CINXE.COM
Search results for: vulnerability
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: vulnerability</title> <meta name="description" content="Search results for: vulnerability"> <meta name="keywords" content="vulnerability"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="vulnerability" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="vulnerability"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 682</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: vulnerability</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">682</span> The Role of Physical Capital on the Accessibility of Livelihood of Indigenous People</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anjli%20Pathak">Anjli Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Harshit%20Sosan%20Lakra"> Harshit Sosan Lakra</a>, <a href="https://publications.waset.org/abstracts/search?q=Smriti%20Mishra"> Smriti Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing urbanization affects the external environment in which people exist and imposes livelihood vulnerability to shocks and stresses. Although research on the linkages between urbanization and vulnerability has been increasing, only a few studies have examined the caste/ethnicity in livelihood vulnerability. In this study, we explore how physical capital influences vulnerability among indigenous people in the context of livelihood. The study identifies the dimensions and indicators of physical capital that influence the profile of household vulnerability in the livelihood-building process. The result identified five dimensions and 19 indicators of livelihood vulnerability. The study also visualizes the inter-relationship between physical capital and other livelihood capital in formulating the livelihood vulnerability framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urbanization" title="urbanization">urbanization</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood%20vulnerability" title=" livelihood vulnerability"> livelihood vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=indigenous%20people" title=" indigenous people"> indigenous people</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20capital" title=" physical capital"> physical capital</a> </p> <a href="https://publications.waset.org/abstracts/174030/the-role-of-physical-capital-on-the-accessibility-of-livelihood-of-indigenous-people" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">681</span> Application of Data Mining for Aquifer Environmental Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saman%20Javadi">Saman Javadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Hashemy"> Mehdi Hashemy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohahammad%20Mahmoodi"> Mohahammad Mahmoodi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vulnerability maps are employed as an important solution in order to handle entrance of pollution into the aquifers. The common way to provide vulnerability map is DRASTIC. Meanwhile, application of the method is not easy to apply for any aquifer due to choosing appropriate constant values of weights and ranks. In this study, a new approach using k-means clustering is applied to make vulnerability maps. Four features of depth to groundwater, hydraulic conductivity, recharge value and vadose zone were considered at the same time as features of clustering. Five regions are recognized out of the case study represent zones with different level of vulnerability. The finding results show that clustering provides a realistic vulnerability map so that, Pearson’s correlation coefficients between nitrate concentrations and clustering vulnerability is obtained 61%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering" title="clustering">clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20assessment" title=" vulnerability assessment "> vulnerability assessment </a> </p> <a href="https://publications.waset.org/abstracts/20164/application-of-data-mining-for-aquifer-environmental-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">603</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">680</span> Landslide Vulnerability Assessment in Context with Indian Himalayan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Gupta">Neha Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landslide vulnerability is considered as the crucial parameter for the assessment of landslide risk. The term vulnerability defined as the damage or degree of elements at risk of different dimensions, i.e., physical, social, economic, and environmental dimensions. Himalaya region is very prone to multi-hazard such as floods, forest fires, earthquakes, and landslides. With the increases in fatalities rates, loss of infrastructure, and economy due to landslide in the Himalaya region, leads to the assessment of vulnerability. In this study, a methodology to measure the combination of vulnerability dimension, i.e., social vulnerability, physical vulnerability, and environmental vulnerability in one framework. A combined result of these vulnerabilities has rarely been carried out. But no such approach was applied in the Indian Scenario. The methodology was applied in an area of east Sikkim Himalaya, India. The physical vulnerability comprises of building footprint layer extracted from remote sensing data and Google Earth imaginary. The social vulnerability was assessed by using population density based on land use. The land use map was derived from a high-resolution satellite image, and for environment vulnerability assessment NDVI, forest, agriculture land, distance from the river were assessed from remote sensing and DEM. The classes of social vulnerability, physical vulnerability, and environment vulnerability were normalized at the scale of 0 (no loss) to 1 (loss) to get the homogenous dataset. Then the Multi-Criteria Analysis (MCA) was used to assign individual weights to each dimension and then integrate it into one frame. The final vulnerability was further classified into four classes from very low to very high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landslide" title="landslide">landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20analysis" title=" multi-criteria analysis"> multi-criteria analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=MCA" title=" MCA"> MCA</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20vulnerability" title=" physical vulnerability"> physical vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20vulnerability" title=" social vulnerability"> social vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/128930/landslide-vulnerability-assessment-in-context-with-indian-himalayan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">679</span> Groundwater Vulnerability of Halabja-Khurmal Sub-Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lanja%20F.%20Rauf">Lanja F. Rauf</a>, <a href="https://publications.waset.org/abstracts/search?q=Salahalddin%20S.%20Ali"> Salahalddin S. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadhir%20Al-Ansari"> Nadhir Al-Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolving groundwater vulnerability from DRASTIC to modified DRASTIC methods helps choose the most accurate areas that are most delicate toward pollution. This study aims to modify DRASTIC with land use and water quality index for groundwater vulnerability assessment in the Halabja-Khurmal sub-basin, NE/Iraq. The Halabja- Khurmal sub-basin groundwater vulnerability index is calculated from nine hydrogeological parameters by the overlay weighting method. As a result, 1.3 % of the total area has a very high vulnerability value and 46.1 % with high vulnerability. The regions with high groundwater vulnerability have a high water table and groundwater recharge. Nitrate concentration was used to validate the result, and the Pearson correlation and recession analysis between the modified DRASTIC index and nitrate concentration depicted a strong relation with 0.76 and 0.7, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater%20vulnerability" title="groundwater vulnerability">groundwater vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20DRASTIC" title=" modified DRASTIC"> modified DRASTIC</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use" title=" land-use"> land-use</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20pollution" title=" nitrate pollution"> nitrate pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20index" title=" water quality index"> water quality index</a> </p> <a href="https://publications.waset.org/abstracts/154484/groundwater-vulnerability-of-halabja-khurmal-sub-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">678</span> Software Vulnerability Markets: Discoverers and Buyers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20M.%20Algarni">Abdullah M. Algarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashwant%20K.%20Malaiya"> Yashwant K. Malaiya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Some of the key aspects of vulnerability-discovery, dissemination, and disclosure-have received some attention recently. However, the role of interaction among the vulnerability discoverers and vulnerability acquirers has not yet been adequately addressed. Our study suggests that a major percentage of discoverers, a majority in some cases, are unaffiliated with the software developers and thus are free to disseminate the vulnerabilities they discover in any way they like. As a result, multiple vulnerability markets have emerged. In some of these markets, the exchange is regulated, but in others, there is little or no regulation. In recent vulnerability discovery literature, the vulnerability discoverers have remained anonymous individuals. Although there has been an attempt to model the level of their efforts, information regarding their identities, modes of operation, and what they are doing with the discovered vulnerabilities has not been explored. Reports of buying and selling of the vulnerabilities are now appearing in the press; however, the existence of such markets requires validation, and the natures of the markets need to be analysed. To address this need, we have attempted to collect detailed information. We have identified the most prolific vulnerability discoverers throughout the past decade and examined their motivation and methods. A large percentage of these discoverers are located in Eastern and Western Europe and in the Far East. We have contacted several of them in order to collect first-hand information regarding their techniques, motivations, and involvement in the vulnerability markets. We examine why many of the discoverers appear to retire after a highly successful vulnerability-finding career. The paper identifies the actual vulnerability markets, rather than the hypothetical ideal markets that are often examined. The emergence of worldwide government agencies as vulnerability buyers has significant implications. We discuss potential factors that can impact the risk to society and the need for detailed exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title="risk management">risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20security" title=" software security"> software security</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20discoverers" title=" vulnerability discoverers"> vulnerability discoverers</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20markets" title=" vulnerability markets"> vulnerability markets</a> </p> <a href="https://publications.waset.org/abstracts/6548/software-vulnerability-markets-discoverers-and-buyers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">677</span> SVID: Structured Vulnerability Intelligence for Building Deliberated Vulnerable Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenqing%20Fan">Wenqing Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yixuan%20Cheng"> Yixuan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Huang"> Wei Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The diversity and complexity of modern IT systems make it almost impossible for internal teams to find vulnerabilities in all software before the software is officially released. The emergence of threat intelligence and vulnerability reporting policy has greatly reduced the burden on software vendors and organizations to find vulnerabilities. However, to prove the existence of the reported vulnerability, it is necessary but difficult for security incident response team to build a deliberated vulnerable environment from the vulnerability report with limited and incomplete information. This paper presents a structured, standardized, machine-oriented vulnerability intelligence format, that can be used to automate the orchestration of Deliberated Vulnerable Environment (DVE). This paper highlights the important role of software configuration and proof of vulnerable specifications in vulnerability intelligence, and proposes a triad model, which is called DIR (Dependency Configuration, Installation Configuration, Runtime Configuration), to define software configuration. Finally, this paper has also implemented a prototype system to demonstrate that the orchestration of DVE can be automated with the intelligence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DIR%20triad%20model" title="DIR triad model">DIR triad model</a>, <a href="https://publications.waset.org/abstracts/search?q=DVE" title=" DVE"> DVE</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20intelligence" title=" vulnerability intelligence"> vulnerability intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20recurrence" title=" vulnerability recurrence"> vulnerability recurrence</a> </p> <a href="https://publications.waset.org/abstracts/108327/svid-structured-vulnerability-intelligence-for-building-deliberated-vulnerable-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">676</span> A New Social Vulnerability Index for Evaluating Social Vulnerability to Climate Change at the Local Scale</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuong%20V%20Nguyen">Cuong V Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ralph%20Horne"> Ralph Horne</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Fien"> John Fien</a>, <a href="https://publications.waset.org/abstracts/search?q=France%20Cheong"> France Cheong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social vulnerability to climate change is increasingly being acknowledged, and proposals to measure and manage it are emerging. Building upon this work, this paper proposes an approach to social vulnerability assessment using a new mechanism to aggregate and account for causal relationships among components of a Social Vulnerability Index (SVI). To operationalize this index, the authors propose a means to develop an appropriate primary dataset, through application of a specifically-designed household survey questionnaire. The data collection and analysis, including calibration and calculation of the SVI is demonstrated through application in case study city in central coastal Vietnam. The calculation of SVI at the fine-grained local neighbourhood scale provides high resolution in vulnerability assessment, and also obviates the need for secondary data, which may be unavailable or problematic, particularly at the local scale in developing countries. The SVI household survey is underpinned by the results of a Delphi survey, an in-depth interview and focus group discussions with local environmental professionals and community members. The research reveals inherent limitations of existing SVIs but also indicates the potential for their use in assessing social vulnerability and making decisions associated with responding to climate change at the local scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20scale" title=" local scale"> local scale</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20vulnerability" title=" social vulnerability"> social vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20vulnerability%20index" title=" social vulnerability index"> social vulnerability index</a> </p> <a href="https://publications.waset.org/abstracts/28769/a-new-social-vulnerability-index-for-evaluating-social-vulnerability-to-climate-change-at-the-local-scale" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">675</span> Integration of Fuzzy Logic in the Representation of Knowledge: Application in the Building Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafida%20Bouarfa">Hafida Bouarfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abed"> Mohamed Abed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main object of our work is the development and the validation of a system indicated Fuzzy Vulnerability. Fuzzy Vulnerability uses a fuzzy representation in order to tolerate the imprecision during the description of construction. At the the second phase, we evaluated the similarity between the vulnerability of a new construction and those of the whole of the historical cases. This similarity is evaluated on two levels: 1) individual similarity: bases on the fuzzy techniques of aggregation; 2) Global similarity: uses the increasing monotonous linguistic quantifiers (RIM) to combine the various individual similarities between two constructions. The third phase of the process of Fuzzy Vulnerability consists in using vulnerabilities of historical constructions narrowly similar to current construction to deduce its estimate vulnerability. We validated our system by using 50 cases. We evaluated the performances of Fuzzy Vulnerability on the basis of two basic criteria, the precision of the estimates and the tolerance of the imprecision along the process of estimation. The comparison was done with estimates made by tiresome and long models. The results are satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=case%20based%20reasoning" title="case based reasoning">case based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20case%20based%20reasoning" title=" fuzzy case based reasoning"> fuzzy case based reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20vulnerability" title=" seismic vulnerability"> seismic vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/11237/integration-of-fuzzy-logic-in-the-representation-of-knowledge-application-in-the-building-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">674</span> Climate Change Vulnerability and Agrarian Communities: Insights from the Composite Vulnerability Index of Indian States of Andhra Pradesh and Karnataka </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Sridevi">G. Sridevi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amalendu%20Jyotishi"> Amalendu Jyotishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushanta%20Mahapatra"> Sushanta Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Jagadeesh"> G. Jagadeesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Satyasiba%20Bedamatta"> Satyasiba Bedamatta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is a main challenge for agriculture, food security and rural livelihoods for millions of people in India. Agriculture is the sector most vulnerable to climate change due to its high dependence on climate and weather conditions. Among India’s population of more than one billion people, about 68% are directly or indirectly involved in the agricultural sector. This sector is particularly vulnerable to present-day climate variability. In this contest this paper examines the Socio-economic and climate analytical study of the vulnerability index in Indian states of Andhra Pradesh and Karnataka. Using secondary data; it examines the vulnerability through five different sub-indicator of socio-demographic, agriculture, occupational, common property resource (CPR), and climate in respective states among different districts. Data used in this paper has taken from different sources, like census in India 2011, Directorate of Economics and Statistics of respective states governments. Rainfall data was collected from the India Meteorological Department (IMD). In order to capture the vulnerability from two different states the composite vulnerability index (CVI) was developed and used. This indicates the vulnerability situation of different districts under two states. The study finds that Adilabad district in Andhra Pradesh and Chamarajanagar in Karnataka had highest level of vulnerability while Hyderabad and Bangalore in respective states have least level of vulnerability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title="vulnerability">vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a> </p> <a href="https://publications.waset.org/abstracts/23133/climate-change-vulnerability-and-agrarian-communities-insights-from-the-composite-vulnerability-index-of-indian-states-of-andhra-pradesh-and-karnataka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">673</span> Assessing Social Vulnerability and Policy Adaption Application Responses Based on Landslide Risk Map</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20A.%20Ahmad">Z. A. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Omar"> R. C. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Z.%20Baharuddin"> I. Z. Baharuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Roslan"> R. Roslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessments of social vulnerability, carried out holistically, can provide an important guide to the planning process and to decisions on resource allocation at various levels, and can help to raise public awareness of geo-hazard risks. The assessments can help to provide answers for basic questions such as the human vulnerability at the geo-hazard prone or disaster areas causing health damage, economic loss, loss of natural heritage and vulnerability impact of extreme natural hazard event. To overcome these issues, integrated framework for assessing the increasing human vulnerability to environmental changes caused by geo-hazards will be introduced using an indicator from landslide risk map that is related to agent based modeling platform. The indicators represent the underlying factors, which influence a community’s ability to deal with and recover from the damage associated with geo-hazards. Scope of this paper is particularly limited to landslides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social" title="social">social</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-hazard" title=" geo-hazard"> geo-hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=methodology" title=" methodology"> methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=indicators" title=" indicators"> indicators</a> </p> <a href="https://publications.waset.org/abstracts/7512/assessing-social-vulnerability-and-policy-adaption-application-responses-based-on-landslide-risk-map" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">672</span> Analysis of the Aquifer Vulnerability of a Miopliocene Arid Area Using Drastic and SI Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Majour">H. Majour</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Djabri"> L. Djabri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many methods in the groundwater vulnerability have been developed in the world (methods like PRAST, DRIST, APRON/ARAA, PRASTCHIM, GOD). In this study, our choice dealt with two recent complementary methods using category mapping of index with weighting criteria (Point County Systems Model MSCP) namely the standard DRASTIC method and SI (Susceptibility Index). At present, these two methods are the most used for the mapping of the intrinsic vulnerability of groundwater. Two classes of groundwater vulnerability in the Biskra sandy aquifer were identified by the DRASTIC method (average and high) and the SI method (very high and high). Integrated analysis has revealed that the high class is predominant for the DRASTIC method whereas for that of SI the preponderance is for the very high class. Furthermore, we notice that the method SI estimates better the vulnerability for the pollution in nitrates, with a rate of 85 % between the concentrations in nitrates of groundwater and the various established classes of vulnerability, against 75 % for the DRASTIC method. By including the land use parameter, the SI method produced more realistic results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DRASTIC" title="DRASTIC">DRASTIC</a>, <a href="https://publications.waset.org/abstracts/search?q=SI" title=" SI"> SI</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Biskra%20sandy%20aquifer" title=" Biskra sandy aquifer"> Biskra sandy aquifer</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/24830/analysis-of-the-aquifer-vulnerability-of-a-miopliocene-arid-area-using-drastic-and-si-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">671</span> Mapping the Intrinsic Vulnerability of the Quaternary Aquifer of the Eastern Mitidja (Northern Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abida%20Haddouche">Abida Haddouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Chrif%20Toubal"> Ahmed Chrif Toubal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Neogene basin of the Eastern Mitidja, object of the study area, represents potential water resources and especially groundwater reserves. This water is an important economic; this resource is highly sensitive which need protection and preservation. Unfortunately, these waters are exposed to various forms of pollution, whether from urban, agricultural, industrial or merely accidental. This pollution is a permanent risk of limiting resource. In this context, the work aims to evaluate the intrinsic vulnerability of the aquifer to protect and preserve the quality of this resource. It will focus on the disposal of water and land managers a cartographic document accessible to locate the areas where the water has a high vulnerability. Vulnerability mapping of the Easter Mitidja quaternary aquifer is performed by applying three methods (DRASTIC, DRIST, and GOD). Comparison and validation results show that the DRASTIC method is the most suitable method for aquifer vulnerability of the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aquifer%20of%20Mitidja" title="Aquifer of Mitidja">Aquifer of Mitidja</a>, <a href="https://publications.waset.org/abstracts/search?q=DRASTIC%20method" title=" DRASTIC method"> DRASTIC method</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system%20%28GIS%29" title=" geographic information system (GIS)"> geographic information system (GIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20mapping" title=" vulnerability mapping"> vulnerability mapping</a> </p> <a href="https://publications.waset.org/abstracts/65638/mapping-the-intrinsic-vulnerability-of-the-quaternary-aquifer-of-the-eastern-mitidja-northern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">670</span> [Keynote Talk]: Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shimola">K. Shimola</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Krishnaveni"> M. Krishnaveni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20capacity" title="adaptive capacity">adaptive capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure" title=" exposure"> exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=overlay%20analysis" title=" overlay analysis"> overlay analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/65870/keynote-talk-water-resources-vulnerability-assessment-to-climate-change-in-a-semi-arid-basin-of-south-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">669</span> Assessing the Vulnerability Level in Coastal Communities in the Caribbean: A Case Study of San Pedro, Belize</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherry%20Ann%20Ganase">Sherry Ann Ganase</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Sookram"> Sandra Sookram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the vulnerability level to climate change is analysed using a comprehensive index, consisting of five pillars: human, social, natural, physical, and financial. A structural equation model is also applied to determine the indicators and relationships that exist between the observed environmental changes and the quality of life. Using survey data to model the results, a value of 0.382 is derived as the vulnerability level for San Pedro, where values closer to zero indicates lower vulnerability and values closer to one indicates higher vulnerability. The results showed the social pillar to be most vulnerable, with the indicator ‘participation’ ranked the highest in its cohort. Although, the environmental pillar is ranked as least vulnerable, the indicators ‘hazard’ and ‘biodiversity’ obtained scores closer to 0.4, suggesting that changes in the environment are occurring from natural and anthropogenic activities. These changes can negatively influence the quality of life as illustrated in the structural equation modelling. The study concludes by reporting on the need for collective action and participation by households in lowering vulnerability to ensure sustainable development and livelihood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=participation" title=" participation"> participation</a>, <a href="https://publications.waset.org/abstracts/search?q=San%20Pedro" title=" San Pedro"> San Pedro</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20model" title=" structural equation model"> structural equation model</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20index" title=" vulnerability index"> vulnerability index</a> </p> <a href="https://publications.waset.org/abstracts/34964/assessing-the-vulnerability-level-in-coastal-communities-in-the-caribbean-a-case-study-of-san-pedro-belize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">631</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">668</span> Assessment of Social Vulnerability of Urban Population to Floods – a Case Study of Mumbai</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherly%20M.%20A.">Sherly M. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Vijaykumar"> Varsha Vijaykumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhankar%20Karmakar"> Subhankar Karmakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Terence%20Chan"> Terence Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Rau"> Christian Rau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at proposing an indicator-based framework for assessing social vulnerability of any coastal megacity to floods. The final set of indicators of social vulnerability are chosen from a set of feasible and available indicators which are prepared using a Geographic Information System (GIS) framework on a smaller scale considering 1-km grid cell to provide an insight into the spatial variability of vulnerability. The optimal weight for each individual indicator is assigned using data envelopment analysis (DEA) as it avoids subjective weights and improves the confidence on the results obtained. In order to de-correlate and reduce the dimension of multivariate data, principal component analysis (PCA) has been applied. The proposed methodology is demonstrated on twenty four wards of Mumbai under the jurisdiction of Municipal Corporation of Greater Mumbai (MCGM). This framework of vulnerability assessment is not limited to the present study area, and may be applied to other urban damage centers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20floods" title="urban floods">urban floods</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a> </p> <a href="https://publications.waset.org/abstracts/21523/assessment-of-social-vulnerability-of-urban-population-to-floods-a-case-study-of-mumbai" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">667</span> The Impact of Social Protection Intervention on Alleviating Social Vulnerability (Evidence from Ethiopian Rural Households)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tewelde%20Gebresslase%20Haile">Tewelde Gebresslase Haile</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Singh"> S. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To bridge the existing knowledge gap on public intervention implementations, this study estimates the impact of social protection intervention (SPI) on alleviating social vulnerability. Following a multi-stage sampling, primary information was gathered through a self-administered questionnaire, FGD, and interviews from the target households located at four systematically selected districts of Tigrai, Ethiopia. Factor analysis and Propensity Score Matching are applied to construct Social Vulnerability Index (SVI) and measuring the counterfactual impact of selected intervention. As a multidimensional challenge, social vulnerability is found as an important concept used to guide policy evaluation. Accessibility of basic services of Social Affairs, Agriculture, Health and Education sectors, and Food Security Program are commonly used as SPIs. Finally, this study discovers that the households who had access to SPI have scored 9.65% lower SVI than in the absence of the intervention. Finally, this study suggests the provision of integrated, proactive, productive, and evidence-based SPIs to alleviate social vulnerability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=social%20protection" title="social protection">social protection</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood%20assets" title=" livelihood assets"> livelihood assets</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20vulnerability" title=" social vulnerability"> social vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20policy%20SVI" title=" public policy SVI"> public policy SVI</a> </p> <a href="https://publications.waset.org/abstracts/174057/the-impact-of-social-protection-intervention-on-alleviating-social-vulnerability-evidence-from-ethiopian-rural-households" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">666</span> Vulnerability of Groundwater to Pollution in Akwa Ibom State, Southern Nigeria, using the DRASTIC Model and Geographic Information System (GIS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aniedi%20A.%20Udo">Aniedi A. Udo</a>, <a href="https://publications.waset.org/abstracts/search?q=Magnus%20U.%20Igboekwe"> Magnus U. Igboekwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasaaq%20Bello"> Rasaaq Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20D.%20Eyenaka"> Francis D. Eyenaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20C.%20Ohakwere-Eze"> Michael C. Ohakwere-Eze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Groundwater vulnerability to pollution was assessed in Akwa Ibom State, Southern Nigeria, with the aim of locating areas with high potentials for resource contamination, especially due to anthropogenic influence. The electrical resistivity method was utilized in the collection of the initial field data. Additional data input, which included depth to static water level, drilled well log data, aquifer recharge data, percentage slope, as well as soil information, were sourced from secondary sources. The initial field data were interpreted both manually and with computer modeling to provide information on the geoelectric properties of the subsurface. Interpreted results together with the secondary data were used to develop the DRASTIC thematic maps. A vulnerability assessment was performed using the DRASTIC model in a GIS environment and areas with high vulnerability which needed immediate attention was clearly mapped out and presented using an aquifer vulnerability map. The model was subjected to validation and the rate of validity was 73% within the area of study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=DRASTIC%20model" title=" DRASTIC model"> DRASTIC model</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/142429/vulnerability-of-groundwater-to-pollution-in-akwa-ibom-state-southern-nigeria-using-the-drastic-model-and-geographic-information-system-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">665</span> Hosoya Polynomials of Mycielskian Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanju%20Vaidya">Sanju Vaidya</a>, <a href="https://publications.waset.org/abstracts/search?q=Aihua%20Li"> Aihua Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vulnerability measures and topological indices are crucial in solving various problems such as the stability of the communication networks and development of mathematical models for chemical compounds. In 1947, Harry Wiener introduced a topological index related to molecular branching. Now there are more than 100 topological indices for graphs. For example, Hosoya polynomials (also called Wiener polynomials) were introduced to derive formulas for certain vulnerability measures and topological indices for various graphs. In this paper, we will find a relation between the Hosoya polynomials of any graph and its Mycielskian graph. Additionally, using this we will compute vulnerability measures, closeness and betweenness centrality, and extended Wiener indices. It is fascinating to see how Hosoya polynomials are useful in the two diverse fields, cybersecurity and chemistry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hosoya%20polynomial" title="hosoya polynomial">hosoya polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=mycielskian%20graph" title=" mycielskian graph"> mycielskian graph</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20vulnerability%20measure" title=" graph vulnerability measure"> graph vulnerability measure</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20index" title=" topological index"> topological index</a> </p> <a href="https://publications.waset.org/abstracts/172528/hosoya-polynomials-of-mycielskian-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">664</span> Developing an Integrated Seismic Risk Model for Existing Buildings in Northern Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Monteiro">R. Monteiro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abarca"> A. Abarca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large scale seismic risk assessment has become increasingly popular to evaluate the physical vulnerability of a given region to seismic events, by putting together hazard, exposure and vulnerability components. This study, developed within the scope of the EU-funded project ITERATE (Improved Tools for Disaster Risk Mitigation in Algeria), explains the steps and expected results for the development of an integrated seismic risk model for assessment of the vulnerability of residential buildings in Northern Algeria. For this purpose, the model foresees the consideration of an updated seismic hazard model, as well as ad-hoc exposure and physical vulnerability models for local residential buildings. The first results of this endeavor, such as the hazard model and a specific taxonomy to be used for the exposure and fragility components of the model are presented, using as starting point the province of Blida, in Algeria. Specific remarks and conclusions regarding the characteristics of the Northern Algerian in-built are then made based on these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Northern%20Algeria" title="Northern Algeria">Northern Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard" title=" seismic hazard"> seismic hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/92772/developing-an-integrated-seismic-risk-model-for-existing-buildings-in-northern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">663</span> A Gender-Based Assessment of Rural Livelihood Vulnerability: The Case of Ehiamenkyene in the Fanteakwa District of Eastern Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gideon%20Baffoe">Gideon Baffoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirotaka%20Matsuda"> Hirotaka Matsuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rural livelihood systems are known to be inherently vulnerable. Attempt to reduce vulnerability is linked to developing resilience to both internal and external shocks, thereby increasing the overall sustainability of livelihood systems. The shocks and stresses could be induced by natural processes such as the climate and/or by social dynamics such as institutional failure. In this wise, livelihood vulnerability is understood as a combined effect of biophysical, economic, and social processes. However, previous empirical studies on livelihood vulnerability in the context of rural areas across the globe have tended to focus more on climate-induced vulnerability assessment with few studies empirically partially considering the multiple dimensions of livelihood vulnerability. This has left a gap in our understanding of the subject. Using the Livelihood Vulnerability Index (LVI), this study aims to comprehensively assess the livelihood vulnerability level of rural households using Ehiamenkyene, a community in the forest zone of Eastern Ghana as a case study. Though the present study adopts the LVI approach, it differs from the original framework in two respects; (1) it introduces institutional influence into the framework and (2) it appreciates the gender differences in livelihood vulnerability. The study utilized empirical data collected from 110 households’ in the community. The overall study results show a high livelihood vulnerability situation in the community with male-headed households likely to be more vulnerable than their female counterparts. Out of the seven subcomponents assessed, only two (socio-demographic profile and livelihood strategies) recorded low vulnerability scores of less than 0.5 with the remaining five (health status, food security, water accessibility, institutional influence and natural disasters and climate variability) recording scores above 0.5, with institutional influence being the component with the highest impact score. The results suggest that to improve the livelihood conditions of the people; there is the need to prioritize issues related to the operations of both internal and external institutions, health status, food security, water and climate variability in the community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assessment" title="assessment">assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=livelihood" title=" livelihood"> livelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=rural" title=" rural"> rural</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/64561/a-gender-based-assessment-of-rural-livelihood-vulnerability-the-case-of-ehiamenkyene-in-the-fanteakwa-district-of-eastern-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">662</span> Eco-Environmental Vulnerability Evaluation in Mountain Regions Using Remote Sensing and Geographical Information System: A Case Study of Pasol Gad Watershed of Garhwal Himalaya, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Kumar%20Bandooni">Suresh Kumar Bandooni</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirana%20Laishram"> Mirana Laishram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Mid Himalaya of Garhwal Himalaya in Uttarakhand (India) has a complex Physiographic features withdiversified climatic conditions and therefore it is suspect to environmental vulnerability. Thenatural disasters and also anthropogenic activities accelerate the rate of environmental vulnerability. To analyse the environmental vulnerability, we have used geoinformatics technologies and numerical models and it is adoptedby using Spatial Principal Component Analysis (SPCA). The model consist of many factors such as slope, landuse/landcover, soil, forest fire risk, landslide susceptibility zone, human population density and vegetation index. From this model, the environmental vulnerability integrated index (EVSI) is calculated for Pasol Gad Watershed of Garhwal Himalaya for the years 1987, 2000, and 2013 and the Vulnerability is classified into five levelsi.e. Very low, low, medium, high and very highby means of cluster principle. The resultsforeco-environmental vulnerability distribution in study area shows that medium, high and very high levels are dominating in the area and it is mainly caused by the anthropogenic activities and natural disasters. Therefore, proper management forconservation of resources is utmost necessity of present century. It is strongly believed that participation at community level along with social worker, institutions and Non-governmental organization (NGOs) have become a must to conserve and protect the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-environment%20vulnerability" title="eco-environment vulnerability">eco-environment vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20principal%20component%20analysis" title=" spatial principal component analysis"> spatial principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title=" geographic information system"> geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=institutions" title=" institutions"> institutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Himalaya" title=" Himalaya"> Himalaya</a> </p> <a href="https://publications.waset.org/abstracts/80121/eco-environmental-vulnerability-evaluation-in-mountain-regions-using-remote-sensing-and-geographical-information-system-a-case-study-of-pasol-gad-watershed-of-garhwal-himalaya-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">661</span> Earthquake Vulnerability and Repair Cost Estimation of Masonry Buildings in the Old City Center of Annaba, Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allaeddine%20Athmani">Allaeddine Athmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhacine%20Gouasmia"> Abdelhacine Gouasmia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiago%20Ferreira"> Tiago Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Romeu%20Vicente"> Romeu Vicente</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic risk mitigation from the perspective of the old buildings stock is truly essential in Algerian urban areas, particularly those located in seismic prone regions, such as Annaba city, and which the old buildings present high levels of degradation associated with no seismic strengthening and/or rehabilitation concerns. In this sense, the present paper approaches the issue of the seismic vulnerability assessment of old masonry building stocks through the adaptation of a simplified methodology developed for a European context area similar to that of Annaba city, Algeria. Therefore, this method is used for the first level of seismic vulnerability assessment of the masonry buildings stock of the old city center of Annaba. This methodology is based on a vulnerability index that is suitable for the evaluation of damage and for the creation of large-scale loss scenarios. Over 380 buildings were evaluated in accordance with the referred methodology and the results obtained were then integrated into a Geographical Information System (GIS) tool. Such results can be used by the Annaba city council for supporting management decisions, based on a global view of the site under analysis, which led to more accurate and faster decisions for the risk mitigation strategies and rehabilitation plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damage%20scenarios" title="Damage scenarios">Damage scenarios</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20buildings" title=" masonry buildings"> masonry buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20city%20center" title=" old city center"> old city center</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20vulnerability" title=" seismic vulnerability"> seismic vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20index" title=" vulnerability index"> vulnerability index</a> </p> <a href="https://publications.waset.org/abstracts/25212/earthquake-vulnerability-and-repair-cost-estimation-of-masonry-buildings-in-the-old-city-center-of-annaba-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">660</span> A Medical Vulnerability Scoring System Incorporating Health and Data Sensitivity Metrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadir%20A.%20Carreon">Nadir A. Carreon</a>, <a href="https://publications.waset.org/abstracts/search?q=Christa%20Sonderer"> Christa Sonderer</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakarsh%20Rao"> Aakarsh Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Lysecky"> Roman Lysecky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advent of complex software and increased connectivity, the security of life-critical medical devices is becoming an increasing concern, particularly with their direct impact on human safety. Security is essential, but it is impossible to develop completely secure and impenetrable systems at design time. Therefore, it is important to assess the potential impact on the security and safety of exploiting a vulnerability in such critical medical systems. The common vulnerability scoring system (CVSS) calculates the severity of exploitable vulnerabilities. However, for medical devices it does not consider the unique challenges of impacts to human health and privacy. Thus, the scoring of a medical device on which human life depends (e.g., pacemakers, insulin pumps) can score very low, while a system on which human life does not depend (e.g., hospital archiving systems) might score very high. In this paper, we propose a medical vulnerability scoring system (MVSS) that extends CVSS to address the health and privacy concerns of medical devices. We propose incorporating two new parameters, namely health impact, and sensitivity impact. Sensitivity refers to the type of information that can be stolen from the device, and health represents the impact on the safety of the patient if the vulnerability is exploited (e.g., potential harm, life-threatening). We evaluate fifteen different known vulnerabilities in medical devices and compare MVSS against two state-of-the-art medical device-oriented vulnerability scoring systems and the foundational CVSS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=common%20vulnerability%20system" title="common vulnerability system">common vulnerability system</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20devices" title=" medical devices"> medical devices</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20device%20security" title=" medical device security"> medical device security</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerabilities" title=" vulnerabilities"> vulnerabilities</a> </p> <a href="https://publications.waset.org/abstracts/135685/a-medical-vulnerability-scoring-system-incorporating-health-and-data-sensitivity-metrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">659</span> Bottom-up Quantification of Mega Inter-Basin Water Transfer Vulnerability to Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enze%20Zhang">Enze Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large numbers of inter-basin water transfer (IBWT) projects are constructed or proposed all around the world as solutions to water distribution and supply problems. Nowadays, as climate change warms the atmosphere, alters the hydrologic cycle, and perturbs water availability, large scale IBWTs which are sensitive to these water-related changes may carry significant risk. Given this reality, IBWTs have elicited great controversy and assessments of vulnerability to climate change are urgently needed worldwide. In this paper, we consider the South-to-North Water Transfer Project (SNWTP) in China as a case study, and introduce a bottom-up vulnerability assessment framework. Key hazards and risks related to climate change that threaten future water availability for the SNWTP are firstly identified. Then a performance indicator is presented to quantify the vulnerability of IBWT by taking three main elements (i.e., sensitivity, adaptive capacity, and exposure degree) into account. A probabilistic Budyko model is adapted to estimate water availability responses to a wide range of possibilities for future climate conditions in each region of the study area. After bottom-up quantifying the vulnerability based on the estimated water availability, our findings confirm that SNWTP would greatly alleviate geographical imbalances in water availability under some moderate climate change scenarios but raises questions about whether it is a long-term solution because the donor basin has a high level of vulnerability due to extreme climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title="vulnerability">vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-basin%20water%20transfer" title=" inter-basin water transfer"> inter-basin water transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom-up" title=" bottom-up"> bottom-up</a> </p> <a href="https://publications.waset.org/abstracts/58875/bottom-up-quantification-of-mega-inter-basin-water-transfer-vulnerability-to-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">658</span> A Framework for Security Risk Level Measures Using CVSS for Vulnerability Categories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umesh%20Kumar%20Singh">Umesh Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanchala%20Joshi"> Chanchala Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With increasing dependency on IT infrastructure, the main objective of a system administrator is to maintain a stable and secure network, with ensuring that the network is robust enough against malicious network users like attackers and intruders. Security risk management provides a way to manage the growing threats to infrastructures or system. This paper proposes a framework for risk level estimation which uses vulnerability database National Institute of Standards and Technology (NIST) National Vulnerability Database (NVD) and the Common Vulnerability Scoring System (CVSS). The proposed framework measures the frequency of vulnerability exploitation; converges this measured frequency with standard CVSS score and estimates the security risk level which helps in automated and reasonable security management. In this paper equation for the Temporal score calculation with respect to availability of remediation plan is derived and further, frequency of exploitation is calculated with determined temporal score. The frequency of exploitation along with CVSS score is used to calculate the security risk level of the system. The proposed framework uses the CVSS vectors for risk level estimation and measures the security level of specific network environment, which assists system administrator for assessment of security risks and making decision related to mitigation of security risks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CVSS%20score" title="CVSS score">CVSS score</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20level" title=" risk level"> risk level</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20measurement" title=" security measurement"> security measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20category" title=" vulnerability category"> vulnerability category</a> </p> <a href="https://publications.waset.org/abstracts/55675/a-framework-for-security-risk-level-measures-using-cvss-for-vulnerability-categories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">657</span> Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fathul%20Mubin">Fathul Mubin</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20E.%20Nurcahya"> Budi E. Nurcahya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplification%20factor" title="amplification factor">amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=dominant%20frequency" title=" dominant frequency"> dominant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=microzonation%20analysis" title=" microzonation analysis"> microzonation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20vulnerability%20index" title=" seismic vulnerability index"> seismic vulnerability index</a> </p> <a href="https://publications.waset.org/abstracts/85181/seismic-microzonation-analysis-for-damage-mapping-of-the-2006-yogyakarta-earthquake-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">656</span> A Quick Method for Seismic Vulnerability Evaluation of Offshore Structures by Static and Dynamic Nonlinear Analyses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayyeh%20Karimiyan">Somayyeh Karimiyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To evaluate the seismic vulnerability of vital offshore structures with the highest possible precision, Nonlinear Time History Analyses (NLTHA), is the most reliable method. However, since it is very time-consuming, a quick procedure is greatly desired. This paper presents a quick method by combining the Push Over Analysis (POA) and the NLTHA. The POA is preformed first to recognize the more critical members, and then the NLTHA is performed to evaluate more precisely the critical members’ vulnerability. The proposed method has been applied to jacket type structure. Results show that combining POA and NLTHA is a reliable seismic evaluation method, and also that none of the earthquake characteristics alone, can be a dominant factor in vulnerability evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jacket%20structure" title="jacket structure">jacket structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20evaluation" title=" seismic evaluation"> seismic evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=push-over%20and%20nonlinear%20time%20history%20analyses" title=" push-over and nonlinear time history analyses"> push-over and nonlinear time history analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20members" title=" critical members"> critical members</a> </p> <a href="https://publications.waset.org/abstracts/66252/a-quick-method-for-seismic-vulnerability-evaluation-of-offshore-structures-by-static-and-dynamic-nonlinear-analyses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">655</span> Forecasting Impacts on Vulnerable Shorelines: Vulnerability Assessment Along the Coastal Zone of Messologi Area - Western Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evangelos%20Tsakalos">Evangelos Tsakalos</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Kazantzaki"> Maria Kazantzaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Filippaki"> Eleni Filippaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Yannis%20Bassiakos"> Yannis Bassiakos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coastal areas of the Mediterranean have been extensively affected by the transgressive event that followed the Last Glacial Maximum, with many studies conducted regarding the stratigraphic configuration of coastal sediments around the Mediterranean. The coastal zone of the Messologi area, western Greece, consists of low relief beaches containing low cliffs and eroded dunes, a fact which, in combination with the rising sea level and tectonic subsidence of the area, has led to substantial coastal. Coastal vulnerability assessment is a useful means of identifying areas of coastline that are vulnerable to impacts of climate change and coastal processes, highlighting potential problem areas. Commonly, coastal vulnerability assessment takes the form of an ‘index’ that quantifies the relative vulnerability along a coastline. Here we make use of the coastal vulnerability index (CVI) methodology by Thieler and Hammar-Klose, by considering geological features, coastal slope, relative sea-level change, shoreline erosion/accretion rates, and mean significant wave height as well as mean tide range to assess the present-day vulnerability of the coastal zone of Messologi area. In light of this, an impact assessment is performed under three different sea level rise scenarios, and adaptation measures to control climate change events are proposed. This study contributes toward coastal zone management practices in low-lying areas that have little data information, assisting decision-makers in adopting best adaptations options to overcome sea level rise impact on vulnerable areas similar to the coastal zone of Messologi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coastal%20vulnerability%20index" title="coastal vulnerability index">coastal vulnerability index</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20erosion" title=" coastal erosion"> coastal erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20level%20rise" title=" sea level rise"> sea level rise</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/142206/forecasting-impacts-on-vulnerable-shorelines-vulnerability-assessment-along-the-coastal-zone-of-messologi-area-western-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">654</span> Code Embedding for Software Vulnerability Discovery Based on Semantic Information</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Gear">Joseph Gear</a>, <a href="https://publications.waset.org/abstracts/search?q=Yue%20Xu"> Yue Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernest%20Foo"> Ernest Foo</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Gauravaran"> Praveen Gauravaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Jadidi"> Zahra Jadidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonie%20Simpson"> Leonie Simpson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=code%20representation" title="code representation">code representation</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20code%20semantics" title=" source code semantics"> source code semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20discovery" title=" vulnerability discovery"> vulnerability discovery</a> </p> <a href="https://publications.waset.org/abstracts/157454/code-embedding-for-software-vulnerability-discovery-based-on-semantic-information" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">653</span> Understanding and Explaining Urban Resilience and Vulnerability: A Framework for Analyzing the Complex Adaptive Nature of Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20Wolfel">Richard Wolfel</a>, <a href="https://publications.waset.org/abstracts/search?q=Amy%20Richmond"> Amy Richmond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban resilience and vulnerability are critical concepts in the modern city due to the increased sociocultural, political, economic, demographic, and environmental stressors that influence current urban dynamics. Urban scholars need help explaining urban resilience and vulnerability. First, cities are dominated by people, which is challenging to model, both from an explanatory and a predictive perspective. Second, urban regions are highly recursive in nature, meaning they not only influence human action, but the structures of cities are constantly changing due to human actions. As a result, explanatory frameworks must continuously evolve as humans influence and are influenced by the urban environment in which they operate. Finally, modern cities have populations, sociocultural characteristics, economic flows, and environmental impacts on order of magnitude well beyond the cities of the past. As a result, the frameworks that seek to explain the various functions of a city that influence urban resilience and vulnerability must address the complex adaptive nature of cities and the interaction of many distinct factors that influence resilience and vulnerability in the city. This project develops a taxonomy and framework for organizing and explaining urban vulnerability. The framework is built on a well-established political development model that includes six critical classes of urban dynamics: political presence, political legitimacy, political participation, identity, production, and allocation. In addition, the framework explores how environmental security and technology influence and are influenced by the six elements of political development. The framework aims to identify key tipping points in society that act as influential agents of urban vulnerability in a region. This will help analysts and scholars predict and explain the influence of both physical and human geographical stressors in a dense urban area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=urban%20resilience" title="urban resilience">urban resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=sociocultural%20stressors" title=" sociocultural stressors"> sociocultural stressors</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20stressors" title=" political stressors"> political stressors</a> </p> <a href="https://publications.waset.org/abstracts/165869/understanding-and-explaining-urban-resilience-and-vulnerability-a-framework-for-analyzing-the-complex-adaptive-nature-of-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=22">22</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=vulnerability&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>