CINXE.COM
ACP - Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if lt IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 lt-ie7 co-ui"> <![endif]--> <!--[if IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 co-ui"> <![endif]--> <!--[if IE 8]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 co-ui"> <![endif]--> <!--[if gt IE 8]><!--> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js co-ui"> <!--<![endif]--> <!-- remove class no-js if js is available --><head> <!-- BEGIN_HEAD --> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="theme-color" content="#000000" /> <meta name="application-name" content="1" /> <meta name="msapplication-TileColor" content="#FFFFFF" /> <link rel="preconnect" crossorigin="" href="https://contentmanager.copernicus.org/" /><link rel="icon" size="16x16" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_16x16_.ico" type="image/x-icon" /><link rel="icon" size="24x24" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_24x24_.ico" type="image/x-icon" /><link rel="icon" size="32x32" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_32x32_.ico" type="image/x-icon" /><link rel="icon" size="48x48" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_48x48_.ico" type="image/x-icon" /><link rel="icon" size="64x64" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_64x64_.ico" type="image/x-icon" /><link rel="icon" size="228x228" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_228x228_.png" type="image/png-icon" /><link rel="icon" size="195x195" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_195x195_.png" type="image/png-icon" /><link rel="icon" size="196x196" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_196x196_.png" type="image/png-icon" /><link rel="icon" size="128x128" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_128x128_.png" type="image/png-icon" /><link rel="icon" size="96x96" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_96x96_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="180x180" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_180x180_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="120x120" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_120x120_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="152x152" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_152x152_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="76x76" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_76x76_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="57x57" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_57x57_.ico" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="144x144" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_144x144_.png" type="image/png-icon" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/mustache/2.3.0/mustache.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/jquery.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/js/copernicus.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/htmlgenerator-v2.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.js"></script><link rel="stylesheet" type="text/css" media="all" id="hasBootstrap" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-media.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-grid.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-reboot.min.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/popper.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/bootstrap.min.js"></script><link rel="preconnect" crossorigin="" href="https://cdn.copernicus.org/" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/copernicus-min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/fontawesome.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/fonts/FontAwesome/5.11.2_and_4.7.0/css/all.font.css" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/237997/10/ssl" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/2154804/10/ssl" /><link rel="stylesheet" type="text/css" media="print" href="https://contentmanager.copernicus.org/2154805/10/ssl" /><script src="https://contentmanager.copernicus.org/1672/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/1468/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/402/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/2154808/10/ssl" type="text/javascript"> </script><!-- END_HEAD --><meta name="global_projectID" content="10" /><meta name="global_pageID" content="297" /><meta name="global_pageIdentifier" content="home" /><meta name="global_moBaseURL" content="https://meetingorganizer.copernicus.org/" /><meta name="global_projectShortcut" content="ACP" /><meta name="global_projectDomain" content="https://www.atmospheric-chemistry-and-physics.net/" /> <title>ACP - Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin</title> <meta name="data-non-mobile-optimized-message" content="" /><script id="networker"> window.isSafari = /^((?!chrome|android).)*safari/i.test(navigator.userAgent); /** * */ function createToastsFunctionality() { const toastsWrapper = $('<div>') .attr('aria-live', 'polite') .attr('aria-atomic', 'true') .addClass('toasts-notifications-wrapper'); $('body').append(toastsWrapper); } function isOS() { return [ 'iPad Simulator', 'iPhone Simulator', 'iPod Simulator', 'iPad', 'iPhone', 'iPod' ].includes(navigator.platform) || (navigator.userAgent.includes("Mac") && "ontouchend" in document) } /** * * @param notificationContent */ function addToast(notificationContent) { const toast = $('<div>').addClass('toast').attr('role', 'alert').attr('aria-live', 'assertive') .attr('aria-atomic', 'true').attr('data-autohide', 'false'); const toastHeader = $('<div>').addClass('toast-header'); const toastHeaderTitle = $('<strong>').addClass('mr-auto').html(notificationContent.title); const toastHeaderCloseButton = $('<button>').addClass('ml-2').addClass('mb-1').addClass('close').attr('type', 'button') .attr('data-dismiss', 'toast'); const toastHeaderCloseIcon = $('<span>').attr('aria-hidden', 'true').html('×'); let url = ''; if (notificationContent.hasOwnProperty('url')) { url = notificationContent.url; } else { url = 'https://networker.copernicus.org/my-network'; } const toastBody = $('<div>').addClass('toast-body').html('<a target="_blank" href="' + url + '">' + notificationContent.text + '</a>'); $(toastHeaderCloseButton).append(toastHeaderCloseIcon); $(toastHeader).append(toastHeaderTitle); $(toastHeader).append(toastHeaderCloseButton); $(toast).append(toastHeader); $(toast).append(toastBody); $('.toasts-notifications-wrapper').append(toast); $('.toast').toast('show'); } function coNetworker_sendUsersLocation(location, userHash, publicLabel, projectID, application) { if (templateHasBootstrap()) { createToastsFunctionality(); } userHash = userHash || 'null'; location = location || 'c_content_manager::getProjectTemplateMobileOpt'; publicLabel = publicLabel || ''; if (publicLabel === ''){ publicLabel = location; } if (userHash !== null && userHash.length > 5) { try { if(typeof window.ws === 'undefined' || window.ws === null || !window.ws) { window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } else { window.ws.close(1000); window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } const data = { 'type': 'status', 'action': 'start', 'data': { 'userIdentifier': userHash, 'projectID': projectID, 'coApp': application, 'location': location, 'publicLabel': publicLabel } }; if (window.ws === 1) { window.ws.send(JSON.stringify(data)); } else { window.ws.onopen = function (msg) { window.ws.send(JSON.stringify(data)); dispatchEvent(new CustomEvent('loadCommonNetworker')); }; window.ws.onmessage = function (event) { try { const data = JSON.parse(event.data); switch (data.type) { case 'notification': const pushNotificationData = data.data; if (pushNotificationData.hasOwnProperty('user') && pushNotificationData.user.length > 5 && pushNotificationData.user === userHash) { window.showPushNotification(pushNotificationData); } break; } } catch (e) { console.log(e); } } } } catch (e) { console.error(e); } } } window.showPushNotification = function (notificationContent) { showMessage(notificationContent); function showMessage(notificationContent){ if (templateHasBootstrap()) { showBootstrapModal(notificationContent); } } function showBootstrapModal(notificationContent) { const randomId = getRandomInt(100,999); let modal = $('<div>').addClass('modal').attr('id', 'modal-notification' + randomId); let modalDialog = $('<div>').addClass('modal-dialog'); let modalContent = $('<div>').addClass('modal-content'); let modalBody = $('<div>').addClass('modal-body'); let message = $('<div>').addClass('modal-push-message').html('<h3 class="mb-3">' + notificationContent.title + '</h3><p>' + notificationContent.text + '</p>'); let buttonsWrapper = $('<div>').addClass('row'); let buttonsWrapperCol = $('<div>').addClass('col-12').addClass('text-right'); let buttonCancel = $('<button>').addClass('btn').addClass('btn-danger').addClass('mr-2').html('Cancel') let buttonSuccess = $('<button>').addClass('btn').addClass('btn-success').html('OK') $(buttonsWrapper).append(buttonsWrapperCol); $(buttonsWrapperCol).append(buttonCancel); $(buttonsWrapperCol).append(buttonSuccess); $(modalBody).append(message).append(buttonsWrapper); $(modalContent).append(modalBody); $(modalDialog).append(modalContent); $(modal).append(modalDialog); $(buttonCancel).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); }); $(buttonSuccess).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); handleOnclickNotification(notificationContent); }); $(modal).modal('show'); setTimeout(() => { dispatchEvent(new CustomEvent('modalLoaded', {'detail': 'modal-notification' + randomId})); }, 1000); } window.addEventListener('modalLoaded', function (event) { setTimeout(() => { $('#' + event.detail).modal('hide'); }, 9000); }); function handleOnclickNotification(notificationContent) { if (notificationContent.hasOwnProperty('withConnect') && notificationContent.withConnect.length > 0) { acceptContactRequest(notificationContent); } if (notificationContent.hasOwnProperty('url')) { if (window.isSafari && isOS()) { window.location.href = notificationContent.url; } else { window.open(notificationContent.url, '_blank').focus(); } } else { if (window.isSafari && isOS()) { window.open('https://networker.copernicus.org/my-network', '_blank'); } else { window.open('https://networker.copernicus.org/my-network', '_blank').focus(); } } } /** * * @param notificationContent */ function acceptContactRequest(notificationContent) { const formData = new FormData(); formData.append('r', notificationContent.userFrom); formData.append('a', 'a'); $.ajax({ url: 'https://networker.copernicus.org/handle-request-job', type: 'POST', data: formData, processData: false, contentType: false, xhrFields: { withCredentials: true }, beforeSend: function () { $('.splash').fadeIn(); $('.lightbox').fadeIn(); } }) .done(function (dataResponse) { const data = JSON.parse(dataResponse); let text = 'Please consider joining the text chat now.'; window.sendPushNotification({ title: window.userDataCommonNetworker.name + ' aims to chat with you.', text: text, user: data.message.userIdentifier, url: notificationContent.url }); $('.splash').fadeOut(); $('.lightbox').fadeOut(); }) .fail(function (error) { $('.splash').fadeOut(); $('.lightbox').fadeOut(); }); } } function templateHasBootstrap() { const bootstrap = document.getElementById('hasBootstrap'); return bootstrap !== null && typeof bootstrap !== 'undefined'; } coNetworker_sendUsersLocation(); dispatchEvent(new CustomEvent('loadCommonNetworker')); function getRandomInt(min, max) { min = Math.ceil(min); max = Math.floor(max); return Math.floor(Math.random() * (max - min + 1)) + min; } </script> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css"> <base href="/"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/apps/htmlgenerator/css/htmlgenerator.css?v=1"> <meta name="citation_fulltext_world_readable" content=""> <meta name="citation_publisher" content="Copernicus GmbH"/> <meta name="citation_title" content="Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin"/> <meta name="citation_abstract" content="<p><strong class="journal-contentHeaderColor">Abstract.</strong> Nucleation and condensation associated with biogenic volatile organic compounds (BVOCs) are important aerosol formation pathways, yet their contribution to the upper-tropospheric aerosols remains inconclusive, hindering the understanding of aerosol climate effects. Here, we develop new schemes describing these organic aerosol formation processes in the WRF-Chem model and investigate their impact on the abundance of cloud condensation nuclei (CCN) in the upper troposphere (UT) over the Amazon Basin. We find that the new schemes significantly increase the simulated CCN number concentrations in the UT (e.g., up to <span class="inline-formula">∼</span> 400 cm<span class="inline-formula"><sup>−3</sup></span> at 0.52 % supersaturation) and greatly improve the agreement with the aircraft observations. Organic condensation enhances the simulated CCN concentration by 90 % through promoting particle growth, while organic nucleation, by replenishing new particles, contributes an additional 14 %. Deep convection determines the rate of these organic aerosol formation processes in the UT through controlling the upward transport of biogenic precursors (i.e., BVOCs). This finding emphasizes the importance of the biosphere–atmosphere coupling in regulating upper-tropospheric aerosol concentrations over the tropical forest and calls for attention to its potential role in anthropogenic climate change.</p>"/> <meta name="citation_publication_date" content="2023/01/13"/> <meta name="citation_online_date" content="2023/01/13"/> <meta name="citation_journal_title" content="Atmospheric Chemistry and Physics"/> <meta name="citation_volume" content="23"/> <meta name="citation_issue" content="1"/> <meta name="citation_issn" content="1680-7316"/> <meta name="citation_doi" content="https://doi.org/10.5194/acp-23-251-2023"/> <meta name="citation_firstpage" content="251"/> <meta name="citation_lastpage" content="272"/> <meta name="citation_author" content="Liu, Yunfan"/> <meta name="citation_author_institution" content="Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author" content="Su, Hang"/> <meta name="citation_author_institution" content="Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author_orcid" content="0000-0003-4889-1669"> <meta name="citation_author" content="Wang, Siwen"/> <meta name="citation_author_institution" content="Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author" content="Wei, Chao"/> <meta name="citation_author_institution" content="Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author" content="Tao, Wei"/> <meta name="citation_author_institution" content="Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author" content="Pöhlker, Mira L."/> <meta name="citation_author_institution" content="Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author_institution" content="Experimental Aerosol and Cloud Microphysics Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany"/> <meta name="citation_author_institution" content="Faculty of Physics and Earth Sciences, Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany"/> <meta name="citation_author" content="Pöhlker, Christopher"/> <meta name="citation_author_institution" content="Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author_orcid" content="0000-0001-6958-425X"> <meta name="citation_author" content="Holanda, Bruna A."/> <meta name="citation_author_institution" content="Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author" content="Krüger, Ovid O."/> <meta name="citation_author_institution" content="Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author_orcid" content="0000-0002-3321-6655"> <meta name="citation_author" content="Hoffmann, Thorsten"/> <meta name="citation_author_institution" content="Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany"/> <meta name="citation_author_orcid" content="0000-0003-0939-271X"> <meta name="citation_author" content="Wendisch, Manfred"/> <meta name="citation_author_institution" content="Faculty of Physics and Earth Sciences, Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany"/> <meta name="citation_author_orcid" content="0000-0002-4652-5561"> <meta name="citation_author" content="Artaxo, Paulo"/> <meta name="citation_author_institution" content="Institute of Physics, University of São Paulo, São Paulo, Brazil"/> <meta name="citation_author_orcid" content="0000-0001-7754-3036"> <meta name="citation_author" content="Pöschl, Ulrich"/> <meta name="citation_author_institution" content="Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author_orcid" content="0000-0003-1412-3557"> <meta name="citation_author" content="Andreae, Meinrat O."/> <meta name="citation_author_institution" content="Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author_institution" content="Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA"/> <meta name="citation_author_orcid" content="0000-0003-1968-7925"> <meta name="citation_author" content="Cheng, Yafang"/> <meta name="citation_author_institution" content="Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany"/> <meta name="citation_author_orcid" content="0000-0003-4912-9879"> <meta name="citation_author_email" content="yafang.cheng@mpic.de"> <meta name="citation_reference" content="Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019. "> <meta name="citation_reference" content="Andreae, M. O. and Andreae, T. W.: The cycle of biogenic sulfur compounds over the Amazon Basin: 1. Dry season, J. Geophys. Res.-Atmos., 93, 1487–1497, https://doi.org/10.1029/JD093iD02p01487, 1988. "> <meta name="citation_reference" content="Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D., Nelson, B. W., Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C.-U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M., de Souza, R. A. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F., Wolff, S., and Yáñez-Serrano, A. M.: The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols, Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, 2015. "> <meta name="citation_reference" content="Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., Costa, A., Dollner, M., Fütterer, D., Järvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Krämer, M., Krisna, T., Machado, L. A. T., Mertes, S., Minikin, A., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., Sauer, D., Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., Weinzierl, B., Wendisch, M., and Ziereis, H.: Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin, Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, 2018. "> <meta name="citation_reference" content="Archer-Nicholls, S., Lowe, D., Utembe, S., Allan, J., Zaveri, R. A., Fast, J. D., Hodnebrog, Ø., Denier van der Gon, H., and McFiggans, G.: Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem, Geosci. Model Dev., 7, 2557–2579, https://doi.org/10.5194/gmd-7-2557-2014, 2014. "> <meta name="citation_reference" content="Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006. "> <meta name="citation_reference" content="Burkholder, J. B., Baynard, T., Ravishankara, A. R., and Lovejoy, E. R.: Particle nucleation following the O3 and OH initiated oxidation of α-pinene and β-pinene between 278 and 320 K, J. Geophys. Res.-Atmos., 112, D10216, https://doi.org/10.1029/2006jd007783, 2007. "> <meta name="citation_reference" content="Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources, Atmos. Chem. Phys., 9, 945–964, https://doi.org/10.5194/acp-9-945-2009, 2009. "> <meta name="citation_reference" content="Cui, Y. Y., Hodzic, A., Smith, J. N., Ortega, J., Brioude, J., Matsui, H., Levin, E. J. T., Turnipseed, A., Winkler, P., and de Foy, B.: Modeling ultrafine particle growth at a pine forest site influenced by anthropogenic pollution during BEACHON-RoMBAS 2011, Atmos. Chem. Phys., 14, 11011–11029, https://doi.org/10.5194/acp-14-11011-2014, 2014. "> <meta name="citation_reference" content="D'Andrea, S. D., Häkkinen, S. A. K., Westervelt, D. M., Kuang, C., Levin, E. J. T., Kanawade, V. P., Leaitch, W. R., Spracklen, D. V., Riipinen, I., and Pierce, J. R.: Understanding global secondary organic aerosol amount and size-resolved condensational behavior, Atmos. Chem. Phys., 13, 11519–11534, https://doi.org/10.5194/acp-13-11519-2013, 2013. "> <meta name="citation_reference" content="Dunne, E. M., Gordon, H., Kurten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J., Kirkby, J., Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov, V., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A., Reddington, C. L., Riccobono, F., Richards, N. A., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M., Sipila, M., Smith, J. N., Stozkhov, Y., Tome, A., Trostl, J., Wagner, P. E., Wimmer, D., Winkler, P. M., Worsnop, D. R., and Carslaw, K. S.: Global atmospheric particle formation from CERN CLOUD measurements, Science, 354, 1119–1124, https://doi.org/10.1126/science.aaf2649, 2016. "> <meta name="citation_reference" content="Easter, R. C., Ghan, S. J., Zhang, Y., Saylor, R. D., Chapman, E. G., Laulainen, N. S., Abdul-Razzak, H., Leung, L. R., Bian, X. D., and Zaveri, R. A.: MIRAGE: Model description and evaluation of aerosols and trace gases, J. Geophys. Res.-Atmos., 109, D20210, https://doi.org/10.1029/2004jd004571, 2004. "> <meta name="citation_reference" content="Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010. "> <meta name="citation_reference" content="Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., Barbosa, H. M. J., Braga, R. C., Comstock, J. M., Feng, Z., Gao, W., Gomes, H. B., Mei, F., Pöhlker, C., Pöhlker, M. L., Pöschl, U., and de Souza, R. A. F.: Substantial convection and precipitation enhancements by ultrafine aerosol particles, Science, 359, 411–418, https://doi.org/10.1126/science.aan8461, 2018. "> <meta name="citation_reference" content="Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res., 111, D21305, https://doi.org/10.1029/2005jd006721, 2006. "> <meta name="citation_reference" content="Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. A. F., Andreae, M. O., Prins, E., Santos, J. C., Gielow, R., and Carvalho Jr., J. A.: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7, 3385–3398, https://doi.org/10.5194/acp-7-3385-2007, 2007. "> <meta name="citation_reference" content="Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T., Ortega, I. K., Wagner, R., Dunne, E. M., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J. S., Dias, A., Ehrhart, S., Fischer, L., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Kirkby, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Monks, S. A., Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplan, A. P., Pringle, K. J., Richards, N. A., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sharma, S., Sipila, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Curtius, J., and Carslaw, K. S.: Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation, P. Natl. Acad. Sci. USA, 113, 12053–12058, https://doi.org/10.1073/pnas.1602360113, 2016. "> <meta name="citation_reference" content="Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. "> <meta name="citation_reference" content="Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012. "> <meta name="citation_reference" content="Hardacre, C., Mulcahy, J. P., Pope, R. J., Jones, C. G., Rumbold, S. T., Li, C., Johnson, C., and Turnock, S. T.: Evaluation of SO2, SO42− and an updated SO2 dry deposition parameterization in the United Kingdom Earth System Model, Atmos. Chem. Phys., 21, 18465–18497, https://doi.org/10.5194/acp-21-18465-2021, 2021. "> <meta name="citation_reference" content="Heald, C. L., Coe, H., Jimenez, J. L., Weber, R. J., Bahreini, R., Middlebrook, A. M., Russell, L. M., Jolleys, M., Fu, T.-M., Allan, J. D., Bower, K. N., Capes, G., Crosier, J., Morgan, W. T., Robinson, N. H., Williams, P. I., Cubison, M. J., DeCarlo, P. F., and Dunlea, E. J.: Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model, Atmos. Chem. Phys., 11, 12673–12696, https://doi.org/10.5194/acp-11-12673-2011, 2011. "> <meta name="citation_reference" content="Hõrrak, U., Aalto, P. P., Salm, J., Komsaare, K., Tammet, H., Mäkelä, J. M., Laakso, L., and Kulmala, M.: Variation and balance of positive air ion concentrations in a boreal forest, Atmos. Chem. Phys., 8, 655–675, https://doi.org/10.5194/acp-8-655-2008, 2008. "> <meta name="citation_reference" content="Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, 2015. "> <meta name="citation_reference" content="Jenkin, M. E., Watson, L. A., Utembe, S. R., and Shallcross, D. E.: A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 1: Gas phase mechanism development, Atmos. Environ., 42, 7185–7195, https://doi.org/10.1016/j.atmosenv.2008.07.028, 2008. "> <meta name="citation_reference" content="Kerminen, V.-M., Anttila, T., Lehtinen, K., and Kulmala, M.: Parameterization for Atmospheric New-Particle Formation: Application to a System Involving Sulfuric Acid and Condensable Water-Soluble Organic Vapors, Aerosol Sci. Tech., 38, 1001–1008, https://doi.org/10.1080/027868290519085, 2004. "> <meta name="citation_reference" content="Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplan, A. P., Pringle, K., Rap, A., Richards, N. A., Riipinen, I., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sipila, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Carslaw, K. S., and Curtius, J.: Ion-induced nucleation of pure biogenic particles, Nature, 533, 521–526, https://doi.org/10.1038/nature17953, 2016. "> <meta name="citation_reference" content="Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from isoprene photooxidation under high-NOx conditions, Geophys. Res. Lett., 32, L18808, https://doi.org/10.1029/2005gl023637, 2005. "> <meta name="citation_reference" content="Kuhn, U., Ganzeveld, L., Thielmann, A., Dindorf, T., Schebeske, G., Welling, M., Sciare, J., Roberts, G., Meixner, F. X., Kesselmeier, J., Lelieveld, J., Kolle, O., Ciccioli, P., Lloyd, J., Trentmann, J., Artaxo, P., and Andreae, M. O.: Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load, Atmos. Chem. Phys., 10, 9251–9282, https://doi.org/10.5194/acp-10-9251-2010, 2010. "> <meta name="citation_reference" content="Kulmala, M.: How particles nucleate and grow, Science, 302, 1000–1001, https://doi.org/10.1126/science.1090848, 2003. "> <meta name="citation_reference" content="Liu, Y.: Data for “Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin”, Edmond [data set], https://doi.org/10.17617/3.3ISOYC, 2022. "> <meta name="citation_reference" content="Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519–551, https://doi.org/10.5194/gmd-3-519-2010, 2010. "> <meta name="citation_reference" content="Minikin, A., Petzold, A., Ström, J., Krejci, R., Seifert, M., van Velthoven, P., Schlager, H., and Schumann, U.: Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes, Geophys. Res. Lett., 30, 1503, https://doi.org/10.1029/2002gl016458, 2003. "> <meta name="citation_reference" content="Napari, I., Noppel, M., Vehkamaki, H., and Kulmala, M.: Parametrization of ternary nucleation rates for H2SO4-NH3-H2O vapors, J. Geophys. Res., 107, 4381, https://doi.org/10.1029/2002JD002132, 2002. "> <meta name="citation_reference" content="Paluch, I. R. and Knight, C. A.: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus, J. Atmos. Sci., 41, 1801–1815, 1984. "> <meta name="citation_reference" content="Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007. "> <meta name="citation_reference" content="Ramsay, R., Di Marco, C. F., Sörgel, M., Heal, M. R., Carbone, S., Artaxo, P., de Araùjo, A. C., Sá, M., Pöhlker, C., Lavric, J., Andreae, M. O., and Nemitz, E.: Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest, Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, 2020. "> <meta name="citation_reference" content="Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Downard, A., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hansel, A., Junninen, H., Kajos, M., Keskinen, H., Kupc, A., Kurten, A., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Nieminen, T., Onnela, A., Petaja, T., Praplan, A. P., Santos, F. D., Schallhart, S., Seinfeld, J. H., Sipila, M., Spracklen, D. V., Stozhkov, Y., Stratmann, F., Tome, A., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Wimmer, D., Carslaw, K. S., Curtius, J., Donahue, N. M., Kirkby, J., Kulmala, M., Worsnop, D. R., and Baltensperger, U.: Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles, Science, 344, 717–721, https://doi.org/10.1126/science.1243527, 2014. "> <meta name="citation_reference" content="Saathoff, H., Naumann, K.-H., Möhler, O., Jonsson, Å. M., Hallquist, M., Kiendler-Scharr, A., Mentel, Th. F., Tillmann, R., and Schurath, U.: Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene, Atmos. Chem. Phys., 9, 1551–1577, https://doi.org/10.5194/acp-9-1551-2009, 2009. "> <meta name="citation_reference" content="Schulz, C., Schneider, J., Amorim Holanda, B., Appel, O., Costa, A., de Sá, S. S., Dreiling, V., Fütterer, D., Jurkat-Witschas, T., Klimach, T., Knote, C., Krämer, M., Martin, S. T., Mertes, S., Pöhlker, M. L., Sauer, D., Voigt, C., Walser, A., Weinzierl, B., Ziereis, H., Zöger, M., Andreae, M. O., Artaxo, P., Machado, L. A. T., Pöschl, U., Wendisch, M., and Borrmann, S.: Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region, Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, 2018. "> <meta name="citation_reference" content="Scott, C. E., Rap, A., Spracklen, D. V., Forster, P. M., Carslaw, K. S., Mann, G. W., Pringle, K. J., Kivekäs, N., Kulmala, M., Lihavainen, H., and Tunved, P.: The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14, 447–470, https://doi.org/10.5194/acp-14-447-2014, 2014. "> <meta name="citation_reference" content="Su, H., Rose, D., Cheng, Y. F., Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M. O., and Pöschl, U.: Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation, Atmos. Chem. Phys., 10, 7489–7503, https://doi.org/10.5194/acp-10-7489-2010, 2010. "> <meta name="citation_reference" content="Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L., Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K., Williamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida, J., Bernhammer, A. K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kurten, A., Laaksonen, A., Lawler, M., Leiminger, M., Mathot, S., Mohler, O., Nieminen, T., Onnela, A., Petaja, T., Piel, F. M., Miettinen, P., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Sipila, M., Smith, J. N., Steiner, G., Tome, A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and Baltensperger, U.: The role of low-volatility organic compounds in initial particle growth in the atmosphere, Nature, 533, 527–531, https://doi.org/10.1038/nature18271, 2016. "> <meta name="citation_reference" content="Wang, J., Krejci, R., Giangrande, S., Kuang, C., Barbosa, H. M., Brito, J., Carbone, S., Chi, X., Comstock, J., Ditas, F., Lavric, J., Manninen, H. E., Mei, F., Moran-Zuloaga, D., Pohlker, C., Pohlker, M. L., Saturno, J., Schmid, B., Souza, R. A., Springston, S. R., Tomlinson, J. M., Toto, T., Walter, D., Wimmer, D., Smith, J. N., Kulmala, M., Machado, L. A., Artaxo, P., Andreae, M. O., Petaja, T., and Martin, S. T.: Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall, Nature, 539, 416–419, https://doi.org/10.1038/nature19819, 2016. "> <meta name="citation_reference" content="Wang, Q., Saturno, J., Chi, X., Walter, D., Lavric, J. V., Moran-Zuloaga, D., Ditas, F., Pöhlker, C., Brito, J., Carbone, S., Artaxo, P., and Andreae, M. O.: Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season, Atmos. Chem. Phys., 16, 14775–14794, https://doi.org/10.5194/acp-16-14775-2016, 2016. "> <meta name="citation_reference" content="Watson, L. A., Shallcross, D. E., Utembe, S. R., and Jenkin, M. E.: A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 2: Gas phase mechanism reduction, Atmos. Environ., 42, 7196–7204, https://doi.org/10.1016/j.atmosenv.2008.07.034, 2008. "> <meta name="citation_reference" content="Watson-Parris, D., Schutgens, N., Reddington, C., Pringle, K. J., Liu, D., Allan, J. D., Coe, H., Carslaw, K. S., and Stier, P.: In situ constraints on the vertical distribution of global aerosol, Atmos. Chem. Phys., 19, 11765–11790, https://doi.org/10.5194/acp-19-11765-2019, 2019. "> <meta name="citation_reference" content="Wendisch, M., Pöschl, U., Andreae, M. O., Machado, L. A. T., Albrecht, R., Schlager, H., Rosenfeld, D., Martin, S. T., Abdelmonem, A., Afchine, A., Araùjo, A. C., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrmann, S., Braga, R., Buchholz, B., Cecchini, M. A., Costa, A., Curtius, J., Dollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F., Fisch, G., Fix, A., Frank, F., Fütterer, D., Heckl, C., Heidelberg, F., Hüneke, T., Jäkel, E., Järvinen, E., Jurkat, T., Kanter, S., Kästner, U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M., Kohl, R., Kölling, T., Krämer, M., Krüger, M., Krisna, T. C., Lavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S., Minikin, A., Molleker, S., Münch, S., Nillius, B., Pfeilsticker, K., Pöhlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., Schnaiter, M., Schneider, J., Schulz, C., de Souza, R. A. F., Spanu, A., Stock, P., Vila, D., Voigt, C., Walser, A., Walter, D., Weigel, R., Weinzierl, B., Werner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Zöger, M.: ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO, B. Am. Meteorol. Soc., 97, 1885–1908, https://doi.org/10.1175/bams-d-14-00255.1, 2016. "> <meta name="citation_reference" content="Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23, 1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989. "> <meta name="citation_reference" content="Wexler, A. S., Lurmann, F. W., and Seinfeld, J. H.: Modelling urban and regional aerosols – I. model development, Atmos. Environ., 28, 531–546, https://doi.org/10.1016/1352-2310(94)90129-5, 1994. "> <meta name="citation_reference" content="Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, https://doi.org/10.5194/gmd-4-625-2011, 2011. "> <meta name="citation_reference" content="Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T., Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez, J. L., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A., Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R., and Brock, C. A.: A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399–403, https://doi.org/10.1038/s41586-019-1638-9, 2019. "> <meta name="citation_reference" content="Yu, F., Wang, Z., Luo, G., and Turco, R.: Ion-mediated nucleation as an important global source of tropospheric aerosols, Atmos. Chem. Phys., 8, 2537–2554, https://doi.org/10.5194/acp-8-2537-2008, 2008. "> <meta name="citation_reference" content="Yu, F., Luo, G., Nadykto, A. B., and Herb, J.: Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere, Atmos. Chem. Phys., 17, 4997–5005, https://doi.org/10.5194/acp-17-4997-2017, 2017. "> <meta name="citation_reference" content="Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, https://doi.org/10.1029/2007jd008782, 2008. "> <meta name="citation_reference" content="Zhao, B., Shrivastava, M., Donahue, N. M., Gordon, H., Schervish, M., Shilling, J. E., Zaveri, R. A., Wang, J., Andreae, M. O., Zhao, C., Gaudet, B., Liu, Y., Fan, J., and Fast, J. D.: High concentration of ultrafine particles in the Amazon free troposphere produced by organic new particle formation, P. Natl. Acad. Sci. USA, 117, 25344, https://doi.org/10.1073/pnas.2006716117, 2020. "> <meta name="citation_reference" content="Zhu, J. L. and Penner, J. E.: Global Modeling of Secondary Organic Aerosol With Organic Nucleation, J. Geophys. Res.-Atmos., 124, 8260–8286, https://doi.org/10.1029/2019jd030414, 2019. "> <meta name="citation_reference" content="Zhu, J. L., Penner, J. E., Yu, F. Q., Sillman, S., Andreae, M. O., and Coe, H.: Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change, Nat. Commun., 10, 423, https://doi.org/10.1038/s41467-019-08407-7, 2019. "> <meta name="citation_funding_source" content="citation_funder=Max-Planck-Gesellschaft;citation_funder_id=501100004189;citation_grant_number=Minerva Program"> <meta name="citation_funding_source" content="citation_funder=Deutsche Forschungsgemeinschaft;citation_funder_id=501100001659;citation_grant_number=DFG Priority Program SPP 1294"> <meta name="citation_funding_source" content="citation_funder=Deutsches Zentrum für Luft- und Raumfahrt;citation_funder_id=501100002946;citation_grant_number=n/a"> <meta name="citation_funding_source" content="citation_funder=Fundação de Amparo à Pesquisa do Estado de São Paulo;citation_funder_id=501100001807;citation_grant_number=2009/15235-8"> <meta name="citation_funding_source" content="citation_funder=Fundação de Amparo à Pesquisa do Estado de São Paulo;citation_funder_id=501100001807;citation_grant_number=2013/05014-0"> <meta name="citation_funding_source" content="citation_funder=Fundação de Amparo à Pesquisa do Estado de São Paulo;citation_funder_id=501100001807;citation_grant_number=2017/17047-0"> <meta name="citation_pdf_url" content="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.pdf"/> <meta name="citation_xml_url" content="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.xml"/> <meta name="fulltext_pdf" content="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.pdf"/> <meta name="citation_language" content="English"/> <meta name="libraryUrl" content="https://acp.copernicus.org/articles/"/> <meta property="og:image" content="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-avatar-web.png"/> <meta property="og:title" content="Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin"> <meta property="og:description" content="Abstract. Nucleation and condensation associated with biogenic volatile organic compounds (BVOCs) are important aerosol formation pathways, yet their contribution to the upper-tropospheric aerosols remains inconclusive, hindering the understanding of aerosol climate effects. Here, we develop new schemes describing these organic aerosol formation processes in the WRF-Chem model and investigate their impact on the abundance of cloud condensation nuclei (CCN) in the upper troposphere (UT) over the Amazon Basin. We find that the new schemes significantly increase the simulated CCN number concentrations in the UT (e.g., up to ∼ 400 cm−3 at 0.52 % supersaturation) and greatly improve the agreement with the aircraft observations. Organic condensation enhances the simulated CCN concentration by 90 % through promoting particle growth, while organic nucleation, by replenishing new particles, contributes an additional 14 %. Deep convection determines the rate of these organic aerosol formation processes in the UT through controlling the upward transport of biogenic precursors (i.e., BVOCs). This finding emphasizes the importance of the biosphere–atmosphere coupling in regulating upper-tropospheric aerosol concentrations over the tropical forest and calls for attention to its potential role in anthropogenic climate change."> <meta property="og:url" content="https://acp.copernicus.org/articles/23/251/2023/"> <meta property="twitter:image" content="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-avatar-web.png"/> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:title" content="Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin"> <meta name="twitter:description" content="Abstract. Nucleation and condensation associated with biogenic volatile organic compounds (BVOCs) are important aerosol formation pathways, yet their contribution to the upper-tropospheric aerosols remains inconclusive, hindering the understanding of aerosol climate effects. Here, we develop new schemes describing these organic aerosol formation processes in the WRF-Chem model and investigate their impact on the abundance of cloud condensation nuclei (CCN) in the upper troposphere (UT) over the Amazon Basin. We find that the new schemes significantly increase the simulated CCN number concentrations in the UT (e.g., up to ∼ 400 cm−3 at 0.52 % supersaturation) and greatly improve the agreement with the aircraft observations. Organic condensation enhances the simulated CCN concentration by 90 % through promoting particle growth, while organic nucleation, by replenishing new particles, contributes an additional 14 %. Deep convection determines the rate of these organic aerosol formation processes in the UT through controlling the upward transport of biogenic precursors (i.e., BVOCs). This finding emphasizes the importance of the biosphere–atmosphere coupling in regulating upper-tropospheric aerosol concentrations over the tropical forest and calls for attention to its potential role in anthropogenic climate change."> <link rel="icon" href="https://www.atmospheric-chemistry-and-physics.net/favicon.ico" type="image/x-icon"/> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/template_jquery-ui-touch.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/js/respond.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/highstock/2.0.4/highstock.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/CoPublisher.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { fonts: ["TeX"] ,linebreaks: { automatic: true, width: "90% container" } } }); </script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=MML_HTMLorMML-full"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script> <script type="text/javascript"> /* <![CDATA[ */ /* ]]> */ </script> <style type="text/css"> .top_menu { margin-right: 0!important; } </style> </head><body><header id="printheader" class="d-none d-print-block container"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </header> <header class="d-print-none mb-n3 version-2023"> <div class="container"> <div class="row no-gutters mr-0 ml-0 align-items-center header-wrapper mb-lg-3"> <div class="col-auto pr-3"> <div class="layout__moodboard-logo-year-container"> <a class="layout__moodboard-logo-link" target="_blank" href="http://www.egu.eu"> <div class="layout__moodboard-logo"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </div> </a> </div> </div> <div class="d-none d-lg-block col text-md-right layout__title-desktop"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="d-none d-md-block d-lg-none col text-md-right layout__title-tablet"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="col layout__m-location-and-time-mobile d-md-none text-center layout__title-mobile"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> ACP </a> </div> <!-- End Logo --> <div class="col-auto text-right"> <button class="navbar-toggler light mx-auto mr-sm-0" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbar_menu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon light"></span> </button> </div> <!-- Topbar --> <div class="topbar d-print-none"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </div> <!-- End Topbar --> </div> </div> <div class="banner-navigation-breadcrumbs-wrapper"> <div id="navigation"> <nav class="container navbar navbar-expand-lg navbar-light"><!-- Logo --> <div class="collapse navbar-collapse CMSCONTAINER" id="navbar_menu"> <div id="cmsbox_126167" class="cmsbox navbar-collapse"><button style="display: none;" class="navbar-toggler navigation-extended-toggle-button" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="navbar-collapse CMSCONTAINER collapse show" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto no-styling"> <li class="nav-item "> <a target="_parent" class="nav-link active " href="https://www.atmospheric-chemistry-and-physics.net/home.html"><i class='fal fa-home fa-lg' title='Home'></i></a> </li> <li class="nav-item megamenu "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10845" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Articles & preprints <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10845"> <div class="container"> <div class="row"> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Recent</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/">Recent papers</a> </div> <div class="dropdown-header">Highlights</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/acp_letters.html">ACP Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/editors_choice.html">Editor's choice</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/opinion.html">Opinions</a> </div> <div class="dropdown-header">Regular articles</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/research_article.html">Research articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/review_article.html">Review articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/measurement_report.html">Measurement reports</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/technical_note.html">Technical notes</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Special issues</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issue_overview.html">SI overview articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issues.html">Published SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/scheduled_sis.html">Scheduled SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/how_to_apply_for_an_si.html">How to apply for an SI</a> </div> <div class="dropdown-header">EGU Compilations</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egu-letters.net/">EGU Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://encyclopedia-of-geosciences.net/">Encyclopedia of Geosciences</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egusphere.net/">EGUsphere</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Alerts</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/subscribe_to_alerts.html">Subscribe to alerts</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/submission.html">Submission</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10849" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Policies <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10849"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/licence_and_copyright.html">Licence & copyright</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/general_terms.html">General terms</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_authors.html">Guidelines for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_editors.html">Guidelines for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_policy.html">Publication policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/data_policy.html">Data policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_ethics.html">Publication ethics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/inclusivity_in_global_research.html">Inclusivity in global research</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/competing_interests_policy.html">Competing interests policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/appeals_and_complaints.html">Appeals & complaints</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/proofreading_guidelines.html">Proofreading guidelines</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_authors.html">Obligations for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_editors.html">Obligations for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_referees.html">Obligations for referees</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/author_name_change.html">Inclusive author name-change policy</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown300" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Peer review <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown300"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/interactive_review_process.html">Interactive review process</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/finding_an_editor.html">Finding an editor</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/review_criteria.html">Review criteria</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a data-non-mobile-optimized="1" target="_parent" class="" href="https://editor.copernicus.org/ACP/my_manuscript_overview">Manuscript tracking</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/reviewer_recognition.html">Reviewer recognition</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/editorial_board.html">Editorial board</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown29677" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Awards <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown29677"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-referee-awards.html">Outstanding referee awards</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-editor-award.html">Outstanding editor award</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/paul-crutzen-publication-award.html">Paul Crutzen Publication award</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown6086" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">About <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown6086"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/aims_and_scope.html">Aims & scope</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/subject_areas.html">Subject areas</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/manuscript_types.html">Manuscript types</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_processing_charges.html">Article processing charges</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/financial_support.html">Financial support</a> </div> <div class="dropdown dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="dropdown-toggle dropdown-item " href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press.html" > News & press<span class="caret"></span> </a> <div class="dropdown-menu level-2 " aria-labelledby="navbarDropdown316"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2019-11-27_thanks-to-cristina-facchini-and-rolf-sander-and-welcome-to-barbara-ervens.html">Many thanks to Cristina Facchini and Rolf Sander and welcome to Barbara Ervens as executive editor of ACP</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2020-08-28_first-acp-letter-published.html">First ACP Letter: The value of remote marine aerosol measurements for constraining radiative forcing uncertainty</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-01-14_atmospheric-evolution-of-emissions-from-a-boreal-forest-fire-the-formation-of-highly-functionalized-oxygen-nitrogen-and-sulfur-containing-organic-compounds.html">Atmospheric evolution of emissions from a boreal forest fire: the formation of highly functionalized oxygen-, nitrogen-, and sulfur-containing organic compounds</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-04-25_observing-the-timescales-of-aerosol-cloud-interactions-in-snapshot-satellite-images.html">Observing the timescales of aerosol–cloud interactions in snapshot satellite images</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-10-15_new-acp-letter-how-alkaline-compounds-control-atmospheric-aerosol-particle-acidity.html">New ACP Letter: How alkaline compounds control atmospheric aerosol particle acidity</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-11-16_changes-in-biomass-burning-wetland-extent-or-agriculture-drive-atmospheric-nh3-trends-in-select-african-regions.html">Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH3 trends in select African regions</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2022-07-18_two-of-acps-founding-executive-editors-step-down.html">Two of ACP's founding executive editors step down</a> </div> </div> </div> </div> </div> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/egu_resources.html">EGU resources</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/promote_your_work.html">Promote your work</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_statistics.html">Journal statistics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_metrics.html">Journal metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/abstracted_and_indexed.html">Abstracted & indexed</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_level_metrics.html">Article level metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/faqs.html">FAQs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/xml_harvesting_and_oai-pmh.html">XML harvesting & OAI-PMH</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/egu_publications.html">EGU publications</a> </li> <li class="nav-item "> <a target="_blank" class="nav-link " data-non-mobile-optimized="1" href="https://editor.copernicus.org/ACP/"><i class='fal fa-sign-in-alt fa-lg' title='Login'></i></a> </li> <!-- Topbar --> <li class="d-print-none d-lg-none pt-2 topbar-mobile"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </li> <!-- End Topbar --> </ul> </div> </div></div> </nav> </div> <section id="banner" class="banner dzsparallaxer use-loading auto-init height-is-based-on-content mode-scroll loaded dzsprx-readyall"> <div class="divimage dzsparallaxer--target layout__moodboard-banner" data-src="" style=""></div> <div id="headers-content-container" class="container CMSCONTAINER"> <div id="cmsbox_126230" class="cmsbox "> <span class="header-small text-uppercase"> </span> <h1 class="display-4 header-get-function home-header hide-md-on-version2023"> Article </h1> </div></div> </section> <div id="breadcrumbs" class="breadcrumbs"> <div class="container"> <div class="row align-items-center"> <div class="d-none d-sm-block text-nowrap pageactions"></div> <!-- START_SEARCH --> <!-- END_SEARCH --> <!-- The template part snippet fo breadcrubs is in source code--> <div class="justify-content-between col-auto col-md CMSCONTAINER" id="breadcrumbs_content_container"><div id="cmsbox_1088152" class="cmsbox "><!-- tpl: templates/get_functions/get_breadcrumbs/index --> <!-- START_BREADCRUMBS_CONTAINER --> <ol class="breadcrumb"> <li class="breadcrumb-item"><a href="https://acp.copernicus.org/">Articles</a></li><li class="breadcrumb-item"><a href="https://acp.copernicus.org/articles/23/issue1.html">Volume 23, issue 1</a></li><li class="breadcrumb-item active">ACP, 23, 251–272, 2023</li> </ol> <!-- END_BREADCRUMBS_CONTAINER --> </div></div> <div class="col col-md-4 text-right page-search CMSCONTAINER" id="search_content_container"><div id="cmsbox_1088035" class="cmsbox "><!-- v1.31 --> <!-- 1.31: added placeholder for test system sanitizing--> <!-- 1.3: #855 --> <!-- 1.2: #166 --> <!-- CMS ressources/FinderBreadcrumbBox.html --> <!-- START_SITE_SEARCH --> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <div class="row align-items-center no-gutters py-1" id="search-wrapper"> <div class="col-auto pl-0 pr-1"> <a id="templateSearchInfoBtn" role="button" tabindex="99" data-container="body" data-toggle="popover" data-placement="bottom" data-trigger="click"><span class="fal fa-info-circle"></span></a> </div> <div class="col pl-0 pr-1"> <input type="search" placeholder="Search" name="q" class="form-control form-control-sm" id="search_query_solr"/> </div> <div class="col-auto pl-0"> <button title="Start site search" id="start_site_search_solr" class="btn btn-sm btn-success"><span class="co-search"></span></button> </div> </div> <div class="text-left"> <div id="templateSearchInfo" class="d-none"> <div> <p> Multiple terms: term1 term2<br /> <i>red apples</i><br /> returns results with all terms like:<br /> <i>Fructose levels in <strong>red</strong> and <strong>green</strong> apples</i><br /> </p> <p> Precise match in quotes: "term1 term2"<br /> <i>"red apples"</i><br /> returns results matching exactly like:<br /> <i>Anthocyanin biosynthesis in <strong>red apples</strong></i><br /> </p> <p> Exclude a term with -: term1 -term2<br /> <i>apples -red</i><br /> returns results containing <i><strong>apples</strong></i> but not <i><strong>red</strong></i>:<br /> <i>Malic acid in green <strong>apples</strong></i><br /> </p> </div> </div> <div class="modal " id="templateSearchResultModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header modal-header--sticky shadow one-column d-block"> <div class="row no-gutters mx-1"> <div class="col mr-3"> <h1 class="" id="resultsSearchHeader"><span id="templateSearchResultNr"></span> hit<span id="templateSearchResultNrPlural">s</span> for <span id="templateSearchResultTerm"></span></h1> </div> <div class="col-auto"> <a id="scrolltopmodal" href="javascript:void(0)" onclick="scrollModalTop();" style="display: none;"><i class="co-home"></i></a> </div> <div class="col-auto"> <button data-dismiss="modal" aria-label="Close" class="btn btn-danger mt-1">Close</button> </div> </div> </div> <div class="modal-body one-column"> <!-- $$co-sanitizing-slot1$$ --> <div class="grid-container mx-n3"><div class="grid-85 tablet-grid-85"> <button aria-label="Refine" id="refineSearchModal" class="btn btn-primary float-left mt-4">Refine your search</button> <button aria-label="Refine" id="refineSearchModalHide" class="btn btn-danger float-left d-none mt-4">Hide refinement</button> </div></div> <div class="grid-container mx-n3"><div class="grid-100 tablet-grid-100"><div id="templateRefineSearch" class="d-none"></div></div></div> <div id="templateSearchResultContainer" class="searchResultsModal mx-n3"></div> <div class="grid-container mb-0"><div class="grid-100 tablet-grid-100"><div id="templateSearchResultContainerEmpty" class="co-notification d-none">There are no results for your search term.</div></div></div> </div> </div> </div> </div> </div> <!-- feedback network problems --> <div class="modal " id="templateSearchErrorModal1" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Network problems</h1> <div class="co-error">We are sorry, but your search could not be completed due to network problems. Please try again later.</div> </div> </div> </div> </div> <!-- feedback server timeout --> <div class="modal " id="templateSearchErrorModal2" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Server timeout</h1> <div class="co-error">We are sorry, but your search could not be completed due to server timeouts. Please try again later.</div> </div> </div> </div> </div> <!-- feedback invalid search term --> <div class="modal " id="templateSearchErrorModal3" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Empty search term</h1> <div class="co-error">You have applied the search with an empty search term. Please revisit and try again.</div> </div> </div> </div> </div> <!-- feedback too many requests --> <div class="modal " id="templateSearchErrorModal4" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Too many requests</h1> <div class="co-error">We are sorry, but we have received too many parallel search requests. Please try again later.</div> </div> </div> </div> </div> <!-- loading --> <div class="modal " id="templateSearchLoadingModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-sm modal-dialog-centered"> <div class="modal-content p-3 co_LoadingDotsContainer"> <div class="modal-body"> <div class="text">Searching</div> <div class="dots d-flex justify-content-center"><div class="dot"></div><div class="dot"></div><div class="dot"></div></div></div> </div> </div> </div> </div> <style> /*.modal {*/ /* background: rgba(255, 255, 255, 0.8);*/ /*}*/ .modal-header--sticky { position: sticky; top: 0; background-color: inherit; z-index: 1055; } .grid-container { margin-bottom: 1em; /*padding-left: 0;*/ /*padding-right: 0;*/ } #templateSearchInfo{ display: none; background-color: var(--background-color-primary); margin-top: 1px; z-index: 5; border: 1px solid var(--color-primary); opacity: .8; font-size: .7rem; border-radius: .25rem; } #templateSearchLoadingModal .co_LoadingDotsContainer { z-index: 1000; } #templateSearchLoadingModal .co_LoadingDotsContainer .text { text-align: center; font-weight: bold; padding-bottom: 1rem; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot { background-color: #0072BC; border: 2px solid white; border-radius: 50%; float: left; height: 2rem; width: 2rem; margin: 0 5px; -webkit-transform: scale(0); transform: scale(0); -webkit-animation: animation_dots_breath 1000ms ease infinite 0ms; animation: animation_dots_breath 1000ms ease infinite 0ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(2) { -webkit-animation: animation_dots_breath 1000ms ease infinite 300ms; animation: animation_dots_breath 1000ms ease infinite 300ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(3) { -webkit-animation: animation_dots_breath 1000ms ease infinite 600ms; animation: animation_dots_breath 1000ms ease infinite 600ms; } #templateSearchResultModal [class*="grid-"] { padding-left: 10px !important; padding-right: 10px !important; } #templateSearchResultTerm { font-weight: bold; } #resultsSearchHeader { display: block !important; } #scrolltopmodal { font-size: 3.0em; margin-top: 0 !important; margin-right: 15px; } @-webkit-keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @media (min-width: 768px) and (max-width: 991px) { #templateSearchResultModal .modal-dialog { max-width: 90%; } } </style> <script> if(document.querySelector('meta[name="global_moBaseURL"]').content == "https://meetingorganizer.copernicus.org/") FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder-app')+"search/library.php"; else FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder')+"search/library.php"; SEARCH_INPUT = document.getElementById('search_query_solr'); SEARCH_INPUT_MODAL = document.getElementById('search_query_modal'); searchRunning = false; offset = 20; INITIAL_OFFSET = 20; var MutationObserver = window.MutationObserver || window.WebKitMutationObserver || window.MozMutationObserver; const targetNodeSearchModal = document.getElementById("templateSearchResultModal"); const configSearchModal = { attributes: true, childList: true, subtree: true }; // Callback function to execute when mutations are observed const callbackSearchModal = (mutationList, observer) => { for (const mutation of mutationList) { if (mutation.type === "childList") { // console.log("A child node has been added or removed."); picturesGallery(); } else if (mutation.type === "attributes") { // console.log(`The ${mutation.attributeName} attribute was modified.`); } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callbackSearchModal); // Start observing the target node for configured mutations observer.observe(targetNodeSearchModal, configSearchModal); function _addEventListener() { document.getElementById('search_query_solr').addEventListener('keypress', (e) => { if (e.key === 'Enter') _runSearch(); }); document.getElementById('start_site_search_solr').addEventListener('click', (e) => { _runSearch(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $('#templateSearchResultModal').scroll(function() { if ($(this).scrollTop()) { $('#scrolltopmodal:hidden').stop(true, true).fadeIn().css("display","inline-block"); } else { $('#scrolltopmodal').stop(true, true).fadeOut(); } }); } function scrollModalTop() { $('#templateSearchResultModal').animate({ scrollTop: 0 }, 'slow'); // $('#templateSearchResultModal').scrollTop(0); } function picturesGallery() { $('body').off('click', '.paperlist-avatar img'); $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; if (typeof search_gallery != "undefined") { search_gallery = null; } $('body').on('click', '#templateSearchResultContainer .paperlist-avatar img', function (e) { if(searchPaperListAvatarThumb.length === 0 && searchPaperListAvatar.length === 0) { $('#templateSearchResultContainer .paperlist-avatar img').each(function () { var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption = $(this).attr('data-caption'); var figure = { src: webversion, w: width, h: height, title: caption }; searchPaperListAvatarThumb.push($(this)[0]); searchPaperListAvatar.push(figure); }); } var target = $(this); var index = $('#templateSearchResultContainer .paperlist-avatar img').index(target); var options = { showHideOpacity:false, bgOpacity:0.8, index:index, spacing:0.15, history: false, focus:false, getThumbBoundsFn: function(index) { var thumbnail = searchPaperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; search_gallery = new PhotoSwipe( search_pswpElement, PhotoSwipeUI_Default,[searchPaperListAvatar[index]],options); search_gallery.init(); }); } function showError(code, msg) { console.error(code, msg); $("#templateSearchLoadingModal").modal("hide"); switch(code) { case -3: // http request fail case -2: // invalid MO response case 4: // CORS case 1: // project $("#templateSearchErrorModal1").modal({}); break; case -1: // timeout $("#templateSearchErrorModal2").modal({}); break; case 2: // empty term $("#templateSearchErrorModal3").modal({}); break; case 3: // DOS $("#templateSearchErrorModal4").modal({}); break; default: $("#templateSearchErrorModal1").modal({}); break; } } function clearForm() { var myFormElement = document.getElementById("library-filters") var elements = myFormElement.elements; $(".form-check-input").prop('checked', false).change().parent().removeClass('active'); for(i=0; i<elements.length; i++) { field_type = elements[i].type.toLowerCase(); switch(field_type) { case "text": case "password": case "textarea": case "hidden": elements[i].value = ""; break; case "radio": case "checkbox": if (elements[i].checked) { elements[i].checked = false; } break; case "select-one": case "select-multi": elements[i].selectedIndex = -1; break; default: break; } } } function generateShowMoreButton(offset, term) { var code = '<button aria-label="ShowMore" id="showMore" class="btn btn-success float-right mr-2" data-offset="' + offset + '">Show more</button>'; return code; } function hideModal(id) { $("#"+id).modal('hide'); } function showModal(id) { $("#"+id).modal({}); } function prepareForPhotoSwipe() { searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; } function _sendAjax(projectID, term) { let httpRequest = new XMLHttpRequest(); if(searchRunning) { console.log("Search running"); return; } if (!httpRequest) { console.error("Giving up :( Cannot create an XMLHTTP instance"); showError(-1); return false; } // httpRequest.timeout = 20000; // time in milliseconds httpRequest.withCredentials = false; httpRequest.ontimeout = (e) => { showError(-1, "result timeout"); searchRunning = false; }; httpRequest.onreadystatechange = function() { if (httpRequest.readyState === XMLHttpRequest.DONE) { searchRunning = false; if (httpRequest.status === 200) { let rs = JSON.parse(httpRequest.responseText); if(rs) { if(rs.isError) { showError(rs.errorCode, rs.errorMessage); } else { let html = rs.resultHTMLs; $("#modal_search_query").val(rs.term); $("#templateSearchResultTerm").html(rs.term); $("#templateSearchResultNr").html(rs.resultsNr); $("#templateRefineSearch").html(rs.filter); if(rs.filter == false) { console.log('filter empty'); $("#refineSearchModal").removeClass('d-block').addClass('d-none'); } if(rs.resultsNr==1) $("#templateSearchResultNrPlural").hide(); else $("#templateSearchResultNrPlural").show(); if(rs.resultsNr==0) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(""); $("#templateSearchResultContainerEmpty").removeClass("d-none"); showModal('templateSearchResultModal'); } else { if((rs.resultsNr - offset)>0) { html = html + generateShowMoreButton(offset, term); } $("#templateSearchResultContainerEmpty").addClass("d-none"); if( offset == INITIAL_OFFSET) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(html); showModal('templateSearchResultModal'); } else { $('#showMore').remove(); startHtml = $("#templateSearchResultContainer").html(); $("#templateSearchResultContainer").html(startHtml + html); } // prepareForPhotoSwipe(); } } } else { showError(-2, "invalid result"); } } else { showError(-3, "There was a problem with the request."); } } }; if(offset == INITIAL_OFFSET) { hideModal('templateSearchResultModal'); showModal('templateSearchLoadingModal'); } httpRequest.open("GET", FINDER_URL+"?project="+projectID+"&term="+encodeURI(term)+((offset>INITIAL_OFFSET)?("&offset="+(offset-INITIAL_OFFSET)) : "")); httpRequest.send(); searchRunning = true; } function _runSearch() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var term = _searchTrimInput(SEARCH_INPUT.value); if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } function _searchTrimInput(str) { return str.replace(/^\s+|\s+$/gm, ''); } function run() { _addEventListener(); $('#templateSearchInfoBtn, #modalSearchInfoBtn').popover({ sanitize: false, html: true, content: $("#templateSearchInfo").html(), placement: "bottom", template: '<div class="popover" role="tooltip"><div class="arrow"></div><button class="m-1 float-right btn btn-sm btn-danger" id="templateSearchInfoClose"><i class="fas fa-times-circle"></i></button><h3 class="popover-header"></h3><div class="popover-body"></div></div>', title: "Search tips", }); $(document).click(function (e) { let t = $(e.target); let a = t && t.attr("data-toggle")!=="popover" && t.parent().attr("data-toggle")!=="popover"; let b = t && $(".popover").has(t).length===0; if(a && b) { $('#templateSearchInfoBtn').popover('hide'); $('#modalSearchInfoBtn').popover('hide'); } }); $('#templateSearchInfoBtn').on('shown.bs.popover', function () { $("#templateSearchInfoClose").click(function(e){ $('#templateSearchInfoBtn').popover('hide'); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }) $('#templateSearchResultModal').on('hidden.bs.modal', function(e) { $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); var pswpElement = document.querySelectorAll('.pswp')[0]; var gallery = null; var paperListAvatar = []; var paperListAvatarThumb = []; $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); $('body').on('click', '.paperlist-avatar img', function (e) { if(paperListAvatarThumb.length === 0 && paperListAvatar.length === 0){ $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); } var target = $(this); var index = $('.paperlist-avatar img').index(target); var options = { showHideOpacity:true, bgOpacity:0.8, index:index, spacing:0.15, getThumbBoundsFn: function(index) { var thumbnail = paperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; gallery = new PhotoSwipe( pswpElement, PhotoSwipeUI_Default,[paperListAvatar[index]],options); gallery.init(); }); }); $('#templateSearchResultModal').on('hide.bs.modal', function(e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); offset = INITIAL_OFFSET; }) $(document).on("click", "#showMore", function(e){ offset+=INITIAL_OFFSET; runSearchModal() e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $(document).ready(function() { $(document).on("click", "#refineSearchModal", function (e) { $("#templateRefineSearch").removeClass('d-none').addClass('d-block'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#refineSearchModalHide", function (e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#modal_start_site_search", function (e) { runSearchModal(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }); } function runSearchModal() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var queryString = $('#library-filters').serialize(); var term = _searchTrimInput($('#modal_search_query').val()); term+='&'+queryString; if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } if(document.getElementById('search_query_solr')) { run(); } </script> <!-- END_SITE_SEARCH --></div></div> </div> </div> </div> </div> </header> <!--=== Content ===--> <main class="one-column version-2023"> <div id="content" class="container"> <div id="page_content_container" class="CMSCONTAINER row"> <div class="col"> <div class="article"> <div id="top"></div> <div class="row no-gutters header-block mb-1 align-items-end"> <div class="col-12 col-xl-5"> <div class="row d-xl-none mb-3"> <div class="col-12" > <div class="d-none d-lg-block articleBackLink"> <a href="https://acp.copernicus.org/">Articles</a> | <a href="https://acp.copernicus.org/articles/23/issue1.html">Volume 23, issue 1</a> </div> <div class="tab co-angel-left d-md-none"></div> <div class="tab co-angel-right d-md-none"></div> <div class="mobile-citation"> <ul class="tab-navigation no-styling"> <li class="tab1.articlf active"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.html">Article</a></nobr></li><li class="tab2.assett"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-assets.html">Assets</a></nobr></li><li class="tab3.discussioo"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-discussion.html">Peer review</a></nobr></li><li class="tab450.metrict"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-metrics.html">Metrics</a></nobr></li><li class="tab500.relationt"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-relations.html">Related articles</a></nobr></li> </ul> </div> </div> </div> <div class="d-lg-none"> <span class="articleBackLink"><a href="https://acp.copernicus.org/">Articles</a> | <a href="https://acp.copernicus.org/articles/23/issue1.html">Volume 23, issue 1</a> </span> <div class="citation-header" id="citation-content"> <div class="citation-doi">https://doi.org/10.5194/acp-23-251-2023</div> <div class="citation-copyright">© Author(s) 2023. This work is distributed under <br class="hide-on-mobile hide-on-tablet" />the Creative Commons Attribution 4.0 License.</div> </div> </div> <div class="hide-on-mobile hide-on-tablet"> <div class="citation-header"> <div class="citation-doi">https://doi.org/10.5194/acp-23-251-2023</div> <div class="citation-copyright">© Author(s) 2023. This work is distributed under <br class="hide-on-mobile hide-on-tablet" />the Creative Commons Attribution 4.0 License.</div> </div> </div> </div> <div class="col-7 d-none d-xl-block"> <div class="text-right articleBackLink"> <a href="https://acp.copernicus.org/">Articles</a> | <a href="https://acp.copernicus.org/articles/23/issue1.html">Volume 23, issue 1</a> </div> <div class="tab co-angel-left d-md-none"></div> <div class="tab co-angel-right d-md-none"></div> <div class="mobile-citation"> <ul class="tab-navigation no-styling"> <li class="tab1.articlf active"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.html">Article</a></nobr></li><li class="tab2.assett"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-assets.html">Assets</a></nobr></li><li class="tab3.discussioo"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-discussion.html">Peer review</a></nobr></li><li class="tab450.metrict"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-metrics.html">Metrics</a></nobr></li><li class="tab500.relationt"><nobr><a href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-relations.html">Related articles</a></nobr></li> </ul> </div> </div> </div> <div class="ms-type row no-gutters d-none d-lg-flex mb-1 mt-0 align-items-center"> <div class="col"> <div class="row no-gutters align-items-center"> <div class="col-auto"> <mark>ACP Letters</mark> </div> <div class="col-auto"> | <strong>Highlight paper</strong> </div> <div class="col"> | <a target="_blank" href="https://creativecommons.org/licenses/by/4.0/" rel="license" class="licence-icon-svg"><img src="https://www.atmospheric-chemistry-and-physics.net/licenceSVG_16.svg"></a> </div> </div> </div> <div class="col-auto text-right">13 Jan 2023</div> </div> <div class="ms-type row no-gutters d-lg-none mb-1 align-items-center"> <div class="col-12"> <mark>ACP Letters</mark> | <strong>Highlight paper</strong> | <a target="_blank" href="https://creativecommons.org/licenses/by/4.0/" rel="license" class="licence-icon-svg "><img src="https://www.atmospheric-chemistry-and-physics.net/licenceSVG_16.svg"></a> | <span>13 Jan 2023</span> </div> </div> <a class="article-avatar hide-on-mobile hide-on-tablet" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-avatar-web.png" target="_blank"> <img border="0" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-avatar-thumb150.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-avatar-web.png" data-width="600" data-height="342"> </a> <h1>Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin</h1> <div class="auto-fixed-top-forced article-title"> <div class="grid-container show-on-fixed" style="display: none"> <div class="grid-85 mobile-grid-85 tablet-grid-85 grid-parent"> <span class="d-block hide-on-mobile hide-on-tablet journal-contentHeaderColor">Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin</span> <span class="d-block hide-on-desktop journal-contentHeaderColor">Strong particle production and condensational growth in the upper troposphere sustained by...</span> <span>Yunfan Liu et al.</span> </div> <div class="grid-1 mobile-grid-15 tablet-grid-15 grid-parent text-right"> <a id="scrolltop" class="scrollto" href="https://acp.copernicus.org/articles/23/251/2023/#top"><i class="co-home"></i> </a> </div> </div> </div> <div class="mb-3 authors-with-affiliations"> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783667">Yunfan Liu</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783668">Hang Su</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783669">Siwen Wang</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783670">Chao Wei</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783671">Wei Tao</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783672">Mira L. Pöhlker</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783673">Christopher Pöhlker</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783674">Bruna A. Holanda</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783675">Ovid O. Krüger</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783676">Thorsten Hoffmann</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783677">Manfred Wendisch</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783678">Paulo Artaxo</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783679">Ulrich Pöschl</span>,</nobr> <nobr><span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783680">Meinrat O. Andreae</span>,</nobr> <nobr>and <span class="hover-cursor-pointer journal-contentLinkColor hover-underline" data-toggle="modal" data-target=".author783681">Yafang Cheng<a href="mailto:yafang.cheng@mpic.de"><i class="fal fa-envelope ml-1"></i></a></span></nobr> </div> <div class="modal fade author783667" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Yunfan Liu</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783668" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Hang Su</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0003-4889-1669" data-title="https://orcid.org/0000-0003-4889-1669"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0003-4889-1669</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783669" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Siwen Wang</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783670" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Chao Wei</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783671" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Wei Tao</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783672" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Mira L. Pöhlker</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> <div class="row"> <div class="col-12 mb-3"> Experimental Aerosol and Cloud Microphysics Department, Leibniz Institute for Tropospheric Research, Leipzig, Germany </div> </div> <div class="row"> <div class="col-12 mb-3"> Faculty of Physics and Earth Sciences, Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783673" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Christopher Pöhlker</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0001-6958-425X" data-title="https://orcid.org/0000-0001-6958-425X"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0001-6958-425X</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783674" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Bruna A. Holanda</h3> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783675" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Ovid O. Krüger</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-3321-6655" data-title="https://orcid.org/0000-0002-3321-6655"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-3321-6655</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783676" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Thorsten Hoffmann</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0003-0939-271X" data-title="https://orcid.org/0000-0003-0939-271X"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0003-0939-271X</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783677" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Manfred Wendisch</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0002-4652-5561" data-title="https://orcid.org/0000-0002-4652-5561"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0002-4652-5561</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Faculty of Physics and Earth Sciences, Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783678" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Paulo Artaxo</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0001-7754-3036" data-title="https://orcid.org/0000-0001-7754-3036"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0001-7754-3036</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Institute of Physics, University of São Paulo, São Paulo, Brazil </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783679" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Ulrich Pöschl</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0003-1412-3557" data-title="https://orcid.org/0000-0003-1412-3557"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0003-1412-3557</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783680" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Meinrat O. Andreae</h3> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0003-1968-7925" data-title="https://orcid.org/0000-0003-1968-7925"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0003-1968-7925</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> <div class="row"> <div class="col-12 mb-3"> Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA </div> </div> </div> </div> </div> </div> </div> <div class="modal fade author783681" tabindex="-1" aria-hidden="true"> <div class="modal-dialog modal-dialog-centered modal-dialog-scrollable"> <div class="modal-content"> <div class="modal-header"> <div class="container-fluid p-0"> <h3 class="modal-title">Yafang Cheng</h3> <div class="row no-gutters"> <div class="col-12">CORRESPONDING AUTHOR</div> <div class="col-12"><a href="mailto:yafang.cheng@mpic.de"><i class="fal fa-envelope mr-2"></i>yafang.cheng@mpic.de</a></div> </div> <div class="row no-gutters"> <div class="col-12"> <a class="orcid-authors-logo" target="_blank" href="https://orcid.org/0000-0003-4912-9879" data-title="https://orcid.org/0000-0003-4912-9879"><svg class="mr-2" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><image xlink:href="https://www.atmospheric-chemistry-and-physics.net/orcid_icon.svg" src="https://www.atmospheric-chemistry-and-physics.net/orcid_icon_128x128.png" width="100%" height="100%"></image></svg>https://orcid.org/0000-0003-4912-9879</a> </div> </div> </div> <button type="button" class="close" data-dismiss="modal" aria-label="Close"> <span aria-hidden="true">×</span> </button> </div> <div class="modal-body"> <div class="container-fluid p-0"> <div class="row"> <div class="col-12 mb-3"> Minerva Research Group, Max Planck Institute for Chemistry, Mainz, Germany </div> </div> </div> </div> </div> </div> </div> <div class="abstract sec" id="abstract"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-show="#abstract .co-arrow-open,.abstract-content" data-hide="#abstract .co-arrow-closed,.abstract-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Abstract<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed" style="display:none"></i><i class="co-arrow-open" style="display:inline-block"></i></span></div></span></div> <div class="abstract-content show-no-js"><p id="d1e263">Nucleation and condensation associated with biogenic volatile organic compounds (BVOCs) are important aerosol formation pathways, yet their contribution to the upper-tropospheric aerosols remains inconclusive, hindering the understanding of aerosol climate effects. Here, we develop new schemes describing these organic aerosol formation processes in the WRF-Chem model and investigate their impact on the abundance of cloud condensation nuclei (CCN) in the upper troposphere (UT) over the Amazon Basin. We find that the new schemes significantly increase the simulated CCN number concentrations in the UT (e.g., up to <span class="inline-formula">∼</span> 400 cm<span class="inline-formula"><sup>−3</sup></span> at 0.52 % supersaturation) and greatly improve the agreement with the aircraft observations. Organic condensation enhances the simulated CCN concentration by 90 % through promoting particle growth, while organic nucleation, by replenishing new particles, contributes an additional 14 %. Deep convection determines the rate of these organic aerosol formation processes in the UT through controlling the upward transport of biogenic precursors (i.e., BVOCs). This finding emphasizes the importance of the biosphere–atmosphere coupling in regulating upper-tropospheric aerosol concentrations over the tropical forest and calls for attention to its potential role in anthropogenic climate change.</p></div><span class="abstract-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet" style="display:none"></span></div> <div id="oldMobileDownloadBox" class="widget dark-border hide-on-desktop download-and-links"> <div class="legend journal-contentLinkColor">Download & links</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li> <a class="triangle" data-toggle=".box-notice" data-duration="300" title="PDF Version (8728 KB)" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.pdf" > Article (PDF, 8728 KB) </a> </li> </ul> </div> </div> <div id="downloadBoxOneColumn" class="widget dark-border hide-on-desktop download-and-links"> <div class="legend journal-contentLinkColor">Download & links</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" title="PDF Version (8728 KB)" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.pdf">Article</a> <nobr>(8728 KB)</nobr> </li> <li> <a class="triangle" title="XML Version" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.xml">Full-text XML</a> </li> <li><a class="triangle" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.bib">BibTeX</a></li> <li><a class="triangle" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.ris">EndNote</a></li> </ul> </div> </div> <div id="share" class="oneColumnShareMobileBox widget dark-border hide-on-desktop"> <div class="legend journal-contentLinkColor">Share</div> <div class="content row m-0 py-1"> <div class="col-auto pl-0"> <a class="share-one-line" href="https://www.mendeley.com/import/?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F" title="Mendeley" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/mendeley.png" alt="Mendeley"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.reddit.com/submit?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F" title="Reddit" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/reddit.png" alt="Reddit"> </a> </div> <div class="col-auto"> <a class="share-one-line last" href="https://twitter.com/intent/tweet?text=Strong+particle+production+and+condensational+growth+in+the+upper+troposphere+sustained+by+biogenic+VOCs+from+the+canopy+of+the+Amazon+Basin https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F" title="Twitter" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/twitter.png" alt="Twitter"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.facebook.com/share.php?u=https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F&t=Strong+particle+production+and+condensational+growth+in+the+upper+troposphere+sustained+by+biogenic+VOCs+from+the+canopy+of+the+Amazon+Basin" title="Facebook" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/facebook.png" alt="Facebook"/> </a> </div> <div class="col-auto pr-0"> <a class="share-one-line last" href="https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F&title=Strong+particle+production+and+condensational+growth+in+the+upper+troposphere+sustained+by+biogenic+VOCs+from+the+canopy+of+the+Amazon+Basin" title="LinkedIn" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/linkedin.png" alt="LinkedIn"> </a> </div> <div class="col pr-0 mobile-native-share"> <a href="#" data-title="Atmospheric Chemistry and Physics" data-text="*Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin* Yunfan Liu et al." data-url="https://acp.copernicus.org/articles/23/251/2023/" class="mobile-native-share share-one-line last"><i class="co-mobile-share display-none"></i></a> </div> </div> </div> <div id="citation-footer" class="sec"> <div class="h1-special journal-contentHeaderColor">How to cite. </div> <div class="citation-footer-content show-no-js"> <p> <div class="citation-footer"> Liu, Y., Su, H., Wang, S., Wei, C., Tao, W., Pöhlker, M. L., Pöhlker, C., Holanda, B. A., Krüger, O. O., Hoffmann, T., Wendisch, M., Artaxo, P., Pöschl, U., Andreae, M. O., and Cheng, Y.: Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin, Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, 2023. </div> </p> </div> </div> <div id="article-dates" class="sec"> <div class="article-dates dates-content my-3"> <nobr>Received: 28 Jul 2022</nobr> – <nobr>Discussion started: 08 Aug 2022</nobr> – <nobr>Revised: 12 Nov 2022</nobr> – <nobr>Accepted: 30 Nov 2022</nobr> – <nobr>Published: 13 Jan 2023</nobr> </div> </div> <div class="sec intro" id="section1"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section1 .co-arrow-open,.section1-content" data-show="#section1 .co-arrow-closed,.section1-mobile-bottom-border"><div id="Ch1.S1" class="h1"><span class="label">1</span> Introduction<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section1-content show-no-js hide-on-mobile-soft"><p id="d1e294">Atmospheric aerosol particles can influence the Earth's climate by acting as cloud condensation nuclei (CCN), among other pathways. The CCN residing in the upper troposphere (UT), which have been repeatedly observed in a substantial amount over the globe (e.g., Minikin et al., 2003; Andreae et al., 2018, and references therein; Williamson et al., 2019), not only constitute an important aerosol source for the lower troposphere (J. Wang et al., 2016; Williamson et al., 2019), but also can directly be activated into cloud droplets through in-cloud activation and thus alter the cloud properties (Paluch and Knight, 1984; Fan et al., 2018). However, the formation mechanisms for the upper-tropospheric CCN are poorly understood, which impedes their representation in models and the assessment of their climate effects (Heald et al., 2011; Watson-Parris et al., 2019).</p><p id="d1e297">Large concentrations of cloud active aerosol particles were detected in the UT over the Amazon by aircraft observations during the ACRIDICON-CHUVA campaign (Wendisch et al., 2016; Andreae et al., 2018). Chemical analysis demonstrated that their composition is dominated by organic compounds with signatures of secondary organic aerosol (SOA) related to the oxidation of biogenic volatile organic compounds (BVOCs; Schulz et al., 2018); yet, detailed processes driving the biogenic SOA formation remain inconclusive. Generally, two mechanisms may promote the CCN production from biogenic SOA in the UT. The first relates to organic new particle formation (NPF), where aerosol particles can form out of nucleation of highly oxygenated molecules (HOMs) oxidized from biogenic organic vapors such as <span class="inline-formula"><i>α</i></span>-pinene and <span class="inline-formula"><i>β</i></span>-pinene (Burkholder et al., 2007; Kirkby et al., 2016) and subsequently grow to larger sizes. The pure organic NPF can notably affect the atmospheric CCN budget in the planetary boundary layer (PBL; Gordon et al., 2016). Alternatively, if there are enough preexisting fine particles in the UT from transport or inorganic nucleation, the condensation of low volatile organic compounds (LVOCs) produced by BVOC oxidation onto the preexisting particles can also increase the CCN number (D'Andrea et al., 2013). However, a quantitative assessment of the BVOC-driven nucleation and condensation processes is lacking (Tröstl et al., 2016; Williamson et al., 2019). To what extent these two processes account for the CCN production in the Amazon UT, and whether these processes and CCN formation proceed in the UT or if CCN form in the lower troposphere and then are transported upwards, is not known.</p><p id="d1e314">Motivated by these questions, this study implements the laboratory-based organic nucleation (HOM-induced nucleation) and condensation processes into the WRF-Chem model and conducts simulations to quantify the CCN production from these BVOC-driven SOA formation pathways in the Amazon UT. We explore the upper-tropospheric biogenic SOA formation mechanisms in terms of the involved atmospheric physical and chemical processes and on a diurnal variation scale.</p></div><span class="section1-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec" id="section2"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section2 .co-arrow-open,.section2-content" data-show="#section2 .co-arrow-closed,.section2-mobile-bottom-border"><div id="Ch1.S2" class="h1"><span class="label">2</span> Results<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section2-content show-no-js hide-on-mobile-soft"><div class="sec"><h2 id="Ch1.S2.SS1"><span class="label">2.1</span> Simulation of number concentration of CCN and total aerosol particles in the upper troposphere</h2> <p id="d1e332">The organic nucleation mechanism in this study focuses on pure organic nucleation, including neutral and ion-induced processes, triggered by HOMs from <span class="inline-formula"><i>α</i></span>-pinene and <span class="inline-formula"><i>β</i></span>-pinene oxidation (Kirkby et al., 2016), as it was found dominant among organic nucleation pathways in the Amazon (Zhu and Penner, 2019). The organic condensation mechanism addresses the dynamic condensation of LVOCs oxidized from <span class="inline-formula"><i>α</i></span>-pinene, <span class="inline-formula"><i>β</i></span>-pinene, and isoprene (Mann et al., 2010) as well as HOMs. For an accurate representation of HOM concentrations, we adopted the common representative intermediates mechanism (CRIMECH) scheme (Jenkin et al., 2008) with an explicit description of <span class="inline-formula"><i>α</i></span>-pinene and <span class="inline-formula"><i>β</i></span>-pinene oxidation and calculated the HOM concentration dynamically. Such processing methods circumvented the uncertainties related to species approximation in other chemical schemes (Riccobono et al., 2014; Zhu et al., 2019) and the bulk assumption of an equilibrium state of HOMs (Gordon et al., 2016; Tröstl et al., 2016), respectively. The temperature effects on nucleation rate and LVOC yields were included in the model according to a combination of nucleation theory (Yu et al., 2017) and experimental results (Sahhaf et al., 2008). Details of the model description can be found in Appendix Sect. A1.1 and A1.2.</p> <p id="d1e378">To disentangle the organic nucleation effect from the organic condensation influence, we performed the following sensitivity simulations:</p> <ul> <li> <p id="d1e386">BASE, the default WRF-Chem simulation with H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation (Wexler et al., 1994) and without biogenic nucleation or condensation;</p> </li> <li> <p id="d1e419">CTRL, in which both the newly developed nucleation and condensation modules were added;</p> </li> <li> <p id="d1e425">OCD, which only added the organic condensation;</p> </li> <li> <p id="d1e431">BNUnoT and OCDnoT, which excluded the temperature effect on the nucleation rate and the LVOC yields, respectively;</p> </li> <li> <p id="d1e437">NoOH, which was based on CTRL but without the HOM formation from OH oxidation.</p> </li> </ul> <p id="d1e442">Settings for all scenarios are summarized in Table A3. The simulations were conducted for two nested domains covering the Amazon with a horizontal resolution of 75 km and 15 km, respectively (Fig. A1) from 1 September to 1 October 2014. Aircraft measurements of aerosol number concentration profiles reaching up to 15 km altitude, close to the tropopause (18 km, Wendisch et al., 2016), sampled during the ACRIDICON-CHUVA campaign (Wendisch et al., 2016; Andreae et al., 2018), were used to evaluate the model results. Details of the model configuration and observation dataset are documented in Appendix Sect. A1.3–A2.</p> <div class="fig" id="Ch1.F1"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f01-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f01" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f01-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f01-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f01-high-res.png" data-width="2067" data-height="1176"></a><div class="caption"><p id="d1e448"><strong class="caption-number">Figure 1</strong>Comparison of observed and simulated number concentrations of <strong>(a)</strong> condensation nuclei (CN, total aerosol population) with diameters above 20 nm and <strong>(b)</strong> cloud condensation nuclei (CCN) at 0.52 % supersaturation. The aerosol concentrations are at standard temperature and pressure (STP; 273.15 K and 1000 hPa). Planetary boundary layer (PBL), middle troposphere (MT), and upper troposphere (UT) are defined as the altitude range of 0–4, 5–8, and 9–15 km, respectively. The standard deviations of the observations are provided in Table A4.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f01-high-res.png" target="_blank">Download</a></p></div> <p id="d1e463">Figure 1 shows the average profiles of the number concentration of aerosol particles (also called condensation nuclei, CN) with a diameter above 20 nm and of the CCN at a supersaturation of 0.52 % from aircraft observation (Fig. A1) and model simulations. The size of the CCN is approximately 90 nm in diameter, calculated according to the algorithm of Su et al. (2010; Sect. A3). Compared with the observations, the BASE case appears to reproduce the vertical distribution of CN in general (Sect. A3), but the CCN concentration in this simulation shows noticeable biases, especially in the UT (9–15 km) where the model underestimates the observed CCN number by up to 500 cm<span class="inline-formula"><sup>−3</sup></span> (58 %). Considering the different size ranges in which CN and CCN reside, the large model underestimation in CCN may suggest insufficient growth of the smaller particles in the UT.</p> <p id="d1e478">When adding the particle growth from the LVOC condensation into the model (i.e., the OCD case), the simulated CCN number in the UT rises notably, with an increase of 310 cm<span class="inline-formula"><sup>−3</sup></span> (about 90 % relative to the BASE case; Table A4). However, the larger particles from the condensation growth meanwhile deplete the nano-sized particles, causing a dramatic drop in CN number concentrations from BASE to OCD. Though the non-cloud-resolving resolution of the simulations may cause an excessive mixing of ultrafine particle-laden fresh cloud outflows and their surrounding air masses (Andreae et al., 2018), and thus aggravate the particle scavenging, the considerable underestimation of the averaged CN number under a reasonable condensation growth in OCD is strongly indicative of some missing NPF mechanisms (Zhu et al., 2019; Zhao et al., 2020). As expected, by further taking into account the organic nucleation (i.e., the CTRL case), the simulated CN number concentrations are enhanced substantially (2100 cm<span class="inline-formula"><sup>−3</sup></span>, over 50 %; Table A4) relative to the OCD case and in markedly better agreement with the observation, while the CCN number concentrations in the model show a relatively weaker increase (90 cm<span class="inline-formula"><sup>−3</sup></span>, about 14 %; Table A4). Thus, in total, both the BVOC-driven organic nucleation and condensation play important roles in maintaining the particle population and size distribution in the UT (Fig. A7). The HOM nucleation effectively increases the CN number by replenishing new nano-sized particles, yet its contribution to the CCN, which are mainly in accumulation mode, is relatively limited. In contrast, the organic condensation causes efficient particle growth and, therefore, greatly enhances the CCN population.</p> <div class="fig" id="Ch1.F2"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f02-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f02" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f02-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f02-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f02-high-res.png" data-width="2067" data-height="1163"></a><div class="caption"><p id="d1e519"><strong class="caption-number">Figure 2</strong>Profiles of <strong>(a)</strong> contribution to organic aerosol (OA) mass from secondary organic aerosol production processes and <strong>(b)</strong> observed and simulated OA mass averaged along all the flight tracks. The OA production rate and aerosol mass concentrations are at STP.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f02-high-res.png" target="_blank">Download</a></p></div> <p id="d1e534">Consistent with the CCN behavior, organic aerosol (OA), the dominant aerosol component over the simulated region and period (Andreae et al., 2018), is also underestimated in the UT in default WRF-Chem (BASE) but improved close to observation when the biogenic SOA formation is included (Fig. 2b). The condensation of LVOCs plays a predominant role in the OA mass production among all processes, while the other two formation pathways, especially the HOM nucleation, contribute little (Fig. 2a). This also explains why the organic condensation can cause profound particle growth while the HOM nucleation works mainly to increase the number of small particles. The OA production from the SOA processes in the UT shows a similar vertical pattern to that of the OA mass (Fig. 2b), implying local origins of the upper-tropospheric CCN.</p> <div class="fig" id="Ch1.F3"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f03-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f03" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f03-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f03-thumb.png" data-width="2067" data-height="1928"></a><div class="caption"><p id="d1e540"><strong class="caption-number">Figure 3</strong>Spatial distribution of <strong>(a)</strong> <span class="inline-formula"><i>α</i></span>-pinene, <strong>(b)</strong> HOMs, <strong>(c)</strong> organic nucleation rate, <strong>(d)</strong> isoprene, <strong>(e)</strong> SOA production rate by LVOCs, <strong>(f)</strong> CCN at 0.52 % supersaturation, and <strong>(g)</strong> condensation sink of HOMs in the upper troposphere (UT) averaged over 1 September–1 October 2014, all at STP. Also shown are <strong>(h)</strong> upward <span class="inline-formula"><i>α</i></span>-pinene flux to the UT and <strong>(i)</strong> precipitation rate averaged over the same period. The black rectangle in <strong>(a)</strong> denotes the region of the Central Amazon for further analysis in this study.</p></div><p class="downloads"></p></div> </div><div class="sec"><h2 id="Ch1.S2.SS2"><span class="label">2.2</span> Factors influencing organic-driven particle formation and growth in the upper troposphere</h2> <p id="d1e605">Figure 3 shows the horizontal distributions of the monthly mean biogenic organic precursors (<span class="inline-formula"><i>α</i></span>-pinene and isoprene; <span class="inline-formula"><i>α</i></span>-pinene is used here as a surrogate for the organic nucleation precursors) and the HOM nucleation (<span class="inline-formula"><i>J</i><sub>org</sub></span>) and LVOC condensation rates (SOA_LVOCs) in the upper troposphere. The organic nucleation and condensation distributions closely follow that of the biogenic precursors (Fig. 3c, e, a, and d) but not the oxidants (O<span class="inline-formula"><sub>3</sub></span> and OH; Fig. A8), suggesting the upper-tropospheric BVOC concentration as the limiting factor for the organic nucleation/condensation in the Amazon UT. The region with high BVOC concentrations in the UT is different from the <span class="inline-formula"><i>α</i></span>-pinene distribution in the PBL (Fig. A9) but identical to the precipitation pattern as well as the large upward <span class="inline-formula"><i>α</i></span>-pinene flux (Fig. 3h–i), showing a necessary role of deep convection transport in the BVOC availability in the UT.</p> <p id="d1e657">The <span class="inline-formula"><i>J</i><sub>org</sub></span> can reach over 0.1 cm<span class="inline-formula"><sup>−3</sup></span> s<span class="inline-formula"><sup>−1</sup></span> in the UT (Fig. 3), whereas the PBL (0–4 km) and middle troposphere (MT; 5–8 km) show low values (Figs. A9–A10), even though the <span class="inline-formula"><i>α</i></span>-pinene concentration in PBL is a magnitude larger than in the UT. Such high upper-tropospheric <span class="inline-formula"><i>J</i><sub>org</sub></span> is favored by not only the low sink of HOMs (CS; Fig. 3g) but also the low temperature in the UT (Fig. A2a). When the temperature dependence of <span class="inline-formula"><i>J</i><sub>org</sub></span> (Sect. A1.2) is not considered, the <span class="inline-formula"><i>J</i><sub>org</sub></span> in the UT is much lower than in the model run with the temperature effect (Fig. A11). The overall magnitude of <span class="inline-formula"><i>J</i><sub>org</sub></span> is lower than simulated previously in the Amazon (Zhu et al., 2019), possibly due to the consideration of the ion sink in this study. For the SOA production from LVOC condensation, the bulk assumption of the LVOC yields used previously in the boreal forest (Scott et al., 2014) fails to reproduce the observed OA mass due to different conditions in the tropics (Sect. A4). A temperature-dependent correction of LVOC yields based on laboratory experiments (Saathoff et al., 2009) is necessary for correcting the OA simulation bias associated with the bulk LVOC yields assumption (Fig. 2b). The low temperature in the UT also serves as a favorable condition for the SOA production from LVOC condensation.</p> <div class="fig" id="Ch1.F4"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f04-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f04" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f04-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f04-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f04-high-res.png" data-width="2067" data-height="2276"></a><div class="caption"><p id="d1e749"><strong class="caption-number">Figure 4</strong>Modeled temporal variation of the rate and precursors of organic nucleation and condensation as well as meteorological variables. <strong>(a)</strong> Daily variation of regionally averaged nucleation and condensation rates, number concentration of CN and CCN at 0.52 % supersaturation (CCN(0.52 %)), vertical wind at 8 km (<span class="inline-formula"><i>w</i></span>), and precipitation. The dots above the figure mark the upper-tropospheric biogenic SOA episodes. The diurnal patterns of nucleation and condensation rate, number concentration of CN and CCN(0.52 %), condensation sink of HOMs, and mixing ratio of <span class="inline-formula"><i>α</i></span>-pinene, isoprene, O<span class="inline-formula"><sub>3</sub></span>, and OH average in the upper troposphere as well as the vertical wind at 8 km and precipitation for the <strong>(b)</strong> upper-tropospheric biogenic SOA episode days and <strong>(c)</strong> non-episode days. The bars denote the standard error. The concentrations of gases and aerosols, the production rates, and the condensation sink are normalized to STP. The analyzed region is indicated by the black rectangle in Fig. 3a.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f04-high-res.png" target="_blank">Download</a></p></div> <p id="d1e792">As the biogenic SOA formation in the UT exhibits prominent daily variation, we defined days with <span class="inline-formula"><i>J</i><sub>org</sub></span> greater than <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M38" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">3</mn></mrow></msup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="42pt" height="14pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="3938c6ba7d12f5d807cc562f4733e41a"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00001.svg" width="100%" height="14pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00001.png"></image></svg></span></span> cm<span class="inline-formula"><sup>−3</sup></span> s<span class="inline-formula"><sup>−1</sup></span> and simultaneous condensational SOA production rate larger than 0.05 <span class="inline-formula">µ</span>g m<span class="inline-formula"><sup>−3</sup></span> h<span class="inline-formula"><sup>−1</sup></span> as UT biogenic SOA episodes (Fig. 4a) to identify their characteristics. The biogenic SOA episodes in the UT emerge with stronger convection, where strong vertical wind effectively transports biogenic precursors to the UT and fosters SOA formation (Fig. 4b). In contrast, the biogenic SOA formation in the PBL tends to be suppressed by deep convection (Fig. A14) due to the decreased emission and oxidation of BVOCs by reduced incident solar radiation in cloudy weather (Fig. A13) as well as the BVOC dilution near the surface by low-BVOC air from the MT.</p> <p id="d1e881">The organic nucleation and condensation rates demonstrate a clear diurnal cycle, with significant occurrence in the daytime. As the oxidant in the HOM and LVOC production, OH has reaction rates several orders faster than O<span class="inline-formula"><sub>3</sub></span> (Sect. A1.2; Atkinson et al., 2006), making it the dominant oxidant, which is also evident as the sensitivity study switching off the OH oxidation (NoOH) shows significantly reduced HOM concentrations (Fig. A15). Thus, the photolysis origin of OH (Fig. 4b–c) explains the daytime burst of the <span class="inline-formula"><i>J</i><sub>org</sub></span> and condensation rate. A detailed mechanism tracking the diurnal variation of the upper-tropospheric CCN production can be drawn. The nighttime convective activity as an extension of the former daytime convection contributes to the upper-tropospheric accumulation of biogenic precursors. With the onset of solar radiation, the photochemical reactions start to produce OH, which efficiently oxidizes BVOCs to form HOMs and LVOCs and then triggers the organic nucleation and condensation. The CN and CCN concentrations increase accordingly and reach high levels in the afternoon, which is also the typical time for the vigorous development of local convective clouds and thereby favors potential interactions between upper-tropospheric CCN and clouds.</p> </div></div><span class="section2-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="sec conclusions" id="section3"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section3 .co-arrow-open,.section3-content" data-show="#section3 .co-arrow-closed,.section3-mobile-bottom-border"><div id="Ch1.S3" class="h1"><span class="label">3</span> Conclusions<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section3-content show-no-js hide-on-mobile-soft"><p id="d1e913">In this work, we developed a new organic nucleation and condensation scheme for the WRF-Chem model to investigate the CN and CCN production in the UT (upper troposphere) by BVOC-driven SOA formation over a forest canopy region, the Amazon Basin.</p><p id="d1e916">The model evaluation against aircraft measurements shows that including the BVOC-driven SOA formation significantly improves the model agreement with the measured upper-tropospheric CCN (at 0.52 % supersaturation) number concentrations by elevating the simulated values up to <span class="inline-formula">∼</span> 400 cm<span class="inline-formula"><sup>−3</sup></span>. Individually, the organic condensation drives efficient particle growth and enhances the CCN concentration in the UT by about 90 %. With the nano-sized particles from H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation scavenged under sufficient particle growth, the organic nucleation serves to replenish nano-particles and enhances the upper-tropospheric CN and CCN number concentration by over 50 % and 14 %, respectively. Note that although pure organic nucleation contributes importantly to the aerosol population in the UT, the relative roles of pure organic nucleation and other nucleation mechanisms, such as ternary and ion-induced inorganic nucleation (Napari et al., 2002; Yu et al., 2008), in the UT aerosol production remain to be investigated with a comprehensive consideration of nucleation parametrizations, e.g., those in Dunne et al. (2016) and Riccobono et al. (2014). The rates of SOA processes in the UT depend on deep convection for its vertical transport and are favored by low condensation sink and temperature at high altitudes.</p><p id="d1e965">The considerable CCN production in the UT by BVOC-driven organic processes underlines the important regulation of biospheric BVOCs on the high-altitude aerosol concentrations. Considering the climate significance of these upper-tropospheric aerosols, the biosphere–atmosphere coupling should be emphasized in the context of climate change, not only for its possible impact on the preindustrial reference state (Gordon et al., 2016), but also for its feedback to climate under the future anthropogenic influence (e.g., deforestation) and climate change.</p></div><span class="section3-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="app sec" id="section4"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section4 .co-arrow-open,.section4-content" data-show="#section4 .co-arrow-closed,.section4-mobile-bottom-border"><div id="App1.Ch1.S1" class="h1"><span class="section-number"></span>Appendix A<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section4-content show-no-js hide-on-mobile-soft"><div class="sec"><h2 id="App1.Ch1.S1.SS1"><span class="label">A1</span> Model development</h2> <div class="sec"><h3 id="App1.Ch1.S1.SS1.SSS1"><span class="label">A1.1</span> Model description</h3> <p id="d1e992">The Weather Research and Forecasting model coupled with chemistry (WRF-Chem), version 3.9.1, was utilized in this study to investigate the biogenic organic nucleation and condensation over the Amazon. WRF-Chem is a meteorology–chemistry online coupled regional model, which integrates meteorological, gas-phase, and aerosol fields by calculating transport of chemical species under the same dynamical system as meteorological elements at each time step and considering complicated feedbacks between meteorological field and trace gases and aerosols (Grell et al., 2005).</p> <p id="d1e995">The WRF-Chem configurations used are listed in Table A1. We chose the common representative intermediates mechanism (CRIMECH) scheme (Jenkin et al., 2008; Watson et al., 2008) with the kinetic preprocessor (KPP) interface to simulate the gas-phase chemistry. CRIMECH contains up to 112 non-methane volatile organic compounds (VOCs), including <span class="inline-formula"><i>α</i></span>-pinene, <span class="inline-formula"><i>β</i></span>-pinene, and isoprene (Archer-Nicholls et al., 2014; Watson et al., 2008), and adopts 652 chemical reactions involving inorganic species, organic vapors, and their oxidation intermediates, based on the Master Chemical Mechanism (MCM). These chemical settings enable it to directly provide the gas-phase precursors, i.e., <span class="inline-formula"><i>α</i></span>-pinene, <span class="inline-formula"><i>β</i></span>-pinene, and isoprene, and chemical reactions for the biogenic SOA formation. The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC; Zaveri et al., 2008) was utilized to simulate aerosols, which uses discrete size bins to represent the aerosol size distribution. This study employed the four-bin version with the size bins distributed as listed in Table A2. Aerosol species in MOSAIC include five inorganic ions, i.e., sulfate, nitrate, ammonium, sodium, and chloride, and three unreactive primary aerosol species, i.e., black carbon (BC), particulate organic matter (POM), and other inorganics (OIN; Fast et al., 2006; Zaveri et al., 2008). In the WRF-Chem version 3.9.1 MOSAIC aerosol module, the binary nucleation of H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O is included (Wexler et al., 1994), while the organic nucleation and condensation are not accounted for. The coagulation process of particles and gas-particle partitioning were parameterized as described in Zaveri et al. (2008). The dry deposition of aerosol is parameterized by the updated resistance-in-series approach of Wesely (1989). The in- and below-cloud wet deposition take place by activating aerosol from an interstitial state into cloud-borne particles and calculating the washout rate due to precipitation, respectively (Chapman et al., 2009; Easter et al., 2004). The WRF-Chem model configurations used in this study allow aerosol–cloud interactions, following the way described by Fast et al. (2006) and Chapman et al. (2009), while the aerosol–radiation interactions were not included in the model simulations.</p> <span class="tableCitations"></span><div class="table-wrap" id="App1.Ch1.S1.T1"><div class="caption"><p id="d1e1057"><strong class="caption-number">Table A1</strong>WRF-Chem configuration.</p></div><a class="table-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t01.png" target="_blank"><img src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t01-thumb.png" target="_blank" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t01-web.png" data-width="2067" data-height="1725" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t01.png" data-csvversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t01.xlsx"></a><p class="downloads"><a class="triangle journal-contentLinkColor table-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t01.png" target="_blank">Download Print Version</a><span class="hide-on-mobile download-separator"> | </span><a class="triangle journal-contentLinkColor table-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t01.xlsx" target="_blank">Download XLSX</a></p></div> <span class="tableCitations"></span><div class="table-wrap" id="App1.Ch1.S1.T2"><div class="caption"><p id="d1e1216"><strong class="caption-number">Table A2</strong>Description of aerosol size bins in MOSAIC.</p></div><a class="table-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t02.png" target="_blank"><img src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t02-thumb.png" target="_blank" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t02-web.png" data-width="2067" data-height="998" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t02.png" data-csvversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t02.xlsx"></a><div class="table-wrap-foot"><p id="d1e1219"><span class="inline-formula"><sup>a</sup></span>, <span class="inline-formula"><sup>b</sup></span>, <span class="inline-formula"><sup>c</sup></span> low boundary, high boundary, and geometric mean diameter of the bin in nm, respectively.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor table-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t02.png" target="_blank">Download Print Version</a><span class="hide-on-mobile download-separator"> | </span><a class="triangle journal-contentLinkColor table-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t02.xlsx" target="_blank">Download XLSX</a></p></div> </div> <div class="sec"><h3 id="App1.Ch1.S1.SS1.SSS2"><span class="label">A1.2</span> Model improvement</h3> <p id="d1e1552">Based on the aforementioned CRIMECH gas-phase chemistry scheme and MOSAIC aerosol scheme, a new module resolving the purely organic nucleation and condensation associated with BVOCs has been added to WRF-Chem, which provides a modeling tool to investigate biogenic SOA formation and its contribution to the upper-tropospheric CCN.</p> <p id="d1e1555">The implementation of the new organic nucleation includes integrating the production of HOMs in the CRIMECH gas-phase chemistry scheme, resetting the sectional bins in the aerosol model, and adding parameterizations of pure organic nucleation mechanisms by HOMs. Specifically, four reactions regarding HOM production from the oxidation of <span class="inline-formula"><i>α</i></span>-pinene and <span class="inline-formula"><i>β</i></span>-pinene by O<span class="inline-formula"><sub>3</sub></span> and OH were added to the CRIMECH mechanism based on reaction coefficients and yields suggested by laboratory experiments (Atkinson et al., 2006). Then, the condensation sink of HOMs was represented according to the algorithm of Kerminen et al. (2004). Instead of parameterizing the HOM concentration as the ratio of its production and condensation sink with the assumption that the HOMs were in a thermal equilibrium state (Kirkby et al., 2016; Gordon et al., 2016), the kinetic calculation of the HOM production and condensation sink in this study enables a more accurate representation of the HOM concentration. </p><span id="Ch1.R1" class="equationLink"></span><span id="Ch1.R2" class="equationLink"></span><span id="Ch1.R3" class="equationLink"></span><span id="Ch1.R4" class="equationLink"></span><div class="disp-formula" content-type="numbered reaction" specific-use="gather"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M67" display="block" overflow="scroll" dspmath="mathml"><mtable displaystyle="true"><mlabeledtr><mtd><mtext>(AR1)</mtext></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"></mstyle><mi mathvariant="italic">α</mi><mtext>-pinene</mtext><mo>+</mo><msub><mrow class="chem"><mi mathvariant="normal">O</mi></mrow><mn mathvariant="normal">3</mn></msub><mo>=</mo><mrow class="chem"><mi mathvariant="normal">HOMs</mi></mrow><mo>:</mo><mn mathvariant="normal">0.029</mn><mo>×</mo><mn mathvariant="normal">1.01</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">15</mn></mrow></msup><msup><mi>e</mi><mfrac><mrow><mo>-</mo><mn mathvariant="normal">732</mn></mrow><mi>T</mi></mfrac></msup></mrow></mtd></mlabeledtr><mlabeledtr><mtd><mtext>(AR2)</mtext></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"></mstyle><mi mathvariant="italic">α</mi><mtext>-pinene</mtext><mo>+</mo><mrow class="chem"><mi mathvariant="normal">OH</mi></mrow><mo>=</mo><mrow class="chem"><mi mathvariant="normal">HOMs</mi></mrow><mo>:</mo><mn mathvariant="normal">0.012</mn><mo>×</mo><mn mathvariant="normal">1.2</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">11</mn></mrow></msup><msup><mi>e</mi><mfrac><mn mathvariant="normal">444</mn><mi>T</mi></mfrac></msup></mrow></mtd></mlabeledtr><mlabeledtr><mtd><mtext>(AR3)</mtext></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"></mstyle><mi mathvariant="italic">β</mi><mtext>-pinene</mtext><mo>+</mo><msub><mrow class="chem"><mi mathvariant="normal">O</mi></mrow><mn mathvariant="normal">3</mn></msub><mo>=</mo><mrow class="chem"><mi mathvariant="normal">HOMs</mi></mrow><mo>:</mo><mn mathvariant="normal">0.0012</mn><mo>×</mo><mn mathvariant="normal">1.5</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">17</mn></mrow></msup></mrow></mtd></mlabeledtr><mlabeledtr><mtd><mtext>(AR4)</mtext></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"></mstyle><mi mathvariant="italic">β</mi><mtext>-pinene</mtext><mo>+</mo><mrow class="chem"><mi mathvariant="normal">OH</mi></mrow><mo>=</mo><mrow class="chem"><mi mathvariant="normal">HOMs</mi></mrow><mo>:</mo><mn mathvariant="normal">0.0058</mn><mo>×</mo><mn mathvariant="normal">2.38</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">11</mn></mrow></msup><msup><mi>e</mi><mfrac><mn mathvariant="normal">357</mn><mi>T</mi></mfrac></msup></mrow></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="74pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="49e587dd1bed57c1f58f2abbbae0f58c"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-e_AR1_AR2_AR3_AR4.svg" width="100%" height="74pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-e_AR1_AR2_AR3_AR4.png"></image></svg></div></div> <p id="d1e1785">The four-bin MOSAIC scheme in WRF-Chem addresses aerosols with diameters from 39 nm to 10 <span class="inline-formula">µ</span>m, which does not cover the size range of newly formed particles whose diameters are in the nanometer range (Kulmala, 2003). To explicitly represent the nucleation of vapor into particles, we extended the lower end of the aerosol size range in the MOSAIC scheme from 39 to 0.6 nm by introducing three additional size bins whose boundaries are set following the same lognormal size distribution law as the original four bins (Table A2). Thus, the newly developed seven-bin MOSAIC scheme can resolve the formation and initial growth of new particles and assures a high computation efficiency. The four-bin MOSAIC scheme includes the H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation using a thermodynamic equilibrium parameterization where a critical concentration of H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span> is calculated based on air temperature and relative humidity and then the extra H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span> beyond this threshold is parameterized into aerosols centered at 78 nm (i.e., the 39–156 nm bin). The equilibrium method for describing H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation is validated for the aerosol size above 10 nm. With extended aerosol size bins in the seven-bin MOSAIC scheme, we now applied the H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation parameterization to the third bin (i.e., 10–39 nm) to not only assure the practical application of this nucleation parameterization (Wexler et al., 1994) but also keep the aerosol size range in agreement with the observations (i.e., starting from 20 nm).</p> <p id="d1e1915">Then, in addition to the existing H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation, pure biogenic nucleation mechanisms induced by HOMs were integrated into the MOSAIC module. The mechanisms of organic nucleation were investigated in CLOUD (Cosmics Leaving OUtdoors Droplets) chamber experiments (Kirkby et al., 2016), which suggested that the HOM-induced pure organic nucleation rate (<span class="inline-formula"><i>J</i><sub>org</sub></span>, unit: cm<span class="inline-formula"><sup>−3</sup></span> s<span class="inline-formula"><sup>−1</sup></span>) can be represented by the combination of the neutral (<span class="inline-formula"><i>J</i><sub>n</sub></span>) and the ion-induced (<span class="inline-formula"><i>J</i><sub>iin</sub></span>) nucleation rate. The detailed parameterization of the <span class="inline-formula"><i>J</i><sub>n</sub></span> and <span class="inline-formula"><i>J</i><sub>iin</sub></span> is as follows: </p><span id="App1.Ch1.E5" class="equationLink"></span><span id="App1.Ch1.E6" class="equationLink"></span><span id="App1.Ch1.E7" class="equationLink"></span><div class="disp-formula" content-type="numbered" specific-use="gather"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M92" display="block" overflow="scroll" dspmath="mathml"><mtable displaystyle="true"><mlabeledtr><mtd><mtext>(A1)</mtext></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"></mstyle><msub><mi>J</mi><mi mathvariant="normal">org</mi></msub><mo>=</mo><msub><mi>J</mi><mi mathvariant="normal">n</mi></msub><mo>+</mo><msub><mi>J</mi><mi mathvariant="normal">iin</mi></msub></mrow></mtd></mlabeledtr><mlabeledtr><mtd><mtext>(A2)</mtext></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"></mstyle><mo>,</mo><msub><mi>J</mi><mi mathvariant="normal">n</mi></msub><mo>=</mo><msub><mi>a</mi><mn mathvariant="normal">1</mn></msub><msup><mfenced open="[" close="]"><mi mathvariant="normal">HOM</mi></mfenced><mrow><msub><mi>a</mi><mn mathvariant="normal">2</mn></msub><mo>+</mo><mfrac><mrow><msub><mi>a</mi><mn mathvariant="normal">5</mn></msub></mrow><mrow><mfenced open="[" close="]"><mi mathvariant="normal">HOM</mi></mfenced></mrow></mfrac></mrow></msup></mrow></mtd></mlabeledtr><mlabeledtr><mtd><mtext>(A3)</mtext></mtd><mtd><mrow><mstyle displaystyle="true" class="stylechange"></mstyle><mo>,</mo><msub><mi>J</mi><mi mathvariant="normal">iin</mi></msub><mo>=</mo><mn mathvariant="normal">2</mn><mfenced close="]" open="["><mrow><msub><mi>n</mi><mo>±</mo></msub></mrow></mfenced><msub><mi>a</mi><mn mathvariant="normal">3</mn></msub><msup><mfenced close="]" open="["><mi mathvariant="normal">HOM</mi></mfenced><mrow><msub><mi>a</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo><mfrac><mrow><msub><mi>a</mi><mn mathvariant="normal">5</mn></msub></mrow><mrow><mfenced open="[" close="]"><mi mathvariant="normal">HOM</mi></mfenced></mrow></mfrac></mrow></msup><mo>,</mo></mrow></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="58pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="0450ac2e1240f6921ccfd45373c6474e"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-e_A1_A2_A3.svg" width="100%" height="58pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-e_A1_A2_A3.png"></image></svg></div></div><p id="d1e1915-3"> where HOM concentrations are in units of <span class="inline-formula">10<sup>7</sup></span> molecules per cubic centimeter and obtained by chemical kinetic calculations as described above; the <span class="inline-formula"><i>a</i><sub><i>i</i></sub></span> represent free parameters whose values were suggested by Kirkby et al. (2016) where <span class="inline-formula"><i>a</i><sub>1</sub></span>, <span class="inline-formula"><i>a</i><sub>2</sub></span>, <span class="inline-formula"><i>a</i><sub>3</sub></span>, <span class="inline-formula"><i>a</i><sub>4</sub></span>, and <span class="inline-formula"><i>a</i><sub>5</sub></span> equaled to 0.04001, 1.848, 0.001366, 1.566, and 0.1863, respectively.</p> <p id="d1e2238"><span class="inline-formula"><i>n</i><sub>±</sub></span> is the ion concentration produced from radon and galactic cosmic rays and is parameterized as </p><div class="disp-formula" content-type="numbered" id="App1.Ch1.E8"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M101" display="block" overflow="scroll" dspmath="mathml"><mtable><mlabeledtr><mtd><mtext>(A4)</mtext></mtd><mtd><mrow> <mfenced open="[" close="]"> <mrow> <msub> <mi>n</mi> <mo>±</mo> </msub> </mrow> </mfenced> <mo>=</mo> <mstyle displaystyle="true"> <mfrac style="display"> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mi>i</mi> <mn mathvariant="normal">2</mn> </msubsup> <mo>+</mo> <mn mathvariant="normal">4</mn> <mi mathvariant="italic">α</mi> <mi>q</mi> <msup> <mo>)</mo> <mn mathvariant="normal">0.5</mn> </msup> <mo>-</mo> <msub> <mi>k</mi> <mi>i</mi> </msub> </mrow> <mrow> <mn mathvariant="normal">2</mn> <mi mathvariant="italic">α</mi> </mrow> </mfrac> </mstyle> <mo>,</mo> </mrow></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="30pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="22931fcea1c68925a2a1dca7405252d3"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-e_A4.svg" width="100%" height="30pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-e_A4.png"></image></svg></div></div><p id="d1e2238-3"> where <span class="inline-formula"><i>q</i></span> (in cm<span class="inline-formula"><sup>−3</sup></span> s<span class="inline-formula"><sup>−1</sup></span>) represents the ion-pair production rate and adopts the value of 10 cm<span class="inline-formula"><sup>−3</sup></span> s<span class="inline-formula"><sup>−1</sup></span> (Hõrrak et al., 2008). <span class="inline-formula"><i>α</i></span> is the ion–ion recombination coefficient (in cm<span class="inline-formula"><sup>3</sup></span> s<span class="inline-formula"><sup>−1</sup></span>) and was set to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M110" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.6</mn><mo>×</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">6</mn></mrow></msup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="14pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="a3cd73b040fc0b817b23387ec853c0ea"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00002.svg" width="100%" height="14pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00002.png"></image></svg></span></span> cm<span class="inline-formula"><sup>3</sup></span> s<span class="inline-formula"><sup>−1</sup></span> here. The ion loss rate, <span class="inline-formula"><i>k</i><sub><i>i</i></sub></span>, is due to the ion condensation sink (CS) onto aerosols and the ion-induced nucleation </p><div class="disp-formula" content-type="numbered" id="App1.Ch1.E9"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M114" display="block" overflow="scroll" dspmath="mathml"><mtable><mlabeledtr><mtd><mtext>(A5)</mtext></mtd><mtd><mrow> <msub> <mi>k</mi> <mi>i</mi> </msub> <mo>=</mo> <mi mathvariant="normal">CS</mi> <mo>+</mo> <mstyle displaystyle="true"> <mfrac style="display"> <mrow> <msub> <mi>J</mi> <mi mathvariant="normal">iin</mi> </msub> </mrow> <mrow> <mn mathvariant="normal">2</mn> <mo>[</mo> <msub> <mi>n</mi> <mo>±</mo> </msub> <mo>]</mo> </mrow> </mfrac> </mstyle> <mo>.</mo> </mrow></mtd></mlabeledtr></mtable></math><div><svg xmlns:svg="http://www.w3.org/2000/svg" width="416pt" height="29pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="abc6b99fe6bcedf29cd08a957e58cb88"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-e_A5.svg" width="100%" height="29pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-e_A5.png"></image></svg></div></div> <p id="d1e2478">In this study, the condensation sink term was calculated according to the empirical parameterization proposed by Tammet (1991). The HOM nucleation rate, <span class="inline-formula"><i>J</i><sub>org</sub></span>, is then modulated by temperature. Unlike the approximated temperature correction suggested in Dunne et al. (2016), a temperature dependence associated with the Gibbs free energy for forming the critical cluster based on the classical homogeneous nucleation theory (Yu et al., 2017) is used here. We applied temperature corrections to <span class="inline-formula"><i>J</i><sub>n</sub></span> and <span class="inline-formula"><i>J</i><sub>iin</sub></span> by multiplying them by a correction factor, exp(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M118" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msub><mi>G</mi><mi>n</mi></msub><mo>/</mo><mi>k</mi><mo>⋅</mo><mo>(</mo><mn mathvariant="normal">1</mn><mo>/</mo><mi>T</mi><mo>-</mo><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">278</mn><mo>)</mo></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="110pt" height="14pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="e13d9800987cf491c869c67e6309a50a"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00003.svg" width="100%" height="14pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00003.png"></image></svg></span></span>) and exp(<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M119" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="normal">Δ</mi><msub><mi>G</mi><mi mathvariant="normal">iin</mi></msub><mo>/</mo><mi>k</mi><mo>⋅</mo><mo>(</mo><mn mathvariant="normal">1</mn><mo>/</mo><mi>T</mi><mo>-</mo><mn mathvariant="normal">1</mn><mo>/</mo><mn mathvariant="normal">278</mn><mo>)</mo></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="113pt" height="14pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="2af53bbc3d789e7f67623a34b25197af"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00004.svg" width="100%" height="14pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00004.png"></image></svg></span></span>), respectively, and the <span class="inline-formula">Δ<i>G</i><sub>n</sub></span> and <span class="inline-formula">Δ<i>G</i><sub>iin</sub></span> are based on smog chamber results (Kirkby et al., 2016). After organic nucleation, the newly formed particles were added into the smallest bin and underwent subsequent processes such as coagulation, transport, and deposition.</p> <p id="d1e2617">Additionally, a new module addressing the condensation of LVOCs was integrated into WRF-Chem. The LVOCs were oxidation products of <span class="inline-formula"><i>α</i></span>-pinene, <span class="inline-formula"><i>β</i></span>-pinene, and isoprene by O<span class="inline-formula"><sub>3</sub></span>, OH, and NO<span class="inline-formula"><sub>3</sub></span>. A yield of 13 % for monoterpene oxidation products and 3 % for isoprene oxidation products were used in Scott et al. (2014). Laboratory chamber experiments found a temperature dependence of the SOA yield from <span class="inline-formula"><i>α</i></span>-pinene oxidation (Saathoff et al., 2009). Therefore, instead of constant LVOC yields, temperature-corrected yields based on these laboratory experiment results (Saathoff et al., 2009) were applied in the model here.</p> <div class="fig" id="App1.Ch1.S1.F5"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f05-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f05" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f05-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f05-thumb.png" data-width="1242" data-height="1127"></a><div class="caption"><p id="d1e2661"><strong class="caption-number">Figure A1</strong>Model domain and tracks of flight AC07 to AC20 from the ACRIDICON-CHUVA campaign. The outer map represents the parent domain with 75 km horizontal grid spacing, and the embedded square shows the extent of the 15 km resolution (d02) domain. The black rectangle is the same as the one marked in Fig. 3a, denoting the region of the Central Amazon for further analysis in this study.</p></div><p class="downloads"></p></div> </div> <div class="sec"><h3 id="App1.Ch1.S1.SS1.SSS3"><span class="label">A1.3</span> Numerical experiment design</h3> <p id="d1e2678">In this study, two nested domains with a horizontal spacing of 75 and 15 km were set up over South America (Fig. A1), with Domain1 covering most of the South American continent, while Domain2 is over the Amazon Basin area. Vertical layers of 29 levels extending from the ground surface to a height of 50 hPa were applied for all domains. The initial and boundary meteorological and chemical conditions were from the 6 h National Centers for Environmental Prediction (NCEP) final analysis (FNL) data and model for ozone and related chemical tracers, version 4 (MOZART-4) global chemical transport model output (Emmons et al., 2010), respectively. The anthropogenic emissions with a resolution of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M127" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">0.1</mn><msup><mi></mi><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">0.1</mn><msup><mi></mi><mo>∘</mo></msup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="11pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="6c1967ec0912e434434cbc067a1a7b3b"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00005.svg" width="100%" height="11pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00005.png"></image></svg></span></span> were obtained from the global air pollution emission dataset, EDGAR-HTAPv2 (<span class="uri"><a href="https://edgar.jrc.ec.europa.eu/dataset_htap_v2" target="_blank">https://edgar.jrc.ec.europa.eu/dataset_htap_v2</a></span>, last access: 23 December 2022; Janssens-Maenhout et al., 2015). The Fire INventory from NCAR version 1.5 (FINNv1.5; Wiedinmyer et al., 2011) provided the biomass burning emission, which is updated daily at 1 km resolution. The rise of fire plumes after emission was represented by a plume-rise parameterization (Freitas et al., 2007). The primary organic matter (POM) emission rate was calculated based on the OC emission by applying a ratio of 1.6 between the mass of POM and OC (Andreae, 2019). The biogenic emissions of NO and volatile organic compounds (VOCs) were generated online by the Model of Emissions of Gases and Aerosols from Nature (MEGAN; Guenther et al., 2012). Among the biogenic VOCs are the precursors, i.e., <span class="inline-formula"><i>α</i></span>-pinene, <span class="inline-formula"><i>β</i></span>-pinene, and isoprene, for the organic nucleation and condensation which are investigated in this study. Based on the United States Geological Survey (USGS) land use category, temperature, and radiation, MEGAN calculated the emission of biogenic gases, which were subsequently put into the corresponding chemical species in the CRIMECH gas-phase scheme as a source term. The simulation was conducted from 24 August to 1 October 2014, and the first 8 d of the simulation were used as spin up. The comparisons between model outputs and aircraft measurements in Sect. 2.1 are made with the results from Domain2. A rectangular area focusing on the Central Amazon, as shown in Fig. A1, was used in the analysis in Sect. 2.2.</p> <span class="tableCitations"></span><div class="table-wrap" id="App1.Ch1.S1.T3"><div class="caption"><p id="d1e2721"><strong class="caption-number">Table A3</strong>Experiment design description.</p></div><a class="table-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t03.png" target="_blank"><img src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t03-thumb.png" target="_blank" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t03-web.png" data-width="2067" data-height="559" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t03.png" data-csvversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t03.xlsx"></a><p class="downloads"><a class="triangle journal-contentLinkColor table-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t03.png" target="_blank">Download Print Version</a><span class="hide-on-mobile download-separator"> | </span><a class="triangle journal-contentLinkColor table-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t03.xlsx" target="_blank">Download XLSX</a></p></div> <p id="d1e3057">To characterize the pure organic nucleation and condensation and investigate the controlling factors, a series of sensitivity simulations were performed as listed in Table A3. A baseline simulation (BASE) was conducted based on the default WRF-Chem, except the binary nucleation-generated aerosols were put into the third bin as described above. Simulation using the improved version of WRF-Chem, CTRL, was conducted, where new particles can be formed by organic nucleation in addition to the default H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation scheme in BASE and where the organic condensation process was also taken into consideration. In order to examine the effect of atmospheric vertical temperature variation on the organic nucleation and condensation growth, sensitivity simulations were performed using the modified WRF-Chem model but without temperature influence on the nucleation rate and the yields of LVOCs, namely BNUnoT and OCDnoT, respectively. For the purpose of distinguishing the influence from the organic nucleation and the condensation of organics, an additional sensitivity simulation was made where only the condensation of organics was included in the BASE case, which was termed OCD. To examine the relative importance of O<span class="inline-formula"><sub>3</sub></span> and OH in the HOM-generating oxidation reactions, NoOH was conducted based on CTRL but with the HOM formation from OH oxidation turned off.</p> </div> </div><div class="sec"><h2 id="App1.Ch1.S1.SS2"><span class="label">A2</span> Data</h2> <p id="d1e3105">The ACRIDICON-CHUVA (ACRIDICON stands for “Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems”, and CHUVA is the acronym for “Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement)”; Wendisch et al., 2016) campaign was conducted in the Amazon region in 2014. It aimed at in-depth investigations of the properties of the aerosols and clouds in this area and the explorations of interactions between aerosols, radiation, clouds, and precipitation. Fourteen flights were operated between 6 September and 1 October 2014, encompassing comprehensive measurements of meteorology, trace gases, and aerosols with ceiling heights up to 15 km, close to the top of the troposphere. The measurements of meteorological parameters (air temperature, relative humidity, and wind speed), O<span class="inline-formula"><sub>3</sub></span>, total aerosol number concentration, CCN number concentration, and black carbon and organic aerosol mass conducted on the 14 flights were used in this study. The gas and aerosol concentrations have been normalized to standard temperature and pressure (STP). The total aerosol particles, also called condensation nuclei (CN) focus on aerosols with a diameter above 20 nm. The observed CCN are the CCN at a supersaturation of 0.52 % (CCN(0.52 %); Andreae et al., 2018). The flight tracks are shown in Fig. A1. Overviews of the ACRIDICON-CHUVA campaign and observation are documented by Wendisch et al. (2016) and Andreae et al. (2018).</p> </div><div class="sec"><h2 id="App1.Ch1.S1.SS3"><span class="label">A3</span> Model evaluation</h2> <p id="d1e3126">To compare against the flight observation, the hourly model outputs at the corresponding location of the observed data within the hour were used. The modeled gas and aerosol concentrations are values at STP, consistent with the observed data. The model reasonably reproduced the meteorological conditions (Fig. A2), the O<span class="inline-formula"><sub>3</sub></span> vertical distributions, and the black carbon concentrations (Fig. A3), showing its ability to capture the meteorological processes, basic atmospheric chemical processes, and primary aerosol emission and transport processes. The simulated concentrations of the biogenic organic vapors, <span class="inline-formula"><i>α</i></span>-pinene, <span class="inline-formula"><i>β</i></span>-pinene, and isoprene (Fig. A4) are of comparable magnitude to previous observations (Kuhn et al., 2010), demonstrating a reasonable model simulation of the biogenic emissions.</p> <div class="fig" id="App1.Ch1.S1.F6"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f06-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f06" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f06-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f06-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f06.png" data-width="2067" data-height="1014"></a><div class="caption"><p id="d1e3154"><strong class="caption-number">Figure A2</strong>Comparison of <strong>(a)</strong> air temperature (Temp), <strong>(b)</strong> relative humidity (RH), and <strong>(c)</strong> horizontal wind speed (WS) averaged from all flight measurements (OBS) and WRF-Chem simulations (Model).</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f06.png" target="_blank">Download</a></p></div> <div class="fig" id="App1.Ch1.S1.F7"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f07-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f07" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f07-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f07-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f07.png" data-width="728" data-height="533"></a><div class="caption"><p id="d1e3174"><strong class="caption-number">Figure A3</strong>Comparison of <strong>(a)</strong> O<span class="inline-formula"><sub>3</sub></span> mixing ratio and <strong>(b)</strong> black carbon (BC) mass concentration averaged from all flight measurements (OBS) and WRF-Chem simulations (Model), all at STP.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f07.png" target="_blank">Download</a></p></div> <div class="fig" id="App1.Ch1.S1.F8"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f08-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f08" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f08-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f08-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f08.png" data-width="889" data-height="986"></a><div class="caption"><p id="d1e3201"><strong class="caption-number">Figure A4</strong>Simulated <strong>(a)</strong> vertical profiles and <strong>(b)</strong> time series of <span class="inline-formula"><i>α</i></span>-pinene (API), <span class="inline-formula"><i>β</i></span>-pinene (BPI), and isoprene (ISO) mixing ratios (STP) at the location of ATTO. The embedded figure in <strong>(a)</strong> is the same as the outer figure but on a log scale.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f08.png" target="_blank">Download</a></p></div> <div class="fig" id="App1.Ch1.S1.F9"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f09-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f09" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f09-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f09-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f09.png" data-width="2067" data-height="2281"></a><div class="caption"><p id="d1e3235"><strong class="caption-number">Figure A5</strong>Simulated vertical profile of the SO<span class="inline-formula"><sub>2</sub></span> mixing ratio (STP) at the location of ATTO.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f09.png" target="_blank">Download</a></p></div> <div class="fig" id="App1.Ch1.S1.F10"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f10-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f10" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f10-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f10-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f10.png" data-width="1658" data-height="1986"></a><div class="caption"><p id="d1e3255"><strong class="caption-number">Figure A6</strong>Vertical profiles of the simulated number concentrations (STP) of CN and CCN at 0.52 % supersaturation averaged along the observation trajectories within the planetary boundary layer (PBL).</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f10.png" target="_blank">Download</a></p></div> <div class="fig" id="App1.Ch1.S1.F11"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f11-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f11" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f11-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f11-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f11.png" data-width="733" data-height="348"></a><div class="caption"><p id="d1e3266"><strong class="caption-number">Figure A7</strong>Simulated size distributions of <strong>(a)</strong> particle number concentration, and <strong>(b)</strong> surface area in the upper troposphere (UT) along the flight tracks. The particle size distributions are normalized to STP.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f11.png" target="_blank">Download</a></p></div> <p id="d1e3282">The simulated SO<span class="inline-formula"><sub>2</sub></span> concentration of around 21 ppt throughout most of the free troposphere (FT) at the location of the ATTO site (Fig. A5) is in fair agreement with an observed background SO<span class="inline-formula"><sub>2</sub></span> concentration of 18 ppt in the FT over the Central Amazon (Andreae and Andreae, 1988), which is an important prerequisite for an accurate simulation of the H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation in the FT (Wexler et al., 1994). Compared to the observed SO<span class="inline-formula"><sub>2</sub></span> concentration of 27 ppt in the PBL (Andreae and Andreae, 1988) and 80 ppt near the ground surface (Ramsay et al., 2020), the modeled SO<span class="inline-formula"><sub>2</sub></span> concentration in the PBL, especially near the ground surface, was relatively higher (Fig. A5). This could be related to several factors, e.g., overestimated SO<span class="inline-formula"><sub>2</sub></span> emission (Andreae, 2019) and/or inadequate scavenging (Hardacre et al., 2021), and requires further investigations. The influence of the SO<span class="inline-formula"><sub>2</sub></span> overestimation in the PBL on the simulated aerosol concentration was examined by conducting a sensitivity study, namely BASE_SO<span class="inline-formula"><sub>2</sub></span>_constrain, where all the settings were the same as the BASE case except that the SO<span class="inline-formula"><sub>2</sub></span> concentration in the PBL was fixed to 30 ppt in accordance with the lower end of the range of published measurements during the dry season. The simulation results show that the difference in the aerosol concentration within the PBL between BASE and BASE_SO<span class="inline-formula"><sub>2</sub></span>_constrain is minor (Fig. A6), which indicates an insignificant influence of the SO<span class="inline-formula"><sub>2</sub></span> overestimation in the PBL on the simulated aerosol concentration.</p> <p id="d1e3404">In this study, the H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation mechanism was simulated as it has been widely used for describing inorganic nucleation in the free troposphere (Cui et al., 2014; Gordon et al., 2016; Zhu and Penner, 2019). As shown from the nucleation rate in Fig. A12, H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation mainly occurs in the free troposphere, which is consistent with the vertical distribution of binary nucleation simulated for the Amazon region in Zhao et al. (2020). The H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation causes a CN increase of over 3000 cm<span class="inline-formula"><sup>−3</sup></span> in the UT under sufficient particle condensational growth as approximately estimated from the difference between OCD and BASEnoNUC (Table A4). It is of a comparable magnitude to the CN increase of 2100 cm<span class="inline-formula"><sup>−3</sup></span> by organic nucleation. A higher rate of the H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation over the organic nucleation was also found by Zhao et al. (2020) in the Amazon from 9 to 13 km altitude but the overall H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation in the UT was insignificant in Zhao et al. (2020), which is different from the result in this study. This is expected as the result in Zhao et al. (2020) was for a low-SO<span class="inline-formula"><sub>2</sub></span> area and there was competition for H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span> by other H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-involving nucleation processes in Zhao et al. (2020). In a global simulation where the inorganic nucleation was represented only by the H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation, the column-integrated H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation in the Amazon is of the same magnitude as but somewhat lower than the organic nucleation (Zhu and Penner, 2019). Considering the H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation occurs mainly in the upper troposphere and the organic nucleation in Zhu and Penner (2019) includes the hetero-molecular organic nucleation, the relative importance of H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation to pure organic nucleation in the UT should be greater than shown in the column-integrated results. Therefore the simulated H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O binary nucleation in this study should be generally reasonable.</p> <p id="d1e3752">The model can generally reproduce the vertical distribution of CN (Fig. 1) as described in Sect. 2.1; yet, a systematic overestimation of CN exists in model simulations below 5 km. This could be associated with uncertainties in the fire emission inventories (Andreae, 2019), as aerosols near the ground surface during the Amazon dry season are overwhelmingly influenced by persistent biomass burning (Andreae et al., 2015). In addition, the comparison of a grid-average value in the model with an observation on a spot may also contribute to the discrepancy. To make the CCN comparison, the modeled aerosols of a size consistent with that of the observed CCN(0.52 %) were used. The cut-off size of the CCN(0.52 %) was calculated to be approximately 90 nm in diameter (Su et al., 2010), based on an observed average hygroscopicity value of 0.12 derived from the aerosol component observations. This hygroscopicity level is close to those of organic aerosols (Petters and Kreidenweis, 2007), which is expected since organic aerosols dominate the aerosol components in this area (Andreae et al., 2018). As the main aerosol component (i.e., organic aerosols) can be well reproduced by the developed model version (Fig. 2b), it is justifiable to use this observed hygroscopicity to calculate the CCN size in models. The comparison shows that the CCN number was underestimated by the BASE case. The model underestimation of CCN number in the UT reaches <span class="inline-formula">−58</span> % as shown in Sect. 2.1. Compared to the UT, the biases in CCN below 4 km are much smaller and lie around <span class="inline-formula">−9</span> %. The negative biases in CCN number in both the UT and PBL are however corrected in the CTRL case, suggesting the lack of SOA production and inadequate particle growth in the BASE case as the reason for the CCN underestimation.</p><div class="fig" id="App1.Ch1.S1.F12"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f12-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f12" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f12-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f12-thumb.png" data-width="2067" data-height="1334"></a><div class="caption"><p id="d1e3777"><strong class="caption-number">Figure A8</strong>Horizontal distribution of <strong>(a)</strong> OH and <strong>(b)</strong> O<span class="inline-formula"><sub>3</sub></span> averaged over 1 September–1 October 2014 from the CTRL case. The concentrations are at STP.</p></div><p class="downloads"></p></div> <span class="tableCitations"></span><div class="table-wrap" id="App1.Ch1.S1.T4"><div class="caption"><p id="d1e3807"><strong class="caption-number">Table A4</strong>Averaged values of modeled and observed aerosol particle number concentration.</p></div><a class="table-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t04.png" target="_blank"><img src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t04-thumb.png" target="_blank" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t04-web.png" data-width="2067" data-height="608" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t04.png" data-csvversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t04.xlsx"></a><div class="table-wrap-foot"><p id="d1e3810"><span class="inline-formula"><sup>*</sup></span> PBL, MT, and UT are defined as the altitude range of 0–4, 5–8, and 9–15 km, respectively.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor table-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t04.png" target="_blank">Download Print Version</a><span class="hide-on-mobile download-separator"> | </span><a class="triangle journal-contentLinkColor table-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-t04.xlsx" target="_blank">Download XLSX</a></p></div> <div class="fig" id="App1.Ch1.S1.F13"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f13-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f13" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f13-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f13-thumb.png" data-width="2067" data-height="1915"></a><div class="caption"><p id="d1e4201"><strong class="caption-number">Figure A9</strong>Same as Fig. 3 <strong>(a–g)</strong> but for the planetary boundary layer (PBL). Note that the scales in <strong>(a)</strong> and <strong>(d)</strong> are 3 times those in Fig. 3a and d, respectively.</p></div><p class="downloads"></p></div> <div class="fig" id="App1.Ch1.S1.F14"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f14-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f14" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f14-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f14-thumb.png" data-width="2067" data-height="1927"></a><div class="caption"><p id="d1e4224"><strong class="caption-number">Figure A10</strong>Same as Fig. 3a–g but for the middle troposphere (MT).</p></div><p class="downloads"></p></div> <div class="fig" id="App1.Ch1.S1.F15"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f15-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f15" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f15-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f15-thumb.png" data-width="2067" data-height="1334"></a><div class="caption"><p id="d1e4238"><strong class="caption-number">Figure A11</strong>Horizontal distribution of <strong>(a)</strong> HOMs and <strong>(b)</strong> organic nucleation rate averaged over 1 September–1 October 2014 from the BNUnoT case, all at STP.</p></div><p class="downloads"></p></div> <div class="fig" id="App1.Ch1.S1.F16"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f16-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f16" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f16-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f16-thumb.png" data-width="2067" data-height="1934"></a><div class="caption"><p id="d1e4259"><strong class="caption-number">Figure A12</strong>Horizontal distribution of <strong>(a)</strong> neutral organic nucleation rate, <strong>(b)</strong> ion-induced organic nucleation rate, and <strong>(c)</strong> H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>–H<span class="inline-formula"><sub>2</sub></span>O binary nucleation rate at the planetary boundary layer (PBL, left panel), middle troposphere (MT, middle panel), and upper troposphere (UT, right panel) averaged over 1 September–1 October 2014 from the CTRL case. The nucleation rates are for STP.</p></div><p class="downloads"></p></div> <div class="fig" id="App1.Ch1.S1.F17"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f17-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f17" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f17-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f17-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f17.png" data-width="1063" data-height="495"></a><div class="caption"><p id="d1e4309"><strong class="caption-number">Figure A13</strong>The diurnal variation of radiation flux (upward shortwave radiation at the top of the atmosphere (SWUPT) and downward shortwave radiation at the surface (SWDNB)) and <span class="inline-formula"><i>α</i></span>-pinene emission rate (EMI) for the average of <strong>(a)</strong> upper troposphere biogenic SOA episode days and <strong>(b)</strong> non-episode days.</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f17.png" target="_blank">Download</a></p></div> <div class="fig" id="App1.Ch1.S1.F18"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f18-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f18" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f18-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f18-thumb.png" data-printversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f18.png" data-width="1423" data-height="858"></a><div class="caption"><p id="d1e4336"><strong class="caption-number">Figure A14</strong>Same as Fig. 4b and c, but for the planetary boundary layer (PBL).</p></div><p class="downloads"><a class="triangle journal-contentLinkColor figure-download" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f18.png" target="_blank">Download</a></p></div> <div class="fig" id="App1.Ch1.S1.F19"><a target="_blank" class="figure-link" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f19-web.png"><img alt="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f19" data-webversion="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f19-web.png" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-f19-thumb.png" data-width="2067" data-height="1334"></a><div class="caption"><p id="d1e4349"><strong class="caption-number">Figure A15</strong>Horizontal distribution of <strong>(a)</strong> HOMs and <strong>(b)</strong> organic nucleation rate averaged over 1 September–1 October 2014 from the NoOH case, all at STP.</p></div><p class="downloads"></p></div> </div><div class="sec"><h2 id="App1.Ch1.S1.SS4"><span class="label">A4</span> Sensitivity simulations of LVOC condensation</h2> <p id="d1e4376">Figure 2b compares the simulated OA mass from CTRL and BASE with the observed data. The BASE case using the MOSAIC aerosol module and FINN biomass burning emission inventory shows a reasonable performance of OA representation in the PBL, which was also confirmed by previous evaluations for this region (Archer-Nicholls et al., 2014; Q. Wang et al., 2016); however, the OA in the UT is significantly underestimated. This negative bias of OA mass in the UT in the BASE case is greatly improved in the CTRL case by considering the organic aerosol processes driven by the biogenic precursors, among which the LVOC condensation plays a dominant role (Fig. 2a).</p> <p id="d1e4379">To further examine the uncertainty of the LVOC condensation in terms of the LVOC yields, sensitivity simulations regarding the temperature dependence of the LVOC yields were performed. The OCDnoT case adopted a bulk assumption of a yield of 13 % from monoterpene oxidation and 3 % from isoprene oxidation (OCDnoT), as suggested by Scott et al. (2014); while in the CTRL case, the temperature dependence of LVOC yields based on an <span class="inline-formula"><i>α</i></span>-pinene oxidation experiment (Saathoff et al., 2009) was applied to the LVOC yields. The OCDnoT case produces a larger amount of boundary layer OA than the CTRL case, causing a higher bias in the model compared with the observations and suggesting an excessive SOA production. A significant difference between the environment where the LVOC yields were originally based (Kroll et al., 2005) and the region investigated here may be the reason for the poor performance of the bulk yields in the studied area, as the temperature in previous applications is much lower than the tropical forest boundary layer conditions. On the other end, the temperature difference could also explain the underestimation of OA mass with bulk yields in the OCDnoT for the UT (Fig. 2b), where the temperature is far below the freezing point (Fig. A2). With the temperature dependence correction, i.e., LVOC yields increasing with colder temperature, the OA underestimation in the UT in the OCDnoT case can be effectively corrected in the CTRL case.</p> </div></div><span class="section4-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section5" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section5 .co-arrow-open,.section5-content" data-show="#section5 .co-arrow-closed,.section5-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Data availability<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section5-content show-no-js hide-on-mobile-soft"><p id="d1e4395">The model results presented in this work are available at <a href="https://doi.org/10.17617/3.3ISOYC">https://doi.org/10.17617/3.3ISOYC</a> (Liu, 2022).</p></div><span class="section5-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section6" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section6 .co-arrow-open,.section6-content" data-show="#section6 .co-arrow-closed,.section6-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Author contributions<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section6-content show-no-js hide-on-mobile-soft"><p id="d1e4404">YC designed and led the study. YL and YC conducted the model development. YL performed the model simulation and analyzed the data. YL, YC, and HS interpreted the results. MOA and UP contributed to discussing the results. SW, CW, and WT supported model simulation and data visualization. MOA, UP, PA, and MW coordinated the ACRIDICON-CHUVA observation field campaign. MLP, CP, OOK, and BAH provided the observation data from HALO for model comparison. YL wrote the paper with input from all co-authors.</p></div><span class="section6-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section7" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section7 .co-arrow-open,.section7-content" data-show="#section7 .co-arrow-closed,.section7-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Competing interests<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section7-content show-no-js hide-on-mobile-soft"><p id="d1e4410">At least one of the (co-)authors is a member of the editorial board of <i>Atmospheric Chemistry and Physics</i>. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.</p></div><span class="section7-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section8" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section8 .co-arrow-open,.section8-content" data-show="#section8 .co-arrow-closed,.section8-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Disclaimer<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section8-content show-no-js hide-on-mobile-soft"><p id="d1e4419">Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div><span class="section8-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="ack sec" id="section9"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section9 .co-arrow-open,.section9-content" data-show="#section9 .co-arrow-closed,.section9-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Acknowledgements<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section9-content show-no-js hide-on-mobile-soft"><p id="d1e4425">This study is supported by the Max Planck Society (MPG). Yafang Cheng and Yunfan Liu acknowledge the Minerva Program of MPG. We also gratefully acknowledge the observational data and data providers from the ACRIDICON-CHUVA campaign and a wide range of other institutional partners.</p></div><span class="section9-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section10" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section10 .co-arrow-open,.section10-content" data-show="#section10 .co-arrow-closed,.section10-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Financial support<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section10-content show-no-js hide-on-mobile-soft"><p id="d1e4430">This research was supported by the Max Planck Society (MPG) through the Minerva Program. The ACRIDICON-CHUVA campaign was supported by the MPG, the German Science Foundation (DFG Priority Program SPP 1294), the German Aerospace Center (DLR), and the FAPESP (São Paulo Research Foundation) (grant nos. 2009/15235-8, 2013/05014-0, and 2017/17047-0).<br><br>The article processing charges for this open-access publication were covered by the Max Planck Society.</p></div><span class="section10-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div id="section11" class="sec"><div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section11 .co-arrow-open,.section11-content" data-show="#section11 .co-arrow-closed,.section11-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>Review statement<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section11-content show-no-js hide-on-mobile-soft"><p id="d1e4441">This paper was edited by Martina Krämer and James Allan and reviewed by Eimear Dunne and one anonymous referee.</p></div><span class="section11-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> <div class="ref-list sec" id="section12"> <div class="grid-container no-margin header-element"><span class="grid-100 mobile-grid-100 tablet-grid-100 grid-parent more-less-mobile" data-hide="#section12 .co-arrow-open,.section12-content" data-show="#section12 .co-arrow-closed,.section12-mobile-bottom-border"><div class="h1"><span class="section-number"> </span>References<span class="hide-on-desktop hide-on-tablet triangleWrapper"> <i class="co-arrow-closed"></i><i class="co-arrow-open" style="display:none"></i></span></div></span></div> <div class="section12-content show-no-js hide-on-mobile-soft"><p class="ref" id="bib1.bib1"><span class="mixed-citation">Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523–8546, <a href="https://doi.org/10.5194/acp-19-8523-2019">https://doi.org/10.5194/acp-19-8523-2019</a>, 2019. </span></p><p class="ref" id="bib1.bib2"><span class="mixed-citation">Andreae, M. O. and Andreae, T. W.: The cycle of biogenic sulfur compounds over the Amazon Basin: 1. Dry season, J. Geophys. Res.-Atmos., 93, 1487–1497, <a href="https://doi.org/10.1029/JD093iD02p01487">https://doi.org/10.1029/JD093iD02p01487</a>, 1988. </span></p><p class="ref" id="bib1.bib3"><span class="mixed-citation">Andreae, M. O., Acevedo, O. C., Araùjo, A., Artaxo, P., Barbosa, C. G. G., Barbosa, H. M. J., Brito, J., Carbone, S., Chi, X., Cintra, B. B. L., da Silva, N. F., Dias, N. L., Dias-Júnior, C. Q., Ditas, F., Ditz, R., Godoi, A. F. L., Godoi, R. H. M., Heimann, M., Hoffmann, T., Kesselmeier, J., Könemann, T., Krüger, M. L., Lavric, J. V., Manzi, A. O., Lopes, A. P., Martins, D. L., Mikhailov, E. F., Moran-Zuloaga, D., Nelson, B. W., Nölscher, A. C., Santos Nogueira, D., Piedade, M. T. F., Pöhlker, C., Pöschl, U., Quesada, C. A., Rizzo, L. V., Ro, C.-U., Ruckteschler, N., Sá, L. D. A., de Oliveira Sá, M., Sales, C. B., dos Santos, R. M. N., Saturno, J., Schöngart, J., Sörgel, M., de Souza, C. M., de Souza, R. A. F., Su, H., Targhetta, N., Tóta, J., Trebs, I., Trumbore, S., van Eijck, A., Walter, D., Wang, Z., Weber, B., Williams, J., Winderlich, J., Wittmann, F., Wolff, S., and Yáñez-Serrano, A. M.: The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols, Atmos. Chem. Phys., 15, 10723–10776, <a href="https://doi.org/10.5194/acp-15-10723-2015">https://doi.org/10.5194/acp-15-10723-2015</a>, 2015. </span></p><p class="ref" id="bib1.bib4"><span class="mixed-citation">Andreae, M. O., Afchine, A., Albrecht, R., Holanda, B. A., Artaxo, P., Barbosa, H. M. J., Borrmann, S., Cecchini, M. A., Costa, A., Dollner, M., Fütterer, D., Järvinen, E., Jurkat, T., Klimach, T., Konemann, T., Knote, C., Krämer, M., Krisna, T., Machado, L. A. T., Mertes, S., Minikin, A., Pöhlker, C., Pöhlker, M. L., Pöschl, U., Rosenfeld, D., Sauer, D., Schlager, H., Schnaiter, M., Schneider, J., Schulz, C., Spanu, A., Sperling, V. B., Voigt, C., Walser, A., Wang, J., Weinzierl, B., Wendisch, M., and Ziereis, H.: Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin, Atmos. Chem. Phys., 18, 921–961, <a href="https://doi.org/10.5194/acp-18-921-2018">https://doi.org/10.5194/acp-18-921-2018</a>, 2018. </span></p><p class="ref" id="bib1.bib5"><span class="mixed-citation">Archer-Nicholls, S., Lowe, D., Utembe, S., Allan, J., Zaveri, R. A., Fast, J. D., Hodnebrog, Ø., Denier van der Gon, H., and McFiggans, G.: Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem, Geosci. Model Dev., 7, 2557–2579, <a href="https://doi.org/10.5194/gmd-7-2557-2014">https://doi.org/10.5194/gmd-7-2557-2014</a>, 2014. </span></p><p class="ref" id="bib1.bib6"><span class="mixed-citation">Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, <a href="https://doi.org/10.5194/acp-6-3625-2006">https://doi.org/10.5194/acp-6-3625-2006</a>, 2006. </span></p><p class="ref" id="bib1.bib7"><span class="mixed-citation">Burkholder, J. B., Baynard, T., Ravishankara, A. R., and Lovejoy, E. R.: Particle nucleation following the O<span class="inline-formula"><sub>3</sub></span> and OH initiated oxidation of <span class="inline-formula"><i>α</i></span>-pinene and <span class="inline-formula"><i>β</i></span>-pinene between 278 and 320 K, J. Geophys. Res.-Atmos., 112, D10216, <a href="https://doi.org/10.1029/2006jd007783">https://doi.org/10.1029/2006jd007783</a>, 2007. </span></p><p class="ref" id="bib1.bib8"><span class="mixed-citation">Chapman, E. G., Gustafson Jr., W. I., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and Fast, J. D.: Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources, Atmos. Chem. Phys., 9, 945–964, <a href="https://doi.org/10.5194/acp-9-945-2009">https://doi.org/10.5194/acp-9-945-2009</a>, 2009. </span></p><p class="ref" id="bib1.bib9"><span class="mixed-citation">Cui, Y. Y., Hodzic, A., Smith, J. N., Ortega, J., Brioude, J., Matsui, H., Levin, E. J. T., Turnipseed, A., Winkler, P., and de Foy, B.: Modeling ultrafine particle growth at a pine forest site influenced by anthropogenic pollution during BEACHON-RoMBAS 2011, Atmos. Chem. Phys., 14, 11011–11029, <a href="https://doi.org/10.5194/acp-14-11011-2014">https://doi.org/10.5194/acp-14-11011-2014</a>, 2014. </span></p><p class="ref" id="bib1.bib10"><span class="mixed-citation">D'Andrea, S. D., Häkkinen, S. A. K., Westervelt, D. M., Kuang, C., Levin, E. J. T., Kanawade, V. P., Leaitch, W. R., Spracklen, D. V., Riipinen, I., and Pierce, J. R.: Understanding global secondary organic aerosol amount and size-resolved condensational behavior, Atmos. Chem. Phys., 13, 11519–11534, <a href="https://doi.org/10.5194/acp-13-11519-2013">https://doi.org/10.5194/acp-13-11519-2013</a>, 2013. </span></p><p class="ref" id="bib1.bib11"><span class="mixed-citation">Dunne, E. M., Gordon, H., Kurten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J., Kirkby, J., Kulmala, M., Kupc, A., Lawler, M. J., Lehtipalo, K., Makhmutov, V., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A., Reddington, C. L., Riccobono, F., Richards, N. A., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M., Sipila, M., Smith, J. N., Stozkhov, Y., Tome, A., Trostl, J., Wagner, P. E., Wimmer, D., Winkler, P. M., Worsnop, D. R., and Carslaw, K. S.: Global atmospheric particle formation from CERN CLOUD measurements, Science, 354, 1119–1124, <a href="https://doi.org/10.1126/science.aaf2649">https://doi.org/10.1126/science.aaf2649</a>, 2016. </span></p><p class="ref" id="bib1.bib12"><span class="mixed-citation">Easter, R. C., Ghan, S. J., Zhang, Y., Saylor, R. D., Chapman, E. G., Laulainen, N. S., Abdul-Razzak, H., Leung, L. R., Bian, X. D., and Zaveri, R. A.: MIRAGE: Model description and evaluation of aerosols and trace gases, J. Geophys. Res.-Atmos., 109, D20210, <a href="https://doi.org/10.1029/2004jd004571">https://doi.org/10.1029/2004jd004571</a>, 2004. </span></p><p class="ref" id="bib1.bib13"><span class="mixed-citation">Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D., Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43–67, <a href="https://doi.org/10.5194/gmd-3-43-2010">https://doi.org/10.5194/gmd-3-43-2010</a>, 2010. </span></p><p class="ref" id="bib1.bib14"><span class="mixed-citation">Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., Barbosa, H. M. J., Braga, R. C., Comstock, J. M., Feng, Z., Gao, W., Gomes, H. B., Mei, F., Pöhlker, C., Pöhlker, M. L., Pöschl, U., and de Souza, R. A. F.: Substantial convection and precipitation enhancements by ultrafine aerosol particles, Science, 359, 411–418, <a href="https://doi.org/10.1126/science.aan8461">https://doi.org/10.1126/science.aan8461</a>, 2018. </span></p><p class="ref" id="bib1.bib15"><span class="mixed-citation">Fast, J. D., Gustafson, W. I., Easter, R. C., Zaveri, R. A., Barnard, J. C., Chapman, E. G., Grell, G. A., and Peckham, S. E.: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model, J. Geophys. Res., 111, D21305, <a href="https://doi.org/10.1029/2005jd006721">https://doi.org/10.1029/2005jd006721</a>, 2006. </span></p><p class="ref" id="bib1.bib16"><span class="mixed-citation">Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. A. F., Andreae, M. O., Prins, E., Santos, J. C., Gielow, R., and Carvalho Jr., J. A.: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7, 3385–3398, <a href="https://doi.org/10.5194/acp-7-3385-2007">https://doi.org/10.5194/acp-7-3385-2007</a>, 2007. </span></p><p class="ref" id="bib1.bib17"><span class="mixed-citation">Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T., Ortega, I. K., Wagner, R., Dunne, E. M., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J. S., Dias, A., Ehrhart, S., Fischer, L., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Kirkby, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Monks, S. A., Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplan, A. P., Pringle, K. J., Richards, N. A., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sharma, S., Sipila, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Curtius, J., and Carslaw, K. S.: Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation, P. Natl. Acad. Sci. USA, 113, 12053–12058, <a href="https://doi.org/10.1073/pnas.1602360113">https://doi.org/10.1073/pnas.1602360113</a>, 2016. </span></p><p class="ref" id="bib1.bib18"><span class="mixed-citation">Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, <a href="https://doi.org/10.1016/j.atmosenv.2005.04.027">https://doi.org/10.1016/j.atmosenv.2005.04.027</a>, 2005. </span></p><p class="ref" id="bib1.bib19"><span class="mixed-citation">Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, <a href="https://doi.org/10.5194/gmd-5-1471-2012">https://doi.org/10.5194/gmd-5-1471-2012</a>, 2012. </span></p><p class="ref" id="bib1.bib20"><span class="mixed-citation">Hardacre, C., Mulcahy, J. P., Pope, R. J., Jones, C. G., Rumbold, S. T., Li, C., Johnson, C., and Turnock, S. T.: Evaluation of SO<span class="inline-formula"><sub>2</sub></span>, SO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M227" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi></mi><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mi mathvariant="normal">−</mi></mrow></msubsup></mrow></math><span><svg xmlns:svg="http://www.w3.org/2000/svg" width="13pt" height="17pt" class="hide-js svg-formula" dspmath="mathimg" md5hash="c904171f526141a79204698081d6898c"><image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00006.svg" width="100%" height="17pt" src="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023-ie00006.png"></image></svg></span></span> and an updated SO<span class="inline-formula"><sub>2</sub></span> dry deposition parameterization in the United Kingdom Earth System Model, Atmos. Chem. Phys., 21, 18465–18497, <a href="https://doi.org/10.5194/acp-21-18465-2021">https://doi.org/10.5194/acp-21-18465-2021</a>, 2021. </span></p><p class="ref" id="bib1.bib21"><span class="mixed-citation">Heald, C. L., Coe, H., Jimenez, J. L., Weber, R. J., Bahreini, R., Middlebrook, A. M., Russell, L. M., Jolleys, M., Fu, T.-M., Allan, J. D., Bower, K. N., Capes, G., Crosier, J., Morgan, W. T., Robinson, N. H., Williams, P. I., Cubison, M. J., DeCarlo, P. F., and Dunlea, E. J.: Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model, Atmos. Chem. Phys., 11, 12673–12696, <a href="https://doi.org/10.5194/acp-11-12673-2011">https://doi.org/10.5194/acp-11-12673-2011</a>, 2011. </span></p><p class="ref" id="bib1.bib22"><span class="mixed-citation">Hõrrak, U., Aalto, P. P., Salm, J., Komsaare, K., Tammet, H., Mäkelä, J. M., Laakso, L., and Kulmala, M.: Variation and balance of positive air ion concentrations in a boreal forest, Atmos. Chem. Phys., 8, 655–675, <a href="https://doi.org/10.5194/acp-8-655-2008">https://doi.org/10.5194/acp-8-655-2008</a>, 2008. </span></p><p class="ref" id="bib1.bib23"><span class="mixed-citation">Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M.: HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution, Atmos. Chem. Phys., 15, 11411–11432, <a href="https://doi.org/10.5194/acp-15-11411-2015">https://doi.org/10.5194/acp-15-11411-2015</a>, 2015. </span></p><p class="ref" id="bib1.bib24"><span class="mixed-citation">Jenkin, M. E., Watson, L. A., Utembe, S. R., and Shallcross, D. E.: A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 1: Gas phase mechanism development, Atmos. Environ., 42, 7185–7195, <a href="https://doi.org/10.1016/j.atmosenv.2008.07.028">https://doi.org/10.1016/j.atmosenv.2008.07.028</a>, 2008. </span></p><p class="ref" id="bib1.bib25"><span class="mixed-citation">Kerminen, V.-M., Anttila, T., Lehtinen, K., and Kulmala, M.: Parameterization for Atmospheric New-Particle Formation: Application to a System Involving Sulfuric Acid and Condensable Water-Soluble Organic Vapors, Aerosol Sci. Tech., 38, 1001–1008, <a href="https://doi.org/10.1080/027868290519085">https://doi.org/10.1080/027868290519085</a>, 2004. </span></p><p class="ref" id="bib1.bib26"><span class="mixed-citation">Kirkby, J., Duplissy, J., Sengupta, K., Frege, C., Gordon, H., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Trostl, J., Nieminen, T., Ortega, I. K., Wagner, R., Adamov, A., Amorim, A., Bernhammer, A. K., Bianchi, F., Breitenlechner, M., Brilke, S., Chen, X., Craven, J., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Krapf, M., Kurten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Molteni, U., Onnela, A., Perakyla, O., Piel, F., Petaja, T., Praplan, A. P., Pringle, K., Rap, A., Richards, N. A., Riipinen, I., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sipila, M., Steiner, G., Stozhkov, Y., Stratmann, F., Tome, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Carslaw, K. S., and Curtius, J.: Ion-induced nucleation of pure biogenic particles, Nature, 533, 521–526, <a href="https://doi.org/10.1038/nature17953">https://doi.org/10.1038/nature17953</a>, 2016. </span></p><p class="ref" id="bib1.bib27"><span class="mixed-citation">Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from isoprene photooxidation under high-NO<span class="inline-formula"><sub><i>x</i></sub></span> conditions, Geophys. Res. Lett., 32, L18808, <a href="https://doi.org/10.1029/2005gl023637">https://doi.org/10.1029/2005gl023637</a>, 2005. </span></p><p class="ref" id="bib1.bib28"><span class="mixed-citation">Kuhn, U., Ganzeveld, L., Thielmann, A., Dindorf, T., Schebeske, G., Welling, M., Sciare, J., Roberts, G., Meixner, F. X., Kesselmeier, J., Lelieveld, J., Kolle, O., Ciccioli, P., Lloyd, J., Trentmann, J., Artaxo, P., and Andreae, M. O.: Impact of Manaus City on the Amazon Green Ocean atmosphere: ozone production, precursor sensitivity and aerosol load, Atmos. Chem. Phys., 10, 9251–9282, <a href="https://doi.org/10.5194/acp-10-9251-2010">https://doi.org/10.5194/acp-10-9251-2010</a>, 2010. </span></p><p class="ref" id="bib1.bib29"><span class="mixed-citation">Kulmala, M.: How particles nucleate and grow, Science, 302, 1000–1001, <a href="https://doi.org/10.1126/science.1090848">https://doi.org/10.1126/science.1090848</a>, 2003. </span></p><p class="ref" id="bib1.bib30"><span class="mixed-citation">Liu, Y.: Data for “Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin”, Edmond [data set], <a href="https://doi.org/10.17617/3.3ISOYC">https://doi.org/10.17617/3.3ISOYC</a>, 2022. </span></p><p class="ref" id="bib1.bib31"><span class="mixed-citation">Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519–551, <a href="https://doi.org/10.5194/gmd-3-519-2010">https://doi.org/10.5194/gmd-3-519-2010</a>, 2010. </span></p><p class="ref" id="bib1.bib32"><span class="mixed-citation">Minikin, A., Petzold, A., Ström, J., Krejci, R., Seifert, M., van Velthoven, P., Schlager, H., and Schumann, U.: Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes, Geophys. Res. Lett., 30, 1503, <a href="https://doi.org/10.1029/2002gl016458">https://doi.org/10.1029/2002gl016458</a>, 2003. </span></p><p class="ref" id="bib1.bib33"><span class="mixed-citation">Napari, I., Noppel, M., Vehkamaki, H., and Kulmala, M.: Parametrization of ternary nucleation rates for H<span class="inline-formula"><sub>2</sub></span>SO<span class="inline-formula"><sub>4</sub></span>-NH<span class="inline-formula"><sub>3</sub></span>-H<span class="inline-formula"><sub>2</sub></span>O vapors, J. Geophys. Res., 107, 4381, <a href="https://doi.org/10.1029/2002JD002132">https://doi.org/10.1029/2002JD002132</a>, 2002. </span></p><p class="ref" id="bib1.bib34"><span class="mixed-citation"> Paluch, I. R. and Knight, C. A.: Mixing and the evolution of cloud droplet size spectra in a vigorous continental cumulus, J. Atmos. Sci., 41, 1801–1815, 1984. </span></p><p class="ref" id="bib1.bib35"><span class="mixed-citation">Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, <a href="https://doi.org/10.5194/acp-7-1961-2007">https://doi.org/10.5194/acp-7-1961-2007</a>, 2007. </span></p><p class="ref" id="bib1.bib36"><span class="mixed-citation">Ramsay, R., Di Marco, C. F., Sörgel, M., Heal, M. R., Carbone, S., Artaxo, P., de Araùjo, A. C., Sá, M., Pöhlker, C., Lavric, J., Andreae, M. O., and Nemitz, E.: Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest, Atmos. Chem. Phys., 20, 15551–15584, <a href="https://doi.org/10.5194/acp-20-15551-2020">https://doi.org/10.5194/acp-20-15551-2020</a>, 2020. </span></p><p class="ref" id="bib1.bib37"><span class="mixed-citation">Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L., Almeida, J., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Downard, A., Dunne, E. M., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Hansel, A., Junninen, H., Kajos, M., Keskinen, H., Kupc, A., Kurten, A., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Makhmutov, V., Mathot, S., Nieminen, T., Onnela, A., Petaja, T., Praplan, A. P., Santos, F. D., Schallhart, S., Seinfeld, J. H., Sipila, M., Spracklen, D. V., Stozhkov, Y., Stratmann, F., Tome, A., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Wimmer, D., Carslaw, K. S., Curtius, J., Donahue, N. M., Kirkby, J., Kulmala, M., Worsnop, D. R., and Baltensperger, U.: Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles, Science, 344, 717–721, <a href="https://doi.org/10.1126/science.1243527">https://doi.org/10.1126/science.1243527</a>, 2014. </span></p><p class="ref" id="bib1.bib38"><span class="mixed-citation">Saathoff, H., Naumann, K.-H., Möhler, O., Jonsson, Å. M., Hallquist, M., Kiendler-Scharr, A., Mentel, Th. F., Tillmann, R., and Schurath, U.: Temperature dependence of yields of secondary organic aerosols from the ozonolysis of <span class="inline-formula"><i>α</i></span>-pinene and limonene, Atmos. Chem. Phys., 9, 1551–1577, <a href="https://doi.org/10.5194/acp-9-1551-2009">https://doi.org/10.5194/acp-9-1551-2009</a>, 2009. </span></p><p class="ref" id="bib1.bib39"><span class="mixed-citation">Schulz, C., Schneider, J., Amorim Holanda, B., Appel, O., Costa, A., de Sá, S. S., Dreiling, V., Fütterer, D., Jurkat-Witschas, T., Klimach, T., Knote, C., Krämer, M., Martin, S. T., Mertes, S., Pöhlker, M. L., Sauer, D., Voigt, C., Walser, A., Weinzierl, B., Ziereis, H., Zöger, M., Andreae, M. O., Artaxo, P., Machado, L. A. T., Pöschl, U., Wendisch, M., and Borrmann, S.: Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region, Atmos. Chem. Phys., 18, 14979–15001, <a href="https://doi.org/10.5194/acp-18-14979-2018">https://doi.org/10.5194/acp-18-14979-2018</a>, 2018. </span></p><p class="ref" id="bib1.bib40"><span class="mixed-citation">Scott, C. E., Rap, A., Spracklen, D. V., Forster, P. M., Carslaw, K. S., Mann, G. W., Pringle, K. J., Kivekäs, N., Kulmala, M., Lihavainen, H., and Tunved, P.: The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14, 447–470, <a href="https://doi.org/10.5194/acp-14-447-2014">https://doi.org/10.5194/acp-14-447-2014</a>, 2014. </span></p><p class="ref" id="bib1.bib41"><span class="mixed-citation">Su, H., Rose, D., Cheng, Y. F., Gunthe, S. S., Massling, A., Stock, M., Wiedensohler, A., Andreae, M. O., and Pöschl, U.: Hygroscopicity distribution concept for measurement data analysis and modeling of aerosol particle mixing state with regard to hygroscopic growth and CCN activation, Atmos. Chem. Phys., 10, 7489–7503, <a href="https://doi.org/10.5194/acp-10-7489-2010">https://doi.org/10.5194/acp-10-7489-2010</a>, 2010. </span></p><p class="ref" id="bib1.bib42"><span class="mixed-citation">Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L., Frege, C., Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K., Williamson, C., Craven, J. S., Duplissy, J., Adamov, A., Almeida, J., Bernhammer, A. K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H., Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kurten, A., Laaksonen, A., Lawler, M., Leiminger, M., Mathot, S., Mohler, O., Nieminen, T., Onnela, A., Petaja, T., Piel, F. M., Miettinen, P., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Sipila, M., Smith, J. N., Steiner, G., Tome, A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and Baltensperger, U.: The role of low-volatility organic compounds in initial particle growth in the atmosphere, Nature, 533, 527–531, <a href="https://doi.org/10.1038/nature18271">https://doi.org/10.1038/nature18271</a>, 2016. </span></p><p class="ref" id="bib1.bib43"><span class="mixed-citation">Wang, J., Krejci, R., Giangrande, S., Kuang, C., Barbosa, H. M., Brito, J., Carbone, S., Chi, X., Comstock, J., Ditas, F., Lavric, J., Manninen, H. E., Mei, F., Moran-Zuloaga, D., Pohlker, C., Pohlker, M. L., Saturno, J., Schmid, B., Souza, R. A., Springston, S. R., Tomlinson, J. M., Toto, T., Walter, D., Wimmer, D., Smith, J. N., Kulmala, M., Machado, L. A., Artaxo, P., Andreae, M. O., Petaja, T., and Martin, S. T.: Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall, Nature, 539, 416–419, <a href="https://doi.org/10.1038/nature19819">https://doi.org/10.1038/nature19819</a>, 2016. </span></p><p class="ref" id="bib1.bib44"><span class="mixed-citation">Wang, Q., Saturno, J., Chi, X., Walter, D., Lavric, J. V., Moran-Zuloaga, D., Ditas, F., Pöhlker, C., Brito, J., Carbone, S., Artaxo, P., and Andreae, M. O.: Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season, Atmos. Chem. Phys., 16, 14775–14794, <a href="https://doi.org/10.5194/acp-16-14775-2016">https://doi.org/10.5194/acp-16-14775-2016</a>, 2016. </span></p><p class="ref" id="bib1.bib45"><span class="mixed-citation">Watson, L. A., Shallcross, D. E., Utembe, S. R., and Jenkin, M. E.: A Common Representative Intermediates (CRI) mechanism for VOC degradation. Part 2: Gas phase mechanism reduction, Atmos. Environ., 42, 7196–7204, <a href="https://doi.org/10.1016/j.atmosenv.2008.07.034">https://doi.org/10.1016/j.atmosenv.2008.07.034</a>, 2008. </span></p><p class="ref" id="bib1.bib46"><span class="mixed-citation">Watson-Parris, D., Schutgens, N., Reddington, C., Pringle, K. J., Liu, D., Allan, J. D., Coe, H., Carslaw, K. S., and Stier, P.: In situ constraints on the vertical distribution of global aerosol, Atmos. Chem. Phys., 19, 11765–11790, <a href="https://doi.org/10.5194/acp-19-11765-2019">https://doi.org/10.5194/acp-19-11765-2019</a>, 2019. </span></p><p class="ref" id="bib1.bib47"><span class="mixed-citation">Wendisch, M., Pöschl, U., Andreae, M. O., Machado, L. A. T., Albrecht, R., Schlager, H., Rosenfeld, D., Martin, S. T., Abdelmonem, A., Afchine, A., Araùjo, A. C., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrmann, S., Braga, R., Buchholz, B., Cecchini, M. A., Costa, A., Curtius, J., Dollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F., Fisch, G., Fix, A., Frank, F., Fütterer, D., Heckl, C., Heidelberg, F., Hüneke, T., Jäkel, E., Järvinen, E., Jurkat, T., Kanter, S., Kästner, U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M., Kohl, R., Kölling, T., Krämer, M., Krüger, M., Krisna, T. C., Lavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S., Minikin, A., Molleker, S., Münch, S., Nillius, B., Pfeilsticker, K., Pöhlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., Schnaiter, M., Schneider, J., Schulz, C., de Souza, R. A. F., Spanu, A., Stock, P., Vila, D., Voigt, C., Walser, A., Walter, D., Weigel, R., Weinzierl, B., Werner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Zöger, M.: ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO, B. Am. Meteorol. Soc., 97, 1885–1908, <a href="https://doi.org/10.1175/bams-d-14-00255.1">https://doi.org/10.1175/bams-d-14-00255.1</a>, 2016. </span></p><p class="ref" id="bib1.bib48"><span class="mixed-citation">Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23, 1293–1304, <a href="https://doi.org/10.1016/0004-6981(89)90153-4">https://doi.org/10.1016/0004-6981(89)90153-4</a>, 1989. </span></p><p class="ref" id="bib1.bib49"><span class="mixed-citation">Wexler, A. S., Lurmann, F. W., and Seinfeld, J. H.: Modelling urban and regional aerosols – I. model development, Atmos. Environ., 28, 531–546, <a href="https://doi.org/10.1016/1352-2310(94)90129-5">https://doi.org/10.1016/1352-2310(94)90129-5</a>, 1994. </span></p><p class="ref" id="bib1.bib50"><span class="mixed-citation">Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625–641, <a href="https://doi.org/10.5194/gmd-4-625-2011">https://doi.org/10.5194/gmd-4-625-2011</a>, 2011. </span></p><p class="ref" id="bib1.bib51"><span class="mixed-citation">Williamson, C. J., Kupc, A., Axisa, D., Bilsback, K. R., Bui, T., Campuzano-Jost, P., Dollner, M., Froyd, K. D., Hodshire, A. L., Jimenez, J. L., Kodros, J. K., Luo, G., Murphy, D. M., Nault, B. A., Ray, E. A., Weinzierl, B., Wilson, J. C., Yu, F., Yu, P., Pierce, J. R., and Brock, C. A.: A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399–403, <a href="https://doi.org/10.1038/s41586-019-1638-9">https://doi.org/10.1038/s41586-019-1638-9</a>, 2019. </span></p><p class="ref" id="bib1.bib52"><span class="mixed-citation">Yu, F., Wang, Z., Luo, G., and Turco, R.: Ion-mediated nucleation as an important global source of tropospheric aerosols, Atmos. Chem. Phys., 8, 2537–2554, <a href="https://doi.org/10.5194/acp-8-2537-2008">https://doi.org/10.5194/acp-8-2537-2008</a>, 2008. </span></p><p class="ref" id="bib1.bib53"><span class="mixed-citation">Yu, F., Luo, G., Nadykto, A. B., and Herb, J.: Impact of temperature dependence on the possible contribution of organics to new particle formation in the atmosphere, Atmos. Chem. Phys., 17, 4997–5005, <a href="https://doi.org/10.5194/acp-17-4997-2017">https://doi.org/10.5194/acp-17-4997-2017</a>, 2017. </span></p><p class="ref" id="bib1.bib54"><span class="mixed-citation">Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res.-Atmos., 113, D13204, <a href="https://doi.org/10.1029/2007jd008782">https://doi.org/10.1029/2007jd008782</a>, 2008. </span></p><p class="ref" id="bib1.bib55"><span class="mixed-citation">Zhao, B., Shrivastava, M., Donahue, N. M., Gordon, H., Schervish, M., Shilling, J. E., Zaveri, R. A., Wang, J., Andreae, M. O., Zhao, C., Gaudet, B., Liu, Y., Fan, J., and Fast, J. D.: High concentration of ultrafine particles in the Amazon free troposphere produced by organic new particle formation, P. Natl. Acad. Sci. USA, 117, 25344, <a href="https://doi.org/10.1073/pnas.2006716117">https://doi.org/10.1073/pnas.2006716117</a>, 2020. </span></p><p class="ref" id="bib1.bib56"><span class="mixed-citation">Zhu, J. L. and Penner, J. E.: Global Modeling of Secondary Organic Aerosol With Organic Nucleation, J. Geophys. Res.-Atmos., 124, 8260–8286, <a href="https://doi.org/10.1029/2019jd030414">https://doi.org/10.1029/2019jd030414</a>, 2019. </span></p><p class="ref" id="bib1.bib57"><span class="mixed-citation">Zhu, J. L., Penner, J. E., Yu, F. Q., Sillman, S., Andreae, M. O., and Coe, H.: Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change, Nat. Commun., 10, 423, <a href="https://doi.org/10.1038/s41467-019-08407-7">https://doi.org/10.1038/s41467-019-08407-7</a>, 2019. </span></p></div><span class="section12-mobile-bottom-border mobile-bottom-border hide-on-desktop hide-on-tablet"></span></div> </div> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div></div> <!-- CO c_contentmanager_services::callProjectTemplate::899 19.09.2024 01:12:42, memcached, 0.00078010559082031secs --> <div id="page_colum_left_container" class="CMSCONTAINER w-sidebar col-auto d-none d-lg-block"> <div class="auto-fixed-top no-shadow old-articleNavigation"> <div id="quicklaunch_buttons" class="cmsbox jo_quicklaunch-bar"> <a href="https://acp.copernicus.org/" class="article-button journal-contentLinkColor journal-contentBorderColor">Articles </a> </div> <div id="main-navigation" class="cmsbox j-navigation"> <ul class="co_function_get_navigation menu_level1"> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#abstract" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Abstract</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section1" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Introduction</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section2" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Results</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section3" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Conclusions</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section4" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Appendix A</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section5" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data availability</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section6" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Author contributions</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section7" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Competing interests</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section8" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Disclaimer</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section9" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Acknowledgements</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section10" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Financial support</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section11" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Review statement</a></li> <li class="menuitem_level1 co_function_get_navigation_is_parent co_function_get_navigation_is_closed" id="co_getnavigation_page_about"> <a href="https://acp.copernicus.org/articles/23/251/2023/#section12" class="link_level1 scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">References</a></li> </ul> </div> </div> <div id="leftColumnExtras" class="CMSCONTAINER w-sidebar col-auto d-none d-lg-block pt-2"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Download</div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" title="PDF Version (8728 KB)" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.pdf">Article</a> <nobr>(8728 KB)</nobr> </li> <li> <a class="triangle" title="XML Version" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.xml">Full-text XML</a> </li> </ul> </div> <div class="content"> <ul class="additional_info no-bullets no-styling"> <li><a class="triangle" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.bib">BibTeX</a></li> <li><a class="triangle" href="https://acp.copernicus.org/articles/23/251/2023/acp-23-251-2023.ris">EndNote</a></li> </ul> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content hide-js shortSummaryFullOnMSType">Traditionally, the interactions between aerosols, clouds, weather and climate has focused on sulphate aerosols. However, in the last 20 years it has become apparent that secondary organic aerosols are also highly abundant in the troposphere. These could represent a major coupling in the earth system between the biosphere and the atmosphere, and thus climate because forests are known to emit large quantities of biogenic VOCs that are known to produce secondary organic aerosols. However selectively studying their influence on the free troposphere is difficult as it requires in situ measurements aboard scientific aircraft. This study observes the role of biogenic secondary organic aerosols on the abundance of cloud condensation nuclei in the upper troposphere above the Amazon, and compares it with a state-of-the-art predictive model. This further supports the importance of these processes in earth system models and gives confidence that the current level of understanding will produce accurate predictions.</div> <div style="display: none" class="content show-js shortSummaryShortenOnMSType">Traditionally, the interactions between aerosols, clouds, weather and climate has focused on...</div> <div class="content"> <a href="#" class="more-less show-js triangle" data-hide=".shortSummaryFullOnMSType" data-show=".shortSummaryShortenOnMSType" data-toggleCaption='Hide'>Read more</a> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content hide-js shortSummaryFull">The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.</div> <div style="display: none" class="content show-js shortSummaryShorten">The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the...</div> <div class="content"> <a href="#" class="more-less show-js triangle" data-hide=".shortSummaryFull" data-show=".shortSummaryShorten" data-toggleCaption='Hide'>Read more</a> </div> </div> <div class="widget dark-border hide-on-mobile hide-on-tablet p-0" id="share"> <div class="legend journal-contentLinkColor">Share</div> <div class="row p-0"> <div class="col-auto pl-0"> <a class="share-one-line" href="https://www.mendeley.com/import/?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F" title="Mendeley" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/mendeley.png" alt="Mendeley"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.reddit.com/submit?url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F" title="Reddit" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/reddit.png" alt="Reddit"> </a> </div> <div class="col-auto"> <a class="share-one-line last" href="https://twitter.com/intent/tweet?text=Strong+particle+production+and+condensational+growth+in+the+upper+troposphere+sustained+by+biogenic+VOCs+from+the+canopy+of+the+Amazon+Basin https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F" title="Twitter" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/twitter.png" alt="Twitter"/> </a> </div> <div class="col-auto"> <a class="share-one-line" href="https://www.facebook.com/share.php?u=https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F&t=Strong+particle+production+and+condensational+growth+in+the+upper+troposphere+sustained+by+biogenic+VOCs+from+the+canopy+of+the+Amazon+Basin" title="Facebook" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/facebook.png" alt="Facebook"/> </a> </div> <div class="col-auto pr-0"> <a class="share-one-line last" href="https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Facp.copernicus.org%2Farticles%2F23%2F251%2F2023%2F&title=Strong+particle+production+and+condensational+growth+in+the+upper+troposphere+sustained+by+biogenic+VOCs+from+the+canopy+of+the+Amazon+Basin" title="LinkedIn" target="_blank"> <img src="https://www.atmospheric-chemistry-and-physics.net/linkedin.png" alt="LinkedIn"> </a> </div> <div class="col pr-0 mobile-native-share"> <a href="#" data-title="Atmospheric Chemistry and Physics" data-text="*Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin* Yunfan Liu et al." data-url="https://acp.copernicus.org/articles/23/251/2023/" class="mobile-native-share share-one-line last"><i class="co-mobile-share display-none"></i></a> </div> </div> </div> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Altmetrics</div> <div class="wrapper"> <div class="content text-center"> Final-revised paper </div> <div class="content text-center"> <div class="altmetric-embed" data-link-target="_blank" data-hide-less-than="1" data-no-score data-badge-type="medium-donut" data-doi="10.5194/acp-23-251-2023"></div> </div> </div> <div class="wrapper"> <div class="content text-center"> Preprint </div> <div class="content text-center"> <div class="altmetric-embed" data-link-target="_blank" data-hide-less-than="1" data-no-score data-badge-type="medium-donut" data-doi="10.5194/acp-2022-530"></div> </div> </div> </div> <script type="text/javascript"> !function (e, t, n) { var d = "createElement", c = "getElementsByTagName", m = "setAttribute", n = document.getElementById(e); return n && n.parentNode && n.parentNode.removeChild(n), n = document[d + "NS"] && document.documentElement.namespaceURI, n = n ? document[d + "NS"](n, "script") : document[d]("script"), n[m]("id", e), n[m]("src", t), (document[c]("head")[0] || document[c]("body")[0]).appendChild(n), n = new Image, void n[m]("src", "https://www.atmospheric-chemistry-and-physics.net/altmetric_donut.png") }("altmetric-embed-js", "https://www.atmospheric-chemistry-and-physics.net/altmetric_badges.min.js"); $(function () { $('div.altmetric-embed').on('altmetric:hide', function () { if($(this).closest('.widget').find('.altmetric-embed:not(.altmetric-hidden)').length === 0) { $(this).closest('.widget').hide(); } $(this).closest('.wrapper').hide(); }); }); </script> <div class="ajax-content" data-src="https://editor.copernicus.org/similarArticles.php?article=105454&journal=10&isSecondStage=1&ajax=true"> </div> </div> <div class="auto-fixed-top px-1 mb-3 articleNavigation" data-fixet-top-target="#section1"> <button class="btn btn-success mb-3 btn-block" id="mathjax-turn"><i class="fal fa-function"></i> Turn MathJax on</button> <div class="widget dark-border m-0"> <div class="legend journal-contentLinkColor">Sections</div> <div class="content"> <ul class="toc-styling p-0"> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#abstract" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Abstract</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section1" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Introduction</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section2" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Results</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section3" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Conclusions</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section4" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Appendix A</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section5" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Data availability</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section6" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Author contributions</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section7" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Competing interests</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section8" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Disclaimer</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section9" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Acknowledgements</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section10" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Financial support</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section11" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">Review statement</a> </li> <li> <a href="https://acp.copernicus.org/articles/23/251/2023/#section12" class="scrollto" data-fixed-element=".auto-fixed-top-forced.article-title">References</a> </li> </ul> </div> </div> </div> </div> </div> </div> </main> <!--=== End Content ===--> <footer class="d-print-none version-2023"> <div class="footer"> <div class="container"> <div class="row align-items-center mb-3"> <div class="col-12 col-lg-auto text-center text-md-left title-wrapper"> <div id="j-header-footer" class="text-center text-md-left"> <div class="h1 text-center text-md-left"> Atmospheric Chemistry and Physics </div> <p>An interactive open-access journal of the European Geosciences Union</p> </div> </div> <div class="col-12 col-lg-auto text-center text-md-left pt-lg-2"> <div class="row align-items-center"> <div class="col-12 col-sm col-md-auto text-center text-md-left mb-3 mb-sm-0"> <span class="egu-logo"><a href="http://www.egu.eu/" target="_blank"><img src="https://contentmanager.copernicus.org/319373/10/ssl" alt="" style="width: 410px; height: 325px;" /></a></span> </div> <div class="col-12 col-sm text-center text-md-left"> <span class="copernicus-logo"><a href="https://publications.copernicus.org/" target="_blank"><img src="https://contentmanager.copernicus.org/319376/10/ssl" alt="" style="width: 1784px; height: 330px;" /></a></span> </div> </div> </div> </div> </div> </div> <div class="links pb-4 pt-4"> <div class="container"> <div class="row align-items-center"> <div class="col-12 col-xl-auto mt-3"> <div class="row align-items-start align-items-lg-center"> <div class="col-12 mb-3 mb-md-0 pl-md-0 text-center text-md-left"><a href="https://creativecommons.org/licenses/by/4.0/" target="_blank"><i class="fab fa-creative-commons fa-lg mr-1"></i><i class="fab fa-creative-commons-by fa-lg"></i></a> All site content, except where otherwise noted, is licensed under the <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution 4.0 License</a>.</div> </div> </div> <div class="col-12 text-center text-md-left col-lg-auto mt-3"> <div class="row align-items-center"> <div class="col d-md-none px-0"></div> <div class="col-auto pr-1"><a href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.atmospheric-chemistry-and-physics.net/imprint.html">Imprint</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.copernicus.org/data_protection.html" target="_blank">Data protection</a></div> <div class="col-auto pl-2"><a class="twitter-follow-button" target="_blank" href="https://twitter.com/EGU_ACP"><i class="fa-brands fa-square-x-twitter fa-2x"></i></a></div> <div class="col d-md-none px-0"></div> </div> </div> </div> </div> </div> </footer> <!-- --></body> <!--CMS get_project_template.php::126 19.09.2024 01:12:42, CMS generated: 2.923192024231sec --></html>