CINXE.COM
{"title":"Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications","authors":"Muhammad Waseem Ashraf, Shahzadi Tayyaba, Nitin Afzulpurkar, Asim Nisar, Adisorn Tuantranont, Erik L J Bohez","volume":38,"journal":"International Journal of Electronics and Communication Engineering","pagesStart":376,"pagesEnd":381,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/8091","abstract":"In this paper, design, fabrication and coupled\r\nmultifield analysis of hollow out-of-plane silicon microneedle array\r\nwith piezoelectrically actuated microfluidic device for transdermal\r\ndrug delivery (TDD) applications is presented. The fabrication\r\nprocess of silicon microneedle array is first done by series of\r\ncombined isotropic and anisotropic etching processes using\r\ninductively coupled plasma (ICP) etching technology. Then coupled\r\nmultifield analysis of MEMS based piezoelectrically actuated device\r\nwith integrated 2\u00d72 silicon microneedle array is presented. To predict\r\nthe stress distribution and model fluid flow in coupled field analysis,\r\nfinite element (FE) and computational fluid dynamic (CFD) analysis\r\nusing ANSYS rather than analytical systems has been performed.\r\nStatic analysis and transient CFD analysis were performed to predict\r\nthe fluid flow through the microneedle array. The inlet pressure from\r\n10 kPa to 150 kPa was considered for static CFD analysis. In the\r\nlumen region fluid flow rate 3.2946 \u03bcL\/min is obtained at 150 V for\r\n2\u00d72 microneedle array. In the present study the authors have\r\nperformed simulation of structural, piezoelectric and CFD analysis\r\non three dimensional model of the piezoelectrically actuated\r\nmcirofluidic device integrated with 2\u00d72 microneedle array.","references":"[1] B. Barry, and A. Williams, \"Penetration enhancers\", Adv. Drug Deliv.\r\nRev., Vol.56, pp. 603-618, 2003.\r\n[2] V. Preat, and R. Vanbever \" Skin electroporation for Transdermal and\r\ntopical delivery\", \", Adv. Drug Deliv. Rev., Vol.56, pp. 659-674, 2004.\r\n[3] Jing Ji, F. Tay. And J. Miao, \"Microfabricated Hollow Microneedle\r\nArray Using ICP Etcher\", Journal of Physics, Confirence series 34, pp.\r\n1132-136, 2006.\r\n[4] Gerstel et al., Drug Delivery Device, US 3 964 482 patent, 1976.\r\n[5] Mark R. Prausnitz,\" Microneedles for transdermal drug delivery\", Adv.\r\nDrug Deliv. Rev. 56, pp. 581-587, 2004.\r\n[6] P. Griss, and G. Stemme, \"Side-opened out-of-plane microneedles for\r\nmicrofluidic transdermal liquid transfer\", J. Microelectromechanical\r\nSys, 12 (3), pp. 296-301, 2003.\r\n[7] E.V. Mukerjee, R. Issseroff, S. D. Collins, and R.L. Smith,\r\n\"Microneedle array with integrated microchannels for transdermal\r\nsample extraction and in situ analysis\", The 12th International\r\nConference on Solid State Sensors, Actuators and Microsystems, pp.\r\n1439-1441, Boston, 8-12 June 2003.\r\n[8] N. Wilke , C. Hibert, J. O-Brien, and A. Morrissey, \"Silicon\r\nmicroneedle electrode array with temperature monitoring for\r\nelectroporation\", Sensors and Actuators A 123-124, pp. 319-325, 2005.\r\n[9] Z. Jeffrey, T. David, and L. Dorian, \"Microdialysis Microneedles for\r\nContinuous Medical Monitoring\", Biomedical Microdevices 7, pp. 59-\r\n69, 2005.\r\n[10] M. Bin, L. Sheng, G. Zhiyin, L. Guojun, C. Xinxia, Z. Honghai, and Y.\r\nZhigang, \"A PZT insulin pump integrated with silicon microneedle array\r\nfor transdermal drug delivery\", Microfluid Nanofluid 2, pp.417-423,\r\n2006.\r\n[11] N. Roxhed, \"A fully integrated microneedle based transdermal drug\r\ndelivery system\", A PhD thesis, Microsystems Technology Laboratory,\r\nRoyal Institute of Technology, Sweden, 2007.\r\n[12] J. D. Zahn, N. H. Talbot, D. Liepman, and A. P. Pisano, \" microfbricated\r\npolysilicon microneedles for minimally invasive biomedical devices\",\r\nBiomed, Microdevices 2,pp. 295-303, 2000.\r\n[13] J. Gere, S Timoshenko, Mechanics of materials, Fourth ed., May 1997\r\n[14] W.S. Janna,\" Design of fluid thermal system\", 2nd edn. PWS\r\nPublications, Boston, 1998.\r\n[15] D. W. Bodjale, A. Nisar, and N. Afzulpurkar, \"structural and\r\nmicrofludic analysis of hollow side open polymeric microneedles for\r\ntransdermal drug delivery applications\", Microfluid Nanofluid, 2009.\r\n[16] S. Khumpuang, R. Maeda, and S. Sugiyama, \"Design and fabrication of\r\ncoupled microneedle array and insertion guide array for safe penetration\r\nthrough skin\"; International symposium of micromechatronics and\r\nhuman science, 2003.\r\n[17] M. W. Ashraf, S. Tayyaba, A. Nisar, N. Afzulpurkar, and A.\r\nTuantranont , \"Coupledfield Microfluidic Analysis of Integrated MEMS\r\nBased Device for Transdermal Drug Delivery Applications\", In: 13th\r\nIEEE Multitopic Int. Conf. Islamabad, Pakistan, December 14-15, 2009.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 38, 2010"}