CINXE.COM
Search results for: lime cooking
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lime cooking</title> <meta name="description" content="Search results for: lime cooking"> <meta name="keywords" content="lime cooking"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lime cooking" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lime cooking"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 398</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lime cooking</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> Estimation and Validation of Free Lime Analysis of Clinker by Quantitative Phase Analysis Using X ray diffraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Palla">Suresh Palla</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalpna%20Sharma"> Kalpna Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Bhatnagar"> Gaurav Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Chaturvedi"> S. K. Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20N.%20Mohapatra"> B. N. Mohapatra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determining the content of free lime is especially important to judge reactivity of the raw materials and clinker quality. The free lime limit isn’t the same for all cements; it depends on several factors, especially the temperature reached during the cooking and the grain size distribution in cement after grinding. Estimation of free lime by conventional method is influenced by the presence of portlandite and misleads the actual free lime content in the clinker for quality check up conditions. To ensure the product quality according to the standard specifications in terms of within the quality limits or not, a reliable, precise, and very reproducible method to quantify the relative phase abundances in the Portland Cement clinker and Portland Cements is to use X-ray diffraction (XRD) in combination with the Rietveld method. In the present study, a methodology was proposed using XRD to validate the obtained results of free lime by conventional method. The XRD and TG/DTA results confirm the presence of portlandite in the clinker to take the decision on the obtained free lime results through conventional method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20lime" title="free lime">free lime</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20phase%20analysis" title=" quantitative phase analysis"> quantitative phase analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20method" title=" conventional method"> conventional method</a>, <a href="https://publications.waset.org/abstracts/search?q=x%20ray%20diffraction" title=" x ray diffraction"> x ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/135211/estimation-and-validation-of-free-lime-analysis-of-clinker-by-quantitative-phase-analysis-using-x-ray-diffraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">397</span> Shell Lime: An Eco-Friendly and Cost-Efficient Alternative for Agricultural Lime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hene%20L.%20Hapinat">Hene L. Hapinat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mae%20D.%20Dumapig"> Mae D. Dumapig</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine the lime potential of 3 mollusks, namely: Crassostrea iredalei (Oyster shell), Turritella terebra (Turret shell), and Anodontia edentula (Mangrove clam shell) as alternative for commercially produced agricultural lime. The hydrogen ion concentration (pH) and the lime concentration using Calcium Carbonate Equivalent (CCE) of each shellfish species were measured and tested for the enhancement of an acidic soil. The experiment was laid out in a Completely Randomized Design (CRD) with 4 treatments replicated 3 times. The treatments were as follows: Treatment A- 100 g agricultural lime; B- 100 g oyster shell lime; C- 100 g turret shell lime; and D- 100 g mangrove clam shell lime. Each treatment was combined to the acidic soil sample. The results were statistically analyzed using One-way Analysis of Variance (ANOVA) and Least Square Difference (LSD) at 0.01 and 0.05 levels of significance. Results revealed that lime produced from the 3 selected mollusks can be a potential source of alternative and/or supplement materials for agricultural lime in dealing with soil acidity, entailing lower cost of farm production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shell%20lime" title="shell lime">shell lime</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate%20concentrations" title=" calcium carbonate concentrations"> calcium carbonate concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=mollusks" title=" mollusks"> mollusks</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20lime" title=" agricultural lime"> agricultural lime</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20potential%20concentration" title=" lime potential concentration"> lime potential concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic%20soil" title=" acidic soil "> acidic soil </a> </p> <a href="https://publications.waset.org/abstracts/16781/shell-lime-an-eco-friendly-and-cost-efficient-alternative-for-agricultural-lime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">396</span> Beyond Cooking and Food Preparation: Examining the Material Culture of Medieval Cuisine in the Middle East</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shurouq%20Munzer">Shurouq Munzer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates methods for inferring the presence of cooking activity at an archaeological site through the study of cooking tools, contextual evidence, and food preparation techniques. This paper examines the patterns of cooking utensils and categorizes the morphological features as well as the types of clay utilized in manufacturing such cooking utensils. Despite challenges in accessing such evidence due to its limited availability in books and excavations. The excavation results provide the point for evaluating progress in daily life and underscore the cultural, social, and economic significance of studying cooking activity at archaeological sites within their archaeological contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarse%20ware" title="coarse ware">coarse ware</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20utensils" title=" cooking utensils"> cooking utensils</a>, <a href="https://publications.waset.org/abstracts/search?q=%E1%B8%A5isba" title=" ḥisba"> ḥisba</a>, <a href="https://publications.waset.org/abstracts/search?q=waqif" title=" waqif"> waqif</a>, <a href="https://publications.waset.org/abstracts/search?q=mu%E1%B8%A5tasib" title=" muḥtasib"> muḥtasib</a>, <a href="https://publications.waset.org/abstracts/search?q=foodways" title=" foodways"> foodways</a>, <a href="https://publications.waset.org/abstracts/search?q=practice" title=" practice"> practice</a>, <a href="https://publications.waset.org/abstracts/search?q=cuisine" title=" cuisine"> cuisine</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20preparation" title=" food preparation"> food preparation</a> </p> <a href="https://publications.waset.org/abstracts/171707/beyond-cooking-and-food-preparation-examining-the-material-culture-of-medieval-cuisine-in-the-middle-east" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> Mechanical and Hydraulic Behavior of Arid Zone Soils Treated with Lime: Case of Abadla, Bechar Clays, South of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadek%20Younes">Sadek Younes</a>, <a href="https://publications.waset.org/abstracts/search?q=Fali%20Leyla"> Fali Leyla</a>, <a href="https://publications.waset.org/abstracts/search?q=Rikioui%20Tayeb"> Rikioui Tayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Zizouni%20Khaled"> Zizouni Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stabilization of clay with lime as bearing stratum is an alternative to replacement of original soil. By adding lime to clay soil, the soil workability is improved due to the combination of calcium ions to the clay minerals, which means, modified soil properties. The paper investigates the effect of hydrated lime on the behaviour of lime treated, arid zones clay (Abadla Clay). A number of mechanical and hydraulic tests were performed to identify the effect of lime dosage and compaction water content on the compressibility, permeability, and shear strength parameters of the soil. Test results show that the soil parameters can be improved through additives such as lime. Overall, the addition percentages of 6% and 9% lime give the best desired results. Also, results revealed that the compressibility behavior of lime-treated soil strongly affected by lime content. The results are presented in terms of modern interpretation of the behaviour of treated soils, in comparison with the parameters of the untreated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arid%20zones" title="arid zones">arid zones</a>, <a href="https://publications.waset.org/abstracts/search?q=compressibility" title=" compressibility"> compressibility</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20behaviour" title=" soil behaviour"> soil behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a> </p> <a href="https://publications.waset.org/abstracts/93366/mechanical-and-hydraulic-behavior-of-arid-zone-soils-treated-with-lime-case-of-abadla-bechar-clays-south-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> Extraction of Essential Oil and Pectin from Lime and Waste Technology Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wilaisri%20Limphapayom">Wilaisri Limphapayom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lime is one of the economically important produced in Thailand. The objective of this research is to increase utilization in food and cosmetic. Extraction of essential oil and pectin from lime (Citrus aurantifolia (Christm & Panz ) Swing) have been studied. Extraction of essential oil has been made by using hydro-distillation .The essential oil ranged from 1.72-2.20%. The chemical composition of essential oil composed of alpha-pinene , beta-pinene , D-limonene , comphene , a-phellandrene , g-terpinene , a-ocimene , O-cymene , 2-carene , Linalool , trans-ocimenol , Geraniol , Citral , Isogeraniol , Verbinol , and others when analyzed by using GC-MS method. Pectin extraction from lime waste , boiled water after essential oil extraction. Pectin extraction were found 40.11-65.81 g /100g of lime peel. The best extraction condition was found to be higher in yield by using ethanol extraction. The potential of this study had satisfactory results to improve lime processing system for value-added . The present study was also focused on Lime powder production as source of vitamin C or ascorbic acid and the potential of lime waste as a source of essential oil and pectin. Lime powder produced from Spray Dryer . Lime juice with 2 different level of maltodextrins DE 10 , 30 and 50% w/w was sprayed at 150 degrees celsius inlet air temperature and at 90-degree celsius outlet temperature. Lime powder with 50% maltodextrin gave the most desirable quality product. This product has vitamin C contents of 25 mg/100g (w/w). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=pectin" title=" pectin"> pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a> </p> <a href="https://publications.waset.org/abstracts/92730/extraction-of-essential-oil-and-pectin-from-lime-and-waste-technology-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> Generalized Model Estimating Strength of Bauxite Residue-Lime Mix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20Kumar">Sujeet Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Prasad"> Arun Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates the effect of multiple parameters on the unconfined compressive strength of the bauxite residue-lime mix. A number of unconfined compressive strength tests considering various curing time, lime content, dry density and moisture content were carried out. The results show that an empirical correlation may be successfully developed using volumetric lime content, porosity, moisture content, curing time unconfined compressive strength for the range of the bauxite residue-lime mix studied. The proposed empirical correlations efficiently predict the strength of bauxite residue-lime mix, and it can be used as a generalized empirical equation to estimate unconfined compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bauxite%20residue" title="bauxite residue">bauxite residue</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20time" title=" curing time"> curing time</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%2Fvolumetric%20lime%20ratio" title=" porosity/volumetric lime ratio"> porosity/volumetric lime ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/80378/generalized-model-estimating-strength-of-bauxite-residue-lime-mix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Field Application of Reduced Crude Conversion Spent Lime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brian%20H.%20Marsh">Brian H. Marsh</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20H.%20Grove"> John H. Grove</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gypsum is being applied to ameliorate subsoil acidity and to overcome the problem of very slow lime movement from surface lime applications. Reduced Crude Conversion Spent Lime (RCCSL) containing anhydrite was evaluated for use as a liming material with specific consideration given to the movement of sulfate into the acid subsoil. Agricultural lime and RCCSL were applied at 0, 0.5, 1.0, and 1.5 times the lime requirement of 6.72 Mg ha-1 to an acid Trappist silt loam (Typic Hapuldult). Corn [Zea mays (L.)]was grown following lime material application and soybean [Glycine max (L.) Merr.]was grown in the second year. Soil pH increased rapidly with the addition of the RCCSL material. Over time there was no difference in soil pH between the materials but there was with increasing rate. None of the observed changes in plant nutrient concentration had an impact on yield. Grain yield was higher for the RCCSL amended treatments in the first year but not in the second. There was a significant increase in soybean grain yield from the full lime requirement treatments over no lime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20acidity" title="soil acidity">soil acidity</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean" title=" soybean"> soybean</a>, <a href="https://publications.waset.org/abstracts/search?q=liming%20materials" title=" liming materials"> liming materials</a> </p> <a href="https://publications.waset.org/abstracts/3923/field-application-of-reduced-crude-conversion-spent-lime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> The Influence of Partial Replacement of Hydrated Lime by Pozzolans on Properties of Lime Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Przemyslaw%20Brzyski">Przemyslaw Brzyski</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislaw%20Fic"> Stanislaw Fic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrated lime, because of the life cycle (return to its natural form as a result of the setting and hardening) has a positive environmental impact. The lime binder is used in mortars. Lime is a slow setting binder with low mechanical properties. The aim of the study was to evaluate the possibility of improving the properties of the lime binder by using different pozzolanic materials as partial replacement of hydrated lime binder. Pozzolan materials are the natural or industrial waste, so do not affect the environmental impact of the lime binder. The following laboratory tests were performed: the analysis of the physical characteristics of the tested samples of lime mortars (bulk density, porosity), flexural and compressive strength, water absorption and the capillary rise of samples and consistency of fresh mortars. As a partial replacement of hydrated lime (in the amount of 10%, 20%, 30% by weight of lime) a metakaolin, silica fume, and zeolite were used. The shortest setting and hardening time showed mortars with the addition of metakaolin. All additives noticeably improved strength characteristic of lime mortars. With the increase in the amount of additive, the increase in strength was also observed. The highest flexural strength was obtained by using the addition of metakaolin in an amount of 20% by weight of lime (2.08 MPa). The highest compressive strength was obtained by using also the addition of metakaolin but in an amount of 30% by weight of lime (9.43 MPa). The addition of pozzolan caused an increase in the mortar tightness which contributed to the limitation of absorbability. Due to the different surface area, pozzolanic additives affected the consistency of fresh mortars. Initial consistency was assumed as plastic. Only the addition of silica fume an amount of 20 and 30% by weight of lime changed the consistency to the thick-plastic. The conducted study demonstrated the possibility of applying lime mortar with satisfactory properties. The features of lime mortars do not differ significantly from cement-based mortar properties and show a lower environmental impact due to CO₂ absorption during lime hardening. Taking into consideration the setting time, strength and consistency, the best results can be obtained with metakaolin addition to the lime mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime" title="lime">lime</a>, <a href="https://publications.waset.org/abstracts/search?q=binder" title=" binder"> binder</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolan" title=" pozzolan"> pozzolan</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/91218/the-influence-of-partial-replacement-of-hydrated-lime-by-pozzolans-on-properties-of-lime-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Influence of Nano Copper Slag in Strength Behavior of Lime Stabilized Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Stalin">V. K. Stalin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kirithika"> M. Kirithika</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Shanmugam"> K. Shanmugam</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Tharini"> K. Tharini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanotechnology has been widely used in many applications such as medical, electronics, robotics and also in geotechnical engineering area through stabilization of bore holes, grouting etc. In this paper, an attempt is made for understanding the influence of nano copper slag (1%, 2% & 3%) on the index, compaction and UCC strength properties of natural soil (CH type) with and without lime stabilization for immediate and 7 days curing period. Results indicated that upto 1% of Nano copper slag, there is an increment in UC strength of virgin soil and lime stabilised soil. Beyond 1% nano copper slag, there is a steep reduction in UC strength and increase of plasticity both in lime stabilised soil and virgin soil. The effect of lime is found to show more influence on large surface area of nano copper slag in natural soil. For both immediate and curing effect, with 1% of Nano copper slag, the maximum unconfined compressive strength was 38% and 106% higher than that of the virgin soil strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime" title="lime">lime</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20copper%20slag" title=" nano copper slag"> nano copper slag</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilisation" title=" stabilisation"> stabilisation</a> </p> <a href="https://publications.waset.org/abstracts/56496/influence-of-nano-copper-slag-in-strength-behavior-of-lime-stabilized-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Effect of Lime and Leaf Ash on Engineering Properties of Red Mud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawandeep%20Kaur">Pawandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Garg"> Prashant Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red mud is a byproduct of aluminum extraction from Bauxite industry. It is dumped in a pond which not only uses thousands of acres of land but having very high pH, it pollutes the ground water and the soil also. Leaves are yet another big waste especially during autumn when they contribute immensely to the blockage of drains and can easily catch fire, among other risks hence also needs to be utilized effectively. The use of leaf ash and red mud in highway construction as a filling material may be an efficient way to dispose of leaf ash and red mud. In this study, leaf ash and lime were used as admixtures to improve the geotechnical engineering properties of red mud. The red mud was taken from National Aluminum Company Limited, Odisha, and leaf ash was locally collected. The aim of present study is to investigate the effect of lime and leaf ash on compaction characteristics and strength characteristics of red mud. California Bearing Ratio and Unconfined Compression Strength tests were performed on red mud by varying different percentages of lime and leaf ash. Leaf ash was added in proportion 2%,4%,6%,8% and 10% whereas lime was added in proportions of 5% to 15%. Optimized value of lime was decided with respect to maximum CBR (California Bearing Ratio) of red mud mixed with different proportions of lime. An increase of 300% in California Bearing ratio of red mud and an increase of 125% in Unconfined Compression Strength values were observed. It may, therefore, be concluded that red mud may be effectively utilized in the highway industry as a filler material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stabilization" title="stabilization">stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20ash" title=" leaf ash"> leaf ash</a> </p> <a href="https://publications.waset.org/abstracts/87827/effect-of-lime-and-leaf-ash-on-engineering-properties-of-red-mud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> Analysis of Reinforced Granular Pile in Soft Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Nitesh">G. Nitesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stone column or granular pile is a proven technique to mitigate settlement in soft soil. Granular pile increases both rate of consolidation and stiffness of the ground. In this paper, a method to analyze further reduction in settlement of granular column reinforced with lime pile is presented treating the system as a unit cell and considering one-dimensional compression approach. The core of the granular pile is stiffened with a steel rod or lime column. Influence of a wide range of parameters such as area ratio of granular pile-soft soil, area ratio of lime pile-granular pile, modular ratio of granular pile and modular ratio of lime pile with respect to granular pile on settlement reduction factor, etc. are obtained and presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime%20pile" title="lime pile">lime pile</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20pile" title=" granular pile"> granular pile</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a> </p> <a href="https://publications.waset.org/abstracts/15737/analysis-of-reinforced-granular-pile-in-soft-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> Reducing the Cooking Time of Bambara Groundnut (BGN)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auswell%20Amfo-Antiri">Auswell Amfo-Antiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Eshun"> Esther Eshun</a>, <a href="https://publications.waset.org/abstracts/search?q=Theresa%20A.%20Amu"> Theresa A. Amu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooking Bambara groundnut (Bambara beans) is time and energy-consuming. Over time, some substances have been used to help reduce cooking time and save energy. This experimental study was carried out to find ways of reducing the cooking time of Bambara groundnut using selected organic substances. Twenty grams (20g) each of fresh pawpaw leaves, guava leaves, ginger, onion, and palm kernel were cooked with five samples of 200g of the creamy variety of raw Bambara groundnut. A control was cooked without any organic substance added. All six samples were cooked with equal quantities of water (4L); the gas mark used for cooking the samples was marked 5, the highest for the largest burner, using the same cooking pot. Gas matter. The control sample used 192 minutes to cook thoroughly. The ginger-treated sample (AET02) had the shortest cooking time of 145 minutes, followed by the onion-treated sample (AET05), with a cooking time of 157 minutes. The sample cooked with Palm kernel (AET06) and Pawpaw (AET04) used 172 minutes and 174 minutes, respectively, while sample AET03, cooked with Guava, used 185 minutes for cooking. The difference in cooking time for the sample treated with ginger (AET02) and onion (AET05) was 47 minutes and 35 minutes, respectively, as compared with the control. The comparison between Control and Pawpaw produced [p=0.163>0.05]; Control and Ginger yielded [p=0.006<0.05]; Control and Kernel resulted in [p=0.128>0.05]; Control and Guava resulted in [p=0.560>0.05]. The study concluded that ginger and onions comparatively reduced the cooking time for Bambara ground nut appreciably. The study recommended that ginger and onions could be used to reduce the cooking time of Bambara groundnut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooking%20time" title="cooking time">cooking time</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20substances" title=" organic substances"> organic substances</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=onions" title=" onions"> onions</a>, <a href="https://publications.waset.org/abstracts/search?q=pawpaw%20leaves" title=" pawpaw leaves"> pawpaw leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=guava%20leaves" title=" guava leaves"> guava leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=bambara%20groundnut" title=" bambara groundnut"> bambara groundnut</a> </p> <a href="https://publications.waset.org/abstracts/164850/reducing-the-cooking-time-of-bambara-groundnut-bgn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> A Study of Soft Soil Improvement by Using Lime Grit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashim%20Kanti%20Dey">Ashim Kanti Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Briti%20Sundar%20Bhowmik"> Briti Sundar Bhowmik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an idea to improve the soft soil by using lime grits which are normally produced as waste product in the paper manufacturing industries. This waste material cannot be used as a construction material because of its light weight, uniform size and poor compaction control. With scarcity in land, effective disposal of lime grit is a major concern of all paper manufacturing industries. Considering its non-plasticity and high permeability characteristics the lime grit may suitably be used as a drainage material for speedy consolidation of cohesive soil. It can also be used to improve the bearing capacity of soft clay. An attempt has been made in this paper to show the usefulness of lime grit in improving the bearing capacity of shallow foundation resting on soft clayey soil. A series of undrained unconsolidated cyclic triaxial tests performed at different area ratios and at three different water contents shows that dynamic shear modulus and damping ratio can be substantially improved with lime grit. Improvement is observed to be more in case of higher area ratio and higher water content. Static triaxial tests were also conducted on lime grit reinforced clayey soil after application of 50 load cycles to determine the effect of lime grit columns on cyclically loaded clayey soils. It is observed that the degradation is less for lime grit stabilized soil. A study of model test with different area ratio of lime column installation is also included to see the field behaviour of lime grit reinforced soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime%20grit%20column" title="lime grit column">lime grit column</a>, <a href="https://publications.waset.org/abstracts/search?q=area%20ratio" title=" area ratio"> area ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title=" damping ratio"> damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20ratio" title=" strength ratio"> strength ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement%20factor" title=" improvement factor"> improvement factor</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20factor" title=" degradation factor"> degradation factor</a> </p> <a href="https://publications.waset.org/abstracts/10849/a-study-of-soft-soil-improvement-by-using-lime-grit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Effect of Sand Wall Stabilized with Different Percentages of Lime on Bearing Capacity of Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Abdulrasool">Ahmed S. Abdulrasool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently sand wall started to gain more attention as the sand is easy to compact by using vibroflotation technique. An advantage of sand wall is the availability of different additives that can be mixed with sand to increase the stiffness of the sand wall and hence to increase its performance. In this paper, the bearing capacity of circular foundation surrounded by sand wall stabilized with lime is evaluated through laboratory testing. The studied parameters include different sand-lime walls depth (H/D) ratio (wall depth to foundation diameter) ranged between (0.0-3.0). Effect of lime percentages on the bearing capacity of skirted foundation models is investigated too. From the results, significant change is occurred in the behavior of shallow foundations due to confinement of the soil. It has been found that (H/D) ratio of 2 gives substantial improvement in bearing capacity, and beyond (H/D) ratio of 2, there is no significant improvement in bearing capacity. The results show that the optimum lime content is 11%, and the maximum increase in bearing capacity reaches approximately 52% at (H/D) ratio of 2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20foundation" title=" circular foundation"> circular foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20soil" title=" clay soil"> clay soil</a>, <a href="https://publications.waset.org/abstracts/search?q=lime-sand%20wall" title=" lime-sand wall"> lime-sand wall</a> </p> <a href="https://publications.waset.org/abstracts/62996/effect-of-sand-wall-stabilized-with-different-percentages-of-lime-on-bearing-capacity-of-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> The Effectivity of Lime Juice on the Cooked Rice's Shelf-Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Novriyanti%20Lubis">Novriyanti Lubis</a>, <a href="https://publications.waset.org/abstracts/search?q=Riska%20Prasetiawati"> Riska Prasetiawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuriani%20Rahayu"> Nuriani Rahayu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectivity of lime juice on the cooked rice’s shelf-life was investigated. This research was proposed to get the optimal condition, such as concentration lime juice as the preservatives, and shelf-life cooked rice’s container to store using rice warmer. The effectivity was analysed total colony bacteriology, and physically. The variation of lime juice’s concentration that have been used were 0%, 0,46%, 0,93%, 1,40%, and 1,87%. The observation of cooked rice’s quality was done every 12 hours, including colour, smell, flavour, and total colony every 24 hours. Based on the result of the research considered from the cooked rice’s quality through observing the total of the colony bacteriology and physically, it showed the optimum concentrate which is effective preserve the cooked rise’s level concentrate was 0.93%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriology" title="bacteriology">bacteriology</a>, <a href="https://publications.waset.org/abstracts/search?q=cooked%20rice%27s" title=" cooked rice's"> cooked rice's</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20juice" title=" lime juice"> lime juice</a>, <a href="https://publications.waset.org/abstracts/search?q=preservative" title=" preservative"> preservative</a> </p> <a href="https://publications.waset.org/abstracts/56368/the-effectivity-of-lime-juice-on-the-cooked-rices-shelf-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Lime Based Products as a Maintainable Option for Repair And Restoration of Historic Buildings in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adedayo%20Jeremiah%20Adeyekun">Adedayo Jeremiah Adeyekun</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Oluwagbemiga%20Ishola"> Samuel Oluwagbemiga Ishola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to study the use of traditional building materials for the repair and refurbishment of historic buildings in India and to provide an authentic treatment of historical buildings that will be highly considered by taking into consideration the new standards of rehabilitating process. This can be proven to be an effective solution over modern impervious material due to its compatibility with traditional building methods and materials. For example, their elastoplastic properties allow accommodating movement due to settlement or moisture/temperature changes without cracking. The use of lime also enhances workability, water retention and bond characteristics. Lime is considered to be a natural, traditional material, but it is also sustainable and energy-efficient, with production powered by biomass and emissions up to 25% less than cementitious materials. However, there is a lack of comprehensive data on the impact of lime‐based materials on the energy efficiency and thermal properties of traditional buildings and structures. Although lime mortars, renders and plasters were largely superseded by cement-based products in the first half of the 20th century, lime has a long and proven track record dating back to ancient times. This was used by the Egyptians in 4000BC to construct the pyramids. This doesn't mean that lime is an outdated technology, nor is it difficult to be used as a material. In fact, lime has a growing place in modern construction, with increasing numbers of designers choosing to use lime-based products because of their special properties. To carry out this research, some historic buildings will be surveyed and information will be derived from the textbooks and journals related to Architectural restoration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime" title="lime">lime</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=historic" title=" historic"> historic</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/143272/lime-based-products-as-a-maintainable-option-for-repair-and-restoration-of-historic-buildings-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Kinetics of Cu(II) Transport through Bulk Liquid Membrane with Different Membrane Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siu%20Hua%20Chang">Siu Hua Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayub%20Md%20Som"> Ayub Md Som</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannathan%20Krishnan"> Jagannathan Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of Cu(II) transport through a bulk liquid membrane with different membrane materials was investigated in this work. Three types of membrane materials were used: Fresh cooking oil, waste cooking oil, and kerosene each of which was mixed with di-2-ethylhexylphosphoric acid (carrier) and tributylphosphate (modifier). Kinetic models derived from the kinetic laws of two consecutive irreversible first-order reactions were used to study the facilitated transport of Cu(II) across the source, membrane, and receiving phases of bulk liquid membrane. It was found that the transport kinetics of Cu(II) across the source phase was not affected by different types of membrane materials but decreased considerably when the membrane materials changed from kerosene, waste cooking oil to fresh cooking oil. The rate constants of Cu(II) removal and recovery processes through the bulk liquid membrane were also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transport%20kinetics" title="transport kinetics">transport kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=Cu%28II%29" title=" Cu(II)"> Cu(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20liquid%20membrane" title=" bulk liquid membrane"> bulk liquid membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20cooking%20oil" title=" waste cooking oil "> waste cooking oil </a> </p> <a href="https://publications.waset.org/abstracts/2082/kinetics-of-cuii-transport-through-bulk-liquid-membrane-with-different-membrane-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Biodiesel Production From Waste Cooking Oil Using g-C3N4 Photocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elgendi">A. Elgendi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Farag"> H. Farag</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Ossman"> M. E. Ossman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abd-Elfatah"> M. Abd-Elfatah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the using of waste cooking oil (WCO) as an attractive option to reduce the raw material cost for the biodiesel production. This can be achieved through two steps; esterification using g-C3N4photocatalyst and then alkali transesterification. Several parameters have been studied to determine the yield of the biodiesel produced such as: Reaction time (2-6 hrs), catalyst concentration (0.3-1.5 wt.%), number of UV lamps (1or 3 lamps) and methanol: oil ratio (6:1-12:1). From the obtained results, the highest percentage yield was obtained using methanol: Oil molar ratio of 12:1, catalyst dosage 0.3%, time of 4 hrs and using 1 lamp. From the results it was clear that the produced biodiesel from waste cooking oil can be used as fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title="biodiesel">biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20catalyst" title=" heterogeneous catalyst"> heterogeneous catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalytic%20esterification" title=" photocatalytic esterification"> photocatalytic esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20cooking%20oil" title=" waste cooking oil"> waste cooking oil</a> </p> <a href="https://publications.waset.org/abstracts/29226/biodiesel-production-from-waste-cooking-oil-using-g-c3n4-photocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Effects of Soaking of Maize on the Viscosity of Masa and Tortilla Physical Properties at Different Nixtamalization Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Mart%C3%ADnez-Rodr%C3%ADguez">Jorge Martínez-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20P%C3%A9rez-Carrillo"> Esther Pérez-Carrillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Diana%20Laura%20Anchondo%20%C3%81lvarez"> Diana Laura Anchondo Álvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Luc%C3%ADa%20Leal%20Villarreal"> Julia Lucía Leal Villarreal</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Ju%C3%A1rez%20Dominguez"> Mariana Juárez Dominguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Luisa%20Fernanda%20Torres%20Hern%C3%A1ndez"> Luisa Fernanda Torres Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Salinas%20Morales"> Daniela Salinas Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Erick%20Heredia-Olea"> Erick Heredia-Olea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maize tortillas are a staple food in Mexico which are mostly made by nixtamalization, which includes the cooking and steeping of maize kernels in alkaline conditions. The cooking step in nixtamalization demands a lot of energy and also generates nejayote, a water pollutant, at the end of the process. The aim of this study was to reduce the cooking time by adding a maize soaking step before nixtamalization while maintaining the quality properties of masa and tortillas. Maize kernels were soaked for 36 h to increase moisture up to 36%. Then, the effect of different cooking times (0, 5, 10, 15, 20, 20, 25, 30, 35, 45-control and 50 minutes) was evaluated on viscosity profile (RVA) of masa to select the treatments with a profile similar or equal to control. All treatments were left steeping overnight and had the same milling conditions. Treatments selected were 20- and 25-min cooking times which had similar values for pasting temperature (79.23°C and 80.23°C), Maximum Viscosity (105.88 Cp and 96.25 Cp) and Final Viscosity (188.5 Cp and 174 Cp) to those of 45 min-control (77.65 °C, 110.08 Cp, and 186.70 Cp, respectively). Afterward, tortillas were produced with the chosen treatments (20 and 25 min) and for control, then were analyzed for texture, damage starch, colorimetry, thickness, and average diameter. Colorimetric analysis of tortillas only showed significant differences for yellow/blue coordinates (b* parameter) at 20 min (0.885), unlike the 25-minute treatment (1.122). Luminosity (L*) and red/green coordinates (a*) showed no significant differences from treatments with respect control (69.912 and 1.072, respectively); however, 25 minutes was closer in both parameters (73.390 and 1.122) than 20 minutes (74.08 and 0.884). For the color difference, (E), the 25 min value (3.84) was the most similar to the control. However, for tortilla thickness and diameter, the 20-minute with 1.57 mm and 13.12 cm respectively was closer to those of the control (1.69 mm and 13.86 cm) although smaller to it. On the other hand, the 25 min treatment tortilla was smaller than both 20 min and control with 1.51 mm thickness and 13.590 cm diameter. According to texture analyses, there was no difference in terms of stretchability (8.803-10.308 gf) and distance for the break (95.70-126.46 mm) among all treatments. However, for the breaking point, all treatments (317.1 gf and 276.5 gf for 25 and 20- min treatment, respectively) were significantly different from the control tortilla (392.2 gf). Results suggest that by adding a soaking step and reducing cooking time by 25 minutes, masa and tortillas obtained had similar functional and textural properties to the traditional nixtamalization process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tortilla" title="tortilla">tortilla</a>, <a href="https://publications.waset.org/abstracts/search?q=nixtamalization" title=" nixtamalization"> nixtamalization</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20cooking" title=" lime cooking"> lime cooking</a>, <a href="https://publications.waset.org/abstracts/search?q=RVA" title=" RVA"> RVA</a>, <a href="https://publications.waset.org/abstracts/search?q=colorimetry" title=" colorimetry"> colorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=masa%20rheology" title=" masa rheology"> masa rheology</a> </p> <a href="https://publications.waset.org/abstracts/146878/effects-of-soaking-of-maize-on-the-viscosity-of-masa-and-tortilla-physical-properties-at-different-nixtamalization-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Chemistry and Sources of Solid Biofuel Derived Ambient Aerosols during Cooking and Non-Cooking Hours in Rural Area of Khairatpur, North-Central India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudha%20Shukla">Sudha Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Bablu%20Kumar"> Bablu Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyan%20Prakash%20Gupta"> Gyan Prakash Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20C.%20Kulshrestha"> U. C. Kulshrestha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air pollutants emitted from solid biofuels during cooking are the major contributors to poor air quality, respiratory problems, and radiative forcing, etc. in rural areas of most of developing countries. The present study reports the chemical characteristics and sources of ambient aerosols and traces gases during cooking and non-cooking hours emitted during biofuel combustion in a village in North-Central India. Fine aerosol samples along with gaseous species (Sox, NOx, and NH₃) were collected during September 2010-March 2011 at Khairatpur village (KPV) which is located in the Uttar Pradesh state in North-Central India. Results indicated that most of the major ions in aerosols and Sox, NOx, and NH₃ gases were found to be higher during cooking hours as compared to non-cooking hours suggesting that solid biofuel combustion is an important source of air pollution. Results of Principal Component Analysis (PCA) revealed that combustion of solid biofuel, vehicular emissions, and brick kilns were the major sources of fine aerosols and trace gases in the village. A health survey was conducted to find out the relation between users of biofuels and their health effects and the results revealed that most of the women in the village were suffering from diseases associated with biofuel combustion during cooking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ambient%20aerosols" title="ambient aerosols">ambient aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel%20combustion" title=" biofuel combustion"> biofuel combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking" title=" cooking"> cooking</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20survey" title=" health survey"> health survey</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20area" title=" rural area"> rural area</a> </p> <a href="https://publications.waset.org/abstracts/75925/chemistry-and-sources-of-solid-biofuel-derived-ambient-aerosols-during-cooking-and-non-cooking-hours-in-rural-area-of-khairatpur-north-central-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Effects of Extrusion Conditions on the Cooking Properties of Extruded Rice Vermicelli Using Twin-Screw Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasika%20Mith">Hasika Mith</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassany%20Ly"> Hassany Ly</a>, <a href="https://publications.waset.org/abstracts/search?q=Hengsim%20Phoung"> Hengsim Phoung</a>, <a href="https://publications.waset.org/abstracts/search?q=Rathana%20Sovann"> Rathana Sovann</a>, <a href="https://publications.waset.org/abstracts/search?q=Pichmony%20Ek"> Pichmony Ek</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokuntheary%20Theng"> Sokuntheary Theng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice is one of the most important crops used in the production of ready-to-cook (RTC) products such as rice vermicelli, noodles, rice paper, Banh Kanh, wine, snacks, and desserts. Meanwhile, extrusion is the most creative food processing method used for developing products with improved nutritional, functional, and sensory properties. This method authorizes process control such as mixing, cooking, and product shaping. Therefore, the objectives of this study were to produce rice vermicelli using a twin screw extruder, and the cooking properties of extruded rice vermicelli were investigated. Response Surface Methodology (RSM) with Box-Behnken design was applied to optimize extrusion conditions in order to achieve the most desirable product characteristics. The feed moisture rate (30–35%), the barrel temperature (90–110°C), and the screw speed (200–400 rpm) all play a big role and have a significant impact on the water absorption index (WAI), cooking yield (CY), and cooking loss (CL) of extrudate rice vermicelli. Results showed that the WAI of the final extruded rice vermicelli ranged between 216.97% and 571.90%. The CY ranged from 147.94 to 203.19%, while the CL ranged from 8.55 to 25.54%. The findings indicated that at a low screw speed or low temperature, there are likely to be more unbroken polymer chains and more hydrophilic groups, which can bind more water and make WAI values higher. The extruded rice vermicelli's cooking yield value had altered considerably after processing under various conditions, proving that the screw speed had little effect on each extruded rice vermicelli's CY. The increase in barrel temperature tended to increase cooking yield and reduce cooking loss. In conclusion, the extrusion processing by a twin-screw extruder had a significant effect on the cooking quality of the rice vermicelli extrudate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooking%20loss" title="cooking loss">cooking loss</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20quality" title=" cooking quality"> cooking quality</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20yield" title=" cooking yield"> cooking yield</a>, <a href="https://publications.waset.org/abstracts/search?q=extruded%20rice%20vermicelli" title=" extruded rice vermicelli"> extruded rice vermicelli</a>, <a href="https://publications.waset.org/abstracts/search?q=twin-screw%20extruder" title=" twin-screw extruder"> twin-screw extruder</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorption%20index" title=" water absorption index"> water absorption index</a> </p> <a href="https://publications.waset.org/abstracts/173920/effects-of-extrusion-conditions-on-the-cooking-properties-of-extruded-rice-vermicelli-using-twin-screw-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Durability of Lime Treated Soil Reinforced by Natural Fibre under Bending Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivi%20Anggraini">Vivi Anggraini</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Asadi"> Afshin Asadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bujang%20B.%20K.%20Huat"> Bujang B. K. Huat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth structures constructed of marine clay soils have tendency to crack. In order to improve the flexural strength and brittleness, a technique of mixing short fibers is introduced to the soil lime mixture. Coir fiber was used in this study as reinforcing elements. An experimental investigation consisting primarily of flexural tensile tests was conducted to examine the influence of coir fibers on the flexural behaviour of the reinforced soils. The test results demonstrated that the coir fibers were effective in improving the flexural strength and young’s modulus of all soils were examined and ductility after peak strength for reinforced marine clay soil was treated by lime. 5% lime treated soil and 1% coir fiber reinforced soil specimen’s demonstrated good strength and durability when submerged in water and retained 45% of their air-cured strengths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title="flexural strength">flexural strength</a>, <a href="https://publications.waset.org/abstracts/search?q=durabilty" title=" durabilty"> durabilty</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=coir%20fibers" title=" coir fibers"> coir fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20force" title=" bending force"> bending force</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/35165/durability-of-lime-treated-soil-reinforced-by-natural-fibre-under-bending-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Study of the Potential of Raw Sediments and Sediments Treated with Lime or Cement for Use in a Foundation Layer and the Base Layer of a Roadway </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nor-Edine%20Abriak">Nor-Edine Abriak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfoud%20Benzerzour"> Mahfoud Benzerzour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamadou%20Amar"> Mouhamadou Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdeljalil%20Zri"> Abdeljalil Zri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, firstly we have studied the potential of raw sediments and sediments treated with lime or cement for use in a foundation layer and the base layer of a roadway. Secondly, we have examined mineral changes caused by the addition of lime or cement in order to explain the mechanical performance of stabilized sediments. After determining the amount of lime and cement required stabilizing the sediments, the compaction characteristics and Immediate Bearing Capacity (IBI) were studied using the Modified Proctor method. Then, the evolution of the three parameters, which are optimum water content, maximum dry density and IBI, were determined. Mechanical performances can be evaluated through resistance to compression, resistance under traction and the elasticity modulus. The resistances of the formulations treated with ROLAC®645 increase with the amount of ROLAC®645. Traction resistance and the elastic modulus were used to evaluate the potential of the formulations as road construction materials using the classification diagram. The results show that all the other formulations with ROLAC®645 can be used in subgrades and foundation layers for roads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sediment" title="sediment">sediment</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=roadway" title=" roadway"> roadway</a> </p> <a href="https://publications.waset.org/abstracts/53905/study-of-the-potential-of-raw-sediments-and-sediments-treated-with-lime-or-cement-for-use-in-a-foundation-layer-and-the-base-layer-of-a-roadway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Physical, Textural and Sensory Properties of Noodles Supplemented with Tilapia Bone Flour (Tilapia nilotica)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supatchalee%20Sirichokworrakit">Supatchalee Sirichokworrakit </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fishbone of Nile tilapia (Tilapia nilotica), waste from the frozen Nile tilapia fillet factory, is one of calcium sources. In order to increase fish bone powder value, this study aimed to investigate the effect of tilapia bone flour (TBF) addition (5, 10, 15% by flour weight) on cooking quality, texture and sensory attributes of noodles. The results indicated that tensile strength, color value (a*) and water absorption of noodles significantly decreased (p≤0.05) as the levels of TBF increased from 0-15%. While cooking loss, cooking time and color values (L* and b*) of noodles significantly increased (p≤0.05). Sensory evaluation indicated that noodles with 5% TBF received the highest overall acceptability score. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tilapia%20bone%20flour" title="tilapia bone flour">tilapia bone flour</a>, <a href="https://publications.waset.org/abstracts/search?q=noodles" title=" noodles"> noodles</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20quality" title=" cooking quality"> cooking quality</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium "> calcium </a> </p> <a href="https://publications.waset.org/abstracts/9991/physical-textural-and-sensory-properties-of-noodles-supplemented-with-tilapia-bone-flour-tilapia-nilotica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Influence of the Cooking Technique on the Iodine Content of Frozen Hake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Deng">F. Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sanchez"> R. Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Beltran"> A. Beltran</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maestre"> S. Maestre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high nutritional value associated with seafood is related to the presence of essential trace elements. Moreover, seafood is considered an important source of energy, proteins, and long-chain polyunsaturated fatty acids. Generally, seafood is consumed cooked. Consequently, the nutritional value could be degraded. Seafood, such as fish, shellfish, and seaweed, could be considered as one of the main iodine sources. The deficient or excessive consumption of iodine could cause dysfunction and pathologies related to the thyroid gland. The main objective of this work is to evaluated iodine stability in hake (Merluccius) undergone different culinary techniques. The culinary process considered were: boiling, steaming, microwave cooking, baking, cooking en papillote (twisted cover with the shape of a sweet wrapper) and coating with a batter of flour and deep-frying. The determination of iodine was carried by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Regarding sample handling strategies, liquid-liquid extraction has demonstrated to be a powerful pre-concentration and clean-up approach for trace metal analysis by ICP techniques. Extraction with tetramethylammonium hydroxide (TMAH reagent) was used as a sample preparation method in this work. Based on the results, it can be concluded that the stability of iodine was degraded with the cooking processes. The major degradation was observed for the boiling and microwave cooking processes. The content of iodine in hake decreased up to 60% and 52%, respectively. However, if the boiling cooking liquid is preserved, this loss that has been generated during cooking is reduced. Only when the fish was cooked by following the cooking en papillote process the iodine content was preserved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooking%20process" title="cooking process">cooking process</a>, <a href="https://publications.waset.org/abstracts/search?q=ICP-MS" title=" ICP-MS"> ICP-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine" title=" iodine"> iodine</a>, <a href="https://publications.waset.org/abstracts/search?q=hake" title=" hake"> hake</a> </p> <a href="https://publications.waset.org/abstracts/98520/influence-of-the-cooking-technique-on-the-iodine-content-of-frozen-hake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Geo-Engineering Properties of Lime Stabilized Expansive Soil with Shredded Waste Tyre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Upasana%20Pattnaik">Upasana Pattnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Akshaya%20Kumar%20Sabat"> Akshaya Kumar Sabat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The compaction properties, unconfined compressive strength (UCS), soaked California bearing ratio (CBR), hydraulic conductivity, and swelling pressure of lime stabilized expansive soil-shredded waste tyre mixes have been discussed in this paper. Shredded waste tyres, passing 4.75 mm Indian Standard (IS) sieve and retained on 75µ IS sieve have been used in the experimental programme. First of all expansive soil-shredded waste tyre mixes were prepared by adding shredded waste tyre from 0 to 20% at an increment of 5%.Standard Proctor compaction, UCS and soaked CBR tests were conducted on these mixes. The optimum percentage of shredded waste tyre found out was 10%.In the second phase of the experiment, lime was added to sample having optimum percentage of expansive soil and shredded waste tyre from 2 to 6% at an increment of 1%.Compaction, UCS, soaked CBR, hydraulic conductivity, and swelling pressure tests were conducted on lime stabilized expansive soil-shredded waste tyre mixes. The optimum percentage of lime for stabilization was found out to be 5%.At the optimum percentage of lime the stabilized expansive soil-shredded waste tyre mix had increased strength, reduced hydraulic conductivity and swelling pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansive%20soil" title="expansive soil">expansive soil</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductivity" title=" hydraulic conductivity"> hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=shredded%20waste%20tyre" title=" shredded waste tyre"> shredded waste tyre</a>, <a href="https://publications.waset.org/abstracts/search?q=soaked%20california%20bearing%20ratio" title=" soaked california bearing ratio"> soaked california bearing ratio</a> </p> <a href="https://publications.waset.org/abstracts/87297/geo-engineering-properties-of-lime-stabilized-expansive-soil-with-shredded-waste-tyre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Decarboxylation of Waste Coconut Oil and Comparison of Acid Values</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pabasara%20H.%20Gamage">Pabasara H. Gamage</a>, <a href="https://publications.waset.org/abstracts/search?q=Sisira%20K.%20Weliwegamage"> Sisira K. Weliwegamage</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameera%20R.%20Gunatilake"> Sameera R. Gunatilake</a>, <a href="https://publications.waset.org/abstracts/search?q=Hondamuni%20I.%20C%20De%20Silva"> Hondamuni I. C De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Parakrama%20Karunaratne"> Parakrama Karunaratne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green diesel is an upcoming category of biofuels, which has more practical advantages than biodiesel. Production of green diesel involves production of hydrocarbons from various fatty acid sources. Though green diesel is chemically similar to fossil fuel hydrocarbons, it is more environmentally friendly. Decarboxylation of fatty acid sources is one of green diesel production methods and is less expensive and more energy efficient compared to hydrodeoxygenation. Free fatty acids (FFA), undergo decarboxylation readily than triglycerides. Waste coconut oil, which is a rich source of FFA, can be easily decarboxylated than other oils which have lower FFA contents. These free fatty acids can be converted to hydrocarbons by decarboxylation. Experiments were conducted to carry out decarboxylation of waste coconut oil in a high pressure hastealloy reactor (Toption Goup LTD), in the presence of soda lime and mixtures of soda lime and alumina. Acid value (AV) correlates to the amount of FFA available in a sample of oil. It can be shown that with the decreasing of AV, FFAs have converted to hydrocarbons. First, waste coconut oil was reacted with soda lime alone, at 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure for 2 hours. AVs of products at different temperatures were compared. AV of products decreased with increasing temperature. Thereafter, different mixtures of soda lime and alumina (100% Soda lime, 1:1 soda lime and alumina and 100% alumina) were employed at temperatures 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure. The lowest AV of 2.99±0.03 was obtained when 1:1 soda lime and alumina were employed at 250 °C. It can be concluded with respect to the AV that the amount of FFA decreased when decarboxylation temperature was increased. Soda lime:alumina 1:1 mixture showed the lowest AV among the compositions studied. These findings lead to formulate a method to successfully synthesize hydrocarbons by decarboxylating waste coconut oil in the presence of soda lime and alumina (1:1) at elevated tempertaures such as 250 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20value" title="acid value">acid value</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20fatty%20acids" title=" free fatty acids"> free fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20diesel" title=" green diesel"> green diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20reactor" title=" high pressure reactor"> high pressure reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20coconut%20oil" title=" waste coconut oil"> waste coconut oil</a> </p> <a href="https://publications.waset.org/abstracts/41339/decarboxylation-of-waste-coconut-oil-and-comparison-of-acid-values" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Investigation on Strength Properties of Concrete Using Industrial Waste as Supplementary Cementitious Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Prasad%20Darapureddi">Ravi Prasad Darapureddi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of industrial waste in making concrete reduce the consumption of natural resources and pollution of the environment. These materials possess problems of disposal and health hazards. An attempt has been made to use paper and thermal industrial wastes such as lime sludge and flyash. Present investigation is aimed at the utilization of Lime Sludge and Flyash as Supplementary Cementitious Materials (SCM) and influence of these materials on strength properties of concrete. Thermal industry waste fly ash is mixed with lime sludge and used as a replacement to cement at different proportions to obtain the strength properties and compared with ordinary concrete prepared without any additives. Grade of concrete prepared was M₂₅ designed according to Indian standard method. Cement has been replaced by paper industry waste and fly ash in different proportions such as 0% (normal concrete), 10%, 20%, and 30% by weight. Mechanical properties such as compressive strength, splitting tensile strength and flexural strength were assessed. Test results indicated that the use of lime sludge and Fly ash in concrete had improved the properties of concrete. Better results were observed at 20% replacement of cement with these additives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supplementary%20cementitious%20materials" title="supplementary cementitious materials">supplementary cementitious materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20sludge" title=" lime sludge"> lime sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=strength%20properties" title=" strength properties"> strength properties</a> </p> <a href="https://publications.waset.org/abstracts/78196/investigation-on-strength-properties-of-concrete-using-industrial-waste-as-supplementary-cementitious-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chegenizadeh">A. Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Keramatikerman"> M. Keramatikerman</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Nikraz"> H. Nikraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64ºC, 70ºC, 76ºC and 82ºC. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (δ) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70ºC. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title="rheological properties">rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=DSR%20test" title=" DSR test"> DSR test</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20mixed%20with%20bitumen%20%28PMB%29" title=" polymer mixed with bitumen (PMB)"> polymer mixed with bitumen (PMB)</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20modulus" title=" complex modulus"> complex modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a> </p> <a href="https://publications.waset.org/abstracts/83817/study-on-the-application-of-lime-to-improve-the-rheological-properties-of-polymer-modified-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Cooking Qualities and Sensory Evaluation Analysis of a Collection of Traditional Rice Genotypes of Kerala, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanaja%20T.">Vanaja T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sravya%20P.%20K."> Sravya P. K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooking and eating qualities have major roles in determining the quality characteristics of rice. Traditional rice varieties are highly diversified with each other with respect to unique nutrient, cooking, and eating characteristics, which can be used as parents for the development of high-quality varieties. In order to gather vital information for upcoming rice breeding programs, a study was conducted to assess the diversity of the cooking attributes and sensory evaluation of 28 traditional rice genotypes of Kerala, India, conserved at Regional Agricultural Research Station, Pilicode of Kerala Agricultural University. The cultivars ‘Kochuvithu’, ‘Jeerakachamba’, and ‘Rajameni’ exhibited the highest volume expansion ratio. The highest Kernel elongation ratio was recorded for ‘Gandhakasala’, ‘Rajameni’, and ‘Avadi’. A shorter cooking time based on Alkali spread value was shown by the cultivars ‘Kozhivalan’, ‘Kunhikayama’, ‘Rasagadham’, ‘Jadathi’, ‘Japanviolet’, ‘Nooravella’, ‘Punchavella’, ‘Avadi’, ‘Vadakan vellarikayama’, ‘Punchaparuthi’, ‘Shyamala’, ‘China Silk’, ‘Marathondi’, and ‘Gandhakasala’. Sensory evaluation revealed that the cultivars ‘Japanviolet’, ‘Kunhukunhu’, and ‘Kalladiyaran’ can be categorized under moderate to very much. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice" title="rice">rice</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20rice%20varieties" title=" traditional rice varieties"> traditional rice varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=cooking%20qualities" title=" cooking qualities"> cooking qualities</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=consumer%20acceptance" title=" consumer acceptance"> consumer acceptance</a> </p> <a href="https://publications.waset.org/abstracts/191262/cooking-qualities-and-sensory-evaluation-analysis-of-a-collection-of-traditional-rice-genotypes-of-kerala-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">19</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lime%20cooking&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>