CINXE.COM

Research Unit MUSAM - Multi-Scale Analysis of Materials

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <meta name="Description" content="Multi-Scale Analysis of Materials (MUSAM) at IMT Lucca."> <meta name="Keywords" content="Computational Mechanics; Fracture Mechanics; Contact Mechanics; Experimental mechanics; Heterogeneous materials"> <meta name="Distribution" content="Global"> <meta name="Author" content="Marco Paggi"> <meta name="Robots" content="index,follow"> <meta http-equiv="Content-Type" content="text/html; charset=utf-8"></meta> <script src="http://api<?php if (strpos($_SERVER['SERVER_NAME'], '-test') !== false) echo "-test"; ?>.imtlucca.it/js/jquery.min.js"></script> <script type="text/javascript"> // ***** // Start Config: set the Research Unit name (in case of hostname's retrieving fail) jQuery.ru = 'musam'; // End Config: set the Research Unit name (in case of hostname's retrieving fail) // ***** </script> <script src="http://api<?php if (strpos($_SERVER['SERVER_NAME'], '-test') !== false) echo "-test"; ?>.imtlucca.it/js/research_unit.js"></script> <link rel="stylesheet" href="images/MarketPlace.css" type="text/css"> <title>Research Unit MUSAM - Multi-Scale Analysis of Materials</title> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="https://ingestion.webanalytics.italia.it/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', 'BmqAQEdqPX']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> </head> <body> <!-- wrap starts here --> <div id="wrap"><!--header --> <div id="header-photo"> <h1 id="logo-text"><a href="index.php" title="">MUSAM</a></h1> <h2 id="slogan">MUSAM - Multi-scale Analysis of Materials</h2> <!--header ends--> </div> <div id="main"> <!-- content-wrap starts --> <div id="content-wrap" class="two-col"> <div id="sidebar"> <ul class="sidemenu"> <li><a href="#Presentation">Presentation</a></li> <li><a href="#People">People</a></li> <li><a href="#Topics">Research topics</a></li> <li><a href="#Mission">Mission/Objectives</a></li> <li><a href="#Achievements">Achievements</a></li> <li><a href="#Facilities">Laboratory</a></li> <li><a href="#Funding">Projects and funding</a></li> <li><a href="#Collaborations">Collaborations/Partnerships</a></li> <li><a href="http://musam.imtlucca.it/former_people.html">Former members and visiting researchers</a></li> <li><a href="#Events">Events</a></li> <li><a href="#Spin-off">Spin-off</a></li> <li><a href="http://musam.imtlucca.it/CA2PVM.html">ERC StG CA2PVM</a></li> <li><a href="http://musam.imtlucca.it/PHYSIC.html">ERC PoC PHYSIC</a></li> <li><a href="http://musam.imtlucca.it/FIRB.html">FIRB - MIUR</a></li> <li><a href="http://musam.imtlucca.it/wikisurf.html">Wiki surface project</a></li> </ul> <br /> <br /> <a href="http://www.imtlucca.it"> <img alt="IMT Lucca" src="images/IMT_Logo_no_sfondo.png" style="width: 180px; height: 75px;"> </a> <br /> <img alt="ERC" src="images/LOGO_ERC.jpg" style="width: 180px; height: 180px;"> <!-- saved from url=(0022)http://internet.e-mail --> </div> <div id="main"> <a name="Presentation"></a> <h1>Presentation</h1> <p> MUSAM is an interdisciplinary research unit integrating computational and experimental mechanics, numerical analysis and materials science to address frontier research related to modelling, simulation and testing of natural and artificial physical systems. Topics of investigation regard fracture mechanics, contact mechanics, fluid dynamics, coupled problems, structural integrity and durability of heterogeneous materials and structures, renewable energy systems and devices </p> <blockquote> <p>The research unit addresses frontier research topics of high technological relevance, pursuing an interdisciplinary approach which integrates computational and experimental mechanics, numerical analysis and materials science</p> </blockquote> <h1>People</h1> <p> <!--<div class="imgpeople"></div>--> <div id="resultspeople"></div> <div id="resultspeople"> <ul> <li>Prof. Dr. Ing. <a href="https://www.imtlucca.it/it/marco.paggi"><strong>Marco Paggi </strong></a>(Director), Full Professor</li> <li>Dr. Ing. <a href="https://www.imtlucca.it/it/people/andrea-mola"><strong>Andrea Mola</strong></a>, Tenure-Track Assistant Professor</li> <li>Dr. <a href="https://www.imtlucca.it/it/pietro.lenarda"><strong>Pietro Lenarda</strong></a>, Tenure-Track Assistant Professor</li> <li>Dr. Ing. <a href="https://www.imtlucca.it/it/mariarosaria.marulli"><strong>Maria Rosaria Marulli</strong></a>, Assistant Professor, 01/11/2023-31/10/2026</li> <li>Ms. <strong>Irene Nesi</strong>, PhD student (Systems Science, Track in Computational Mechanics, cycle XL)</li> <li>Ing. <strong>Habib Ur-Rehmaan</strong>, PhD student (Systems Science, Track in Computational Mechanics, cycle XL)</li> <li>Ing. <strong>Prayuktha Bendadi</strong>, PhD student (Management of Digital Transformation, cycle XL)</li> <li>Ing. <strong>Syed Muhammad Zubair Shah Bukhari</strong>, PhD student (Systems Science, Track in Computational Mechanics, cycle XXXIX)</li> <li>Ing. <strong>Hassaan Idrees</strong>, PhD student (Systems Science, Track in Computational Mechanics, cycle XXXIX)</li> <li>Ing. <strong>Lorenzo Pasquetti</strong>, PhD student (Management of Digital Transformation, cycle XXXIX, scholarship co-funded by Nemesys SrL)</li> <li>Mr. <strong>Gabriel Cassese</strong>, PhD student (Systems Science, Track in Computational Mechanics, cycle XXXIX)</li> <li>Ing. <strong>Alice Bertolini</strong>, PhD student (Management of Digital Transformation, cycle XXXVIII, scholarship co-funded by Lucart SpA)</li> <li>Ing. <strong>Luca Cattarossi</strong>, PhD student (Management of Digital Transformation, cycle XXXVIII, scholarship co-funded by ToolsPole SrL)</li> <li>Ing. <strong>René Thierry Djoumessi</strong>, PhD student (Systems Science, Track in Computational Mechanics, cycle XXXVIII)</li> <li>Ing. <strong>Mohadeseh Fallah Yakhdani</strong>, PhD student (Systems Science, Track in Computational Mechanics, cycle XXXVIII)</li> <li>Mr. <strong>Mazhar Shehzad</strong>, PhD student (Systems Science, Track in Computational Mechanics, cycle XXXVIII)</li> <li>Ing. <strong>Ajinkya Dusane</strong>, PhD student (Systems Science, cycle XXXVI)</li> <li>Ing. <strong>Karthik Ambikakumari Sanalkumar</strong>, PhD student (Systems Science, cycle XXXVI, Marie Curie Early Stage Researcher at University of Seville, double degree with IMT)</li> </ul> <p> <a href="http://musam.imtlucca.it/former_people.html"><strong>Former staff & placement</strong></a>: visiting professors and researchers, alumni and former collaborators. <blockquote> <p> <font size="2">Four enrolled PhD students describe their research activities and experience in short storytelling videos, see <a href="https://vimeo.com/user115174689"><strong>here</strong></a>. </font> </blockquote> <!-- <span class="topicsimages"><img alt="Staff" src="index_file/image000.jpg" style="width: 500px; height: 349px"></span><br /> From left to right: Dardano, Kumar, Marulli, Biancalani, Paggi, Gagliardi, Del Frate, Preve, Guillen-Hernandez, Bonari. --> </div> <a name="Topics"></a> <h1>Research Topics</h1> <p> <strong>Computational contact mechanics of rough surfaces</strong><br /> Development of innovative HPC algorithms (BEM, FEM, multi-scale BEM-FEM models) for contact problems involving surface roughness and texture, friction, adhesion, wear, thermo-elasticity. Topological characterization of natural and artificial rough surfaces with experimental techniques. <br /> <span class="topicsimages"><img alt="Contact mechanics of rough surfaces" src="images/topics/topic2.jpeg" style="width: 531px; height: 176px"></span> <br /> Numerical simulation of contact problems </p> <p> <strong>Development of cohesive fracture mechanics models in statics and dynamics</strong><br /> Data-driven cohesive zone models for micro-structured interfaces and adhesives of finite thickness, with applications to paper tissue and fibrillar bio-inspired adhesives. Interface finite elements for finite elasticity; simulation of fracture and instabilities in multi-layered materials and in flexible electronics. <br /> <span class="topicsimages"><img alt="" src="images/topics/fibrillar.JPG" style="width: 250px; height: 165px"></span> <span class="topicsimages"><img alt="" src="images/topics/layers.jpeg" style="width: 243px; height: 165px"></span> <br /> In-situ testing of paper fracture (left). Simulated fracture patterns in flexible electronics (right). </p> <p> <strong>Phase-field modelling of fracture</strong><br /> Development of phase-field models for fracture for visco-elastic, hyper-elastic, anisotropic polycrystalline materials and laminates, in statics and dynamics. <br /> <span class="topicsimages"><img alt="" src="images/topics/PF.jpeg" style="width: 538px; height: 300px"></span> <br /> Phase-field modelling of fracture in hyper-elastic shells </p> <p> <strong>Multi-scale computational fracture models</strong><br /> Molecular dynamics simulation of fracture in Silicon and Graphene; coupling of molecular dynamics and finite elements; global-local approaches for fracture in composites; model order reduction techniques and reduced order models for PDEs. <br /> <span class="topicsimages"><img alt="MD" src="index_file/image011.jpg" style="width: 400px; height: 164px"></span> <br /> Simulation of crack propagation in graphene-coated Silicon </p> <p> <strong>Experimental techniques for the assessment of material degradation in photovoltaics</strong><br /> Development of image analysis techniques for the analysis and interpretation of electroluminescence and infrared images of photovoltaic modules, to assess Silicon fracture and other material degradation phenomena. <br /> <span class="topicsimages"><img alt="" src="images/topics/EL.jpeg" style="width: 300px; height: 197px"></span> <br /> Electroluminescence image of photovoltaic modules showing Silicon cracks </p> <p> <strong>Sustainability of photovoltaics</strong><br /> Simulation methods for multi-field and multi-scale fracture problems in Silicon photovoltaics; fractional-calculus modelling of thermo-visco-elasticity of polymeric materials; prediction of moisture and temperature diffusion in the polymeric encapsulant; design of production techniques for ultra-thin solar cells based on thermo-elastic spalling of Silicon; simulation of the effect of climatic zones on photovoltaics durability; design of optimal methods for PV recycling. <br /> <span class="topicsimages"><img alt="Thermo-elastic moisture-induced degradation in photovoltaics" src="images/topics/PV.JPG" style="width: 350px; height: 160px"></span> <br /> Thermo-elastic moisture-induced degradation in photovoltaics: experiments and simulation </p> <p> <strong>Numerical methods for the resolution and model order reduction of fluid dynamic problems</strong><br /> Potential flow simulation for free surface flows with nonlinear boundary conditions; boundary element method solvers for ship hydrodynamics; fluid-structure interaction models; Navier-Stokes simulations for vortex induced vibrations in structures exposed to winds and streams; reduction of computational cost via intrusive and non intrusive reduced order models. <br /> <span class="topicsimages"><img alt="" src="images/topics/goteborgFr02.png" style="width: 277px; height: 150px"></span> <span class="topicsimages"><img alt="" src="images/topics/3D_shedding.png" style="width: 202px; height: 150px"></span> <br /> Computational fluid dynamics simulations for naval engineering applications </p> <p> <strong>Smoothed particle hydrodynamics and lattice Boltzmann methods</strong><br /> Simulation of fluid lubrication with complex rough boundaries using SPH; simulation of blood particle flows using lattice Boltzmann. <br /> <span class="topicsimages"><img alt="" src="images/topics/lubrication.jpg" style="width: 314px; height: 150px"></span> <span class="topicsimages"><img alt="" src="images/topics/blood.jpg" style="width: 239px; height: 150px"></span> <br /> Simulation of hydrodynamic lubrication and flow of particles immersed in blood </p> <p> <strong>Modelling and simulation of reaction-diffusion systems in solids and fluids</strong><br /> Degradation of mechanical adhesion and optical properties of polymers; bacterial bioconvection (advection-reaction-diffusion system) in viscous fluids; electro-physiological modelling of cardiac cells and biological tissues in finite elasticity. <br /> <span class="topicsimages"><img alt="Bacterial bioconvection in viscous fluids: experiments and simulation" src="images/topics/bacterial.JPG" style="width: 400px; height: 129px"></span> <br /> Bacterial bioconvection in viscous fluids: experiments and simulation </p> <p> <strong>Computational micromechanics and homogenization theory</strong><br /> Computational methods for the identification of high-order continua equivalent to Cauchy heterogenous composites; homogenization of piezo-electric materials with thermo-electro-mechanical coupling. <br /> <span class="topicsimages"><img alt="Composite materials" src="images/topics/topics5.png" style="width: 400px; height: 200px"></span> <br /> Modelling of debonding between fibre and matrix in fibre-reinforced metal matrix composites </p> <a name="Mission"></a> <h1>Mission/Objectives</h1> <p> Due to the progress in materials science, innovative micro- and nano-structures can be manufactured in order to produce materials with superior mechanical, thermal and electric properties. However, their design and optimization is often left to empirical criteria, rather than being theoretically based. The mission of the research unit MUSAM is to make a breakthrough in this multidisciplinary research area by developing new multi-scale and multi-physics computational methods and non-conventional nondestructive experimental techniques for physical systems. The key resource of this activity is the interaction with national and international companies, which greatly contributes to the identification of competitive design and of industrial solutions, as well as the close collaboration with a network of leading international research institutes and universities. </p> <a name="Achievements"></a> <h1>Achievements</h1> <p> The research output regards the publication of scientific results in top journals of physics, engineering and materials science. Most of them are co-authored by PhD students and are stemming from international cooperations. Another important output concerns the formation of Ph.D. candidates capable of exporting the scientific skills acquired at IMT not only in other academic groups, but also into the industry, which represents the best way to disseminate the methodologies developed in the research unit to industrial practice. <br /> <br /> <strong>MUSAM-Lab included in <a href="http://iicbruxelles.esteri.it/iic_bruxelles/resource/doc/2017/11/cartaditalia_n3-rid.pdf"><strong>Cartaditalia n.3</strong></a> dedicated to "New frontiers of Italian scientific research"</strong> <span class="topicsimages"><img alt="Cartaditalia" src="images/topics/cover_cartaditalia.jpg" style="width: 250px; height: 303px"></span> <br /> <br /> <strong>Key figures (2013-2023)</strong> <ul> <li>Supervised PhD students: 25</li> <li>Visiting PhD students: 5</li> <li>Best PhD thesis awards: 2</li> <li>Rectuited post-doc and research collaborators: 15</li> <li>Visiting professors and researchers: 12</li> <li>PhDs and post-docs co-funded by companies: 6</li> <li>Number of publications: 185</li> <li>% of publications with international co-authors: 49%</li> <li>% of publications co-authored by PhD students: 35%</li> <li>Organized seminars: 72</li> <li>Organized conferences, workshops and schools: 7</li> <li>Articles on newspapers mentioning MUSAM: 26</li> <li>TV interviews and youtube videos: 4</li> <li>Total attracted funds: 2.6 MEuro</strong></li> <li>Projects’ funds at IMT Lucca: 2.6 MEuro</strong></li> <li>Industrial contracts supporting research staff: 320 kEuro</strong></li> <li>Patents: 1</strong></li> <li>Spin-offs: 1</strong></li> </ul> <br /> Follow MUSAM updates on its facebook fanpage since 2016: <a href="https://www.facebook.com/fanpagemusam/"><strong>MUSAM on facebook</strong></a> <br /> <a href="http://musam.imtlucca.it/MUSAM-10year.pdf"><strong>10-year impact report 2013-2023</strong></a> <br /> <span class="topicsimages"><img alt="10-year report" src="images/10-year.jpg" style="width: 250px; height: 354px"></span> </p> <a name="Facilities"></a> <h1>Laboratory</h1> <br /> <span class="topicsimages"><img alt="MUSAM LAB" src="images/topics/MUSAM-LAB0.jpg" style="width: 132px; height: 200px"></span> &nbsp &nbsp <span class="topicsimages"><img alt="MUSAM LAB" src="images/topics/MUSAM-LAB.png" style="width: 266px; height: 200px"></span> &nbsp &nbsp <span class="topicsimages"><img alt="MUSAM LAB" src="images/topics/MUSAM-LAB2.jpg" style="width: 120px; height: 200px"></span> <br /> <strong>MUSAM-Lab</strong> - experimental laboratory for materials testing, see more on its <a href="https://www.imtlucca.it/it/ricerca/laboratori/musam-lab"><strong>web-site</strong></a> <br /> <br /> Opportunities for industrial collaborations (in Italian): <br /> <a href="http://musam.imtlucca.it/MUSAM-LAB.pdf"><strong>Leaflet of the MUSAM-Lab</strong></a> <br /> The laboratory is currently involved in technology transfer projects with national and international companies. Please contact Prof. Marco Paggi (marco.paggi@imtlucca.it), Director of the lab, for R&D contracts. <!-- <p> <ul> <li> <strong>Finite element (FEAP), Boundary element (BEM), Computational Fluid Dynamics (CFD), and Molecular Dynamics (LAMMPS) software</strong><br/> Software for the implementation of user-defined subroutines to model complex physics and engineering problems with multiple scales and in multi-physics. Parallel computation facilities available on the servers Hewlett Packard 653745-421 Proliant DL585R07 (128 GB Ram, 4 processors AMD Opteron 6282 SE 2.60 GHz, 16 cores each) and Hewlett Packard DL560G8 (126 GB Ram, Intel Xeon 2x E5-4610v2 2.3 GHz, 64 GB). </li> <li> <strong>3D confocal-interferometric profilometer (LEICA, DCM 3D)</strong><br/> Non-contact optical profilometer based on confocal and interferometric methods with resolution ranging from few nanometers up to several millimiters. </li> <li> <strong>Scanning Electron Microscope (ZEISS, EVO MA15)</strong><br/> SEM with maximum resolution of 3 nm and automated pressure regulation from 10 to 400 Pa to work with metallic and non-metallic samples without the need of metallization. </li> <li> <strong>Micromechanical testing stage (DEBEN, 5000S)</strong><br/> Tensile/compression stage for forces up to 5 kN specifically designed to allow real time observation of the microstructure evolution of materials within SEM </li> <li> <strong>Universal testing machine with a thermostatic chamber (Zwick/Roell, Z010TH)</strong><br/> Universal testing machine for tensile tests, compression tests and three-point bending tests on notched beams for fracture mechanics characterization. Two load cells of 1 kN and 10 kN are available. Testing can be made inside a thermostatic chamber in the temperature range from -30°C up to 250°C. </li> <li> <strong>Thermocamera (FLIR, T640bx)</strong><br/> IR thermocamera with 640x480 pixel of resolution for thermoelastic tests in the laboratory and for in-situ inspection of hot spots in photovoltaic modules and electric circuits. </li> <li> <strong>Photocamera for electroluminesce tests (PCO, 1300 Solar)</strong><br/> IR photocamera specific for carrying out electroluminescence tests in the laboratory. </li> <li> <strong>System for 3D displacement correlation technique (Correlated Solutions, VIC3D)</strong><br/> System for displacement and strain measurement using the displacement correlation technique in 3D, to be used together with the universal testing machine and with images taken using the scanning electron microscope. </li> </ul> </p> --> <a name="Funding"></a> <h1>Projects and funding</h1> <p> <strong>Ongoing</strong> <ul> <li>2023-2027 - Research unit, <strong>Marie Skłodowska-Curie Staff Exchanges (HORIZON-MSCA-2021-SE-01)</strong> "Ductility and Fracture Toughness analysis of functionally graded materials - DIAGONAL", granted by the European Research Executive Agency (GA 101086342), 184,000 Euro, 48 months. <li>2022-2024 - Coordinator, <strong>NEXTPAPER4.0</strong> "Next Generation Paper and Packaging", Fondo per lo Sviluppo e la Coesione della Regione Toscana, 60.000 Euro, 24 months, in cooperazione con Lucense scarl. <li>2020-2024 - Research unit, <strong>Marie Skłodowska-Curie Innovative Training Network (H2020 MSCA-ITN)</strong> "New strategies for multifield fracture problems across scales in heterogeneous systems for Energy, Health and Transport - NEWFRAC", granted by the European Research Executive Agency (GA 861061), 3,359,824.20 Euro, 48 months. </ul> </p> <p> <strong>Closed</strong> <ul> <li>2022-2023 - Coordinator, <strong>"Scientific computing for natural sciences, social sciences, and applications: methodological and technological development"</strong>, funded by MUR, PRO3 joint programme of the Italian Schools for Advanced Studies, 595,800 Euro, 24 months. <li>2019-2023 - Research unit, <strong>Research Project of National Interest (PRIN 2017)</strong> "XFAST-SIMS: Extra fast and accurate simulation of complex structural systems", granted by the Italian Ministry of Education, University and Research (GA 20173C478N), 877,560 Euro, 36 months. <li>2018-2020 – Research unit, <strong>POR FESR 2014/2020</strong>, action 1.1.5 sub-action a1 - Call 1, Strategic Projects of Research and Development "GlycoG-Lab 4.0", 2,500,575 Euro, 24 months.</li> <li>2018-2020 – Coordinator, <strong>MIUR-DAAD Joint Mobility Program 2017</strong> "Multi-scale modeling of friction for large scale engineering problems". The project, in collaboration with Prof. Dr.-Ing. A. Popp (Bundeswehr Universität Munich) is granted by the Italian Ministry of Education, University and Research (MIUR), and the Deutscher Akademischer Austausch Dienst (DAAD), 40,000 Euro, 24 months.</li> <li>2018-2020 – Project <strong>POR FSE 2014-2020</strong> "PROPAINT" to support 1 post-doctoral research fellowship, co-funded by Tuscany Region and by the company CROMOLOGY ITALIA spa (Porcari (LU), Italia), 54,000 Euro, 24 months.</li> <li>2016-2018 – Coordinator, <a href="http://musam.imtlucca.it/PHYSIC.html"><strong>ERC Proof of Concept 2016</strong></a> "PHotovoltaic with SuperIor Crack resistance", granted by the European Research Council (149,500 Euro, 18 months).</li> <li>2012-2017 – Coordinator, <a href="http://musam.imtlucca.it/CA2PVM.html"><strong>ERC Starting Grant 2012</strong></a> "Multi-scale and multi-physics computational approach to design and durability of photovoltaic modules", granted by the European Research Council, 1,483,980 Euro, 60 months).</li> <li>2013-2016 – Coordinator, <a href:"http://musam.imtlucca.it/FIRB.html"><strong>FIRB 2010 Future in Research Project</strong></a> "Structural mechanics models for renewable energy applications", granted by Italian Ministry of Education, University and Research MIUR, 954,800 Euro, 48 months.</li> <li>2011-2012 – Coordinator, <strong>Vigoni Project 2010</strong> "3D modelling of crack propagation in polycrystalline materials". The project, in collaboration with Prof. P. Wriggers, Leibniz University Hannover, Hannover, Germany, is granted by the Italian Ministry of Education, University and Research (MIUR), Ateneo Italo-Tedesco, and the Deutscher Akademischer Austausch Dienst (DAAD), 15,000 Euro, 24 months.</li> </ul> </p> <a name="Collaborations"></a> <h1>Collaborations</h1> <p> <strong>External academic collaborations</strong><br /> The research unit collaborates with several research centers, universities, and institutions around the World and in Italy, including: <ul> <li>Prof. <strong>D. Bigoni</strong>, <a href="https://bigoni.dicam.unitn.it/">University of Trento</a> (Italy)</li> <li>Prof. <strong>M. Corrado</strong>, Prof. <strong>S. Grivet Talocia</strong>, Prof. <strong>F. Spertino</strong>, <a href="http://www.polito.it">Politecnico di Torino</a> (Italy)</li> <li>Prof. <strong>P. Camanho</strong>, <a href="https://sigarra.up.pt/feup/pt/func_geral.formview?p_codigo=240020">University of Porto</a> (Portugal)</li> <li>Prof. <strong>J. Reinoso</strong>, Prof. <strong>V. Mantic</strong>, Prof. <strong>I.G. Garcia</strong> <a href="http://www.us.es/eng/about/directory/pdi/personal_4134">University of Seville</a> (Spain)</li> <li>Dr. <strong>A. Turon</strong>, <a href="https://www.udg.edu/ca/directori/pagina-personal?ID=2001508">University of Girona</a> (Spain)</li> <li>Prof. <strong>D. Dini</strong>, <a href="https://www.imperial.ac.uk/people/d.dini">Imperial College London</a> (UK)</li> <li>Prof. <strong>D.A. Hills</strong>, <a href="http://www.eng.ox.ac.uk/solidmech/people/professor-david-hills">University of Oxford</a> (UK)</li> <li>Prof. <strong>F. Borodich</strong>, <a href="http://www.engin.cf.ac.uk/">Cardiff University</a> (UK)</li> <li>Prof. <strong>J.R. Barber</strong>, <a href="http://www-personal.umich.edu/~jbarber/">University of Michigan</a> (Michigan, USA)</li> <li>Prof. <strong>P. Wriggers</strong>, <a href="http://www.ikm.uni-hannover.de/kontinuumsmechanik.html">Leibniz University of Hannover</a> (Germany)</li> <li>Prof. <strong>A. Popp</strong>, <a href="https://www.unibw.de/imcs-en/team/popp">Universitaet der Bundeswehr Munich</a> (Germany)</li> <li>Prof. <strong>R. Rolfes</strong>, <a href="http://www.isd.uni-hannover.de/isd.html">Leibniz University of Hannover</a> (Germany)</li> <li>Prof. <strong>S. Gorb</strong>, <a href="https://www.sgorb.zoologie.uni-kiel.de/">University of Kiel</a> (Germany)</li> <li>Prof. <strong>R. Brendel</strong>, Dr. <strong>S. Kajari-Schröder</strong>, <a href="http://www.isfh.de">Institute for Solar Energy Research Hamelin</a> (Germany)</li> <li>Prof. <strong>T. Rabczuk</strong>, <a href="http://www.uni-weimar.de/de/bauingenieurwesen/forschung-und-kunst/institute/institute-fuer-strukturmechanik">Bauhaus University of Weimar</a> (Germany)</li> <li>Prof. <strong>V. Popov</strong>, <a href="http://www.reibungsphysik.de">Technical University of Berlin</a> (Germany)</li> <li>Dr. <strong>P.B. Ramaiah</strong>, <a href="https://www.iitbbs.ac.in/profile-print.php?furl=pattabhi">Indian Institute of Technology Bhubaneswar</a> (India)</li> <li>Prof. <strong>N. Datla</strong>, <a href="https://web.iitd.ac.in/~datla/">Indian Institute of Technology New Delhi</a> (India)</li> <li>Prof. <strong>Q.-C. He</strong>, <a href="http://msme.u-pem.fr/">Laboratoire de Modélisation et Simulation Multi Echelle of the University of Paris-EST</a> (France)</li> <li>Prof. <strong>J.-F. Molinari</strong>, <a href="http://lsms.epfl.ch/">Ecole Polytechnique Fédéral de Lausanne</a> (Switzerland)</li> <li>Prof. <strong>O. Naimark</strong>, Dr. <strong>O. Plekhov</strong>, <a href="http://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&ved=0CEsQFjAE&url=http%3A%2F%2Fwww.mathnet.ru%2Fphp%2Forganisation.phtml%3Foption_lang%3Deng%26orgid%3D4250&ei=04D2UrjsKbCnyAPpmYHgDA&usg=AFQjCNHTjx-8rc63Vh0Fg_GTN3-4sHr5MQ">Institute of Continuous Media Mechanics of the Russian Academy of Sciences</a> (Russia)</li> </ul> <br /> <strong>Industrial collaborations</strong><br /> MUSAM is promoting technology transfer in cooperation with the <a href="www.jointto.it/">Joint Technology Transfer Office</a> (JoTTO). Since 2013, MUSAM has activated technology transfer projects abd collaborations with the following industrial partners: <ul> <li><a href="https://www.lucartgroup.com/"><strong>Lucart S.p.A.</strong></a> (Porcari (LU), Italy)</li> <li><a href="https://toolspole.com/"><strong>ToolsPole</strong></a> (Tallinn, Estonia)</li> <li><a href="https://www.sigmaingegneria.com/"><strong>Sigma Ingegneria S.R.L.</strong></a> (Lucca, Italy)</li> <li><a href="https://www.bosch.de/unser-unternehmen/bosch-in-deutschland/renningen/"><strong>Robert Bosch GmbH</strong></a> (Renningen, Germany)</li> <li><a href="https://lucense.it/"><strong>LUCENSE SCaRL</strong></a> (Lucca, Italy)</li> <li><a href="http://www.cromology.it/"><strong>CROMOLOGY Italia S.p.A.</strong></a> (Porcari (LU), Italy)</li> <li><a href="http://www.tvcgroup.it/"><strong>Tacchificio Villa Cortese S.r.l.</strong></a> (Villa Cortese (MI), Italy)</li> <li><a href="http://www.eiasrl.com/"><strong>Euro Inn Advisory S.r.l.</strong></a> (Correggio (RE), Italy)</li> <li><a href="http://www.cieffepi.com/"><strong>CIEFFEPI S.r.l.</strong></a> (Pistoia (PT), Italy)</li> <li><a href="http://www.solbian.eu/"><strong>Solbian Energie Alternative S.r.l.</strong></a> (Avigliana (TO), Italy)</li> <li><a href="http://www.appliedmaterials.com/"><strong>Applied Materials Italia S.r.l.</strong></a> (Olmi di S. Biagio di Callalta (BO), Italy)</li> <li><a href="http://www.jabil.com/industries/jabil-manufacturing/industrial-and-energy.html"><strong>Jabil, Industrial and Energy</strong></a> (San Petersburg, Florida, USA)</li> </ul> <br /> Selected publications co-authored by industrial partners: <ul> <li>H. Zarei, M.R. Marulli, M. Paggi, R. Pietrogrande, C. Üffing, P. Weißgraeber (2020) Adherend surface roughness effect on the mechanical response of silicone-based adhesive joints, Engineering Fracture Mechanics, 240, 107353.</li> <li>H. Zarei, M.R. Marulli, M. Paggi, R. Pietrogrande, C. Üffing, P. Weißgraeber (2020) Mechanical characterization and failure modes in the peeling of adhesively bonded strips from a plastic substrate, Mechanics of Advanced Materials and Structures, 1-6.</li> <li>M. Paggi, I. Berardone, M. Martire (2016) An electric model of cracked solar cells accounting for distributed damage caused by crack interaction, Energy Procedia, 92C:576-584 <a href="http://dx.doi.org/10.1016/j.egypro.2016.07.022">doi:10.1016/j.egypro.2016.07.022</a></li> <li>V. Gade, N. Shiradkar, M. Paggi, J. Opalewski (2015) Predicting the long term power loss from cell cracks in PV modules, IEEE 42nd Photovoltaic Specialist Conference (PVSC), June 14-19, 2015, New Orleans, USA, (p. 1-6), <a href="http://dx.doi.org/10.1109/PVSC.2015.7355665">doi:10.1109/PVSC.2015.7355665</a></li> </ul> </p> <a name="Spin-off"></a> <h1>Spin-off</h1> <p> Prof. Marco Paggi and Dr. Francesco Biancalani founded the 4th of April 2019 the innovative start-up and academic spin-off <a href="https://www.tree-tower.eu/"><strong>TREE-TOWER S.R.L.</strong></a>, focusing on high-tech digital solutions for smart manufacturing. A video presentation of the company, located in the incubator of Polo Tecnologico Lucchese, is available <a href="https://vimeo.com/390162268"><strong>here</strong></a>. </p> <a name="Events"></a> <h1>Events</h1> <p> <strong>Advanced courses and summer schools</strong> <ul> <li><a href="https://www.newfrac.eu/dissemination/events/10-newfrac-pro-school-in-imt-lucca"><strong>PRO Winter School of the NewFrac Marie Curie ITN Project</strong></a>, 7-11 February 2022, IMT School for Advanced Studies Lucca.</li> <li>Advanced Course <a href="http://www.cism.it/courses/C1805/"><strong>Modelling and Simulation of Tribological Problems in Technology</strong></a>, CISM International Centre for Mechanical Sciences, 28 May-1 June, 2018, Udine.</li> <li><a href="http://www.aitrib.it/index.php?option=com_content&view=article&id=92:seconda-summer-school-ait-2017-salerno-28-08-01-09&catid=17&Itemid=106&lang=it"><strong>2nd Summer School of the Italian Association of Tribology</strong></a>, 28 August-1 September, 2017, Salerno.</li> </ul> </p> <p> <strong>Conferences and workshops</strong> <ul> <li><a href="https://www.newfrac.eu/dissemination/events/9-newfrac-workshop-2-in-imt-lucca"><strong>Expanding Horizons</strong></a>, Workshop of the NewFrac Marie Curie ITN Project, IMT Lucca, 9-12 May 2022, IMT School for Advanced Studies Lucca.</li> <li><a href="http://gimc-gma2016.imtlucca.it/"><strong>GIMC-GMA 2016</strong></a> Joint Conference of the Italian Group of Computational Mechanics and of the AIMETA Group on Materials, 27-29 June, 2016, IMT School for Advanced Studies Lucca.</li> <li><a href="http://575.euromech.org/"><strong>EUROMECH Colloquium 575</strong></a> Contact Mechanics and Coupled Problems in Surface Phenomena, March 30-April 2, 2015, IMT School for Advanced Studies Lucca.</li> <li><strong>Seminar on metallic and ceramic materials with applications to paper industry</strong>, in cooperation with ASM International and Confindustria Toscana Nord, 26 May, 2016, IMT School for Advanced Studies Lucca.</li> </ul> </p> </div> <!-- content-wrap ends--> </div> <!-- footer starts --> <div id="footer-wrap"> <div id="footer"> <p> &copy; 2011 <strong>IMT School for Advanced Studies Lucca</strong> | CSS Template by: <a href="http://www.styleshout.com/">styleshout</a> </p> </div> </div> <!-- footer ends--><!-- wrap ends here --> </div> </div> </body> </html> <!-- <p> <strong>Computational fracture mechanics</strong><br /> Computational methods based on the phase-field model for fracture and the cohesize cone model for the simulation of fracture in complex heterogenous materials and structures. <ul> <li>J. Reinoso, M. Paggi, C. Linder (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation. Computational Mechanics, in press, <a href="http://dx.doi.org/10.1007/s00466-017-1386-3">doi:10.1007/s00466-017-1386-3</a></li> <li>M. Paggi, P. Wriggers (2016) Node-to-segment and node-to-surface interface finite elements for fracture mechanics, Computer Methods in Applied Mechanics and Engineering, 300:540-560, <a href="http://dx.doi.org/10.1016/j.cma.2015.11.023">doi:10.1016/j.cma.2015.11.023</a></li> <li>J. Reinoso, M. Paggi (2014) A consistent interface element formulation for geometrical and material nonlinearities, Computational Mechanics, 54:1569-1581, <a href="http://dx.doi.org/10.1007/s00466-014-1077-2">doi:10.1007/s00466-014-1077-2</a></li> </ul> </p> <p> <strong>Multi-scale and multi-field computational methods for Silicon photovoltaics</strong><br /> Mathematical modelling of coupled mechanical, thermal, hygrometric, and electromagnetic fields. Implementation of the proposed formulations in the finite element method with novel staggered or fully coupled formulations. Particular attention is given to coupling driven by fracture events. Applications include photovoltaics, generalized diffusion problems in solids, thermo-piezo-electric materials. Experimental facilities include high resolution electroluminescence and thermal imaging. <ul> <li>M. Gagliardi, P. Lenarda, M. Paggi (2017) A reaction-diffusion formulation to simulate EVA polymer degradation in environmental and accelerated againg conditions. Solar Energy Materials and Solar Cells, 164:93-106, <a href="http://dx.doi.org/10.1016/j.solmat.2017.02.014">doi:10.1016/j.solmat.2017.02.014</a></li> <li>M. Paggi, I. Berardone, A. Infuso, M. Corrado (2014) Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules, Scientific Reports, 4:4506, <a href="http://dx.doi.org/10.1038/srep04506">doi:10.1038/srep04506</a></li> <li>I. Berardone, M. Corrado, M. Paggi (2014) A generalized electric model for mono and polycrystalline silicon in the presence of cracks and random defects, Energy Procedia, 55:22-29, <a href="http://dx.doi.org/10.1016/j.egypro.2014.08.005">doi:10.1016/j.egypro.2014.08.005</a></li> <li>A. Sapora, M. Paggi (2014) A coupled cohesive zone model for transient analysis of thermoelastic interface debonding, Computational Mechanics, 53:845-857, <a href="http://dx.doi.org/10.1007/s00466-013-0934-8">doi:10.1007/s00466-013-0934-8</a></li> </ul> <br /> <span class="topicsimages"><img alt="Multi-scale and multi-physics computational models" src="images/topics/topic1.jpeg" style="width: 350px; height: 230px"></span> <br /> Thermal image of photovoltaic modules showing hot spots <br /> <span class="topicsimages"><img alt="Multi-scale and multi-physics computational models" src="images/topics/EL.jpeg" style="width: 350px; height: 230px"></span> <br /> Electroluminescence image of photovoltaic modules showing cracking </p> <p> <strong>Contact mechanics of rough surfaces</strong><br /> Development of theoretical models and numerical methods based on FEM, BEM or molecular dynamics for the tribological characterization of rough surfaces including the prediction of the real contact area, thermal and electric contact conductances, as well as frictional instabilities. The modelling activities are complemented by experimental research according to the laboratory facilities consisting in a confocal-interferometric profilometer for multi-scale roughness measurement. Research includes the application of novel optimization algorithms to contact problems in collaboration with DYSCO research unit. <ul> <li>C. Borri, M. Paggi (2015) Topological characterization of antireflective and hydrophobic rough surfaces: are random process theory and fractal modeling applicable?, Journal of Physics D: Applied Physics, 48:045301, <a href="http://dx.doi.org/10.1088/0022-3727/48/4/045301">doi:10.1088/0022-3727/48/4/045301</a></li> <li>M. Paggi, R. Pohrt, V.L. Popov (2014) Partial-slip frictional response of rough surfaces, Scientific Reports, 4:5178, <a href="http://dx.doi.org/10.1038/srep05178">doi:10.1038/srep05178</a></li> <li>M. Ciavarella, J.A. Greenwood, M. Paggi (2008) Inclusion of “interaction” in the Greenwood and Williamson contact theory, Wear, 265:729-734, <a href="http://dx.doi.org/10.1016/j.wear.2008.01.019">doi:10.1016/j.wear.2008.01.019</a></li> </ul> <br /> <span class="topicsimages"><img alt="Contact mechanics of rough surfaces" src="images/topics/topics2.jpeg" style="width: 350px; height: 170px"></span> <br /> Numerical simulation of contact problems </p> <p> <strong>Micromechanics</strong><br /> Numerical simulation of the nonlinear mechanical behavior (prediction of strength, toughness, stiffness) of heterogeneous material microstructures with special attention to polycrystalline materials. Research on computational homogenization techniques and on higher-order continua is coordinated by Dr. Ing. Bacigalupo. Experimental facilities available in the laboratory regard the possibility to observe the evolution of material microstructures by performing tensile/compression tests inside a scanning electron microscope. Materials already characterized are: polycrystalline Silicon for photovoltaics; polycrystalline diamond; innovative hierarchical polycystals for cutting tools; paper tissue. <ul> <li>A. Bacigalupo, L. Gambarotta (2014) Second-gradient homogenized model for wave propagation in heterogeneous periodic media, International Journal of Solids and Structures, 51:1052-1065, <a href="http://dx.doi.org/10.1016/j.ijsolstr.2013.12.001">doi:10.1016/j.ijsolstr.2013.12.001</a></li> <li>M. Paggi, E. Lehmann, C. Weber, A. Carpinteri, P. Wriggers, M. Schaper (2013) A numerical investigation of the interplay between cohesive cracking and plasticity in polycrystalline materials, Computational Materials Science, 77:81-92, <a href="http://dx.doi.org/10.1016/j.commatsci.2013.04.002">doi:10.1016/j.commatsci.2013.04.002</a></li> <li>M. Paggi, P. Wriggers (2012) Stiffness and strength of hierarchical polycrystalline materials with imperfect interfaces, Journal of the Mechanics and Physics of Solids, 60:557-572, <a href="http://dx.doi.org/10.1016/j.jmps.2012.01.009">doi:10.1016/j.jmps.2012.01.009</a></li> </ul> <br /> <span class="topicsimages"><img alt="Numerical simulation of the nonlinear mechanical behaviour" src="images/topics/topics3.png" style="width: 350px; height: 170px"></span> <span class="topicsimages"><img alt="Numerical simulation of the nonlinear mechanical behaviour" src="images/topics/topics4.png" style="width: 350px; height: 170px"></span> <br /> Modelling of plasticity and fracture in polycrystalline materials </p> <p> <strong>Composite materials</strong><br /> Development of linear and nonlinear fracture mechanics models for the study of delamination in layered, fibre-reinforced, functionally graded or retrofitted composite materials. Dr. Reinoso is coordinating research on decohesion between hyperelastic layers undergoing large deformation, and interplay between fracture and geometrical instabilities by coupling continuum shell elements and interface elements for fracture. Experimental facilities regard a universal testing machine for carrying our tensile, compression or three-point bending tests with two load cells (1 kN or 10 kN), also inside a thermostatic chamber (from -30°C to 250°C), and a digital image correlation system for non-contact displacements measurement. Applications regard: photovoltaic modules; metal matrix composites for aerospace; layered shells for naval engineering; fibre-reinforced concrete; retrofitting of civil structures. <ul> <li>J. Reinoso, M. Paggi, A. Blazquez (2017) A nonlinear finite thickness cohesive interface element for modeling delamination in fibre-reinforced composite laminates. Composites Part B: Engineering, 109:116-128, <a href="http://dx.doi.org/10.1016/j.compositesb.2016.10.042">doi:10.1016/j.compositesb.2016.10.042</a></li> <li>M. Paggi, J. Reinoso (2015) An anisotropic large displacement cohesive zone model for fibrillar or crazing interfaces, International Journal of Solids and Structures, 69-70:106-120, <a href="http://dx.doi.org/10.1016/j.ijsolstr.2015.04.042">doi:10.1016/j.ijsolstr.2015.04.042</a></li> <li>I.G. García, M. Paggi, V. Mantič (2014) Fiber-size effects on the onset of fiber–matrix debonding under transverse tension: A comparison between cohesive zone and finite fracture mechanics models, Engineering Fracture Mechanics, 115:96-110, <a href="http://dx.doi.org/10.1016/j.engfracmech.2013.10.014">doi:10.1016/j.engfracmech.2013.10.014</a></li> </ul> <br /> <span class="topicsimages"><img alt="Composite materials" src="images/topics/topics5.png" style="width: 400px; height: 200px"></span> <br /> Modelling of debonding between fibre and matrix in fibre-reinforced metal matrix composites </p> <p> <strong>Multiscale fracture mechanics</strong><br /> Development of innovative computational methods for the simulation of fracture across multiple length scales. Applications include molecular dynamics applied to graphene-coated Silicon, debonding of paper tissue. Dr.-Ing. Budarapu is coordinating research activities on coupling continuum finite elements and molecular dynamics for fracture mechanics simulations. <ul> <li>P.R. Budarapu, J. Reinoso, M. Paggi (2017) Concurrently coupled solid shell based adaptive multiscale methods for fracture. Computer Methods in Applied Mechanics and Engineering, in press, <a href="http://dx.doi.org/10.1016/j.cma.2017.02.023">doi:10.1016/j.cma.2017.02.023</a></li> <li>B. Javvaji, P.R. Budarapu, V.K. Sutrakar, D. Roy Mahapatra, M. Paggi, G. Zi, T. Rabczuk (2016) Mechanical properties of Graphene: molecular dynamics simulations correlated to continuum based scaling laws, Computational Materials Science, 125:319-327, <a href="http://dx.doi.org/10.1016/j.commatsci.2016.08.016">doi:10.1016/j.commatsci.2016.08.016</a></li> <li>P.R. Budarapu, B. Javvaji, V.K. Sutrakar, D. Roy Mahapatra, M. Paggi, G. Zi, T. Rabczuk (2016) Lattice orientation and crack size effect on the mechanical properties of Graphene, International Journal of Fracture, in press, <a href="http://dx.doi.org/10.1007/s10704-016-0115-9">doi:10.1007/s10704-016-0115-9</a></li> <li>M. Paggi, P. Wriggers (2011) A nonlocal cohesive zone model for finite thickness interfaces – Part I: Mathematical formulation and validation with molecular dynamics, Computational Materials Science, 50:1625-1633, <a href="http://dx.doi.org/10.1016/j.commatsci.2010.12.024">doi:10.1016/j.commatsci.2010.12.024</a></li> </ul> <br /> <span class="topicsimages"><img alt="MD" src="index_file/image011.jpg" style="width: 400px; height: 164px"></span> <br /> Simulation of crack propagation at the molecular scale </p> <p> <strong>Computational fluid dynamics</strong><br /> Development of staggered computational schemes to couple contact mechanics and computational fluid dynamics simulations for the characterization of fluid transport across rough surfaces in contact. <ul> <li>M. Paggi, Q.-C. He (2015) Evolution of the free volume between rough surfaces in contact, Wear, 336:86-95, <a href="http://dx.doi.org/10.1016/j.wear.2015.04.021">doi:10.1016/j.wear.2015.04.021</a></li> <li>P. Cinat, M. Paggi (2015) Simulation of fluid flow across rough surfaces in contact. YIC GACM 2015 3rd ECCOMAS Young Investigators Conference, July 20–23, 2015, Aachen, Germany.</li> </ul> <br /> <span class="topicsimages"><img alt="CFD" src="index_file/image012.jpg" style="width: 400px; height: 264px"></span> <br /> Stream lines of a fluid flow across an elastic rough surface in contact with a rigid half-plane </p> </p> --> <!-- <p> Selected publications co-authored by international collaborators since 2014: <ul> <li>J. Reinoso, M. Paggi, C. Linder (2017) Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation. Computational Mechanics, in press, <a href="http://dx.doi.org/10.1007/s00466-017-1386-3">doi:10.1007/s00466-017-1386-3</a></li> <li>M. Paggi, D.A. Hills (2016) Special issue on EUROMECH 575, Proceedings of the Institution of Mechanical Engineering. Part C: Journal of Mechanical Engineering Science, 230:1373 <a href="http://dx.doi.org/10.1177/0309324716642941">doi:10.1177/0309324716642941</a></li> <li>M. Paggi, D.A. Hills (2016) Editorial of the Special Issue on the EUROMECH Colloquium 575, Journal of Strain Analysis for Engineering Design, 51:239 <a href="http://dx.doi.org/10.1177/0309324716642941">doi:10.1177/0309324716642941</a></li> <li>J. Reinoso, M. Paggi, P. Areias (2016) A finite element framework for the interplay between delamination and buckling of rubber-like bi-material systems and stretchable electronics, Journal of the European Ceramic Society, 36:2371-2382 <a href="http://dx.doi.org/10.1016/j.jeurceramsoc.2016.01.002">doi:10.1016/j.jeurceramsoc.2016.01.002</a></li> <li>M. Paggi, P. Wriggers (2016) Node-to-segment and node-to-surface interface finite elements for fracture mechanics, Computer Methods in Applied Mechanics and Engineering, 300:540-560, <a href="http://dx.doi.org/10.1016/j.cma.2015.11.023">doi:10.1016/j.cma.2015.11.023</a></li> <li>C. Borri, M. Paggi, J. Reinoso, F.M. Borodich (2016) Adhesive behaviour of bonded paper layers: mechanical testing and statistical modelling, Proceedings of the Institution of Mechanical Engineering, Part C: Journal of Mechanical Engineering Science, 230:1440-1448 <a href="http://dx.doi.org/10.1177/0954406215612502">doi:10.1177/0954406215612502</a></li> <li>B. Javvaji, P.R. Budarapu, V.K. Sutrakar, D. Roy Mahapatra, M. Paggi, G. Zi, T. Rabczuk (2016) Mechanical properties of Graphene: molecular dynamics simulations correlated to continuum based scaling laws, Computational Materials Science, 125:319-327 <a href="http://dx.doi.org/10.1016/j.commatsci.2016.08.016">doi:10.1016/j.commatsci.2016.08.016</a></li> <li>I. Berardone, J. Hensen, V. Steckenreiter, S. Kajari-Schröder, M. Paggi (2016) Simulation of spalling with a non-planar bi-layered interface due to the reuse of the substrate, Energy Procedia, 92C:764-772 <a href="http://dx.doi.org/10.1016/j.egypro.2016.07.058">doi:10.1016/j.egypro.2016.07.058</a></li> <li>P.R. Budarapu, B. Javvaji, V.K. Sutrakar, D. Roy Mahapatra, M. Paggi, G. Zi, T. Rabczuk (2016) Lattice orientation and crack size effect on the mechanical properties of Graphene, International Journal of Fracture, in press <a href="http://dx.doi.org/10.1007/s10704-016-0115-9">doi:10.1007/s10704-016-0115-9</a></li> <li>J. Reinoso, M. Paggi, R. Rolfes (2016) A computational framework for the interplay between delamination and wrinkling in functionally graded thermal barrier coatings, Computational Materials Science, 116:82-95 <a href="http://dx.doi.org/10.1016/j.commatsci.2015.08.031">doi:10.1016/j.commatsci.2015.08.031</a></li> <li>R. Jones, F. Chen, S. Pitt, M. Paggi, A. Carpinteri (2016) From NASGRO to fractals: Representing crack growth in metals, International Journal of Fatigue, 82:540-549 <a href="http://dx.doi.org/10.1016/j.ijfatigue.2015.09.009">doi:10.1016/j.ijfatigue.2015.09.009</a></li> <li>M. Paggi, Q.-C. He (2015) Evolution of the free volume between rough surfaces in contact, Wear, 336:86-95 <a href="http://dx.doi.org/10.1016/j.wear.2015.04.021">doi:10.1016/j.wear.2015.04.021</a></li> <li>I. Berardone, S. Kajari-Schröder, R. Niepelt, J. Hensen, V. Steckenreiter, M. Paggi (2015) Numerical modelling and validation of thermally-induced spalling, Energy Procedia, 77:855-862 <a href="http://dx.doi.org/10.1016/j.egypro.2015.07.121">doi:10.1016/j.egypro.2015.07.121</a></li> <li>M. Paggi, J. Reinoso (2015) An anisotropic large displacement cohesive zone model for fibrillar or crazing interfaces, International Journal of Solids and Structures, 69-70:106-120 <a href="http://dx.doi.org/10.1016/j.ijsolstr.2015.04.042">doi:10.1016/j.ijsolstr.2015.04.042</a></li> <li>I.G. García, M. Paggi, V. Mantič (2014) Fiber-size effects on the onset of fiber–matrix debonding under transverse tension: A comparison between cohesive zone and finite fracture mechanics models, Engineering Fracture Mechanics, 115:96-110 <a href="http://dx.doi.org/10.1016/j.engfracmech.2013.10.014">doi:10.1016/j.engfracmech.2013.10.014</a></li> <li>M. Paggi, R. Pohrt, V.L. Popov (2014) Partial-slip frictional response of rough surfaces, Scientific Reports, 4, 5178 <a href="http://dx.doi.org/10.1038/srep05178">doi:10.1038/srep05178</a></li> <li>J. Reinoso, M. Paggi (2014) A consistent interface element formulation for geometrical and material nonlinearities, Computational Mechanics, 54:1569-1581 <a href="http://dx.doi.org/10.1007/s00466-014-1077-2">doi:10.1007/s00466-014-1077-2</a></li> <li>M. Paggi, O. Plekhov (2014) On the dependency of the parameters of fatigue crack growth from the fractal dimension of rough crack profiles, Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, 228:2059-2067 <a href="http://dx.doi.org/10.1177/0954406213515643">doi:10.1177/0954406213515643</a></li> </ul> --> </p>

Pages: 1 2 3 4 5 6 7 8 9 10