CINXE.COM
Search results for: computation time
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: computation time</title> <meta name="description" content="Search results for: computation time"> <meta name="keywords" content="computation time"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="computation time" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="computation time"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18473</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: computation time</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18473</span> A Time-Reducible Approach to Compute Determinant |I-X|</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xingbo">Wang Xingbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computation of determinant in the form |I-<em>X</em>| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-<em>X</em>|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix <em>X</em>. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=determinant" title=" determinant"> determinant</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalue" title=" eigenvalue"> eigenvalue</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20complexity" title=" time complexity"> time complexity</a> </p> <a href="https://publications.waset.org/abstracts/47622/a-time-reducible-approach-to-compute-determinant-i-x" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18472</span> Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adarsh%20Shroff">Adarsh Shroff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=map%20reduce" title=" map reduce"> map reduce</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20processing" title=" incremental processing"> incremental processing</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20computation" title=" iterative computation"> iterative computation</a> </p> <a href="https://publications.waset.org/abstracts/46413/indexing-and-incremental-approach-using-map-reduce-bipartite-graph-mrbg-for-mining-evolving-big-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18471</span> An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Wang">Y. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is <em>O</em>(<em>CN</em><sub>max</sub><em>n</em><sup>2</sup>) where <em>C</em> is the iterations, <em>N</em><sub>max</sub> is the maximum number of frequency quadrilaterals containing each edge and <em>n</em> is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5<em>n</em> edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20quadrilateral" title="frequency quadrilateral">frequency quadrilateral</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20algorithm" title=" iterative algorithm"> iterative algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20graph" title=" sparse graph"> sparse graph</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a> </p> <a href="https://publications.waset.org/abstracts/82737/an-improved-method-to-compute-sparse-graphs-for-traveling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18470</span> Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Segui">Marine Segui</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruxandra%20Mihaela%20Botez"> Ruxandra Mihaela Botez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=coefficient" title=" coefficient"> coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=cruise" title=" cruise"> cruise</a>, <a href="https://publications.waset.org/abstracts/search?q=improving" title=" improving"> improving</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal" title=" longitudinal"> longitudinal</a>, <a href="https://publications.waset.org/abstracts/search?q=openVSP" title=" openVSP"> openVSP</a>, <a href="https://publications.waset.org/abstracts/search?q=solver" title=" solver"> solver</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/85268/aerodynamic-coefficients-prediction-from-minimum-computation-combinations-using-openvsp-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18469</span> Parallel Evaluation of Sommerfeld Integrals for Multilayer Dyadic Green's Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Kan">Duygu Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Cayoren"> Mehmet Cayoren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sommerfeld-integrals (SIs) are commonly encountered in electromagnetics problems involving analysis of antennas and scatterers embedded in planar multilayered media. Generally speaking, the analytical solution of SIs is unavailable, and it is well known that numerical evaluation of SIs is very time consuming and computationally expensive due to the highly oscillating and slowly decaying nature of the integrands. Therefore, fast computation of SIs has a paramount importance. In this paper, a parallel code has been developed to speed up the computation of SI in the framework of calculation of dyadic Green’s function in multilayered media. OpenMP shared memory approach is used to parallelize the SI algorithm and resulted in significant time savings. Moreover accelerating the computation of dyadic Green’s function is discussed based on the parallel SI algorithm developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sommerfeld-integrals" title="Sommerfeld-integrals">Sommerfeld-integrals</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20dyadic%20Green%E2%80%99s%20function" title=" multilayer dyadic Green’s function"> multilayer dyadic Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenMP" title=" OpenMP"> OpenMP</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20memory%20parallel%20programming" title=" shared memory parallel programming"> shared memory parallel programming</a> </p> <a href="https://publications.waset.org/abstracts/73819/parallel-evaluation-of-sommerfeld-integrals-for-multilayer-dyadic-greens-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18468</span> GPU Based Real-Time Floating Object Detection System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Yang">Jie Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian-Min%20Meng"> Jian-Min Meng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A GPU-based floating object detection scheme is presented in this paper which is designed for floating mine detection tasks. This system uses contrast and motion information to eliminate as many false positives as possible while avoiding false negatives. The GPU computation platform is deployed to allow detecting objects in real-time. From the experimental results, it is shown that with certain configuration, the GPU-based scheme can speed up the computation up to one thousand times compared to the CPU-based scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title="object detection">object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU" title=" GPU"> GPU</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20estimation" title=" motion estimation"> motion estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20processing" title=" parallel processing"> parallel processing</a> </p> <a href="https://publications.waset.org/abstracts/54425/gpu-based-real-time-floating-object-detection-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18467</span> Verifiable Secure Computation of Large Scale Two-Point Boundary Value Problems Using Certificate Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogita%20M.%20Ahire">Yogita M. Ahire</a>, <a href="https://publications.waset.org/abstracts/search?q=Nedal%20M.%20Mohammed"> Nedal M. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Hamoud"> Ahmed A. Hamoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scientific computation outsourcing is gaining popularity because it allows customers with limited computing resources and storage devices to outsource complex computation workloads to more powerful service providers. However, it raises some security and privacy concerns and challenges, such as customer input and output privacy, as well as cloud cheating behaviors. This study was motivated by these concerns and focused on privacy-preserving Two-Point Boundary Value Problems (BVP) as a common and realistic instance for verifiable safe multiparty computing. We'll look at the safe and verifiable schema with correctness guarantees by utilizing standard multiparty approaches to compute the result of a computation and then solely using verifiable ways to check that the result was right. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=verifiable%20computing" title="verifiable computing">verifiable computing</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20and%20privacy%20BVP" title=" secure and privacy BVP"> secure and privacy BVP</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20computation%20outsourcing" title=" secure computation outsourcing"> secure computation outsourcing</a> </p> <a href="https://publications.waset.org/abstracts/151558/verifiable-secure-computation-of-large-scale-two-point-boundary-value-problems-using-certificate-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18466</span> A Unique Multi-Class Support Vector Machine Algorithm Using MapReduce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditi%20Viswanathan">Aditi Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shree%20Ranjani"> Shree Ranjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruna%20Govada"> Aruna Govada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With data sizes constantly expanding, and with classical machine learning algorithms that analyze such data requiring larger and larger amounts of computation time and storage space, the need to distribute computation and memory requirements among several computers has become apparent. Although substantial work has been done in developing distributed binary SVM algorithms and multi-class SVM algorithms individually, the field of multi-class distributed SVMs remains largely unexplored. This research seeks to develop an algorithm that implements the Support Vector Machine over a multi-class data set and is efficient in a distributed environment. For this, we recursively choose the best binary split of a set of classes using a greedy technique. Much like the divide and conquer approach. Our algorithm has shown better computation time during the testing phase than the traditional sequential SVM methods (One vs. One, One vs. Rest) and out-performs them as the size of the data set grows. This approach also classifies the data with higher accuracy than the traditional multi-class algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20algorithm" title="distributed algorithm">distributed algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=MapReduce" title=" MapReduce"> MapReduce</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-class" title=" multi-class"> multi-class</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/17433/a-unique-multi-class-support-vector-machine-algorithm-using-mapreduce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18465</span> Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhang">Jing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Nikovski"> Daniel Nikovski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pan%20matrix%20profile" title="pan matrix profile">pan matrix profile</a>, <a href="https://publications.waset.org/abstracts/search?q=unnormalized%20euclidean%20distance" title=" unnormalized euclidean distance"> unnormalized euclidean distance</a>, <a href="https://publications.waset.org/abstracts/search?q=double-ended%20queue" title=" double-ended queue"> double-ended queue</a>, <a href="https://publications.waset.org/abstracts/search?q=discord%20discovery" title=" discord discovery"> discord discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a> </p> <a href="https://publications.waset.org/abstracts/144363/algorithms-for-fast-computation-of-pan-matrix-profiles-of-time-series-under-unnormalized-euclidean-distances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18464</span> A Parallel Computation Based on GPU Programming for a 3D Compressible Fluid Flow Simulation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sugeng%20Rianto">Sugeng Rianto</a>, <a href="https://publications.waset.org/abstracts/search?q=P.W.%20Arinto%20Yudi"> P.W. Arinto Yudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soemarno%20%20Muhammad%20Nurhuda"> Soemarno Muhammad Nurhuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computation of a 3D compressible fluid flow for virtual environment with haptic interaction can be a non-trivial issue. This is especially how to reach good performances and balancing between visualization, tactile feedback interaction, and computations. In this paper, we describe our approach of computation methods based on parallel programming on a GPU. The 3D fluid flow solvers have been developed for smoke dispersion simulation by using combinations of the cubic interpolated propagation (CIP) based fluid flow solvers and the advantages of the parallelism and programmability of the GPU. The fluid flow solver is generated in the GPU-CPU message passing scheme to get rapid development of haptic feedback modes for fluid dynamic data. A rapid solution in fluid flow solvers is developed by applying cubic interpolated propagation (CIP) fluid flow solvers. From this scheme, multiphase fluid flow equations can be solved simultaneously. To get more acceleration in the computation, the Navier-Stoke Equations (NSEs) is packed into channels of texel, where computation models are performed on pixels that can be considered to be a grid of cells. Therefore, despite of the complexity of the obstacle geometry, processing on multiple vertices and pixels can be done simultaneously in parallel. The data are also shared in global memory for CPU to control the haptic in providing kinaesthetic interaction and felling. The results show that GPU based parallel computation approaches provide effective simulation of compressible fluid flow model for real-time interaction in 3D computer graphic for PC platform. This report has shown the feasibility of a new approach of solving the compressible fluid flow equations on the GPU. The experimental tests proved that the compressible fluid flowing on various obstacles with haptic interactions on the few model obstacles can be effectively and efficiently simulated on the reasonable frame rate with a realistic visualization. These results confirm that good performances and balancing between visualization, tactile feedback interaction, and computations can be applied successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CIP" title="CIP">CIP</a>, <a href="https://publications.waset.org/abstracts/search?q=compressible%20fluid" title=" compressible fluid"> compressible fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU%20programming" title=" GPU programming"> GPU programming</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computation" title=" parallel computation"> parallel computation</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20visualisation" title=" real-time visualisation"> real-time visualisation</a> </p> <a href="https://publications.waset.org/abstracts/3308/a-parallel-computation-based-on-gpu-programming-for-a-3d-compressible-fluid-flow-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18463</span> Dissociation of CDS from CVA Valuation Under Notation Changes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Henry">R. Henry</a>, <a href="https://publications.waset.org/abstracts/search?q=J-B.%20Paulin"> J-B. Paulin</a>, <a href="https://publications.waset.org/abstracts/search?q=St.%20Fauchille"> St. Fauchille</a>, <a href="https://publications.waset.org/abstracts/search?q=Ph.%20Delord"> Ph. Delord</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Benkirane"> K. Benkirane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Brunel"> A. Brunel </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the CVA computation of interest rate swap is presented based on its rating. Rating and probability default given by Moody’s Investors Service are used to calculate our CVA for a specific swap with different maturities. With this computation, the influence of rating variation can be shown on CVA. The application is made to the analysis of Greek CDS variation during the period of Greek crisis between 2008 and 2011. The main point is the determination of correlation between the fluctuation of Greek CDS cumulative value and the variation of swap CVA due to change of rating <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CDS" title="CDS">CDS</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a>, <a href="https://publications.waset.org/abstracts/search?q=CVA" title=" CVA"> CVA</a>, <a href="https://publications.waset.org/abstracts/search?q=Greek%20crisis" title=" Greek crisis"> Greek crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=interest%20rate%20swap" title=" interest rate swap"> interest rate swap</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity" title=" maturity"> maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=rating" title=" rating"> rating</a>, <a href="https://publications.waset.org/abstracts/search?q=swap" title=" swap"> swap</a> </p> <a href="https://publications.waset.org/abstracts/16483/dissociation-of-cds-from-cva-valuation-under-notation-changes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18462</span> Aperiodic and Asymmetric Fibonacci Quasicrystals: Next Big Future in Quantum Computation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatindranath%20Gain">Jatindranath Gain</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhumita%20DasSarkar"> Madhumita DasSarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudakshina%20Kundu"> Sudakshina Kundu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum information is stored in states with multiple quasiparticles, which have a topological degeneracy. Topological quantum computation is concerned with two-dimensional many body systems that support excitations. Anyons are elementary building block of quantum computations. When anyons tunneling in a double-layer system can transition to an exotic non-Abelian state and produce Fibonacci anyons, which are powerful enough for universal topological quantum computation (TQC).Here the exotic behavior of Fibonacci Superlattice is studied by using analytical transfer matrix methods and hence Fibonacci anyons. This Fibonacci anyons can build a quantum computer which is very emerging and exciting field today’s in Nanophotonics and quantum computation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quasicrystals" title=" quasicrystals"> quasicrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiple%20Quantum%20wells%20%28MQWs%29" title=" Multiple Quantum wells (MQWs)"> Multiple Quantum wells (MQWs)</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20matrix%20method" title=" transfer matrix method"> transfer matrix method</a>, <a href="https://publications.waset.org/abstracts/search?q=fibonacci%20anyons" title=" fibonacci anyons"> fibonacci anyons</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20hall%20effect" title=" quantum hall effect"> quantum hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nanophotonics" title=" nanophotonics"> nanophotonics</a> </p> <a href="https://publications.waset.org/abstracts/41369/aperiodic-and-asymmetric-fibonacci-quasicrystals-next-big-future-in-quantum-computation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18461</span> Symbolic Computation and Abundant Travelling Wave Solutions to Modified Burgers' Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Younis">Muhammad Younis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the novel (G′/G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the modified Burgers’ equation with the aid of computation. The method is reliable and useful, which gives more general exact travelling wave solutions than the existing methods. These obtained solutions are in the form of hyperbolic, trigonometric and rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Some of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traveling%20wave%20solutions" title="traveling wave solutions">traveling wave solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=NLPDE" title=" NLPDE"> NLPDE</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a>, <a href="https://publications.waset.org/abstracts/search?q=integrability" title=" integrability"> integrability</a> </p> <a href="https://publications.waset.org/abstracts/48762/symbolic-computation-and-abundant-travelling-wave-solutions-to-modified-burgers-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18460</span> Scheduling Algorithm Based on Load-Aware Queue Partitioning in Heterogeneous Multi-Core Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Kai">Hong Kai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhong%20Jun%20Jie"> Zhong Jun Jie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Lin%20Qi"> Chen Lin Qi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Chen%20Guang"> Wang Chen Guang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are inefficient global scheduling parallelism and local scheduling parallelism prone to processor starvation in current scheduling algorithms. Regarding this issue, this paper proposed a load-aware queue partitioning scheduling strategy by first allocating the queues according to the number of processor cores, calculating the load factor to specify the load queue capacity, and it assigned the awaiting nodes to the appropriate perceptual queues through the precursor nodes and the communication computation overhead. At the same time, real-time computation of the load factor could effectively prevent the processor from being starved for a long time. Experimental comparison with two classical algorithms shows that there is a certain improvement in both performance metrics of scheduling length and task speedup ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load-aware" title="load-aware">load-aware</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20algorithm" title=" scheduling algorithm"> scheduling algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptual%20queue" title=" perceptual queue"> perceptual queue</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20multi-core" title=" heterogeneous multi-core"> heterogeneous multi-core</a> </p> <a href="https://publications.waset.org/abstracts/162110/scheduling-algorithm-based-on-load-aware-queue-partitioning-in-heterogeneous-multi-core-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18459</span> Symbolic Computation on Variable-Coefficient Non-Linear Dispersive Wave Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edris%20Rawashdeh">Edris Rawashdeh</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Abu-Falahah"> I. Abu-Falahah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Jaradat"> H. M. Jaradat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The variable-coefficient non-linear dispersive wave equation is investigated with the aid of symbolic computation. By virtue of a newly developed simplified bilinear method, multi-soliton solutions for such an equation have been derived. Effects of the inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, on the soliton behavior are discussed with the aid of the characteristic curve method and graphical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersive%20wave%20equations" title="dispersive wave equations">dispersive wave equations</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20soliton%20solution" title=" multiple soliton solution"> multiple soliton solution</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirota%20Bilinear%20Method" title=" Hirota Bilinear Method"> Hirota Bilinear Method</a>, <a href="https://publications.waset.org/abstracts/search?q=symbolic%20computation" title=" symbolic computation"> symbolic computation</a> </p> <a href="https://publications.waset.org/abstracts/18831/symbolic-computation-on-variable-coefficient-non-linear-dispersive-wave-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18458</span> Core Number Optimization Based Scheduler to Order/Mapp Simulink Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Rebaya">Asma Rebaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Imen%20Amari"> Imen Amari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaouther%20Gasmi"> Kaouther Gasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salem%20Hasnaoui"> Salem Hasnaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over these last years, the number of cores witnessed a spectacular increase in digital signal and general use processors. Concurrently, significant researches are done to get benefit from the high degree of parallelism. Indeed, these researches are focused to provide an efficient scheduling from hardware/software systems to multicores architecture. The scheduling process consists on statically choose one core to execute one task and to specify an execution order for the application tasks. In this paper, we describe an efficient scheduler that calculates the optimal number of cores required to schedule an application, gives a heuristic scheduling solution and evaluates its cost. Our proposal results are evaluated and compared with Preesm scheduler results and we prove that ours allows better scheduling in terms of latency, computation time and number of cores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computation%20time" title="computation time">computation time</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%2Fsoftware%20system" title=" hardware/software system"> hardware/software system</a>, <a href="https://publications.waset.org/abstracts/search?q=latency" title=" latency"> latency</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-cores%20platform" title=" multi-cores platform"> multi-cores platform</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a> </p> <a href="https://publications.waset.org/abstracts/67853/core-number-optimization-based-scheduler-to-ordermapp-simulink-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18457</span> Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trung%20Hieu%20Tran">Trung Hieu Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesse%20O%27Hanley"> Jesse O'Hanley</a>, <a href="https://publications.waset.org/abstracts/search?q=Russell%20Fowler"> Russell Fowler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title="electric vehicle">electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20charging%20station" title=" wireless charging station"> wireless charging station</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20programming" title=" mathematical programming"> mathematical programming</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-heuristic%20algorithm" title=" meta-heuristic algorithm"> meta-heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a> </p> <a href="https://publications.waset.org/abstracts/159397/model-and-algorithm-for-dynamic-wireless-electric-vehicle-charging-network-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18456</span> Graphic Procession Unit-Based Parallel Processing for Inverse Computation of Full-Field Material Properties Based on Quantitative Laser Ultrasound Visualization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng-Po%20Tseng">Sheng-Po Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Hua%20Yang"> Che-Hua Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivation and Objective: Ultrasonic guided waves become an important tool for nondestructive evaluation of structures and components. Guided waves are used for the purpose of identifying defects or evaluating material properties in a nondestructive way. While guided waves are applied for evaluating material properties, instead of knowing the properties directly, preliminary signals such as time domain signals or frequency domain spectra are first revealed. With the measured ultrasound data, inversion calculation can be further employed to obtain the desired mechanical properties. Methods: This research is development of high speed inversion calculation technique for obtaining full-field mechanical properties from the quantitative laser ultrasound visualization system (QLUVS). The quantitative laser ultrasound visualization system (QLUVS) employs a mirror-controlled scanning pulsed laser to generate guided acoustic waves traveling in a two-dimensional target. Guided waves are detected with a piezoelectric transducer located at a fixed location. With a gyro-scanning of the generation source, the QLUVS has the advantage of fast, full-field, and quantitative inspection. Results and Discussions: This research introduces two important tools to improve the computation efficiency. Firstly, graphic procession unit (GPU) with large amount of cores are introduced. Furthermore, combining the CPU and GPU cores, parallel procession scheme is developed for the inversion of full-field mechanical properties based on the QLUVS data. The newly developed inversion scheme is applied to investigate the computation efficiency for single-layered and double-layered plate-like samples. The computation efficiency is shown to be 80 times faster than unparalleled computation scheme. Conclusions: This research demonstrates a high-speed inversion technique for the characterization of full-field material properties based on quantitative laser ultrasound visualization system. Significant computation efficiency is shown, however not reaching the limit yet. Further improvement can be reached by improving the parallel computation. Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results. The developed high speed computation scheme is ready for applications where full-field mechanical properties are needed in a nondestructive and nearly real-time way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=guided%20waves" title="guided waves">guided waves</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characterization" title=" material characterization"> material characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20evaluation" title=" nondestructive evaluation"> nondestructive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20processing" title=" parallel processing"> parallel processing</a> </p> <a href="https://publications.waset.org/abstracts/92173/graphic-procession-unit-based-parallel-processing-for-inverse-computation-of-full-field-material-properties-based-on-quantitative-laser-ultrasound-visualization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18455</span> A Fast Calculation Approach for Position Identification in a Distance Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawei%20Cai">Dawei Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuya%20Tokuda"> Yuya Tokuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20localization" title="indoor localization">indoor localization</a>, <a href="https://publications.waset.org/abstracts/search?q=location%20based%20service" title=" location based service"> location based service</a>, <a href="https://publications.waset.org/abstracts/search?q=triangulation" title=" triangulation"> triangulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20calculation" title=" fast calculation"> fast calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20device" title=" mobile device"> mobile device</a> </p> <a href="https://publications.waset.org/abstracts/86046/a-fast-calculation-approach-for-position-identification-in-a-distance-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18454</span> Exploring the Intersection of Categorification and Computation in Algebraic Combinatorial Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gebreegziabher%20Hailu%20Gebrecherkos">Gebreegziabher Hailu Gebrecherkos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the intersection of categorification and computation within algebraic combinatorial structures, aiming to deepen the understanding of how categorical frameworks can enhance computational methods. We investigate the role of higher-dimensional categories in organizing and analyzing combinatorial data, revealing how these structures can lead to new computational techniques for solving complex problems in algebraic combinatory. By examining examples such as species, posets, and operads, we illustrate the transformative potential of categorification in generating new algorithms and optimizing existing ones. Our findings suggest that integrating categorical insights with computational approaches not only enriches the theoretical landscape but also provides practical tools for tackling intricate combinatorial challenges, ultimately paving the way for future research in both fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=categorification" title="categorification">categorification</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a>, <a href="https://publications.waset.org/abstracts/search?q=algebraic%20structures" title=" algebraic structures"> algebraic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorics" title=" combinatorics"> combinatorics</a> </p> <a href="https://publications.waset.org/abstracts/192299/exploring-the-intersection-of-categorification-and-computation-in-algebraic-combinatorial-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18453</span> Heuristic Algorithms for Time Based Weapon-Target Assignment Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Seop%20Uhm">Hyun Seop Uhm</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Ho%20Choi"> Yong Ho Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Eun%20Kim"> Ji Eun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Hoon%20Lee"> Young Hoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weapon-target assignment (WTA) is a problem that assigns available launchers to appropriate targets in order to defend assets. Various algorithms for WTA have been developed over past years for both in the static and dynamic environment (denoted by SWTA and DWTA respectively). Due to the problem requirement to be solved in a relevant computational time, WTA has suffered from the solution efficiency. As a result, SWTA and DWTA problems have been solved in the limited situation of the battlefield. In this paper, the general situation under continuous time is considered by Time based Weapon Target Assignment (TWTA) problem. TWTA are studied using the mixed integer programming model, and three heuristic algorithms; decomposed opt-opt, decomposed opt-greedy, and greedy algorithms are suggested. Although the TWTA optimization model works inefficiently when it is characterized by a large size, the decomposed opt-opt algorithm based on the linearization and decomposition method extracted efficient solutions in a reasonable computation time. Because the computation time of the scheduling part is too long to solve by the optimization model, several algorithms based on greedy is proposed. The models show lower performance value than that of the decomposed opt-opt algorithm, but very short time is needed to compute. Hence, this paper proposes an improved method by applying decomposition to TWTA, and more practical and effectual methods can be developed for using TWTA on the battlefield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20and%20missile%20defense" title="air and missile defense">air and missile defense</a>, <a href="https://publications.waset.org/abstracts/search?q=weapon%20target%20assignment" title=" weapon target assignment"> weapon target assignment</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20programming" title=" mixed integer programming"> mixed integer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=piecewise%20linearization" title=" piecewise linearization"> piecewise linearization</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition%20algorithm" title=" decomposition algorithm"> decomposition algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=military%20operations%20research" title=" military operations research"> military operations research</a> </p> <a href="https://publications.waset.org/abstracts/51706/heuristic-algorithms-for-time-based-weapon-target-assignment-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18452</span> Parallel Computation of the Covariance-Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claude%20Tadonki">Claude Tadonki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We address the issues related to the computation of the covariance matrix. This matrix is likely to be ill conditioned following its canonical expression, thus consequently raises serious numerical issues. The underlying linear system, which therefore should be solved by means of iterative approaches, becomes computationally challenging. A huge number of iterations is expected in order to reach an acceptable level of convergence, necessary to meet the required accuracy of the computation. In addition, this linear system needs to be solved at each iteration following the general form of the covariance matrix. Putting all together, its comes that we need to compute as fast as possible the associated matrix-vector product. This is our purpose in the work, where we consider and discuss skillful formulations of the problem, then propose a parallel implementation of the matrix-vector product involved. Numerical and performance oriented discussions are provided based on experimental evaluations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covariance-matrix" title="covariance-matrix">covariance-matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=multicore" title=" multicore"> multicore</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20computing" title=" numerical computing"> numerical computing</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a> </p> <a href="https://publications.waset.org/abstracts/59579/parallel-computation-of-the-covariance-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18451</span> Real-Time Fitness Monitoring with MediaPipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prayaga">Chandra Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakshmi%20Prayaga"> Lakshmi Prayaga</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Wade"> Aaron Wade</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyle%20Rank"> Kyle Rank</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Shankar%20Mallu"> Gopi Shankar Mallu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Satya"> Sri Satya</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsha%20Pola"> Harsha Pola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today's tech-driven world, where connectivity shapes our daily lives, maintaining physical and emotional health is crucial. Athletic trainers play a vital role in optimizing athletes' performance and preventing injuries. However, a shortage of trainers impacts the quality of care. This study introduces a vision-based exercise monitoring system leveraging Google's MediaPipe library for precise tracking of bicep curl exercises and simultaneous posture monitoring. We propose a three-stage methodology: landmark detection, side detection, and angle computation. Our system calculates angles at the elbow, wrist, neck, and torso to assess exercise form. Experimental results demonstrate the system's effectiveness in distinguishing between good and partial repetitions and evaluating body posture during exercises, providing real-time feedback for precise fitness monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20health" title="physical health">physical health</a>, <a href="https://publications.waset.org/abstracts/search?q=athletic%20trainers" title=" athletic trainers"> athletic trainers</a>, <a href="https://publications.waset.org/abstracts/search?q=fitness%20monitoring" title=" fitness monitoring"> fitness monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20driven%20solutions" title=" technology driven solutions"> technology driven solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Google%E2%80%99s%20MediaPipe" title=" Google’s MediaPipe"> Google’s MediaPipe</a>, <a href="https://publications.waset.org/abstracts/search?q=landmark%20detection" title=" landmark detection"> landmark detection</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20computation" title=" angle computation"> angle computation</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20feedback" title=" real-time feedback"> real-time feedback</a> </p> <a href="https://publications.waset.org/abstracts/183020/real-time-fitness-monitoring-with-mediapipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18450</span> The Intersection/Union Region Computation for Drosophila Brain Images Using Encoding Schemes Based on Multi-Core CPUs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Yang%20Guo">Ming-Yang Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Xian%20Wu"> Cheng-Xian Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Xiang%20Chen"> Wei-Xiang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Yuan%20Lin"> Chun-Yuan Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-Jen%20Lin"> Yen-Jen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann-Shyn%20Chiang"> Ann-Shyn Chiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With more and more Drosophila Driver and Neuron images, it is an important work to find the similarity relationships among them as the functional inference. There is a general problem that how to find a Drosophila Driver image, which can cover a set of Drosophila Driver/Neuron images. In order to solve this problem, the intersection/union region for a set of images should be computed at first, then a comparison work is used to calculate the similarities between the region and other images. In this paper, three encoding schemes, namely Integer, Boolean, Decimal, are proposed to encode each image as a one-dimensional structure. Then, the intersection/union region from these images can be computed by using the compare operations, Boolean operators and lookup table method. Finally, the comparison work is done as the union region computation, and the similarity score can be calculated by the definition of Tanimoto coefficient. The above methods for the region computation are also implemented in the multi-core CPUs environment with the OpenMP. From the experimental results, in the encoding phase, the performance by the Boolean scheme is the best than that by others; in the region computation phase, the performance by Decimal is the best when the number of images is large. The speedup ratio can achieve 12 based on 16 CPUs. This work was supported by the Ministry of Science and Technology under the grant MOST 106-2221-E-182-070. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20driver%20image" title="Drosophila driver image">Drosophila driver image</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20neuron%20images" title=" Drosophila neuron images"> Drosophila neuron images</a>, <a href="https://publications.waset.org/abstracts/search?q=intersection%2Funion%20computation" title=" intersection/union computation"> intersection/union computation</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20processing" title=" parallel processing"> parallel processing</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenMP" title=" OpenMP"> OpenMP</a> </p> <a href="https://publications.waset.org/abstracts/89335/the-intersectionunion-region-computation-for-drosophila-brain-images-using-encoding-schemes-based-on-multi-core-cpus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18449</span> Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Kumar%20Singh">Vishal Kumar Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioprocess%20development" title="bioprocess development">bioprocess development</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20up" title=" scale up"> scale up</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20down" title=" scale down"> scale down</a>, <a href="https://publications.waset.org/abstracts/search?q=computation%20fluid%20dynamics" title=" computation fluid dynamics"> computation fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective" title=" multi-objective"> multi-objective</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys%20CFX" title=" Ansys CFX"> Ansys CFX</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a> </p> <a href="https://publications.waset.org/abstracts/145374/towards-computational-fluid-dynamics-based-methodology-to-accelerate-bioprocess-scale-up-and-scale-down" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18448</span> Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziying%20Wu">Ziying Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Danfeng%20Yan"> Danfeng Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-access%20edge%20computing" title="multi-access edge computing">multi-access edge computing</a>, <a href="https://publications.waset.org/abstracts/search?q=computation%20offloading" title=" computation offloading"> computation offloading</a>, <a href="https://publications.waset.org/abstracts/search?q=5th%20generation" title=" 5th generation"> 5th generation</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle-aware" title=" vehicle-aware"> vehicle-aware</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title=" deep reinforcement learning"> deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20q-network" title=" deep q-network"> deep q-network</a> </p> <a href="https://publications.waset.org/abstracts/131562/deep-reinforcement-learning-based-computation-offloading-for-5g-vehicle-aware-multi-access-edge-computing-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18447</span> An Efficient Book Keeping Strategy for the Formation of the Design Matrix in Geodetic Network Adjustment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20G.%20Omogunloye">O. G. Omogunloye</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20B.%20Olaleye"> J. B. Olaleye</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Abiodun"> O. E. Abiodun</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Odumosu"> J. O. Odumosu</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20G.%20Ajayi"> O. G. Ajayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The focus of the study is to proffer easy formulation and computation of least square observation equation’s design matrix by using an efficient book keeping strategy. Usually, for a large network of many triangles and stations, a rigorous task is involved in the computation and placement of the values of the differentials of each observation with respect to its station coordinates (latitude and longitude), in their respective rows and columns. The efficient book keeping strategy seeks to eliminate or reduce this rigorous task involved, especially in large network, by simple skillful arrangement and development of a short program written in the Matlab environment, the formulation and computation of least square observation equation’s design matrix can be easily achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=differential" title=" differential"> differential</a>, <a href="https://publications.waset.org/abstracts/search?q=geodetic" title=" geodetic"> geodetic</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix" title=" matrix"> matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=station" title=" station"> station</a> </p> <a href="https://publications.waset.org/abstracts/71597/an-efficient-book-keeping-strategy-for-the-formation-of-the-design-matrix-in-geodetic-network-adjustment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18446</span> Motion Estimator Architecture with Optimized Number of Processing Elements for High Efficiency Video Coding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seongsoo%20Lee">Seongsoo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motion estimation occupies the heaviest computation in HEVC (high efficiency video coding). Many fast algorithms such as TZS (test zone search) have been proposed to reduce the computation. Still the huge computation of the motion estimation is a critical issue in the implementation of HEVC video codec. In this paper, motion estimator architecture with optimized number of PEs (processing element) is presented by exploiting early termination. It also reduces hardware size by exploiting parallel processing. The presented motion estimator architecture has 8 PEs, and it can efficiently perform TZS with very high utilization of PEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20estimation" title="motion estimation">motion estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20zone%20search" title=" test zone search"> test zone search</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency%20video%20coding" title=" high efficiency video coding"> high efficiency video coding</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20element" title=" processing element"> processing element</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/70881/motion-estimator-architecture-with-optimized-number-of-processing-elements-for-high-efficiency-video-coding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18445</span> Cognitive Science Based Scheduling in Grid Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20D.%20Iswarya">N. D. Iswarya</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Maluk%20Mohamed"> M. A. Maluk Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Vijaya"> N. Vijaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20grid" title="data grid">data grid</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20workflow%20scheduling" title=" grid workflow scheduling"> grid workflow scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20artificial%20intelligence" title=" cognitive artificial intelligence"> cognitive artificial intelligence</a> </p> <a href="https://publications.waset.org/abstracts/10177/cognitive-science-based-scheduling-in-grid-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18444</span> Exploiting Non-Uniform Utility of Computing: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnab%20Sarkar">Arnab Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Huang"> Michael Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuang%20Ren"> Chuang Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Li"> Jun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing importance of computing in modern society has brought substantial growth in the demand for more computational power. In some problem domains such as scientific simulations, available computational power still sets a limit on what can be practically explored in computation. For many types of code, there is non-uniformity in the utility of computation. That is not every piece of computation contributes equally to the quality of the result. If this non-uniformity is understood well and exploited effectively, we can much more effectively utilize available computing power. In this paper, we discuss a case study of exploring such non-uniformity in a particle-in-cell simulation platform. We find both the existence of significant non-uniformity and that it is generally straightforward to exploit it. We show the potential of order-of-magnitude effective performance gain while keeping the comparable quality of output. We also discuss some challenges in both the practical application of the idea and evaluation of its impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20computing" title="approximate computing">approximate computing</a>, <a href="https://publications.waset.org/abstracts/search?q=landau%20damping" title=" landau damping"> landau damping</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20uniform%20utility%20computing" title=" non uniform utility computing"> non uniform utility computing</a>, <a href="https://publications.waset.org/abstracts/search?q=particle-in-cell" title=" particle-in-cell"> particle-in-cell</a> </p> <a href="https://publications.waset.org/abstracts/86032/exploiting-non-uniform-utility-of-computing-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=615">615</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=616">616</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=computation%20time&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>