CINXE.COM
Search results for: fetal development
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fetal development</title> <meta name="description" content="Search results for: fetal development"> <meta name="keywords" content="fetal development"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fetal development" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fetal development"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16328</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fetal development</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16328</span> Evaluation of Fetal brain using Magnetic Resonance Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Farajzadeh%20Ajirlou">Mahdi Farajzadeh Ajirlou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ordinary fetal brain development can be considered by in vivo attractive reverberation imaging (MRI) from the 18th gestational week (GW) to term and depends fundamentally on T2-weighted and diffusion-weighted (DW) arrangements. The foremost commonly suspected brain pathologies alluded to fetal MRI for assist assessment are ventriculomegaly, lost corpus callosum, and anomalies of the posterior fossa. Brain division could be a crucial to begin with step in neuroimage examination. Within the case of fetal MRI it is especially challenging and critical due to the subjective introduction of the hatchling, organs that encompass the fetal head, and irregular fetal movement. A few promising strategies have been proposed but are constrained in their execution in challenging cases and in realtime division. Fetal MRI is routinely performed on a 1.5-Tesla scanner without maternal or fetal sedation. The mother lies recumbent amid the course of the examination, the length of which is ordinarily 45 to 60 minutes. The accessibility and continuous approval of standardizing fetal brain development directions will give critical devices for early discovery of impeded fetal brain development upon which to oversee high-risk pregnancies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain" title="brain">brain</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal" title=" fetal"> fetal</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a> </p> <a href="https://publications.waset.org/abstracts/173367/evaluation-of-fetal-brain-using-magnetic-resonance-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16327</span> Maternal-Fetal Bonding for African American Mothers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tracey%20Estriplet-Adams">Tracey Estriplet-Adams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the influence of maternal-fetal bonding by examining attachment theory, psycho-social-cultural influences/adaptations, and maternal well-being. A systematic review methodology was used to synthesize research results to summarize current evidence that can contribute to evidence-based practices. It explores the relationship between attachment styles, prenatal attachment, and perceptions of maternal-infant bonding/attachment six weeks postpartum. It also examines the protective factors of maternal-fetal attachment development. The research explores Bowlby's attachment theory and its relevance to maternal-fetal bonding with a Black Feminist Theory lens. Additionally, it discusses the impact of perceived stress, social support, and ecological models on maternal-fetal attachment. The relationship between maternal well-being, maternal-fetal attachment, and early postpartum bonding is reviewed. Moreover, the paper specifically addresses black mothers and maternal-fetal bonding, exploring the intersectionality of race, ethnicity, class, geographic location, cultural identities, and immigration status. It considers the role of familial and partner support, as well as the relationship between maternal attachment style and maternal-fetal bonding, within the framework of attachment theory and black feminist theory. Therefore, it is imperative to center Black women's voices in research, policy, and healthcare practices. Black women are experts in their own experiences and advocate for their autonomy in decision-making regarding maternal-fetal health. By amplifying their voices, we can ensure that interventions are grounded in their lived experiences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maternal-fetal%20bonding" title="maternal-fetal bonding">maternal-fetal bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=infant%20well-being" title=" infant well-being"> infant well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal-infant%20attachment" title=" maternal-infant attachment"> maternal-infant attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20mothers" title=" black mothers"> black mothers</a> </p> <a href="https://publications.waset.org/abstracts/172819/maternal-fetal-bonding-for-african-american-mothers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16326</span> Recent Advancement in Fetal Electrocardiogram Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savita">Savita</a>, <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Sharma"> Anurag Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsukhpreet%20Singh"> Harsukhpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fetal Electrocardiogram (fECG) is a widely used technique to assess the fetal well-being and identify any changes that might be with problems during pregnancy and to evaluate the health and conditions of the fetus. Various techniques or methods have been employed to diagnose the fECG from abdominal signal. This paper describes the facile approach for the estimation of the fECG known as Adaptive Comb. Filter (ACF). The ACF can adjust according to the temporal variations in fundamental frequency by itself that used for the estimation of the quasi periodic signal of ECG signal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aECG" title="aECG">aECG</a>, <a href="https://publications.waset.org/abstracts/search?q=ACF" title=" ACF"> ACF</a>, <a href="https://publications.waset.org/abstracts/search?q=fECG" title=" fECG"> fECG</a>, <a href="https://publications.waset.org/abstracts/search?q=mECG" title=" mECG"> mECG</a> </p> <a href="https://publications.waset.org/abstracts/49031/recent-advancement-in-fetal-electrocardiogram-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16325</span> Maternal-Fetal Outcome in Pregnant Women with Ebola Virus Disease: A Systematic Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Garba%20Iliyasu">Garba Iliyasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamaran%20Dattijo"> Lamaran Dattijo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ebola virus disease (EVD) is a disease of humans and other primates caused by Ebola viruses. The most widespread epidemic of EVD in history occurred recently in several West African countries. The burden and outcome of EVD in pregnant women remains uncertain. There are very few studies to date reporting on maternal and fetal outcomes among pregnant women with EVD, hence the justification for this comprehensive review of these published studies. Methods: Published studies in English that reported on maternal and or fetal outcome among pregnant women with EVD up to May 2016 were searched in electronic databases (Google Scholar, Medline, Embase, PubMed, AJOL, and Scopus). Studies that did not satisfy the inclusion criteria were excluded. We extracted the following variables from each study: geographical location, year of the study, settings of the study, participants, maternal and fetal outcome.Result: There were 12 studies that reported on 108 pregnant women and 110 fetal outcomes. Six of the studies were case reports, 3 retrospective studies, 2 cross-sectional studies and 1 was a technical report. There were 91(84.3%) deaths out of the 108 pregnant women, while only 1(0.9%) fetal survival was reported out of 110. Survival rate among the 15 patients that had spontaneous abortion/stillbirth or induced delivery was 100%. Conclusion: There was a poor maternal and fetal outcome among pregnant women with EVD, and fetal evacuation significantly improves maternal survival. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Africa" title="Africa">Africa</a>, <a href="https://publications.waset.org/abstracts/search?q=ebola" title=" ebola"> ebola</a>, <a href="https://publications.waset.org/abstracts/search?q=maternofetal" title=" maternofetal"> maternofetal</a>, <a href="https://publications.waset.org/abstracts/search?q=outcome" title=" outcome"> outcome</a> </p> <a href="https://publications.waset.org/abstracts/58307/maternal-fetal-outcome-in-pregnant-women-with-ebola-virus-disease-a-systematic-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16324</span> Protection against Sodium Arsenate Induced Fetal Toxicity in Albino Mice by Vitamin C and E</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariha%20Qureshi">Fariha Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tahir"> Mohammad Tahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epidemiological evidences indicated that arsenic contamination in drinking water increased the incidence of spontaneous abortion, stillbirth and premature babies in pregnant women. This study was designed to investigate the protective role of vitamin C&E against sodium arsenate induced fetal toxicity in albino mice. Twenty-four pregnant albino mice of BALB/c strain were randomly divided into 4 groups having 6 animals in each. Group A1 served as control and was injected with 0.1ml/kg/day distilled water I/P for 18 days. Groups A2,A3 & A4 received single I/P injection of sodium arsenate 35mg/kg on 8th gestational day, whereas groups A3 and A4 were also given Vitamin C and E by I/P injection, 9 mg/kg/day and 15 mg/kg/day respectively, starting from 8th GD and continued for the rest of the pregnancy period. The early implantation sites, fetal resorptions, weight of live fetuses and crown rump length were recorded. Gross morphological examination was carried out for malformations. Fetal kidneys were extracted for histological and micrometric analysis. Group A2 exhibited an increased incidence of abortion, fetal resorptions, significant decrease in number of litter and fetal weight; the difference of means was statistically significant among the groups (p<0.000). In group A2 fetal kidneys presented glomerulonephritis with acute tubular necrotic changes and interstitial fibrosis. Groups A3&A4 showed statistically significant improvement in these parameters. The results revealed the antioxidant potential of Vitamin C and E in protecting against arsenic induced fetal toxicity in mice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fetal%20toxicity" title="fetal toxicity">fetal toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20resorptions" title=" fetal resorptions"> fetal resorptions</a>, <a href="https://publications.waset.org/abstracts/search?q=interstitial%20fibrosis" title=" interstitial fibrosis"> interstitial fibrosis</a>, <a href="https://publications.waset.org/abstracts/search?q=tocopherol" title=" tocopherol"> tocopherol</a> </p> <a href="https://publications.waset.org/abstracts/12402/protection-against-sodium-arsenate-induced-fetal-toxicity-in-albino-mice-by-vitamin-c-and-e" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16323</span> Efficacy of Educational Program on the Performance of Internship Nursing Students Regarding Electronic Fetal Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aida%20Abd%20El-Razek">Aida Abd El-Razek</a>, <a href="https://publications.waset.org/abstracts/search?q=Alyaa%20Salman%20Madian"> Alyaa Salman Madian</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamila%20Gaber%20Ayoub"> Gamila Gaber Ayoub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Electronic fetal monitoring is an obstetric technology that helps to record any changes in fetal heart rate and uterine activity. The aim of this study was to determine the efficacy of educational programs on the performance of internship nursing students regarding electronic fetal monitoring in obstetrics and gynecology departments. Design: A quasi-experimental research design (pre- and post-test) was used. Sample: A convenient sample of all internship nursing students (180 internship nursing students) from the Faculty of Nursing at Menoufia University during the academic year 2022-2023). The instruments of this study were a structured, self-administered interview questionnaire consisting of two parts: the socio-demographic characteristics of the study participants and an assessment of internship nursing students’ knowledge regarding electronic fetal monitoring (pre- and post-test). Observational checklist to assess internship nursing students’ performance regarding EFM. Results: There were highly statistically significant differences between the internship nurses' students’ knowledge and performance on the pretest and posttest. Conclusion: An educational program on electronic fetal monitoring carries a vital value for enhancing internship nursing students’ knowledge and performance, which ultimately leads to improved maternal and fetal outcomes. Recommendation: Regular educational programs and workshops about electronic fetal monitoring should be encouraged for all maternity nurses and internship nursing students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20program" title="educational program">educational program</a>, <a href="https://publications.waset.org/abstracts/search?q=internship%20nursing%20students" title=" internship nursing students"> internship nursing students</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=efficacy" title=" efficacy"> efficacy</a> </p> <a href="https://publications.waset.org/abstracts/185431/efficacy-of-educational-program-on-the-performance-of-internship-nursing-students-regarding-electronic-fetal-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16322</span> Association of Fetal Abdominal Circumference and Birthweight in Maternal Hyperglycemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silpa%20Mariyam%20John">Silpa Mariyam John</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Baburaj"> S. Baburaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Prajit%20Geevarghese"> Prajit Geevarghese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diabetes accelerates pregnancy and can cause adverse effects on the fetus. Studies have shown that fetal abdominal circumference measured in ultrasound is an early parameter for the assessment of macrosomia. The objective of the study is to compare the fetal abdominal circumferences between diabetes and non-diabetic mothers. It was a comparative cross-sectional study conducted in a tertiary care hospital in Trivandrum, Kerala, with a sample size calculated as 95 for each group. All mothers taking antenatal care and delivering at the hospital were included after obtaining consent. The mothers and their newborns were divided into 2 groups (diabetic and non-diabetic). Relevant fetal biometry values were collected from medical records, and birth weight was measured by a calibrated electronic weighing machine after birth. The data were entered in MS EXCEL and analyzed. It was found that there is a significant relationship between the fetal abdominal circumference and birthweight in diabetic mothers during the first and third trimesters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=newborn" title="newborn">newborn</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20circumference" title=" abdominal circumference"> abdominal circumference</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/181236/association-of-fetal-abdominal-circumference-and-birthweight-in-maternal-hyperglycemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16321</span> Chronic Aflatoxin Exposure During Pregnancy Is Associated With Lower Fetal Growth Trajectories: A Prospective Cohort Study in Rural Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Tesfamariam">K. Tesfamariam</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Gebreyesus"> S. Gebreyesus</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Lachat"> C. Lachat</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Kolsteren"> P. Kolsteren</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20De%20Saeger"> S. De Saeger</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Boevre"> M. De Boevre</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Argaw"> A. Argaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxins are toxic secondary metabolites produced by Aspergillus fungi, which are ubiquitously present in the food supplies of low- and middle-income countries. Studies of maternal aflatoxin exposure and fetal outcomes are mainly focused on size at birth and the effect on intrauterine fetal growth has not been assessed using repeated longitudinal fetal biometry across gestation. Therefore, this study intends to assess the association between chronic aflatoxin exposure during pregnancy and fetal growth trajectories in a rural Ethiopian setting. In a prospective cohort study, we enrolled 492 pregnant women. A phlebotomist collected 5 mL of a venous blood sample from eligible women before 28 completed weeks of gestation and aflatoxin B1-lysine concentration was determined using liquid chromatography-tandem mass spectrometry. The mean (±SD) gestational age was 19.1 (3.71) weeks at enrollment, and 28.5 (3.51) and 34.5 (2.44) weeks of gestation at the second and third rounds of ultrasound measurements, respectively. Estimated fetal weight was expressed in centiles using the INTERGROWTH-21st reference. We fitted a multivariable linear mixed-effects model to estimate the rate of fetal growth between aflatoxin-exposed (i.e., aflatoxin B1-lysine concentration above or equal to the limit of detection) and non-exposed mothers in the study. Mothers had a mean (±SD) age of 26.0 (4.58) years. The median (P25, P75) serum AFB1-lysine concentration was 12.6 (0.93, 96.9) pg/mg albumin, and aflatoxin exposure was observed in 86.6% of maternal blood samples. Eighty-five percent of the women enrolled provided at least two ultrasound measurements for analysis. On average, the aflatoxin-exposed group had a significantly lower change over time in fetal weight-for-gestational age centile than the unexposed group (ß = -1.01 centiles/week, 95% CI: -1.87, -0.15, p = 0.02). Chronic maternal AF exposure is associated with lower fetal weight gain over time. Our findings emphasize the importance of nutrition-sensitive strategies to mitigate dietary aflatoxin exposure as well as adopting food safety measures in low-income settings, particularly during the fetal period of development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20growth" title=" fetal growth"> fetal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=low-income%20setting" title=" low-income setting"> low-income setting</a>, <a href="https://publications.waset.org/abstracts/search?q=mycotoxins" title=" mycotoxins"> mycotoxins</a> </p> <a href="https://publications.waset.org/abstracts/153140/chronic-aflatoxin-exposure-during-pregnancy-is-associated-with-lower-fetal-growth-trajectories-a-prospective-cohort-study-in-rural-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16320</span> Screening of Congenital Heart Diseases with Fetal Phonocardiography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Kov%C3%A1cs">F. Kovács</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K%C3%A1d%C3%A1r"> K. Kádár</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Hossz%C3%BA"> G. Hosszú</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81.%20T.%20Balogh"> Á. T. Balogh</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zsedrovits"> T. Zsedrovits</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kersner"> N. Kersner</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nagy"> A. Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Gy.%20Jeney"> Gy. Jeney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a novel screening method to indicate congenital heart diseases (CHD), which otherwise could remain undetected because of their low level. Therefore, not belonging to the high-risk population, the pregnancies are not subject to the regular fetal monitoring with ultrasound echocardiography. Based on the fact that CHD is a morphological defect of the heart causing turbulent blood flow, the turbulence appears as a murmur, which can be detected by fetal phonocardiography (fPCG). The proposed method applies measurements on the maternal abdomen and from the recorded sound signal a sophisticated processing determines the fetal heart murmur. The paper describes the problems and the additional advantages of the fPCG method including the possibility of measurements at home and its combination with the prescribed regular cardiotocographic (CTG) monitoring. The proposed screening process implemented on a telemedicine system provides an enhanced safety against hidden cardiac diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiac%20murmurs" title="cardiac murmurs">cardiac murmurs</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20phonocardiography" title=" fetal phonocardiography"> fetal phonocardiography</a>, <a href="https://publications.waset.org/abstracts/search?q=screening%20of%20CHDs" title=" screening of CHDs"> screening of CHDs</a>, <a href="https://publications.waset.org/abstracts/search?q=telemedicine%20system" title=" telemedicine system"> telemedicine system</a> </p> <a href="https://publications.waset.org/abstracts/28578/screening-of-congenital-heart-diseases-with-fetal-phonocardiography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16319</span> A Machine Learning Framework Based on Biometric Measurements for Automatic Fetal Head Anomalies Diagnosis in Ultrasound Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanene%20Sahli">Hanene Sahli</a>, <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Mouelhi"> Aymen Mouelhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Hajji"> Marwa Hajji</a>, <a href="https://publications.waset.org/abstracts/search?q=Amine%20Ben%20Slama"> Amine Ben Slama</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Sayadi"> Mounir Sayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhat%20Fnaiech"> Farhat Fnaiech</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhwane%20Rachdi"> Radhwane Rachdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fetal abnormality is still a public health problem of interest to both mother and baby. Head defect is one of the most high-risk fetal deformities. Fetal head categorization is a sensitive task that needs a massive attention from neurological experts. In this sense, biometrical measurements can be extracted by gynecologist doctors and compared with ground truth charts to identify normal or abnormal growth. The fetal head biometric measurements such as Biparietal Diameter (BPD), Occipito-Frontal Diameter (OFD) and Head Circumference (HC) needs to be monitored, and expert should carry out its manual delineations. This work proposes a new approach to automatically compute BPD, OFD and HC based on morphological characteristics extracted from head shape. Hence, the studied data selected at the same Gestational Age (GA) from the fetal Ultrasound images (US) are classified into two categories: Normal and abnormal. The abnormal subjects include hydrocephalus, microcephaly and dolichocephaly anomalies. By the use of a support vector machines (SVM) method, this study achieved high classification for automated detection of anomalies. The proposed method is promising although it doesn't need expert interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometric%20measurements" title="biometric measurements">biometric measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20head%20malformations" title=" fetal head malformations"> fetal head malformations</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning%20methods" title=" machine learning methods"> machine learning methods</a>, <a href="https://publications.waset.org/abstracts/search?q=US%20images" title=" US images"> US images</a> </p> <a href="https://publications.waset.org/abstracts/93496/a-machine-learning-framework-based-on-biometric-measurements-for-automatic-fetal-head-anomalies-diagnosis-in-ultrasound-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16318</span> An Electron Microscopic Study of Developing Human Fetal Pancreas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gupta%20Renu">Gupta Renu</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Roy"> T. S. Roy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: For the prospect of successful replacement therapies in treatment of Diabetes mallitus it is necessary to know events occurring during normal human pancreas development. Literature of human pancreas development are few in number as well as mainly related to first trimester because of ethical and technical difficulties. So the study was conducted on 12 fetuses from 12 gestational weeks (GW) to 5 months of infant to know normal development of exocrine and endocrine part of human pancreas. Material and Methods: Human fetalpancreases were screened by haematoxyline and eosin staining and done electron microscopy for suitable specimens to know ultrastructural detail of fetal pancreas. Results:It was observed arborized tubules, the cells budding out from these tubules differentiated into primitive acini and islets in 12thGW. At 14 weeks scanty granules were observed in the endocrine cells which coincided with the capillary invasion of the islets. The ducts and acini were surrounded by well-organized connective tissue. The acinihad elongated cells, small amount of cytoplasm and large open face euchromatic nuclei with single nucleolus. The mature form of islets of Langerhans was observed close to the acini and duct in 20 GW fetus. Connective tissue around the duct was well organized.No significant developmental change was observed early postnatal, infant. Conclusion: The development of both component exocrine as well as endocrine part of human fetal pancreas was studied by light and electron microscopy. Observations suggested that the fetal pancreas contained mainly ducts, few acini, many centroacinar cells, and large undifferentiated tissue. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gestational%20weeks%20%28GW%29" title="gestational weeks (GW)">gestational weeks (GW)</a>, <a href="https://publications.waset.org/abstracts/search?q=acini" title=" acini"> acini</a>, <a href="https://publications.waset.org/abstracts/search?q=islets%20of%20Langerhans" title=" islets of Langerhans"> islets of Langerhans</a>, <a href="https://publications.waset.org/abstracts/search?q=ducts" title=" ducts"> ducts</a> </p> <a href="https://publications.waset.org/abstracts/24748/an-electron-microscopic-study-of-developing-human-fetal-pancreas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16317</span> Fetal Ilium as a Tool for Sex Determination: Discriminant Functional Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luv%20Sharma">Luv Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sex determination has been the most intriguing puzzle for forensic pathologists and anthropologists, for which efforts have been made for a long. Sexual dimorphism is well established in the adult pelvis, and it is known to provide the highest level of information about sexual dimorphism. This study was conducted to know whether this dimorphism exists in fetal bones or not. A total of 34 pairs of fetal pelvis bones (22 males and 12 Females), ages ranging from 4 months to full term, were collected from unidentified dead fetuses brought to the Department of Forensic Medicine for routine medicolegal autopsies to study for sexual dimorphism in the Department of Anatomy, Pt. BD Sharma PGIMS, Rohtak. Samples were divided into 2 age groups, and various metric parameters were recorded with the help of a digital vernier caliper. Data obtained was subjected to descriptive and discriminant functional analysis. Results of Descriptive and Discriminant Functional Analysis showed that sex determination can be done with 100% accuracy by using different combinations of parameters of fetal ilium. This study illustrates that sexual dimorphism exists from early fetal life after mid-pregnancy; it can be clearly established by discriminant functional analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilium" title="Ilium">Ilium</a>, <a href="https://publications.waset.org/abstracts/search?q=fetus" title=" fetus"> fetus</a>, <a href="https://publications.waset.org/abstracts/search?q=sex%20determination" title=" sex determination"> sex determination</a>, <a href="https://publications.waset.org/abstracts/search?q=morphometric" title=" morphometric"> morphometric</a> </p> <a href="https://publications.waset.org/abstracts/181447/fetal-ilium-as-a-tool-for-sex-determination-discriminant-functional-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16316</span> A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Billeci">Lucia Billeci</a>, <a href="https://publications.waset.org/abstracts/search?q=Gennaro%20Tartarisco"> Gennaro Tartarisco</a>, <a href="https://publications.waset.org/abstracts/search?q=Maurizio%20Varanini"> Maurizio Varanini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fetal%20electrocardiography" title="fetal electrocardiography">fetal electrocardiography</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20QRS%20detection" title=" fetal QRS detection"> fetal QRS detection</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis%20%28ICA%29" title=" independent component analysis (ICA)"> independent component analysis (ICA)</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable" title=" wearable"> wearable</a> </p> <a href="https://publications.waset.org/abstracts/51208/a-quality-index-optimization-method-for-non-invasive-fetal-ecg-extraction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16315</span> Rapid Fetal MRI Using SSFSE, FIESTA and FSPGR Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Chang%20Lee">Chen-Chang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Chou%20Chen"> Po-Chou Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo-Chi%20Jao"> Jo-Chi Jao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Chung%20Lui"> Chun-Chung Lui</a>, <a href="https://publications.waset.org/abstracts/search?q=Leung-Chit%20Tsang"> Leung-Chit Tsang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lain-Chyr%20Hwang"> Lain-Chyr Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fetal Magnetic Resonance Imaging (MRI) is a challenge task because the fetal movements could cause motion artifact in MR images. The remedy to overcome this problem is to use fast scanning pulse sequences. The Single-Shot Fast Spin-Echo (SSFSE) T2-weighted imaging technique is routinely performed and often used as a gold standard in clinical examinations. Fast spoiled gradient-echo (FSPGR) T1-Weighted Imaging (T1WI) is often used to identify fat, calcification and hemorrhage. Fast Imaging Employing Steady-State Acquisition (FIESTA) is commonly used to identify fetal structures as well as the heart and vessels. The contrast of FIESTA image is related to T1/T2 and is different from that of SSFSE. The advantages and disadvantages of these two scanning sequences for fetal imaging have not been clearly demonstrated yet. This study aimed to compare these three rapid MRI techniques (SSFSE, FIESTA, and FSPGR) for fetal MRI examinations. The image qualities and influencing factors among these three techniques were explored. A 1.5T GE Discovery 450 clinical MR scanner with an eight-channel high-resolution abdominal coil was used in this study. Twenty-five pregnant women were recruited to enroll fetal MRI examination with SSFSE, FIESTA and FSPGR scanning. Multi-oriented and multi-slice images were acquired. Afterwards, MR images were interpreted and scored by two senior radiologists. The results showed that both SSFSE and T2W-FIESTA can provide good image quality among these three rapid imaging techniques. Vessel signals on FIESTA images are higher than those on SSFSE images. The Specific Absorption Rate (SAR) of FIESTA is lower than that of the others two techniques, but it is prone to cause banding artifacts. FSPGR-T1WI renders lower Signal-to-Noise Ratio (SNR) because it severely suffers from the impact of maternal and fetal movements. The scan times for these three scanning sequences were 25 sec (T2W-SSFSE), 20 sec (FIESTA) and 18 sec (FSPGR). In conclusion, all these three rapid MR scanning sequences can produce high contrast and high spatial resolution images. The scan time can be shortened by incorporating parallel imaging techniques so that the motion artifacts caused by fetal movements can be reduced. Having good understanding of the characteristics of these three rapid MRI techniques is helpful for technologists to obtain reproducible fetal anatomy images with high quality for prenatal diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fetal%20MRI" title="fetal MRI">fetal MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=FIESTA" title=" FIESTA"> FIESTA</a>, <a href="https://publications.waset.org/abstracts/search?q=FSPGR" title=" FSPGR"> FSPGR</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20artifact" title=" motion artifact"> motion artifact</a>, <a href="https://publications.waset.org/abstracts/search?q=SSFSE" title=" SSFSE"> SSFSE</a> </p> <a href="https://publications.waset.org/abstracts/30640/rapid-fetal-mri-using-ssfse-fiesta-and-fspgr-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16314</span> Pregnant Women’s Views on a Trial of Posture for Fetal Malposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20A.%20Barrowclough">Jennifer A. Barrowclough</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20A.%20Crowther"> Caroline A. Crowther</a>, <a href="https://publications.waset.org/abstracts/search?q=Bridget%20Kool"> Bridget Kool</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fetal malposition in labour is associated with adverse maternal and infant health outcomes. Evidence for effective interventions for fetal malposition is inconclusive. The feasibility and design of a randomized controlled trial (RCT) of maternal posture to improve maternal and infant outcomes of malposition should be considered, based on the hypothesis that gravity corrects malposition. The aim was to assess pregnant women’s views on the acceptability of a future trial of maternal posture for fetal malposition in labour, and the enablers and barriers of participation. Method: An online anonymous survey of pregnant women was conducted in Auckland during 2020. Descriptive summaries of quantitative data used chi-square to assess differences in proportions. The influence of maternal characteristics on women’s responses was assessed using cross-tabulation. Free text responses were analysed thematically. Results: Respondents (n=206) were mostly aged26-35 years (75%), of 29-38 weeks gestation (71%), of European (40%) or Asian (36%) ethnicity, were evenly nulliparous or multiparous. Most women (76%) had heard of fetal malposition in labour however only 28% were aware of the use of maternal posture to correct this. Most women (86%) were interested in labour research. Although 37% indicated they would participate in a future RCT of posture for fetal malposition, nearly half (47%) were unsure and a further quarter (15%) indicated they would not participate. Comfort was the predominant concern (22%). Almost half of the respondents (49%) indicated they would consult their partner before deciding on participation in an RCT. Conclusions: Participation in a trial of maternal posture in labour can be enabled through measures to enhance maternal comfort, increased awareness of malposition and the role of posture, and the involvement of partners during trial counselling and recruitment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pregnant%20women" title="pregnant women">pregnant women</a>, <a href="https://publications.waset.org/abstracts/search?q=labour" title=" labour"> labour</a>, <a href="https://publications.waset.org/abstracts/search?q=presentation" title=" presentation"> presentation</a>, <a href="https://publications.waset.org/abstracts/search?q=posture" title=" posture"> posture</a>, <a href="https://publications.waset.org/abstracts/search?q=randomized%20controlled%20trial" title=" randomized controlled trial"> randomized controlled trial</a>, <a href="https://publications.waset.org/abstracts/search?q=survey" title=" survey"> survey</a> </p> <a href="https://publications.waset.org/abstracts/147762/pregnant-womens-views-on-a-trial-of-posture-for-fetal-malposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16313</span> Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yash%20Bingi">Yash Bingi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqiao%20Yin"> Yiqiao Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20health" title=" fetal health"> fetal health</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20boosting" title=" gradient boosting"> gradient boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=Shapley%20values" title=" Shapley values"> Shapley values</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20interpretable%20model%20agnostic%20explanations" title=" local interpretable model agnostic explanations"> local interpretable model agnostic explanations</a> </p> <a href="https://publications.waset.org/abstracts/156571/using-machine-learning-to-classify-human-fetal-health-and-analyze-feature-importance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16312</span> Treatment and Diagnostic Imaging Methods of Fetal Heart Function in Radiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Farajzadeh%20Ajirlou">Mahdi Farajzadeh Ajirlou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prior evidence of normal cardiac anatomy is desirable to relieve the anxiety of cases with a family history of congenital heart disease or to offer the option of early gestation termination or close follow-up should a cardiac anomaly be proved. Fetal heart discovery plays an important part in the opinion of the fetus, and it can reflect the fetal heart function of the fetus, which is regulated by the central nervous system. Acquisition of ventricular volume and inflow data would be useful to quantify more valve regurgitation and ventricular function to determine the degree of cardiovascular concession in fetal conditions at threat for hydrops fetalis. This study discusses imaging the fetal heart with transvaginal ultrasound, Doppler ultrasound, three-dimensional ultrasound (3DUS) and four-dimensional (4D) ultrasound, spatiotemporal image correlation (STIC), glamorous resonance imaging and cardiac catheterization. Doppler ultrasound (DUS) image is a kind of real- time image with a better imaging effect on blood vessels and soft tissues. DUS imaging can observe the shape of the fetus, but it cannot show whether the fetus is hypoxic or distressed. Spatiotemporal image correlation (STIC) enables the acquisition of a volume of data concomitant with the beating heart. The automated volume accession is made possible by the array in the transducer performing a slow single reach, recording a single 3D data set conforming to numerous 2D frames one behind the other. The volume accession can be done in a stationary 3D, either online 4D (direct volume scan, live 3D ultrasound or a so-called 4D (3D/ 4D)), or either spatiotemporal image correlation-STIC (off-line 4D, which is a circular volume check-up). Fetal cardiovascular MRI would appear to be an ideal approach to the noninvasive disquisition of the impact of abnormal cardiovascular hemodynamics on antenatal brain growth and development. Still, there are practical limitations to the use of conventional MRI for fetal cardiovascular assessment, including the small size and high heart rate of the mortal fetus, the lack of conventional cardiac gating styles to attend data accession, and the implicit corruption of MRI data due to motherly respiration and unpredictable fetal movements. Fetal cardiac MRI has the implicit to complement ultrasound in detecting cardiovascular deformations and extracardiac lesions. Fetal cardiac intervention (FCI), minimally invasive catheter interventions, is a new and evolving fashion that allows for in-utero treatment of a subset of severe forms of congenital heart deficiency. In special cases, it may be possible to modify the natural history of congenital heart disorders. It's entirely possible that future generations will ‘repair’ congenital heart deficiency in utero using nanotechnologies or remote computer-guided micro-robots that work in the cellular layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fetal" title="fetal">fetal</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac%20MRI" title=" cardiac MRI"> cardiac MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=3D" title=" 3D"> 3D</a>, <a href="https://publications.waset.org/abstracts/search?q=4D" title=" 4D"> 4D</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20disease" title=" heart disease"> heart disease</a>, <a href="https://publications.waset.org/abstracts/search?q=invasive" title=" invasive"> invasive</a>, <a href="https://publications.waset.org/abstracts/search?q=noninvasive" title=" noninvasive"> noninvasive</a>, <a href="https://publications.waset.org/abstracts/search?q=catheter" title=" catheter"> catheter</a> </p> <a href="https://publications.waset.org/abstracts/187696/treatment-and-diagnostic-imaging-methods-of-fetal-heart-function-in-radiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16311</span> Organ Dose Calculator for Fetus Undergoing Computed Tomography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Choonsik%20Lee">Choonsik Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Les%20Folio"> Les Folio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pregnant patients may undergo CT in emergencies unrelated with pregnancy, and potential risk to the developing fetus is of concern. It is critical to accurately estimate fetal organ doses in CT scans. We developed a fetal organ dose calculation tool using pregnancy-specific computational phantoms combined with Monte Carlo radiation transport techniques. We adopted a series of pregnancy computational phantoms developed at the University of Florida at the gestational ages of 8, 10, 15, 20, 25, 30, 35, and 38 weeks (Maynard et al. 2011). More than 30 organs and tissues and 20 skeletal sites are defined in each fetus model. We calculated fetal organ dose-normalized by CTDIvol to derive organ dose conversion coefficients (mGy/mGy) for the eight fetuses for consequential slice locations ranging from the top to the bottom of the pregnancy phantoms with 1 cm slice thickness. Organ dose from helical scans was approximated by the summation of doses from multiple axial slices included in the given scan range of interest. We then compared dose conversion coefficients for major fetal organs in the abdominal-pelvis CT scan of pregnancy phantoms with the uterine dose of a non-pregnant adult female computational phantom. A comprehensive library of organ conversion coefficients was established for the eight developing fetuses undergoing CT. They were implemented into an in-house graphical user interface-based computer program for convenient estimation of fetal organ doses by inputting CT technical parameters as well as the age of the fetus. We found that the esophagus received the least dose, whereas the kidneys received the greatest dose in all fetuses in AP scans of the pregnancy phantoms. We also found that when the uterine dose of a non-pregnant adult female phantom is used as a surrogate for fetal organ doses, root-mean-square-error ranged from 0.08 mGy (8 weeks) to 0.38 mGy (38 weeks). The uterine dose was up to 1.7-fold greater than the esophagus dose of the 38-week fetus model. The calculation tool should be useful in cases requiring fetal organ dose in emergency CT scans as well as patient dose monitoring. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20dose" title=" fetal dose"> fetal dose</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnant%20women" title=" pregnant women"> pregnant women</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/114436/organ-dose-calculator-for-fetus-undergoing-computed-tomography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16310</span> Fetal Movement Study Using Biomimics of the Maternal March</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Diaz">V. Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Pardo"> B. Pardo </a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Villegas"> D. Villegas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In premature births most babies have complications at birth, these complications can be reduced, if an atmosphere of relaxation is provided and is also similar to intrauterine life, for this, there are programs where their mothers lull and sway them; however, the conditions in which they do so and the way in they do it may not be the indicated. Here we describe an investigation based on the biomimics of the kinematics of human fetal movement, which consists of determining the movements that the fetus experiences and the deformations of the components that surround the fetus during a gentle walk at week 32 of the gestation stage. This research is based on a 3D model that has the anatomical structure of the pelvis, fetus, muscles, uterus and its most important supporting elements (ligaments). Normal load conditions are applied to this model according to the stage of gestation and the kinematics of a gentle walk of a pregnant mother, which focuses on the pelvic bone, this allows to receive a response from the other elements of the model. To accomplish this modeling and subsequent simulation Solidworks software was used. From this analysis, the curves that describe the movement of the fetus at three different points were obtained. Additionally, we could found the deformation of the uterus and the ligaments that support it, showing the characteristics that these tissues can have in the face of the support of the fetus. These data can be used for the construction of artifacts that help the normal development of premature infants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomimic" title=" biomimic"> biomimic</a>, <a href="https://publications.waset.org/abstracts/search?q=uterine%20model" title=" uterine model"> uterine model</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20movement%20study" title=" fetal movement study"> fetal movement study</a> </p> <a href="https://publications.waset.org/abstracts/95537/fetal-movement-study-using-biomimics-of-the-maternal-march" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16309</span> Motor Vehicle Accidents During Pregnancy: Analysis of Maternal and Fetal Outcome at a University Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjunath%20Attibele">Manjunath Attibele</a>, <a href="https://publications.waset.org/abstracts/search?q=Alsawafi%20Manal"> Alsawafi Manal</a>, <a href="https://publications.waset.org/abstracts/search?q=Al%20Dughaishi%20Tamima"> Al Dughaishi Tamima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The purpose of this study was to describe the clinical characteristics and types of mechanisms of injuries caused by Motor vehicle accidents (MVA) during pregnancy. To analyze the patterns of accidents during pregnancy and its adverse consequences on both maternal and fetal outcome. Methods: This was a retrospective cohort study on pregnant patients who met with MVAs The study period was from January 1, 2010, to December 31, 2019. All relevant data were retrieved from electronic patients’ records from the hospital information system and from the antenatal ward admission register Results: Out of 168 women who had motor vehicle accidents during the study period, of which, 39 (23.2%) women during pregnancy. Twenty-one (53.8%) women were over 30 years old. Thirty-five (89.7%) women were Omanis, and 27 (69.2%) were in their third trimester. Twenty-three (59%) of accidents happened at night, and 31 (79.5%) of them happened on a weekday. Twenty-two (56.4%) of women were driving themselves, and 24 (61.5%) of them were not using any seatbelt. Accident related abdominal & back pain was seen in 23(59%) women. Regarding the outcome of pregnancy, 23 (74.2%) had a normal vaginal delivery. The mean accident to delivery interval was 7 weeks. Thirty (96.7%) of involved newborns were relatively healthy. One woman (3.2%) had a ruptured uterusleading to fetal death (3.2%). Conclusion: This study showed that the incidence of motor vehicle accidents during pregnancy is around 23.2% . Majority had trauma-associated pain. One serious injury to a woman causing a ruptured uterus which lead to fetal death. Majority of involved newborns were relatively healthy. No reported maternal death. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motor%20vehicle%20accidents" title="motor vehicle accidents">motor vehicle accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=maternal%20outcome" title=" maternal outcome"> maternal outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20outcome" title=" fetal outcome"> fetal outcome</a> </p> <a href="https://publications.waset.org/abstracts/152410/motor-vehicle-accidents-during-pregnancy-analysis-of-maternal-and-fetal-outcome-at-a-university-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16308</span> Expression of Selected miRNAs in Placenta of the Intrauterine Restricted Growth Fetuses in Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Rutkowska">Karolina Rutkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubert%20Pausch"> Hubert Pausch</a>, <a href="https://publications.waset.org/abstracts/search?q=Jolanta%20Oprzadek"> Jolanta Oprzadek</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Flisikowski"> Krzysztof Flisikowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The placenta is one of the most important organs that plays a crucial role in the fetal growth and development. Placenta dysfunction is one of the primary cause of the intrauterine growth restriction (IUGR). Cattle have the cotyledonary placenta which consists of two anatomical parts: fetal and maternal. In the case of cattle during the first months of pregnancy, it is very easy to separate maternal caruncle from fetal cotyledon tissue, easier in fact than removing an ordinary glove from one's hand. Which in fact make easier to conduct tissue-specific molecular studies. Typically, animal models for the study of IUGR are created using surgical methods and malnutrition of the pregnant mother or in the case of mice by genetic modifications. However, proposed cattle model with MIMT1Del/WT deletion is unique because it was created without any surgical methods what significantly distinguish it from the other animal models. The primary objective of the study was to identify differential expression of selected miRNAs in the placenta from normal and intrauterine growth restricted fetuses. There was examined the expression of miRNA in the fetal and maternal part of the placenta from 24 fetuses (12 samples from the fetal part of the placenta and 12 samples from maternal part of the placenta). In the study, there was done miRNAs sequencing in the placenta of MIMT1Del/WT fetuses and MIMT1WT/WT fetuses. Then, there were selected miRNAs that are involved in fetal growth and development. Analysis of miRNAs expression was conducted on ABI7500 machine. miRNAs expression was analyzed by reverse-transcription polymerase chain reaction (RT-PCR). As the reference gene was used SNORD47. The results were expressed as 2ΔΔCt: ΔΔCt = (Ctij − CtSNORD47j) − (Cti1 − CtSNORD471). Where Ctij and CtSNORD47j are the Ct values for gene i and for SNORD47 in a sample (named j); Cti1 and CtSNORD471 are the Ct values in sample 1. Differences between groups were evaluated with analysis of variance by using One-Way ANOVA. Bonferroni’s tests were used for interpretation of the data. All normalised miRNA expression values are expressed on a value of natural logarithm. The data were expressed as least squares mean with standard errors. Significance was declared when P < 0.05. The study shows that miRNAs expression depends on the part of the placenta where they origin (fetal or maternal) and on the genotype of the animal. miRNAs offer a particularly new approach to study IUGR. Corresponding tissue samples were collected according to the standard veterinary protocols according to the European Union Normative for Care and Use of Experimental Animals. All animal experiments were approved by the Animal Ethics Committee of the State Provincial Office of Southern Finland (ESAVI-2010-08583/YM-23). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=placenta" title="placenta">placenta</a>, <a href="https://publications.waset.org/abstracts/search?q=intrauterine%20growth%20restriction" title=" intrauterine growth restriction"> intrauterine growth restriction</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle" title=" cattle"> cattle</a> </p> <a href="https://publications.waset.org/abstracts/64272/expression-of-selected-mirnas-in-placenta-of-the-intrauterine-restricted-growth-fetuses-in-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16307</span> Maternal, Fetal and Neonatal Outcomes of Elective Versus Emergency Cesarean Deliveries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poonam%20Chouhan">Poonam Chouhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rama%20Thakur"> Rama Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20J.%20Mahajan"> R. J. Mahajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kushla%20Pathania"> Kushla Pathania</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehnaz%20Kumar"> Mehnaz Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cesarean sections are associated with short- and long-term risks and affect the health of the woman, her child, and future pregnancies. We conducted a study to compare Maternal, fetal, and neonatal elective versus emergency cesarean deliveries in a tertiary care center. Material & Methods: This was a cross-sectional comparative hospital-based study conducted at Kamla Nehru State Hospital for the mother and Child, Department of Obstetrics and Gynecology, Indira Gandhi Medical College, Shimla, from June 1, 2020, to May 31ˢᵗ, 2021). A total of 200 consenting participants (100 participants undergoing elective cesarean section & 100 participants undergoing emergency cesarean section) were enrolled. The analysis was performed using the statistical package for social sciences (SPSS) version 21. Results: Antenatal complications were more in women who had an emergency cesarean section (95%) as compared to those who had an elective cesarean section (46%) (p=0.0076). 26.5% of women had fetal complications, and out of them, 92.4% (49/53) underwent emergency cesarean section. IUGR was diagnosed in 8% of women, out of them, 56.2% had elective cesarean section & 43.8% had an emergency cesarean section. Malpresentation other than breech presentation were present in 3.5% (7/200) of women. Six (3%) women had cesarean section for macrosomia. Of these, 66.7% (4/6) had elective cesarean section & 33.3% had emergency cesarean section. 23% (46/200) neonates required NICU admission, and 5% (10/200) had transient tachypnoea of new-born (TTNB). Conclusion: Our study concluded that maternal and fetal Complications of an emergency cesarean are more as compared to a planned elective cesarean. An elective cesarean conducted well in time will prevent an emergency cesarean delivery and its related complications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maternal" title="maternal">maternal</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal" title=" fetal"> fetal</a>, <a href="https://publications.waset.org/abstracts/search?q=neonatal" title=" neonatal"> neonatal</a>, <a href="https://publications.waset.org/abstracts/search?q=complications" title=" complications"> complications</a>, <a href="https://publications.waset.org/abstracts/search?q=cesareans" title=" cesareans"> cesareans</a> </p> <a href="https://publications.waset.org/abstracts/164547/maternal-fetal-and-neonatal-outcomes-of-elective-versus-emergency-cesarean-deliveries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16306</span> The Effect of Fetal Movement Counting on Maternal Antenatal Attachment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esra%20G%C3%BCney">Esra Güney</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuba%20U%C3%A7ar"> Tuba Uçar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: This study has been conducted for the purpose of determining the effects of fetal movement counting on antenatal maternal attachment. Material and Method: This research was conducted on the basis of the real test model with the pre-test /post-test control groups. The study population consists of pregnant women registered in the six different Family Health Centers located in the central Malatya districts of Yeşilyurt and Battalgazi. When power analysis is done, the sample size was calculated for each group of at least 55 pregnant women (55 tests, 55 controls). The data were collected by using Personal Information Form and MAAS (Maternal Antenatal Attachment Scale) between July 2015-June 2016. Fetal movement counting training was given to pregnant women by researchers in the experimental group after the pre-test data collection. No intervention was applied to the control group. Post-test data for both groups were collected after four weeks. Data were evaluated with percentage, chi-square arithmetic average, chi-square test and as for the dependent and independent group’s t test. Result: In the MAAS, the pre-test average of total scores in the experimental group is 70.78±6.78, control group is also 71.58±7.54 and so there was no significant difference in mean scores between the two groups (p>0.05). MAAS post-test average of total scores in the experimental group is 78.41±6.65, control group is also is 72.25±7.16 and so the mean scores between groups were found to have statistically significant difference (p<0.05). Conclusion: It was determined that fetal movement counting increases the maternal antenatal attachments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenatal%20maternal%20attachment" title="antenatal maternal attachment">antenatal maternal attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20movement%20counting" title=" fetal movement counting"> fetal movement counting</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=midwifery" title=" midwifery"> midwifery</a> </p> <a href="https://publications.waset.org/abstracts/57377/the-effect-of-fetal-movement-counting-on-maternal-antenatal-attachment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16305</span> Measurement of Qashqaeian Sheep Fetus Parameters by Ultrasonography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aboozar%20Dehghan">Aboozar Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sharifi"> S. Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Dehghan"> S. A. Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Aliabadi"> Ali Aliabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Esfandiari"> Arash Esfandiari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasonography is a safe, available and particular method in diagnostic imaging science. In ultrasonography most of body soft tissue imaged in B mode display. Iranian Qashqaeian sheep is an old and domestic breed in Zagros mountain area in central plateau of Iran. Population of this breed in Fars state (study location) is 250000 animals. Gestation age detection in sheep was performed by ultarasonography in Kivircik breed in 2010 in turkey. In this study 5 adult, clinically healthy, Iranian ewes and 1 Iranian ram were selected. We measured biparital diameter that thickened part of fetal skull include (BPD), trunk diameter (TD), fetal heart diameter(FHD), intercostals space of fetus (ICS) and fetal heart rate per minute (FHR) weekly after day 60 after pregnancy. Inguinal area in both sides shaved and cleaned by alcohol 70 degree and covered by enough copulating gel. Trans abdominal Ultarasonography was performed by a convex multi frequency transducer with 2.5-5 MHz frequency. Data were collected and analyzed by on way Annova method in Spss15 software. Mean of BPD, TD, FHD and ICS in day 60 were 14.58, 25.92, 3.53, 2.3mm. FHR can measure on day 109 to 150. TD after day 109 cannot displayed in 1 frame in scanning. Ultrasonography in sheep pregnancy is a particular method. Using this study can help in theriogeniologic disease that affected fetal growth. Differentiating between various sheep breed is a functional result of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=qashqaeian%20sheep" title="qashqaeian sheep">qashqaeian sheep</a>, <a href="https://publications.waset.org/abstracts/search?q=fetometry" title=" fetometry"> fetometry</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonography" title=" ultrasonography"> ultrasonography</a> </p> <a href="https://publications.waset.org/abstracts/22626/measurement-of-qashqaeian-sheep-fetus-parameters-by-ultrasonography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16304</span> The Exposure to Endocrine Disruptors during Pregnancy and Relation to Steroid Hormones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Kolatorova">L. Kolatorova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vitku"> J. Vitku</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Adamcova"> K. Adamcova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Simkova"> M. Simkova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hill"> M. Hill</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Parizek"> A. Parizek</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Duskova"> M. Duskova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endocrine disruptors (EDs) are substances leaching from various industrial products, which are able to interfere with the endocrine system. Their harmful effects on human health are generally well-known, and exposure during fetal development may have lasting effects. Fetal exposure and transplacental transport of bisphenol A (BPA) have been recently studied; however, less is known about alternatives such as bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF), which have started to appear in consumer products. The human organism is usually exposed to the mixture of EDs, out of which parabens are otherwise known to transfer placenta. The usage of many cosmetic, pharmaceutical and consumer products during the pregnancy that may contain parabens and bisphenols has led to the need for investigation. The aim of the study was to investigate the transplacental transport of BPA, its alternatives, and parabens, and to study their relation to fetal steroidogenesis. BPA, BPS, BPF, BPAF, methylparaben, ethylparaben, propylparaben, butylparaben, benzylparaben and 15 steroids including estrogens, corticoids, androgens and immunomodulatory ones were determined in 27 maternal (37th week of gestation) and cord plasma samples using liquid chromatography - tandem mass spectrometry methods. The statistical evaluation of the results showed significantly higher levels of BPA (p=0.0455) in cord plasma compared to maternal plasma. The results from multiple regression models investigated that in cord plasma, methylparaben, propylparaben and the sum of all measured parabens were inversely associated with testosterone levels. To our best knowledge, this study is the first attempt to determine the levels of alternative bisphenols in the maternal and cord blood, and also the first study reporting the simultaneous detection of bisphenols, parabens, and steroids in these biological fluids. Our study confirmed the transplacental transport of BPA, with likely accumulation in the fetal compartment. The negative association of cord blood parabens and testosterone levels highlights their possible risks, especially for the development of male fetuses. Acknowledgements: This work was supported by the project MH CR 17-30528 A from the Czech Health Research Council, MH CZ - DRO (Institute of Endocrinology - EÚ, 00023761) and by the MEYS CR (OP RDE, Excellent research - ENDO.CZ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphenol" title="bisphenol">bisphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=endocrine%20disruptor" title=" endocrine disruptor"> endocrine disruptor</a>, <a href="https://publications.waset.org/abstracts/search?q=paraben" title=" paraben"> paraben</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=steroid" title=" steroid"> steroid</a> </p> <a href="https://publications.waset.org/abstracts/83878/the-exposure-to-endocrine-disruptors-during-pregnancy-and-relation-to-steroid-hormones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16303</span> Effect of Cistanche tinctoria Methanolic Extract on the Maternal-Fetal Outcome and Oxidative Stress Biomarkers of Streptozotocin-Induced Diabetic Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20Bouzitouna">Amina Bouzitouna</a>, <a href="https://publications.waset.org/abstracts/search?q=Kheireddine%20Ouali"> Kheireddine Ouali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandra%20Amri"> Sandra Amri</a>, <a href="https://publications.waset.org/abstracts/search?q=Houria%20Rahmoun"> Houria Rahmoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Bensouilah"> Mourad Bensouilah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim of this study: To evaluate the effect of Cisthanche tinctoria treatment on maternal-fetal outcome and antioxidant systems of streptozotocin-induced diabetic rats. Materials and methods: Virgin female Wistar rats were injected with 50 mg/kg streptozotocin before mating. Oral administration of an methanolic extract of Cistanche tinctoria was given to non-diabetic and diabetic pregnant rats at doses of 200 mg/kg from 0 to 19th day of pregnancy. At day 20 of pregnancy the rats were killed and a maternal blood sample was collected for the determination Vitamin C (Vit C) and malonaldehyde (MDA). The gravid uterus was weighed with its contents and fetuses were analyzed. Results and conclusion: The data showed that the diabetic dams presented an increased glycemic level, resorption, placental weight, placental index, and fetal anomalies, and reduced VIT C and MDA determinations, live fetuses, maternal weight gain, gravid uterine weight, and fetal weight. It was also verified that Cisthanche tictoria treatment had no hypoglycemic effect, did not improve maternal outcomes in diabetic rats, but it contributed to maintain GSH concentration similarly to non-diabetic groups, suggesting relation with the decreased incidence of visceral anomalies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cistanche%20tinctoria" title="cistanche tinctoria">cistanche tinctoria</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title=" pregnancy"> pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=reproductive%20outcome" title=" reproductive outcome"> reproductive outcome</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly" title=" anomaly"> anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=orobanchac%C3%A9es" title=" orobanchacées"> orobanchacées</a> </p> <a href="https://publications.waset.org/abstracts/13058/effect-of-cistanche-tinctoria-methanolic-extract-on-the-maternal-fetal-outcome-and-oxidative-stress-biomarkers-of-streptozotocin-induced-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16302</span> Prenatal Exposure to Organophosphate Pesticide and Fetal Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Shuan%20ShaoShao">Yi-Shuan ShaoShao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-An%20Tsai"> Yen-An Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Huang%20Chang"> Chia-Huang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai-Wei%20Liao"> Kai-Wei Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Song%20Tsai"> Ming-Song Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Lien%20Chen"> Mei-Lien Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organophosphate pesticides (OPs) is an environmental hormone with proven endocrine-disrupting effects that may affect the growth and development in human. A large amount of organophosphate pesticides (OPs) is used throughout Taiwan, and human may be exposed through dietary intake or residential use. During pregnancy, OPs can be transferred to the blood stream reaching the fetus through the placenta. The aim of this study was to explore the association between maternal OPs exposure levels and fetal developments and birth outcomes. A birth cohort was follow-up. Maternal urine sample were collected at the first, second, and third gestational trimester. Fetal growth characteristics were measured by ultrasonic scan and birth outcomes were assessed by pediatrician. Urinary metabolite of organophosphate pesticides were assessed using gas chromatography-mass spectrometry. The analytes included dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphates (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP). We found that all of urine samples in each trimester were detected at least one metabolite for dialkyl phosphate (DAP). The detection rate range of OP urinary metabolites were from the lowest 22% DEDTP to the highest 100% DMP and DMTP. And to compared geometric means (GM) of urinary metabolites with three trimesters, that third trimester had the highest concentration for DMPs, DEPs, and DAPs in pregnant women were 368.01, 169.85 and 543.75 nmol/g creatinine, respectively. We observed that DAPs concentration in first and second trimester were significantly negative association with head circumference. DMPs in first trimester was significantly negative association with thoracic circumference (p=0.05) by spearman correlation. Our results support associations with prenatal OPs exposure with fetal head circumference and thoracic circumference. It provided that maternal OPs exposure might affect birth outcomes. Thus, prenatal exposure to OPs and health risk worthy of attention and concern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DAPs" title="DAPs">DAPs</a>, <a href="https://publications.waset.org/abstracts/search?q=birth%20outcomes" title=" birth outcomes"> birth outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=organophosphate%20pesticides" title=" organophosphate pesticides"> organophosphate pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=prenatal" title=" prenatal"> prenatal</a> </p> <a href="https://publications.waset.org/abstracts/42358/prenatal-exposure-to-organophosphate-pesticide-and-fetal-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16301</span> UEMG-FHR Coupling Analysis in Pregnancies Complicated by Pre-Eclampsia and Small for Gestational Age</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun%20Chen">Kun Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yangyu%20Zhao"> Yangyu Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shufang%20Li"> Shufang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20Chen"> Lian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyue%20Guo"> Xiaoyue Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jue%20Zhang"> Jue Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Fang"> Jing Fang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coupling strength between uterine electromyography (UEMG) and Fetal heart rate (FHR) signals during peripartum reflects the fetal biophysical activities. Therefore, UEMG-FHR coupling characterization is instructive in assessing placenta function. This study introduced a physiological marker named elevated frequency of UEMG-FHR coupling (E-UFC) and explored its predictive value for pregnancies complicated by pre-eclampsia and small for gestational age (SGA). Placental insufficiency patients (n=12) and healthy volunteers (n=24) were recruited and participated. UEMG and FHR were recorded non-invasively by a trans-abdominal device in women at term with singleton pregnancy (32-37 weeks) from 10:00 pm to 8:00 am. The product of the wavelet coherence and the wavelet cross-spectral power between UEMG and FHR was used to weight these two effects in order to quantify the degree of the UEMG-FHR coupling. E-UFC was exacted from the resultant spectrogram by calculating the mean value of the high-coherence (r > 0.5) frequency band. Results showed the high-coherence between UEMG and FHR was observed in the frequency band (1/512-1/16Hz). In addition, E-UFC in placental insufficiency patients was weaker compared to healthy controls (p < 0.001) at group level. These findings suggested the proposed approach could be used to quantitatively characterize the fetal biophysical activities, which is beneficial for early detection of placental insufficiency and reduces the occurrence of adverse pregnancy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uterine%20electromyography" title="uterine electromyography">uterine electromyography</a>, <a href="https://publications.waset.org/abstracts/search?q=fetal%20heart%20rate" title=" fetal heart rate"> fetal heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20analysis" title=" coupling analysis"> coupling analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20analysis" title=" wavelet analysis"> wavelet analysis</a> </p> <a href="https://publications.waset.org/abstracts/95342/uemg-fhr-coupling-analysis-in-pregnancies-complicated-by-pre-eclampsia-and-small-for-gestational-age" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16300</span> Effect of Prophylactic Oxytocin Therapy on Duration of Retained Fetal Membrane (RFM) in Periparturient Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Ghasemzadeh-%20Nava">Hamid Ghasemzadeh- Nava</a>, <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Kaveh%20Baghbadorani"> Maziar Kaveh Baghbadorani</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Tamadon"> Amin Tamadon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering response of uterus to ecbolic effect of oxytocin near the time of parturition, this study was done for investigating the effect of prophylactic administration of this hormone on duration of fetal membrane retention, time interval to first detectable estrus, time interval to first service, and conception rate at first service in cases of both normal parturition and dystocia. For this reason cows with (n=18) and without (n=18) dystocia assigned randomly to treatment (n=12) or control (n=6) groups and received intramuscular injection of 100 IU of oxytocin or 10 mL of normal saline respectively. Further observations and investigations indicate that duration of fetal retention is significantly shorter in treatment group cows compared to control groups, regardless of having dystocia (P=0.002) or normal spontaneous calving (P=0.001). The same trend exists for conception rate at first service in which cows in treatment groups had significantly higher conception rate (CR) in comparison to cows in control groups with (P=0.0003) or without dystocia (P=0.017). The time interval to first detected heat and first service didn’t show any difference between groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conception%20rate" title="conception rate">conception rate</a>, <a href="https://publications.waset.org/abstracts/search?q=oxytocin" title=" oxytocin"> oxytocin</a>, <a href="https://publications.waset.org/abstracts/search?q=RFM" title=" RFM"> RFM</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20first%20service" title=" time to first service"> time to first service</a> </p> <a href="https://publications.waset.org/abstracts/37647/effect-of-prophylactic-oxytocin-therapy-on-duration-of-retained-fetal-membrane-rfm-in-periparturient-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16299</span> The Physiological Effects of Thyriod Disorders During the Gestatory Period on Fetal Neurological Development: A Descriptive Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20Bennemann">Vanessa Bennemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Laste"> Gabriela Laste</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%A1rcia%20In%C3%AAs%20Goettert"> Márcia Inês Goettert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gestational period is a phase in which the pregnant woman undergoes constant physiological and hormonal changes, which are part of the woman’s biological cycle, the development of the fetus, childbirth, and lactation. These are factors of response to the immunological adaptation of the human reproductive process that is directly related to the pregnancy’s well-being and development. Although most pregnancies occur without complications, about 15% of pregnant women will develop potentially fatal complications, implying maternal and fetal risk. Therefore, requiring specialized care for high-risk pregnant women (HRPW) with obstetric interventions for the survival of the mother and/or fetus. Among the risk factors that characterize HRPW are the women's age, gestational diabetes mellitus (GDM), autoimmune diseases, infectious diseases such as syphilis and HIV, hypertension (SAH), preeclampsia, eclampsia, HELLP syndrome, uterine contraction abnormalities, and premature placental detachment (PPD), thyroid disorders, among others. Thus, pregnancy has an impact on the thyroid gland causing changes in the functioning of the mother's thyroid gland, altering the thyroid hormone (TH) profiles and production as pregnancy progresses. Considering, throughout the gestational period, the interpretation of the results of the tests to evaluate the thyroid functioning depends on the stage in which the pregnancy is. Thyroid disorders are directly related to adverse obstetric outcomes and in child development. Therefore, the adequate release of TH is important for a pregnancy without complications and optimal fetal growth and development. Objective: Investigate the physiological effects caused by thyroid disorders in the gestational period. Methods: A search for articles indexed in PubMed, Scielo, and MDPI databases, was performed using the term “AND”, with the descriptors: Pregnancy, Thyroid. With several combinations that included: Melatonin, Thyroidopathy, Inflammatory processes, Cytokines, Anti-inflammatory, Antioxidant, High-risk pregnancy. Subsequently, the screening was performed through the analysis of titles and/or abstracts. The criteria were: including clinical studies in general, randomized or not, in the period of 10 years prior to the research, in the English literature; excluded: experimental studies, case reports, research in the development phase. Results: In the preliminary results, a total of studies (n=183) were found, (n=57) excluded, such as studies of cancer, diabetes, obesity, and skin diseases. Conclusion: To date, it has been identified that thyroid diseases can impair the fetus’s brain development. Further research is suggested on this matter to identify new substances that may have a potential therapeutic effect to aid the gestational period with thyroid diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pregnancy" title="pregnancy">pregnancy</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid" title=" thyroid"> thyroid</a>, <a href="https://publications.waset.org/abstracts/search?q=melatonin" title=" melatonin"> melatonin</a>, <a href="https://publications.waset.org/abstracts/search?q=high-risk%20pregnancy" title=" high-risk pregnancy"> high-risk pregnancy</a> </p> <a href="https://publications.waset.org/abstracts/148713/the-physiological-effects-of-thyriod-disorders-during-the-gestatory-period-on-fetal-neurological-development-a-descriptive-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=544">544</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=545">545</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fetal%20development&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>