CINXE.COM

Search results for: leachability

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: leachability</title> <meta name="description" content="Search results for: leachability"> <meta name="keywords" content="leachability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="leachability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="leachability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: leachability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Treatment and Reuse of Nonmetallic PCBs Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johan%20Sohaili">Johan Sohaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Suhaila%20Mohamad"> Siti Suhaila Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shantha%20Kumari%20Muniyandi"> Shantha Kumari Muniyandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The strength development, durability and leachability aspects of mortar added with nonmetallic printed circuit board (NMPCBs) were investigated. This study aims to propose methods for treatment and reuse of NMPCBs waste. The leachability of raw NMPCBs was tested for toxicity by performing the Crushed Block Leachability (CBL) test. The effectiveness of the treatment was evaluated by performing compressive, flexural strength, durability and whole block leachability (WBL) tests on the mortar. The results indicated that the concentration of metals leach from the raw NMPCBs are within the standard limits and higher than the concentration of metals from WBL test. The compressive and flexural strength of the NMPCBs mortar was generally lower than the standard mortar. From durability tests, weight and compressive strength both of mortars was decrease after soaking in acid solution. As a conclusion, the treated NMPCBs can be reused in profitable and environmentally friendly ways and has broad application prospects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonmetallic" title="nonmetallic">nonmetallic</a>, <a href="https://publications.waset.org/abstracts/search?q=printed%20circuit%20board" title=" printed circuit board"> printed circuit board</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a> </p> <a href="https://publications.waset.org/abstracts/1510/treatment-and-reuse-of-nonmetallic-pcbs-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Effect of Adding Microsilica on the Rheological Behavior and Injectability of the Paste in the Injection Molding of Silica-Based Ceramic Cores</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arghavan%20Kazemi">Arghavan Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Radipour"> Hossein Radipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microsilica (silica foam) is a byproduct of ferrosilicon production and silicon metal. Microsilica particles have a spherical shape, an average diameter of 0.15 µm, and a specific surface area of 15-25 m². g-¹. The overall density of this material is 150-700 kg.m-³. Many researchers have investigated the effect of adding microsilica on the flow properties of cement mixtures. This paper investigated the effect of adding microsilica on the flow behavior and injectability of silica-based paste. For this purpose, different percentages of microsilica have been used to prepare the paste. The rheometric test was performed on all the samples with different percentages of microsilica additives using an MCR300 rotary viscometer at a temperature of 70°C. In addition, the ability to inject pastes containing different amounts of microsilica at pressures of 25, 40, 50, and (bar) 60 at constant temperature and flow in a mold with dimensions of 80 × 80 × 0.5 mm³ has been investigated. Then, the effect of microsilica addition on the strength, porosity percentage, and leachability of the sintered core was studied. The results show that the rheological behavior of the paste is pseudoplastic; also, the silane index decreases with the increase in the percentage of microsilica addition, and the viscosity increases. On the other hand, the addition of microsilica has led to the appearance of thixotropic in the paste. By increasing the amount of microsilica, the injectability has significantly improved at low pressures. The strength of the sintered core increases with the increase of microsilica and the amount of remaining porosity and leachability decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microsilica" title="microsilica">microsilica</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20behavior" title=" rheological behavior"> rheological behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=injectability" title=" injectability"> injectability</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=silica-based%20ceramic%20cores" title=" silica-based ceramic cores"> silica-based ceramic cores</a>, <a href="https://publications.waset.org/abstracts/search?q=leachability" title=" leachability"> leachability</a> </p> <a href="https://publications.waset.org/abstracts/188985/the-effect-of-adding-microsilica-on-the-rheological-behavior-and-injectability-of-the-paste-in-the-injection-molding-of-silica-based-ceramic-cores" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Remediation of Heavy Metal Contaminated Soil with Vivianite Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinen%20B.">Shinen B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bavor%20J."> Bavor J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorjkhand%20B."> Dorjkhand B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Suvd%20B."> Suvd B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Maitsetseg%20B."> Maitsetseg B.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A number of remediation techniques are available for the treatment of soils and sediments contaminated by heavy metals. However, some of these techniques are expensive and environmentally disruptive. Nanomaterials are used in the environment as environmental catalysts to convert toxic substances from water, soil, and sediment into environmentally benign compounds. This study was carried out to scrutinize the feasibility of vivianite nanoparticles for remediation of soils contaminated with heavy metals. Column experiments were performed in the laboratory to examine nanoparticle sequestration of metal in soil amended with vivianite nanoparticle suspension. The effect of environmental parameters such as temperature, pH and redox potential on metal leachability and bioavailability of soil amended with nanoparticle suspension was examined and compared with non-amended soils. The vivianite was effective in reducing the leachability of metals in soils. It is suggested that vivianite nanoparticles could be applied for the remediation of contaminated sites polluted by heavy metals due to mining activities, particularly in Mongolia, where mining industries have been developing rapidly in the last decade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title="bioavailability">bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a> </p> <a href="https://publications.waset.org/abstracts/121769/remediation-of-heavy-metal-contaminated-soil-with-vivianite-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: Case Study on Contaminated Site Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Allagoa">Mary Allagoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Abir%20Al-Tabbaa"> Abir Al-Tabbaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to decrease the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of using the binders, with a focus on Total Heavy metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk assessments (ILCR) and other indexes to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0- 320.5 kPa, while THM levels are less than 10 µg/l in GGBS: MgO and CEM: PFA but below 1 µg/l in CEM I based. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 – 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), Risk allowable daily dose intake (ADI), and Risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk%20ADI" title="risk ADI">risk ADI</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20CDI" title=" risk CDI"> risk CDI</a>, <a href="https://publications.waset.org/abstracts/search?q=ILCR" title=" ILCR"> ILCR</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20binders" title=" novel binders"> novel binders</a>, <a href="https://publications.waset.org/abstracts/search?q=additives%20binders" title=" additives binders"> additives binders</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20index" title=" hazard index"> hazard index</a> </p> <a href="https://publications.waset.org/abstracts/166678/dry-binder-mixing-of-field-trial-investigation-using-soil-mix-technology-case-study-on-contaminated-site-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166678.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">813</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Laboratory Investigation of Fly Ash Based Geopolymer Stabilized Recycled Asphalt Pavement as a Base Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Menglim%20Hoy">Menglim Hoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Suksun%20Horpibulsuk"> Suksun Horpibulsuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Arulrajah"> Arul Arulrajah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results of laboratory investigation of recycled asphalt pavement (RAP) – fly ash (FA) based geopolymer as a base material is presented in this paper. An alkaline activator, the mixture of NaOH and Na₂SiO₃, is used to synthesis RAP-FA based geopolymer. RAP-FA with water (RAP-FA blend) prepared as a control material. The strength develops and the strength against wet-dry was determined by the unconfined compression strength (UCS) test, then the microstructural properties were examined by scanning electron microscopy (SEM) and X-ray Diffraction (XRD) analysis. The toxicity characteristic leaching procedure (TCLP) test is conducted to measure its leachability of heavy metal. The results show both the RAP-FA blend and geopolymer can be used as a base course as its UCS values meet the minimum strength requirement specified by the Department of Highway, Thailand. The durability test results show the UCS of these materials increases with increasing the number of wet-dry cycles, reaching its peak at six wet-dry cycles. The XRD and SEM analyses indicate strength development of the RAP-FA blend occurs due to chemical reaction between a high Calcium in RAP with a high Silica and Alumina in FA led to producing calcium aluminate hydrate formation. The strength development of the RAP-FA geopolymer occurred resulted from the polymerization reaction. The TCLP results demonstrate there is no environmental risk of these stabilized materials. Furthermore, FA based geopolymer can reduce the leachability of heavy metal in the RAP-FA blend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt%20pavement" title="recycled asphalt pavement">recycled asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/120035/laboratory-investigation-of-fly-ash-based-geopolymer-stabilized-recycled-asphalt-pavement-as-a-base-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20S.%20Darwish">Ahmad S. Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Lemaoui"> Tarek Lemaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanifa%20Taher"> Hanifa Taher</a>, <a href="https://publications.waset.org/abstracts/search?q=Inas%20M.%20AlNashef"> Inas M. AlNashef</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawzi%20Banat"> Fawzi Banat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20biomass%20conversion" title="sustainable biomass conversion">sustainable biomass conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=furfural%20extraction" title=" furfural extraction"> furfural extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20eutectic%20solvents" title=" deep eutectic solvents"> deep eutectic solvents</a> </p> <a href="https://publications.waset.org/abstracts/177893/enhanced-furfural-extraction-from-aqueous-media-using-neoteric-hydrophobic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> A Study on Leaching of Toxic Elements of High Strength Concrete Containing Waste Cathode Ray Tube Glass as Coarse Aggregate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Noraziemah%20Mohd%20Pauzi">Nurul Noraziemah Mohd Pauzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Fauzi%20Mohd%20Zain"> Muhammad Fauzi Mohd Zain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid advance in the electronic industry has led to the increase amount of the waste cathode ray tube (CRT) devices. The management of CRT waste upon disposal haves become a major issue of environmental concern as it contains toxic elements (i.e. lead, barium, zinc, etc.) which has a risk of leaching if it is not managed appropriately. Past studies have reported regarding the possible use of CRT glass as a part of aggregate in concrete production. However, incorporating waste CRT glass may present an environmental risk via leachability of toxic elements. Accordingly, the preventive measures for reducing the risk was proposed. The current work presented the experimental results regarding potential leaching of toxic elements from four types of concrete mixed, each compromising waste CRT glass as coarse aggregate with different shape and properties. Concentrations of detected elements are measure in the leachates by using atomic absorption spectrometry (AAS). Results indicate that the concentration of detected elements were found to be below applicable risk, despite the higher content of toxic elements in CRT glass. Therefore, the used of waste CRT glass as coarse aggregate in hardened concrete does not pose any risk of leachate of heavy metals to the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20CRT%20glass" title="recycled CRT glass">recycled CRT glass</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregate" title=" coarse aggregate"> coarse aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20elements" title=" toxic elements"> toxic elements</a> </p> <a href="https://publications.waset.org/abstracts/71438/a-study-on-leaching-of-toxic-elements-of-high-strength-concrete-containing-waste-cathode-ray-tube-glass-as-coarse-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Simultaneous Removal of Arsenic and Toxic Metals from Contaminated Soil: a Pilot-Scale Demonstration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Francisco%20Morales%20Arteaga">Juan Francisco Morales Arteaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Gluhar"> Simon Gluhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Anela%20Kaurin"> Anela Kaurin</a>, <a href="https://publications.waset.org/abstracts/search?q=Domen%20Lestan"> Domen Lestan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Contaminated soils are recognized as one of the most pressing global environmental problems. As is one of the most hazardous elements: chronic exposure to arsenic has devastating effects on health, cardiovascular diseases, cancer, and eventually death. Pb, Zn and Cd are very highly toxic metals that affect almost every organ in the body. With this in mind, new technologies for soil remediation processes are urgently needed. Calcareous artificially contaminated soil containing 231 mg kg-1 As and historically contaminated with Pb, Zn and Cd was washed with a 1:1.5 solid-liquid ratio of 90 mM EDTA, 100 mM oxalic acid, and 50 mM sodium dithionite to remove 59, 75, 29, and 53% of As, Pb, Zn, and Cd, respectively. To reduce emissions of residual EDTA and chelated metals from the remediated soil, zero valent iron (ZVI) was added (1% w/w) to the slurry of the washed soil immediately prior to rinsing. Experimental controls were conducted without the addition of ZVI after remediation. The use of ZVI reduced metal leachability and minimized toxic emissions 21 days after remediation. After this time, NH4NO3 extraction was performed to determine the mobility of toxic elements in the soil. In addition, Unified Human BioaccessibilityMethod (UBM) was performed to quantify the bioaccessibility levels of metals in stimulated human gastric and gastrointestinal phases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20remediation" title="soil remediation">soil remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20science" title=" soil science"> soil science</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20washing" title=" soil washing"> soil washing</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20metals%20removal" title=" toxic metals removal"> toxic metals removal</a> </p> <a href="https://publications.waset.org/abstracts/142910/simultaneous-removal-of-arsenic-and-toxic-metals-from-contaminated-soil-a-pilot-scale-demonstration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> An Investigation to Study the Moisture Dependency of Ground Enhancement Compound </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arunima%20Shukla">Arunima Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Almadi"> Vikas Almadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Devesh%20Jaiswal"> Devesh Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Saini"> Sunil Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhusan%20S.%20Patil"> Bhusan S. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightning protection consists of three main parts; mainly air termination system, down conductor, and earth termination system. Earth termination system is the most important part as earth is the sink and source of charges. Therefore, even when the charges are captured and delivered to the ground, and an easy path is not provided to the charges, earth termination system would lead to problems. Soil has significantly different resistivities ranging from 10 Ωm for wet organic soil to 10000 Ωm for bedrock. Different methods have been discussed and used conventionally such as deep-ground-well method and altering the length of the rod. Those methods are not considered economical. Therefore, it was a general practice to use charcoal along with salt to reduce the soil resistivity. Bentonite is worldwide acceptable material, that had led our interest towards study of bentonite at first. It was concluded that bentonite is a clay which is non-corrosive, environment friendly. Whereas bentonite is suitable only when there is moisture present in the soil, as in the absence of moisture, cracks will appear on the surface which will provide an open passage to the air, resulting into increase in the resistivity. Furthermore, bentonite without moisture does not have enough bonding property, moisture retention, conductivity, and non-leachability. Therefore, bentonite was used along with the other backfill material to overcome the dependency of bentonite on moisture. Different experiments were performed to get the best ratio of bentonite and carbon backfill. It was concluded that properties will highly depend on the quantity of bentonite and carbon-based backfill material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backfill%20material" title="backfill material">backfill material</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=grounding%20material" title=" grounding material"> grounding material</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20resistivity" title=" low resistivity"> low resistivity</a> </p> <a href="https://publications.waset.org/abstracts/134378/an-investigation-to-study-the-moisture-dependency-of-ground-enhancement-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Investigations on Utilization of Chrome Sludge, Chemical Industry Waste, in Cement Manufacturing and Its Effect on Clinker Mineralogy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Vanguri">Suresh Vanguri</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Palla"> Suresh Palla</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasad%20G."> Prasad G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramaswamy%20V."> Ramaswamy V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalyani%20K.%20V."> Kalyani K. V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaturvedi%20S.%20K."> Chaturvedi S. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohapatra%20B.%20N."> Mohapatra B. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunder%20Rao%20TBVN"> Sunder Rao TBVN</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The utilization of industrial waste materials and by-products in the cement industry helps in the conservation of natural resources besides avoiding the problems arising due to waste dumping. The use of non-carbonated materials as raw mix components in clinker manufacturing is identified as one of the key areas to reduce Green House Gas (GHG) emissions. Chrome sludge is a waste material generated from the manufacturing process of sodium dichromate. This paper aims to present studies on the use of chrome sludge in clinker manufacturing, its impact on the development of clinker mineral phases and on the cement properties. Chrome sludge was found to contain substantial amounts of CaO, Fe2O3 and Al2O3 and therefore was used to replace some conventional sources of alumina and iron in the raw mix. Different mixes were prepared by varying the chrome sludge content from 0 to 5 % and the mixes were evaluated for burnability. Laboratory prepared clinker samples were evaluated for qualitative and quantitative mineralogy using X-ray Diffraction Studies (XRD). Optical microscopy was employed to study the distribution of clinker phases, their granulometry and mineralogy. Since chrome sludge also contains considerable amounts of chromium, studies were conducted on the leachability of heavy elements in the chrome sludge as well as in the resultant cement samples. Estimation of heavy elements, including chromium was carried out using ICP-OES. Further, the state of chromium valence, Cr (III) & Cr (VI), was studied using conventional chemical analysis methods coupled with UV-VIS spectroscopy. Assimilation of chromium in the clinker phases was investigated using SEM-EDXA studies. Bulk cement was prepared from the clinker to study the effect of chromium sludge on the cement properties such as setting time, soundness, strength development against the control cement. Studies indicated that chrome sludge can be successfully utilized and its content needs to be optimized based on raw material characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chrome%20sludge" title="chrome sludge">chrome sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogy" title=" mineralogy"> mineralogy</a>, <a href="https://publications.waset.org/abstracts/search?q=non-carbonate%20materials" title=" non-carbonate materials"> non-carbonate materials</a> </p> <a href="https://publications.waset.org/abstracts/135451/investigations-on-utilization-of-chrome-sludge-chemical-industry-waste-in-cement-manufacturing-and-its-effect-on-clinker-mineralogy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10