" title="Minor (linear algebra)">Minor</a></li> <li><a href="/wiki/Matrix_multiplication" title="Matrix multiplication">Multiplication</a></li> <li><a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">Rank</a></li> <li><a href="/wiki/Transformation_matrix" title="Transformation matrix">Transformation</a></li> <li><a href="/wiki/Cramer%27s_rule" title="Cramer's rule">Cramer's rule</a></li> <li><a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a></li> <li><a href="/wiki/Productive_matrix" title="Productive matrix">Productive matrix</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Bilinear_map" title="Bilinear map">Bilinear</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Orthogonality" title="Orthogonality">Orthogonality</a></li> <li><a href="/wiki/Dot_product" title="Dot product">Dot product</a></li> <li><a href="/wiki/Hadamard_product_(matrices)" title="Hadamard product (matrices)">Hadamard product</a></li> <li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product space</a></li> <li><a href="/wiki/Outer_product" title="Outer product">Outer product</a></li> <li><a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker product</a></li> <li><a href="/wiki/Gram%E2%80%93Schmidt_process" title="Gram–Schmidt process">Gram–Schmidt process</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Determinant" title="Determinant">Determinant</a></li> <li><a href="/wiki/Cross_product" title="Cross product">Cross product</a></li> <li><a href="/wiki/Triple_product" title="Triple product">Triple product</a></li> <li><a href="/wiki/Seven-dimensional_cross_product" title="Seven-dimensional cross product">Seven-dimensional cross product</a></li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a></li> <li><a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a></li> <li><a href="/wiki/Bivector" title="Bivector">Bivector</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li> <li><a href="/wiki/Outermorphism" title="Outermorphism">Outermorphism</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_space" title="Vector space">Vector space</a> constructions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_space" title="Dual space">Dual</a></li> <li><a href="/wiki/Direct_sum_of_modules#Construction_for_two_vector_spaces" title="Direct sum of modules">Direct sum</a></li> <li><a href="/wiki/Function_space#In_linear_algebra" title="Function space">Function space</a></li> <li><a href="/wiki/Quotient_space_(linear_algebra)" title="Quotient space (linear algebra)">Quotient</a></li> <li><a href="/wiki/Linear_subspace" title="Linear subspace">Subspace</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Numerical_linear_algebra" title="Numerical linear algebra">Numerical</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Floating-point_arithmetic" title="Floating-point arithmetic">Floating-point</a></li> <li><a href="/wiki/Numerical_stability" title="Numerical stability">Numerical stability</a></li> <li><a href="/wiki/Basic_Linear_Algebra_Subprograms" title="Basic Linear Algebra Subprograms">Basic Linear Algebra Subprograms</a></li> <li><a href="/wiki/Sparse_matrix" title="Sparse matrix">Sparse matrix</a></li> <li><a href="/wiki/Comparison_of_linear_algebra_libraries" title="Comparison of linear algebra libraries">Comparison of linear algebra libraries</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q44528#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Vektor"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4202708-1">Germany</a></span></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐j4d7q Cached time: 20241122140407 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.935 seconds Real time usage: 1.295 seconds Preprocessor visited node count: 5119/1000000 Post‐expand include size: 96623/2097152 bytes Template argument size: 10915/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 15/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 103734/5000000 bytes Lua time usage: 0.508/10.000 seconds Lua memory usage: 8383856/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 877.642 1 -total 26.23% 230.192 2 Template:Reflist 13.74% 120.567 1 Template:Short_description 12.40% 108.857 1 Template:Linear_algebra 12.16% 106.759 1 Template:Navbox 11.64% 102.201 1 Template:OED 10.44% 91.648 1 Template:Multiple_issues 8.87% 77.825 2 Template:Pagetype 6.66% 58.484 3 Template:Sister_project 6.46% 56.684 3 Template:Side_box --> <!-- Saved in parser cache with key enwiki:pcache:idhash:32533-0!canonical and timestamp 20241122140407 and revision id 1253482264. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Euclidean_vector&oldid=1253482264#Addition_and_subtraction">https://en.wikipedia.org/w/index.php?title=Euclidean_vector&oldid=1253482264#Addition_and_subtraction</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Kinematics" title="Category:Kinematics">Kinematics</a></li><li><a href="/wiki/Category:Abstract_algebra" title="Category:Abstract algebra">Abstract algebra</a></li><li><a href="/wiki/Category:Vector_calculus" title="Category:Vector calculus">Vector calculus</a></li><li><a href="/wiki/Category:Linear_algebra" title="Category:Linear algebra">Linear algebra</a></li><li><a href="/wiki/Category:Concepts_in_physics" title="Category:Concepts in physics">Concepts in physics</a></li><li><a href="/wiki/Category:Vectors_(mathematics_and_physics)" title="Category:Vectors (mathematics and physics)">Vectors (mathematics and physics)</a></li><li><a href="/wiki/Category:Analytic_geometry" title="Category:Analytic geometry">Analytic geometry</a></li><li><a href="/wiki/Category:Euclidean_geometry" title="Category:Euclidean geometry">Euclidean geometry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_December_2021" title="Category:Articles needing additional references from December 2021">Articles needing additional references from December 2021</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Wikipedia_articles_that_are_too_technical_from_December_2021" title="Category:Wikipedia articles that are too technical from December 2021">Wikipedia articles that are too technical from December 2021</a></li><li><a href="/wiki/Category:All_articles_that_are_too_technical" title="Category:All articles that are too technical">All articles that are too technical</a></li><li><a href="/wiki/Category:Articles_with_multiple_maintenance_issues" title="Category:Articles with multiple maintenance issues">Articles with multiple maintenance issues</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Commons_category_link_is_on_Wikidata" title="Category:Commons category link is on Wikidata">Commons category link is on Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 26 October 2024, at 06:28<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Euclidean_vector&mobileaction=toggle_view_mobile#Addition_and_subtraction" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-2kd4h","wgBackendResponseTime":275,"wgPageParseReport":{"limitreport":{"cputime":"0.935","walltime":"1.295","ppvisitednodes":{"value":5119,"limit":1000000},"postexpandincludesize":{"value":96623,"limit":2097152},"templateargumentsize":{"value":10915,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":15,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":103734,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 877.642 1 -total"," 26.23% 230.192 2 Template:Reflist"," 13.74% 120.567 1 Template:Short_description"," 12.40% 108.857 1 Template:Linear_algebra"," 12.16% 106.759 1 Template:Navbox"," 11.64% 102.201 1 Template:OED"," 10.44% 91.648 1 Template:Multiple_issues"," 8.87% 77.825 2 Template:Pagetype"," 6.66% 58.484 3 Template:Sister_project"," 6.46% 56.684 3 Template:Side_box"]},"scribunto":{"limitreport-timeusage":{"value":"0.508","limit":"10.000"},"limitreport-memusage":{"value":8383856,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFApostol1967\"] = 1,\n [\"CITEREFApostol1969\"] = 1,\n [\"CITEREFAris1990\"] = 1,\n [\"CITEREFFeynmanLeightonSands2005\"] = 1,\n [\"CITEREFHarrisStöcker1998\"] = 1,\n [\"CITEREFHeinbockel2001\"] = 1,\n [\"CITEREFItô1993\"] = 1,\n [\"CITEREFJeff_Miller\"] = 1,\n [\"CITEREFKaneLevinson1996\"] = 1,\n [\"CITEREFLang1986\"] = 1,\n [\"CITEREFPedoe1988\"] = 1,\n [\"CITEREFRogers2007\"] = 1,\n [\"CITEREFWeisstein\"] = 1,\n [\"Decomposition\"] = 1,\n [\"Operations\"] = 1,\n [\"Properties\"] = 1,\n [\"Vector_component\"] = 1,\n [\"antiparallel\"] = 1,\n [\"opposite\"] = 1,\n [\"parallel\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"=\"] = 5,\n [\"Anchor\"] = 3,\n [\"Authority control\"] = 1,\n [\"Blockquote\"] = 1,\n [\"Citation\"] = 3,\n [\"Cite book\"] = 9,\n [\"Cite web\"] = 7,\n [\"Clear\"] = 1,\n [\"Commons category\"] = 1,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Efn\"] = 1,\n [\"Em\"] = 2,\n [\"For-text\"] = 1,\n [\"Further\"] = 3,\n [\"Harvnb\"] = 7,\n [\"Linear algebra\"] = 1,\n [\"Main\"] = 1,\n [\"Main article\"] = 7,\n [\"Math\"] = 22,\n [\"Multiple issues\"] = 1,\n [\"Mvar\"] = 8,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 5,\n [\"OED\"] = 1,\n [\"Reflist\"] = 1,\n [\"Rp\"] = 1,\n [\"See also\"] = 1,\n [\"Sfn whitelist\"] = 1,\n [\"Short description\"] = 1,\n [\"Springer\"] = 2,\n [\"Technical\"] = 1,\n [\"Unreferenced section\"] = 1,\n [\"Wikibooks\"] = 1,\n [\"Wikiquote\"] = 1,\n}\narticle_whitelist = table#1 {\n [\"CITEREFIvanov2001\"] = 1,\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-j4d7q","timestamp":"20241122140407","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Euclidean vector","url":"https:\/\/en.wikipedia.org\/wiki\/Euclidean_vector#Addition_and_subtraction","sameAs":"http:\/\/www.wikidata.org\/entity\/Q44528","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q44528","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-08T15:33:02Z","dateModified":"2024-10-26T06:28:20Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/95\/Vector_from_A_to_B.svg","headline":"geometric object that has magnitude (or length) and direction"}</script> </body> </html>