CINXE.COM
Cauchy distribution - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Cauchy distribution - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"3f100bf7-13e5-45c2-8f9f-2d5f2c38c4af","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Cauchy_distribution","wgTitle":"Cauchy distribution","wgCurRevisionId":1258378620,"wgRevisionId":1258378620,"wgArticleId":7003,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 maint: multiple names: authors list","Webarchive template wayback links","Articles with short description","Short description matches Wikidata","All articles with unsourced statements","Articles with unsourced statements from March 2011","Articles with unsourced statements from April 2011","Augustin-Louis Cauchy","Continuous distributions","Probability distributions with non-finite variance","Power laws","Stable distributions", "Location-scale family probability distributions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Cauchy_distribution","wgRelevantArticleId":7003,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true, "wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q726441","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site", "mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Cauchy_pdf.svg/1200px-Cauchy_pdf.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="960"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Cauchy_pdf.svg/800px-Cauchy_pdf.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="640"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Cauchy_pdf.svg/640px-Cauchy_pdf.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="512"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Cauchy distribution - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Cauchy_distribution"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Cauchy_distribution&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Cauchy_distribution"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Cauchy_distribution rootpage-Cauchy_distribution skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Cauchy+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Cauchy+distribution" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Cauchy+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Cauchy+distribution" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Constructions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Constructions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Constructions</span> </div> </a> <button aria-controls="toc-Constructions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Constructions subsection</span> </button> <ul id="toc-Constructions-sublist" class="vector-toc-list"> <li id="toc-Rotational_symmetry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rotational_symmetry"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Rotational symmetry</span> </div> </a> <ul id="toc-Rotational_symmetry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability_density_function_(PDF)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_density_function_(PDF)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Probability density function (PDF)</span> </div> </a> <ul id="toc-Probability_density_function_(PDF)-sublist" class="vector-toc-list"> <li id="toc-Properties_of_PDF" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Properties_of_PDF"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Properties of PDF</span> </div> </a> <ul id="toc-Properties_of_PDF-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Cumulative_distribution_function_(CDF)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cumulative_distribution_function_(CDF)"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Cumulative distribution function (CDF)</span> </div> </a> <ul id="toc-Cumulative_distribution_function_(CDF)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other_constructions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other_constructions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Other constructions</span> </div> </a> <ul id="toc-Other_constructions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Sum_of_Cauchy-distributed_random_variables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sum_of_Cauchy-distributed_random_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Sum of Cauchy-distributed random variables</span> </div> </a> <ul id="toc-Sum_of_Cauchy-distributed_random_variables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Central_limit_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Central_limit_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Central limit theorem</span> </div> </a> <ul id="toc-Central_limit_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Characteristic_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Characteristic_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Characteristic function</span> </div> </a> <ul id="toc-Characteristic_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Kullback–Leibler_divergence" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kullback–Leibler_divergence"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Kullback–Leibler divergence</span> </div> </a> <ul id="toc-Kullback–Leibler_divergence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Entropy" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Entropy"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Entropy</span> </div> </a> <ul id="toc-Entropy-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Moments" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Moments"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Moments</span> </div> </a> <button aria-controls="toc-Moments-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Moments subsection</span> </button> <ul id="toc-Moments-sublist" class="vector-toc-list"> <li id="toc-Sample_moments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sample_moments"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Sample moments</span> </div> </a> <ul id="toc-Sample_moments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mean" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mean"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Mean</span> </div> </a> <ul id="toc-Mean-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Smaller_moments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Smaller_moments"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Smaller moments</span> </div> </a> <ul id="toc-Smaller_moments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Higher_moments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Higher_moments"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Higher moments</span> </div> </a> <ul id="toc-Higher_moments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Moments_of_truncated_distributions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Moments_of_truncated_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Moments of truncated distributions</span> </div> </a> <ul id="toc-Moments_of_truncated_distributions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Estimation_of_parameters" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Estimation_of_parameters"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Estimation of parameters</span> </div> </a> <ul id="toc-Estimation_of_parameters-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multivariate_Cauchy_distribution" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Multivariate_Cauchy_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Multivariate Cauchy distribution</span> </div> </a> <ul id="toc-Multivariate_Cauchy_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transformation_properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Transformation_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Transformation properties</span> </div> </a> <ul id="toc-Transformation_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lévy_measure" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Lévy_measure"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Lévy measure</span> </div> </a> <ul id="toc-Lévy_measure-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_distributions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Related_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Related distributions</span> </div> </a> <ul id="toc-Related_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relativistic_Breit–Wigner_distribution" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Relativistic_Breit–Wigner_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Relativistic Breit–Wigner distribution</span> </div> </a> <ul id="toc-Relativistic_Breit–Wigner_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Occurrence_and_applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Occurrence_and_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Occurrence and applications</span> </div> </a> <ul id="toc-Occurrence_and_applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Cauchy distribution</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 28 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-28" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">28 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%D9%8A%D8%B9_%D9%83%D9%88%D8%B4%D9%8A" title="توزيع كوشي – Arabic" lang="ar" hreflang="ar" data-title="توزيع كوشي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BA%D0%B0%D0%B2%D0%B0%D0%BD%D0%BD%D0%B5_%D0%9A%D0%B0%D1%88%D1%8B" title="Размеркаванне Кашы – Belarusian" lang="be" hreflang="be" data-title="Размеркаванне Кашы" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Distribuci%C3%B3_de_Cauchy" title="Distribució de Cauchy – Catalan" lang="ca" hreflang="ca" data-title="Distribució de Cauchy" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Cauchyho_rozd%C4%9Blen%C3%AD" title="Cauchyho rozdělení – Czech" lang="cs" hreflang="cs" data-title="Cauchyho rozdělení" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Cauchy-Verteilung" title="Cauchy-Verteilung – German" lang="de" hreflang="de" data-title="Cauchy-Verteilung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distribuci%C3%B3n_de_Cauchy" title="Distribución de Cauchy – Spanish" lang="es" hreflang="es" data-title="Distribución de Cauchy" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%DB%8C%D8%B9_%DA%A9%D9%88%D8%B4%DB%8C" title="توزیع کوشی – Persian" lang="fa" hreflang="fa" data-title="توزیع کوشی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Loi_de_Cauchy_(probabilit%C3%A9s)" title="Loi de Cauchy (probabilités) – French" lang="fr" hreflang="fr" data-title="Loi de Cauchy (probabilités)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Distribuci%C3%B3n_de_Cauchy" title="Distribución de Cauchy – Galician" lang="gl" hreflang="gl" data-title="Distribución de Cauchy" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%95%E0%A5%8C%E0%A4%B6%E0%A5%80_%E0%A4%AC%E0%A4%82%E0%A4%9F%E0%A4%A8" title="कौशी बंटन – Hindi" lang="hi" hreflang="hi" data-title="कौशी बंटन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distribuzione_di_Cauchy" title="Distribuzione di Cauchy – Italian" lang="it" hreflang="it" data-title="Distribuzione di Cauchy" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%A4%D7%9C%D7%92%D7%95%D7%AA_%D7%A7%D7%95%D7%A9%D7%99" title="התפלגות קושי – Hebrew" lang="he" hreflang="he" data-title="התפלגות קושי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Cauchy-eloszl%C3%A1s" title="Cauchy-eloszlás – Hungarian" lang="hu" hreflang="hu" data-title="Cauchy-eloszlás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Cauchy-verdeling" title="Cauchy-verdeling – Dutch" lang="nl" hreflang="nl" data-title="Cauchy-verdeling" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%BC%E3%82%B7%E3%83%BC%E5%88%86%E5%B8%83" title="コーシー分布 – Japanese" lang="ja" hreflang="ja" data-title="コーシー分布" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Cauchy%E2%80%99ego" title="Rozkład Cauchy’ego – Polish" lang="pl" hreflang="pl" data-title="Rozkład Cauchy’ego" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Distribui%C3%A7%C3%A3o_de_Cauchy" title="Distribuição de Cauchy – Portuguese" lang="pt" hreflang="pt" data-title="Distribuição de Cauchy" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Legea_de_distribu%C8%9Bie_Cauchy" title="Legea de distribuție Cauchy – Romanian" lang="ro" hreflang="ro" data-title="Legea de distribuție Cauchy" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%9A%D0%BE%D1%88%D0%B8" title="Распределение Коши – Russian" lang="ru" hreflang="ru" data-title="Распределение Коши" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Shp%C3%ABrndarja_Cauchy" title="Shpërndarja Cauchy – Albanian" lang="sq" hreflang="sq" data-title="Shpërndarja Cauchy" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Cauchy_distribution" title="Cauchy distribution – Simple English" lang="en-simple" hreflang="en-simple" data-title="Cauchy distribution" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Cauchyjeva_porazdelitev" title="Cauchyjeva porazdelitev – Slovenian" lang="sl" hreflang="sl" data-title="Cauchyjeva porazdelitev" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Sebaran_Cauchy" title="Sebaran Cauchy – Sundanese" lang="su" hreflang="su" data-title="Sebaran Cauchy" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Cauchy-jakauma" title="Cauchy-jakauma – Finnish" lang="fi" hreflang="fi" data-title="Cauchy-jakauma" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Cauchyf%C3%B6rdelning" title="Cauchyfördelning – Swedish" lang="sv" hreflang="sv" data-title="Cauchyfördelning" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Cauchy_da%C4%9F%C4%B1l%C4%B1m%C4%B1" title="Cauchy dağılımı – Turkish" lang="tr" hreflang="tr" data-title="Cauchy dağılımı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A0%D0%BE%D0%B7%D0%BF%D0%BE%D0%B4%D1%96%D0%BB_%D0%9A%D0%BE%D1%88%D1%96" title="Розподіл Коші – Ukrainian" lang="uk" hreflang="uk" data-title="Розподіл Коші" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9F%AF%E8%A5%BF%E5%88%86%E5%B8%83" title="柯西分布 – Chinese" lang="zh" hreflang="zh" data-title="柯西分布" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q726441#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Cauchy_distribution" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Cauchy_distribution" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Cauchy_distribution"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Cauchy_distribution&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Cauchy_distribution&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Cauchy_distribution"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Cauchy_distribution&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Cauchy_distribution&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Cauchy_distribution" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Cauchy_distribution" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Cauchy_distribution&oldid=1258378620" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Cauchy_distribution&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Cauchy_distribution&id=1258378620&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCauchy_distribution"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCauchy_distribution"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Cauchy_distribution&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Cauchy_distribution&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Cauchy-Lorentz_distributions" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q726441" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Probability distribution</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Lorentz distribution" redirects here. Not to be confused with <a href="/wiki/Lorenz_curve" title="Lorenz curve">Lorenz curve</a> or <a href="/wiki/Lorenz_system" title="Lorenz system">Lorenz system</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><style data-mw-deduplicate="TemplateStyles:r1247679731">.mw-parser-output .ib-prob-dist{border-collapse:collapse;width:20em}.mw-parser-output .ib-prob-dist td,.mw-parser-output .ib-prob-dist th{border:1px solid var(--border-color-base,#a2a9b1)}.mw-parser-output .ib-prob-dist .infobox-subheader{text-align:left}.mw-parser-output .ib-prob-dist-image{background:var(--background-color-neutral,#eaecf0);font-weight:bold;text-align:center}</style><table class="infobox infobox-table ib-prob-dist" style="width: 300px;"><caption class="infobox-title">Cauchy</caption><tbody><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Probability density function</div><span typeof="mw:File"><a href="/wiki/File:Cauchy_pdf.svg" class="mw-file-description" title="Probability density function for the Cauchy distribution"><img alt="Probability density function for the Cauchy distribution" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Cauchy_pdf.svg/300px-Cauchy_pdf.svg.png" decoding="async" width="300" height="240" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Cauchy_pdf.svg/450px-Cauchy_pdf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8c/Cauchy_pdf.svg/600px-Cauchy_pdf.svg.png 2x" data-file-width="360" data-file-height="288" /></a></span><br /><small>The purple curve is the standard Cauchy distribution</small></td></tr><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Cumulative distribution function</div><span typeof="mw:File"><a href="/wiki/File:Cauchy_cdf.svg" class="mw-file-description" title="Cumulative distribution function for the Cauchy distribution"><img alt="Cumulative distribution function for the Cauchy distribution" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Cauchy_cdf.svg/300px-Cauchy_cdf.svg.png" decoding="async" width="300" height="240" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Cauchy_cdf.svg/450px-Cauchy_cdf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5b/Cauchy_cdf.svg/600px-Cauchy_cdf.svg.png 2x" data-file-width="360" data-file-height="288" /></a></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameters</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd8c9a2493de1c9d803acfa663cb8475dfebe5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}\!}"></span> <a href="/wiki/Location_parameter" title="Location parameter">location</a> (<a href="/wiki/Real_number" title="Real number">real</a>)<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma >0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma >0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/775a6435e4270cddf2cd7dcb486c20f7f4bb8cee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.523ex; height:2.676ex;" alt="{\displaystyle \gamma >0}"></span> <a href="/wiki/Scale_parameter" title="Scale parameter">scale</a> (real)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Support_(mathematics)" title="Support (mathematics)">Support</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle x\in (-\infty ,+\infty )\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle x\in (-\infty ,+\infty )\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36776d398c1f08d345a07587237cbcc56bb0f370" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.166ex; width:15.057ex; height:2.843ex;" alt="{\displaystyle \displaystyle x\in (-\infty ,+\infty )\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability_density_function" title="Probability density function">PDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\pi \gamma \,\left[1+\left({\frac {x-x_{0}}{\gamma }}\right)^{2}\right]}}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>π<!-- π --></mi> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mi>γ<!-- γ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\pi \gamma \,\left[1+\left({\frac {x-x_{0}}{\gamma }}\right)^{2}\right]}}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fa7448ba911130c1e33621f1859393d3f00af5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; margin-right: -0.108ex; width:19.04ex; height:9.176ex;" alt="{\displaystyle {\frac {1}{\pi \gamma \,\left[1+\left({\frac {x-x_{0}}{\gamma }}\right)^{2}\right]}}\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\pi }}\arctan \left({\frac {x-x_{0}}{\gamma }}\right)+{\frac {1}{2}}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mi>γ<!-- γ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\pi }}\arctan \left({\frac {x-x_{0}}{\gamma }}\right)+{\frac {1}{2}}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e86395729b01df98e35dac14cf59eab7a82680f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-right: -0.108ex; width:24.393ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\pi }}\arctan \left({\frac {x-x_{0}}{\gamma }}\right)+{\frac {1}{2}}\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Quantile_function" title="Quantile function">Quantile</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}+\gamma \,\tan[\pi (p-{\tfrac {1}{2}})]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi>tan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}+\gamma \,\tan[\pi (p-{\tfrac {1}{2}})]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b28bd2a0c25cb1d212b29f0fc22baf6f84e3e0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:20.723ex; height:3.509ex;" alt="{\displaystyle x_{0}+\gamma \,\tan[\pi (p-{\tfrac {1}{2}})]}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_value" title="Expected value">Mean</a></th><td colspan="3" class="infobox-data"> <a href="/wiki/Indeterminate_form" title="Indeterminate form">undefined</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Median" title="Median">Median</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd8c9a2493de1c9d803acfa663cb8475dfebe5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfd8c9a2493de1c9d803acfa663cb8475dfebe5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Variance" title="Variance">Variance</a></th><td colspan="3" class="infobox-data"> <a href="/wiki/Indeterminate_form" title="Indeterminate form">undefined</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Average_absolute_deviation" title="Average absolute deviation">MAD</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Skewness" title="Skewness">Skewness</a></th><td colspan="3" class="infobox-data"> <a href="/wiki/Indeterminate_form" title="Indeterminate form">undefined</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">Excess kurtosis</a></th><td colspan="3" class="infobox-data"> <a href="/wiki/Indeterminate_form" title="Indeterminate form">undefined</a></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">Entropy</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \log(4\pi \gamma )\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>4</mn> <mi>π<!-- π --></mi> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \log(4\pi \gamma )\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42d79aae03ae41926fdb76152e50f20f5d47fd62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.166ex; width:8.317ex; height:2.843ex;" alt="{\displaystyle \log(4\pi \gamma )\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Moment-generating_function" title="Moment-generating function">MGF</a></th><td colspan="3" class="infobox-data"> does not exist</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">CF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \displaystyle \exp(x_{0}\,i\,t-\gamma \,|t|)\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mi>i</mi> <mspace width="thinmathspace" /> <mi>t</mi> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mspace width="negativethinmathspace" /> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \displaystyle \exp(x_{0}\,i\,t-\gamma \,|t|)\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbadf6e8783f14bddecf24764165216d55e078df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.166ex; width:16.564ex; height:2.843ex;" alt="{\displaystyle \displaystyle \exp(x_{0}\,i\,t-\gamma \,|t|)\!}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2\gamma ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2\gamma ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d968a11ef249d31ebe6b40f9233f3079edc9aae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:4.333ex; height:5.843ex;" alt="{\displaystyle {\frac {1}{2\gamma ^{2}}}}"></span></td></tr></tbody></table> <p>The <b>Cauchy distribution</b>, named after <a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a>, is a <a href="/wiki/Continuous_probability_distribution" class="mw-redirect" title="Continuous probability distribution">continuous probability distribution</a>. It is also known, especially among <a href="/wiki/Physicist" title="Physicist">physicists</a>, as the <b>Lorentz distribution</b> (after <a href="/wiki/Hendrik_Lorentz" title="Hendrik Lorentz">Hendrik Lorentz</a>), <b>Cauchy–Lorentz distribution</b>, <b>Lorentz(ian) function</b>, or <b>Breit–Wigner distribution</b>. The Cauchy distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;x_{0},\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x;x_{0},\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccc037eb8379d39292d19ed84398fe305a3bbbb1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.132ex; height:2.843ex;" alt="{\displaystyle f(x;x_{0},\gamma )}"></span> is the distribution of the <span class="texhtml mvar" style="font-style:italic;">x</span>-intercept of a ray issuing from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2914dfe7120115576ff7d81920e2bda26719f449" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.489ex; height:2.843ex;" alt="{\displaystyle (x_{0},\gamma )}"></span> with a uniformly distributed angle. It is also the distribution of the <a href="/wiki/Ratio_distribution" title="Ratio distribution">ratio</a> of two independent <a href="/wiki/Normal_distribution" title="Normal distribution">normally distributed</a> random variables with mean zero. </p><p>The Cauchy distribution is often used in statistics as the canonical example of a "<a href="/wiki/Pathological_(mathematics)" title="Pathological (mathematics)">pathological</a>" distribution since both its <a href="/wiki/Expected_value" title="Expected value">expected value</a> and its <a href="/wiki/Variance" title="Variance">variance</a> are undefined (but see <a href="#Moments">§ Moments</a> below). The Cauchy distribution does not have finite <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a> of order greater than or equal to one; only fractional absolute moments exist.<sup id="cite_ref-jkb1_1-0" class="reference"><a href="#cite_note-jkb1-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The Cauchy distribution has no <a href="/wiki/Moment_generating_function" class="mw-redirect" title="Moment generating function">moment generating function</a>. </p><p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, it is closely related to the <a href="/wiki/Poisson_kernel" title="Poisson kernel">Poisson kernel</a>, which is the <a href="/wiki/Fundamental_solution" title="Fundamental solution">fundamental solution</a> for the <a href="/wiki/Laplace_equation" class="mw-redirect" title="Laplace equation">Laplace equation</a> in the <a href="/wiki/Upper_half-plane" title="Upper half-plane">upper half-plane</a>. </p><p>It is one of the few <a href="/wiki/Stable_distribution" title="Stable distribution">stable distributions</a> with a probability density function that can be expressed analytically, the others being the <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> and the <a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy distribution</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Mean_estimator_consistency.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Mean_estimator_consistency.gif/300px-Mean_estimator_consistency.gif" decoding="async" width="300" height="122" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Mean_estimator_consistency.gif/450px-Mean_estimator_consistency.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Mean_estimator_consistency.gif/600px-Mean_estimator_consistency.gif 2x" data-file-width="800" data-file-height="325" /></a><figcaption>Estimating the mean and standard deviation through a sample from a Cauchy distribution (bottom) does not converge as the size of the sample grows, as in the <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a> (top). There can be arbitrarily large jumps in the estimates, as seen in the graphs on the bottom. (Click to expand)</figcaption></figure> <p>A function with the form of the density function of the Cauchy distribution was studied geometrically by <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Fermat</a> in 1659, and later was known as the <a href="/wiki/Witch_of_Agnesi" title="Witch of Agnesi">witch of Agnesi</a>, after <a href="/wiki/Maria_Gaetana_Agnesi" title="Maria Gaetana Agnesi">Maria Gaetana Agnesi</a> included it as an example in her 1748 calculus textbook. Despite its name, the first explicit analysis of the properties of the Cauchy distribution was published by the French mathematician <a href="/wiki/Sim%C3%A9on_Denis_Poisson" title="Siméon Denis Poisson">Poisson</a> in 1824, with Cauchy only becoming associated with it during an academic controversy in 1853.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Poisson noted that if the mean of observations following such a distribution were taken, the <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> did not converge to any finite number. As such, <a href="/wiki/Pierre-Simon_Laplace" title="Pierre-Simon Laplace">Laplace</a>'s use of the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a> with such a distribution was inappropriate, as it assumed a finite mean and variance. Despite this, Poisson did not regard the issue as important, in contrast to <a href="/wiki/Ir%C3%A9n%C3%A9e-Jules_Bienaym%C3%A9" title="Irénée-Jules Bienaymé">Bienaymé</a>, who was to engage Cauchy in a long dispute over the matter. </p> <div class="mw-heading mw-heading2"><h2 id="Constructions">Constructions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=2" title="Edit section: Constructions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Here are the most important constructions. </p> <div class="mw-heading mw-heading3"><h3 id="Rotational_symmetry">Rotational symmetry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=3" title="Edit section: Rotational symmetry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If one stands in front of a line and kicks a ball with a direction (more precisely, an angle) uniformly at random towards the line, then the distribution of the point where the ball hits the line is a Cauchy distribution. </p><p>More formally, consider a point at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0},\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0},\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2914dfe7120115576ff7d81920e2bda26719f449" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.489ex; height:2.843ex;" alt="{\displaystyle (x_{0},\gamma )}"></span> in the x-y plane, and select a line passing the point, with its direction (angle with the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-axis) chosen uniformly (between -90° and +90°) at random. The intersection of the line with the x-axis is the Cauchy distribution with location <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> and scale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>. </p><p>This definition gives a simple way to sample from the standard Cauchy distribution. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3e6bb763d22c20916ed4f0bb6bd49d7470cffd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle u}"></span> be a sample from a uniform distribution from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span>, then we can generate a sample, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> from the standard Cauchy distribution using </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\tan \left(\pi (u-{\frac {1}{2}})\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\tan \left(\pi (u-{\frac {1}{2}})\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae1c59816c3e377d5c450d1c88b13da2417f0689" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.519ex; height:6.176ex;" alt="{\displaystyle x=\tan \left(\pi (u-{\frac {1}{2}})\right)}"></span></dd></dl> <p>When <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span> are two independent <a href="/wiki/Normal_distribution" title="Normal distribution">normally distributed</a> <a href="/wiki/Random_variable" title="Random variable">random variables</a> with <a href="/wiki/Expected_value" title="Expected value">expected value</a> 0 and <a href="/wiki/Variance" title="Variance">variance</a> 1, then the ratio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U/V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U/V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2609c4c34cb7048865803cb365264f8bca006586" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.732ex; height:2.843ex;" alt="{\displaystyle U/V}"></span> has the standard Cauchy distribution. </p><p>More generally, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (U,V)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>U</mi> <mo>,</mo> <mi>V</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (U,V)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72300edf312fbd1b5ce21d2ab40b59027a7c61ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.413ex; height:2.843ex;" alt="{\displaystyle (U,V)}"></span> is a rotationally symmetric distribution on the plane, then the ratio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U/V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U/V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2609c4c34cb7048865803cb365264f8bca006586" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.732ex; height:2.843ex;" alt="{\displaystyle U/V}"></span> has the standard Cauchy distribution. </p> <div class="mw-heading mw-heading3"><h3 id="Probability_density_function_(PDF)"><span id="Probability_density_function_.28PDF.29"></span>Probability density function (PDF)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=4" title="Edit section: Probability density function (PDF)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Cauchy distribution is the probability distribution with the following <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> (PDF)<sup id="cite_ref-jkb1_1-1" class="reference"><a href="#cite_note-jkb1-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-feller_3-0" class="reference"><a href="#cite_note-feller-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;x_{0},\gamma )={\frac {1}{\pi \gamma \left[1+\left({\frac {x-x_{0}}{\gamma }}\right)^{2}\right]}}={1 \over \pi }\left[{\gamma \over (x-x_{0})^{2}+\gamma ^{2}}\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>π<!-- π --></mi> <mi>γ<!-- γ --></mi> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mi>γ<!-- γ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>γ<!-- γ --></mi> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x;x_{0},\gamma )={\frac {1}{\pi \gamma \left[1+\left({\frac {x-x_{0}}{\gamma }}\right)^{2}\right]}}={1 \over \pi }\left[{\gamma \over (x-x_{0})^{2}+\gamma ^{2}}\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2026aa2c40888a5189ad754d4bc21731a032575a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:56.733ex; height:9.509ex;" alt="{\displaystyle f(x;x_{0},\gamma )={\frac {1}{\pi \gamma \left[1+\left({\frac {x-x_{0}}{\gamma }}\right)^{2}\right]}}={1 \over \pi }\left[{\gamma \over (x-x_{0})^{2}+\gamma ^{2}}\right],}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> is the <a href="/wiki/Location_parameter" title="Location parameter">location parameter</a>, specifying the location of the peak of the distribution, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> is the <a href="/wiki/Scale_parameter" title="Scale parameter">scale parameter</a> which specifies the half-width at half-maximum (HWHM), alternatively <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b386c4d4958291401e3c2ebd9b9f0417cdac004e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.425ex; height:2.676ex;" alt="{\displaystyle 2\gamma }"></span> is <a href="/wiki/Full_width_at_half_maximum" title="Full width at half maximum">full width at half maximum</a> (FWHM). <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> is also equal to half the <a href="/wiki/Interquartile_range" title="Interquartile range">interquartile range</a> and is sometimes called the <a href="/wiki/Probable_error" title="Probable error">probable error</a>. This function is also known as a <a href="/wiki/Lorentzian_function" class="mw-redirect" title="Lorentzian function">Lorentzian function</a>,<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> and an example of a <a href="/wiki/Nascent_delta_function" class="mw-redirect" title="Nascent delta function">nascent delta function</a>, and therefore approaches a <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a> in the limit as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \to 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \to 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1de36a05e0764b3393e1df8ba5de96223eb5271f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.039ex; height:2.676ex;" alt="{\displaystyle \gamma \to 0}"></span>. <a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a> exploited such a density function in 1827 with an <a href="/wiki/Infinitesimal" title="Infinitesimal">infinitesimal</a> scale parameter, defining this <a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a>. </p> <div class="mw-heading mw-heading4"><h4 id="Properties_of_PDF">Properties of PDF</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=5" title="Edit section: Properties of PDF"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The maximum value or amplitude of the Cauchy PDF is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\pi \gamma }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>π<!-- π --></mi> <mi>γ<!-- γ --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\pi \gamma }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68ed88d8bb3e175ecda69012549a10c9b0874ebf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:3.43ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{\pi \gamma }}}"></span>, located at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04e899fc6eba0b387b91f070adc7bc4fe5a706cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.812ex; height:2.009ex;" alt="{\displaystyle x=x_{0}}"></span>. </p><p>It is sometimes convenient to express the PDF in terms of the complex parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi =x_{0}+i\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi =x_{0}+i\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7154f47992ba47c28dd949c399e4287bfbd916c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.901ex; height:2.676ex;" alt="{\displaystyle \psi =x_{0}+i\gamma }"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;\psi )={\frac {1}{\pi }}\,{\textrm {Im}}\left({\frac {1}{x-\psi }}\right)={\frac {1}{\pi }}\,{\textrm {Re}}\left({\frac {-i}{x-\psi }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Im</mtext> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>ψ<!-- ψ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Re</mtext> </mrow> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>ψ<!-- ψ --></mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x;\psi )={\frac {1}{\pi }}\,{\textrm {Im}}\left({\frac {1}{x-\psi }}\right)={\frac {1}{\pi }}\,{\textrm {Re}}\left({\frac {-i}{x-\psi }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adcabcb4eaf054f77ea6675bfcd4c27aceebf14b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:44.446ex; height:6.176ex;" alt="{\displaystyle f(x;\psi )={\frac {1}{\pi }}\,{\textrm {Im}}\left({\frac {1}{x-\psi }}\right)={\frac {1}{\pi }}\,{\textrm {Re}}\left({\frac {-i}{x-\psi }}\right)}"></span></dd></dl> <p>The special case when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d18a96da37e1748deeb8d4c590dd4ad6629efef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.645ex; height:2.509ex;" alt="{\displaystyle x_{0}=0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5682ebb86d6f024a15f4a2c1c7cb08412720bcaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.523ex; height:2.676ex;" alt="{\displaystyle \gamma =1}"></span> is called the <b>standard Cauchy distribution</b> with the probability density function<sup id="cite_ref-mathmethods_5-0" class="reference"><a href="#cite_note-mathmethods-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-primer_6-0" class="reference"><a href="#cite_note-primer-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;0,1)={\frac {1}{\pi (1+x^{2})}}.\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>π<!-- π --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x;0,1)={\frac {1}{\pi (1+x^{2})}}.\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f3550c97c02f55d61010db6a38b2ef058a888e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; margin-right: -0.204ex; width:22.736ex; height:6.009ex;" alt="{\displaystyle f(x;0,1)={\frac {1}{\pi (1+x^{2})}}.\!}"></span></dd></dl> <p>In physics, a three-parameter Lorentzian function is often used: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;x_{0},\gamma ,I)={\frac {I}{\left[1+\left({\frac {x-x_{0}}{\gamma }}\right)^{2}\right]}}=I\left[{\gamma ^{2} \over (x-x_{0})^{2}+\gamma ^{2}}\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>I</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>I</mi> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mi>γ<!-- γ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>I</mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x;x_{0},\gamma ,I)={\frac {I}{\left[1+\left({\frac {x-x_{0}}{\gamma }}\right)^{2}\right]}}=I\left[{\gamma ^{2} \over (x-x_{0})^{2}+\gamma ^{2}}\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef75c5f31667a907f64963eb478d03f33f8374d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.838ex; width:54.961ex; height:9.676ex;" alt="{\displaystyle f(x;x_{0},\gamma ,I)={\frac {I}{\left[1+\left({\frac {x-x_{0}}{\gamma }}\right)^{2}\right]}}=I\left[{\gamma ^{2} \over (x-x_{0})^{2}+\gamma ^{2}}\right],}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> is the height of the peak. The three-parameter Lorentzian function indicated is not, in general, a probability density function, since it does not integrate to 1, except in the special case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I={\frac {1}{\pi \gamma }}.\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>π<!-- π --></mi> <mi>γ<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>.</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I={\frac {1}{\pi \gamma }}.\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a422050e42a64cb349c2a34b6b468f2187951bc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; margin-right: -0.204ex; width:8.164ex; height:5.676ex;" alt="{\displaystyle I={\frac {1}{\pi \gamma }}.\!}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Cumulative_distribution_function_(CDF)"><span id="Cumulative_distribution_function_.28CDF.29"></span>Cumulative distribution function (CDF)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=6" title="Edit section: Cumulative distribution function (CDF)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Cauchy distribution is the probability distribution with the following <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> (CDF): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x;x_{0},\gamma )={\frac {1}{\pi }}\arctan \left({\frac {x-x_{0}}{\gamma }}\right)+{\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mi>γ<!-- γ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x;x_{0},\gamma )={\frac {1}{\pi }}\arctan \left({\frac {x-x_{0}}{\gamma }}\right)+{\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8d6aa165b3df5d0a44e4afe1245cd88fdf9b640" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:38.364ex; height:6.176ex;" alt="{\displaystyle F(x;x_{0},\gamma )={\frac {1}{\pi }}\arctan \left({\frac {x-x_{0}}{\gamma }}\right)+{\frac {1}{2}}}"></span></dd></dl> <p>and the <a href="/wiki/Quantile_function" title="Quantile function">quantile function</a> (inverse <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cdf</a>) of the Cauchy distribution is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q(p;x_{0},\gamma )=x_{0}+\gamma \,\tan \left[\pi \left(p-{\tfrac {1}{2}}\right)\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mi>π<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q(p;x_{0},\gamma )=x_{0}+\gamma \,\tan \left[\pi \left(p-{\tfrac {1}{2}}\right)\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42c17241be79f1edbb111b82fc9a86ad55c9fd37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:36.353ex; height:3.509ex;" alt="{\displaystyle Q(p;x_{0},\gamma )=x_{0}+\gamma \,\tan \left[\pi \left(p-{\tfrac {1}{2}}\right)\right].}"></span></dd></dl> <p>It follows that the first and third quartiles are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x_{0}-\gamma ,x_{0}+\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x_{0}-\gamma ,x_{0}+\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a1132cd23f22eb064e7679824bbb569c369c97d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.817ex; height:2.843ex;" alt="{\displaystyle (x_{0}-\gamma ,x_{0}+\gamma )}"></span>, and hence the <a href="/wiki/Interquartile_range" title="Interquartile range">interquartile range</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b386c4d4958291401e3c2ebd9b9f0417cdac004e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.425ex; height:2.676ex;" alt="{\displaystyle 2\gamma }"></span>. </p><p>For the standard distribution, the cumulative distribution function simplifies to <a href="/wiki/Inverse_trigonometric_functions" title="Inverse trigonometric functions">arctangent function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \arctan(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \arctan(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec2ee2a040ba3b62484ca1518869f51e2c3e5e5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.605ex; height:2.843ex;" alt="{\displaystyle \arctan(x)}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x;0,1)={\frac {1}{\pi }}\arctan \left(x\right)+{\frac {1}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mi>arctan</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x;0,1)={\frac {1}{\pi }}\arctan \left(x\right)+{\frac {1}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a47cdd1db8997ee1b16cbd4626da3038d59f277" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:29.37ex; height:5.176ex;" alt="{\displaystyle F(x;0,1)={\frac {1}{\pi }}\arctan \left(x\right)+{\frac {1}{2}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Other_constructions">Other constructions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=7" title="Edit section: Other constructions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The standard Cauchy distribution is the <a href="/wiki/Student%27s_t-distribution" title="Student's t-distribution">Student's <i>t</i>-distribution</a> with one degree of freedom, and so it may be constructed by any method that constructs the Student's t-distribution.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Σ<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> is a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\times p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>×<!-- × --></mo> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\times p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67e6de741a3aa8176f5a487de8e8f602aa75c5e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:5.269ex; height:2.009ex;" alt="{\displaystyle p\times p}"></span> positive-semidefinite covariance matrix with strictly positive diagonal entries, then for <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">independent and identically distributed</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,Y\sim N(0,\Sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>∼<!-- ∼ --></mo> <mi>N</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi mathvariant="normal">Σ<!-- Σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,Y\sim N(0,\Sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79978957161814b81ded114fada2f6ff6d7c2b80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.633ex; height:2.843ex;" alt="{\displaystyle X,Y\sim N(0,\Sigma )}"></span> and any random <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span>-vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>w</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88b1e0c8e1be5ebe69d18a8010676fa42d7961e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.664ex; height:1.676ex;" alt="{\displaystyle w}"></span> independent of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{1}+\cdots +w_{p}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{1}+\cdots +w_{p}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0869336061b01d2878301acf7184d82a30c9df6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:18.107ex; height:2.843ex;" alt="{\displaystyle w_{1}+\cdots +w_{p}=1}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle w_{i}\geq 0,i=1,\ldots ,p,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>p</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle w_{i}\geq 0,i=1,\ldots ,p,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da6262f2c2770d98939b3514b44353ce1955c0a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.817ex; height:2.509ex;" alt="{\displaystyle w_{i}\geq 0,i=1,\ldots ,p,}"></span> (defining a <a href="/wiki/Categorical_distribution" title="Categorical distribution">categorical distribution</a>) it holds that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{j=1}^{p}w_{j}{\frac {X_{j}}{Y_{j}}}\sim \mathrm {Cauchy} (0,1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </munderover> <msub> <mi>w</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> <mi mathvariant="normal">y</mi> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{j=1}^{p}w_{j}{\frac {X_{j}}{Y_{j}}}\sim \mathrm {Cauchy} (0,1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f1ed0ef24ef9b09409c6c79030893d59d3b6bd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:26.585ex; height:7.343ex;" alt="{\displaystyle \sum _{j=1}^{p}w_{j}{\frac {X_{j}}{Y_{j}}}\sim \mathrm {Cauchy} (0,1).}"></span><sup id="cite_ref-:0_8-0" class="reference"><a href="#cite_note-:0-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=8" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Cauchy distribution is an example of a distribution which has no <a href="/wiki/Mean" title="Mean">mean</a>, <a href="/wiki/Variance" title="Variance">variance</a> or higher <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a> defined. Its <a href="/wiki/Mode_(statistics)" title="Mode (statistics)">mode</a> and <a href="/wiki/Median" title="Median">median</a> are well defined and are both equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>. </p><p>The Cauchy distribution is an <a href="/wiki/Infinitely_divisible_probability_distribution" class="mw-redirect" title="Infinitely divisible probability distribution">infinitely divisible probability distribution</a>. It is also a strictly <a href="/wiki/Stability_(probability)" title="Stability (probability)">stable</a> distribution.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>Like all stable distributions, the <a href="/wiki/Location-scale_family" class="mw-redirect" title="Location-scale family">location-scale family</a> to which the Cauchy distribution belongs is closed under <a href="/wiki/Linear_transformations" class="mw-redirect" title="Linear transformations">linear transformations</a> with <a href="/wiki/Real_number" title="Real number">real</a> coefficients. In addition, the family of Cauchy-distributed random variables is closed under <a href="/wiki/M%C3%B6bius_transformation" title="Möbius transformation">linear fractional transformations</a> with real coefficients.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> In this connection, see also <a href="/wiki/McCullagh%27s_parametrization_of_the_Cauchy_distributions" title="McCullagh's parametrization of the Cauchy distributions">McCullagh's parametrization of the Cauchy distributions</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Sum_of_Cauchy-distributed_random_variables">Sum of Cauchy-distributed random variables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=9" title="Edit section: Sum of Cauchy-distributed random variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2},\ldots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2},\ldots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67872301909a9d739e265252ad0c7339cead069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.312ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{2},\ldots ,X_{n}}"></span> are an <a href="/wiki/Independent_and_identically_distributed_random_variables" title="Independent and identically distributed random variables">IID</a> sample from the standard Cauchy distribution, then their <a href="/wiki/Sample_mean" class="mw-redirect" title="Sample mean">sample mean</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {X}}={\frac {1}{n}}\sum _{i}X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {X}}={\frac {1}{n}}\sum _{i}X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/414ba13c7013ad6bea4fd6a05de2b91bccac77f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.162ex; height:6.343ex;" alt="{\displaystyle {\bar {X}}={\frac {1}{n}}\sum _{i}X_{i}}"></span> is also standard Cauchy distributed. In particular, the average does not converge to the mean, and so the standard Cauchy distribution does not follow the law of large numbers. </p><p>This can be proved by repeated integration with the PDF, or more conveniently, by using the <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> of the standard Cauchy distribution (see below):<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{X}(t)=\operatorname {E} \left[e^{iXt}\right]=e^{-|t|}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>X</mi> <mi>t</mi> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{X}(t)=\operatorname {E} \left[e^{iXt}\right]=e^{-|t|}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57686177a5992b93dece0dba15fd1f64758dfb0d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.147ex; height:3.509ex;" alt="{\displaystyle \varphi _{X}(t)=\operatorname {E} \left[e^{iXt}\right]=e^{-|t|}.}"></span>With this, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{\sum _{i}X_{i}}(t)=e^{-n|t|}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{\sum _{i}X_{i}}(t)=e^{-n|t|}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab658bf3550f5236ad6c42a535f00adebd176d03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:17.321ex; height:3.676ex;" alt="{\displaystyle \varphi _{\sum _{i}X_{i}}(t)=e^{-n|t|}}"></span>, and so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {X}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {X}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90b968141b314f4de17f5e63f18dcdc126352bac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.509ex;" alt="{\displaystyle {\bar {X}}}"></span> has a standard Cauchy distribution. </p><p>More generally, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2},\ldots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2},\ldots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d67872301909a9d739e265252ad0c7339cead069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.312ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{2},\ldots ,X_{n}}"></span> are independent and Cauchy distributed with location parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},\ldots ,x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},\ldots ,x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/737e02a5fbf8bc31d443c91025339f9fd1de1065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.11ex; height:2.009ex;" alt="{\displaystyle x_{1},\ldots ,x_{n}}"></span> and scales <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma _{1},\ldots ,\gamma _{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma _{1},\ldots ,\gamma _{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe2f9b30db4a312167135c6de8d32ef8c581916" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.859ex; height:2.176ex;" alt="{\displaystyle \gamma _{1},\ldots ,\gamma _{n}}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1},\ldots ,a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1},\ldots ,a_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/451345cc97e2ed923dd4656fcc400c3f37119cca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.911ex; height:2.009ex;" alt="{\displaystyle a_{1},\ldots ,a_{n}}"></span> are real numbers, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}a_{i}X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}a_{i}X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e94c0a1253e47c98fb94fd9305e245abbb25e0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:8.496ex; height:5.509ex;" alt="{\displaystyle \sum _{i}a_{i}X_{i}}"></span> is Cauchy distributed with location <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}a_{i}x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}a_{i}x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0edcec4f9e05e5e49ac35d282a43917769bf302f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:7.901ex; height:5.509ex;" alt="{\displaystyle \sum _{i}a_{i}x_{i}}"></span> and scale<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}|a_{i}|\gamma _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}|a_{i}|\gamma _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/385b680b08a8b8db759cdb384c2b419f7e75679d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:9.069ex; height:5.509ex;" alt="{\displaystyle \sum _{i}|a_{i}|\gamma _{i}}"></span>. We see that there is no law of large numbers for any weighted sum of independent Cauchy distributions. </p><p>This shows that the condition of finite variance in the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a> cannot be dropped. It is also an example of a more generalized version of the central limit theorem that is characteristic of all <a href="/wiki/Stable_distribution" title="Stable distribution">stable distributions</a>, of which the Cauchy distribution is a special case. </p> <div class="mw-heading mw-heading3"><h3 id="Central_limit_theorem">Central limit theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=10" title="Edit section: Central limit theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/869cccabc3ea7b90d40e40158d740fc88e07889a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.748ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{2},\ldots }"></span> are and IID sample with PDF <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ρ<!-- ρ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f7d439671d1289b6a816e6af7a304be40608d64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.202ex; height:2.176ex;" alt="{\displaystyle \rho }"></span> such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{c\to \infty }{\frac {1}{c}}\int _{-c}^{c}x^{2}\rho (x)\,dx={\frac {2\gamma }{\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>c</mi> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>ρ<!-- ρ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>γ<!-- γ --></mi> </mrow> <mi>π<!-- π --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{c\to \infty }{\frac {1}{c}}\int _{-c}^{c}x^{2}\rho (x)\,dx={\frac {2\gamma }{\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c93e5799e219649ea1e7bac5be6ad5a790d3322e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.69ex; height:6.009ex;" alt="{\displaystyle \lim _{c\to \infty }{\frac {1}{c}}\int _{-c}^{c}x^{2}\rho (x)\,dx={\frac {2\gamma }{\pi }}}"></span> is finite, but nonzero, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{n}}\sum _{i=1}^{n}X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{n}}\sum _{i=1}^{n}X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/245eef0f3e6d404d0a3fd32159719954c4616070" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:9.084ex; height:6.843ex;" alt="{\displaystyle {\frac {1}{n}}\sum _{i=1}^{n}X_{i}}"></span> converges in distribution to a Cauchy distribution with scale <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Characteristic_function">Characteristic function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=11" title="Edit section: Characteristic function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> denote a Cauchy distributed random variable. The <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> of the Cauchy distribution is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{X}(t)=\operatorname {E} \left[e^{iXt}\right]=\int _{-\infty }^{\infty }f(x;x_{0},\gamma )e^{ixt}\,dx=e^{ix_{0}t-\gamma |t|}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>X</mi> <mi>t</mi> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>t</mi> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{X}(t)=\operatorname {E} \left[e^{iXt}\right]=\int _{-\infty }^{\infty }f(x;x_{0},\gamma )e^{ixt}\,dx=e^{ix_{0}t-\gamma |t|}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90a76888a502d3e9959365d896466e4dee540d17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:52.386ex; height:6.009ex;" alt="{\displaystyle \varphi _{X}(t)=\operatorname {E} \left[e^{iXt}\right]=\int _{-\infty }^{\infty }f(x;x_{0},\gamma )e^{ixt}\,dx=e^{ix_{0}t-\gamma |t|}.}"></span></dd></dl> <p>which is just the <a href="/wiki/Fourier_transform" title="Fourier transform">Fourier transform</a> of the probability density. The original probability density may be expressed in terms of the characteristic function, essentially by using the inverse Fourier transform: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x;x_{0},\gamma )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\varphi _{X}(t;x_{0},\gamma )e^{-ixt}\,dt\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>i</mi> <mi>x</mi> <mi>t</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>t</mi> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x;x_{0},\gamma )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\varphi _{X}(t;x_{0},\gamma )e^{-ixt}\,dt\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6163c8b64df9bbc89be991a35847111ec307d894" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; margin-right: -0.315ex; width:40.363ex; height:6.009ex;" alt="{\displaystyle f(x;x_{0},\gamma )={\frac {1}{2\pi }}\int _{-\infty }^{\infty }\varphi _{X}(t;x_{0},\gamma )e^{-ixt}\,dt\!}"></span></dd></dl> <p>The <i>n</i>th moment of a distribution is the <i>n</i>th derivative of the characteristic function evaluated at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43469ec032d858feae5aa87029e22eaaf0109e9c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.101ex; height:2.176ex;" alt="{\displaystyle t=0}"></span>. Observe that the characteristic function is not <a href="/wiki/Differentiable_function" title="Differentiable function">differentiable</a> at the origin: this corresponds to the fact that the Cauchy distribution does not have well-defined moments higher than the zeroth moment. </p> <div class="mw-heading mw-heading3"><h3 id="Kullback–Leibler_divergence"><span id="Kullback.E2.80.93Leibler_divergence"></span>Kullback–Leibler divergence</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=12" title="Edit section: Kullback–Leibler divergence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Kullback%E2%80%93Leibler_divergence" title="Kullback–Leibler divergence">Kullback–Leibler divergence</a> between two Cauchy distributions has the following symmetric closed-form formula:<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {KL} \left(p_{x_{0,1},\gamma _{1}}:p_{x_{0,2},\gamma _{2}}\right)=\log {\frac {\left(\gamma _{1}+\gamma _{2}\right)^{2}+\left(x_{0,1}-x_{0,2}\right)^{2}}{4\gamma _{1}\gamma _{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> <mi mathvariant="normal">L</mi> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>:</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> <mo>,</mo> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>4</mn> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {KL} \left(p_{x_{0,1},\gamma _{1}}:p_{x_{0,2},\gamma _{2}}\right)=\log {\frac {\left(\gamma _{1}+\gamma _{2}\right)^{2}+\left(x_{0,1}-x_{0,2}\right)^{2}}{4\gamma _{1}\gamma _{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/748cdcd7a743a8f0b663c6f5c8f7aab8fceb5885" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:54.452ex; height:6.676ex;" alt="{\displaystyle \mathrm {KL} \left(p_{x_{0,1},\gamma _{1}}:p_{x_{0,2},\gamma _{2}}\right)=\log {\frac {\left(\gamma _{1}+\gamma _{2}\right)^{2}+\left(x_{0,1}-x_{0,2}\right)^{2}}{4\gamma _{1}\gamma _{2}}}.}"></span></dd></dl> <p>Any <a href="/wiki/F-divergence" title="F-divergence">f-divergence</a> between two Cauchy distributions is symmetric and can be expressed as a function of the chi-squared divergence.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> Closed-form expression for the <a href="/wiki/Total_variation" title="Total variation">total variation</a>, <a href="/wiki/Jensen%E2%80%93Shannon_divergence" title="Jensen–Shannon divergence">Jensen–Shannon divergence</a>, <a href="/wiki/Hellinger_distance" title="Hellinger distance">Hellinger distance</a>, etc. are available. </p> <div class="mw-heading mw-heading3"><h3 id="Entropy">Entropy</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=13" title="Edit section: Entropy"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The entropy of the Cauchy distribution is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}H(\gamma )&=-\int _{-\infty }^{\infty }f(x;x_{0},\gamma )\log(f(x;x_{0},\gamma ))\,dx\\[6pt]&=\log(4\pi \gamma )\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>H</mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>4</mn> <mi>π<!-- π --></mi> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}H(\gamma )&=-\int _{-\infty }^{\infty }f(x;x_{0},\gamma )\log(f(x;x_{0},\gamma ))\,dx\\[6pt]&=\log(4\pi \gamma )\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d648f0a9098d95824886093f233fb0681578a4eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:44.378ex; height:10.509ex;" alt="{\displaystyle {\begin{aligned}H(\gamma )&=-\int _{-\infty }^{\infty }f(x;x_{0},\gamma )\log(f(x;x_{0},\gamma ))\,dx\\[6pt]&=\log(4\pi \gamma )\end{aligned}}}"></span></dd></dl> <p>The derivative of the <a href="/wiki/Quantile_function" title="Quantile function">quantile function</a>, the quantile density function, for the Cauchy distribution is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q'(p;\gamma )=\gamma \,\pi \,{\sec }^{2}\left[\pi \left(p-{\tfrac {1}{2}}\right)\right].\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>Q</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>;</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>γ<!-- γ --></mi> <mspace width="thinmathspace" /> <mi>π<!-- π --></mi> <mspace width="thinmathspace" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi>sec</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>[</mo> <mrow> <mi>π<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <mi>p</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>.</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q'(p;\gamma )=\gamma \,\pi \,{\sec }^{2}\left[\pi \left(p-{\tfrac {1}{2}}\right)\right].\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c98f59acfc3b417126a88a731035e87a4deaa16b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; margin-right: -0.204ex; width:30.994ex; height:3.509ex;" alt="{\displaystyle Q'(p;\gamma )=\gamma \,\pi \,{\sec }^{2}\left[\pi \left(p-{\tfrac {1}{2}}\right)\right].\!}"></span></dd></dl> <p>The <a href="/wiki/Differential_entropy" title="Differential entropy">differential entropy</a> of a distribution can be defined in terms of its quantile density,<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> specifically: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H(\gamma )=\int _{0}^{1}\log \,(Q'(p;\gamma ))\,\mathrm {d} p=\log(4\pi \gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mi>log</mi> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <msup> <mi>Q</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo>;</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>p</mi> <mo>=</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>4</mn> <mi>π<!-- π --></mi> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H(\gamma )=\int _{0}^{1}\log \,(Q'(p;\gamma ))\,\mathrm {d} p=\log(4\pi \gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfc9f37656ac8976d422c00f8cb148d481560751" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:39.591ex; height:6.176ex;" alt="{\displaystyle H(\gamma )=\int _{0}^{1}\log \,(Q'(p;\gamma ))\,\mathrm {d} p=\log(4\pi \gamma )}"></span></dd></dl> <p>The Cauchy distribution is the <a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">maximum entropy probability distribution</a> for a random variate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> for which<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [\log(1+(X-x_{0})^{2}/\gamma ^{2})]=\log 4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mo>=</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [\log(1+(X-x_{0})^{2}/\gamma ^{2})]=\log 4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7f6982d1d9f8690a4cd034887fe55c659e005b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.845ex; height:3.176ex;" alt="{\displaystyle \operatorname {E} [\log(1+(X-x_{0})^{2}/\gamma ^{2})]=\log 4}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Moments">Moments</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=14" title="Edit section: Moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Cauchy distribution is usually used as an illustrative counterexample in elementary probability courses, as a distribution with no well-defined (or "indefinite") moments. </p> <div class="mw-heading mw-heading3"><h3 id="Sample_moments">Sample moments</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=15" title="Edit section: Sample moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If we take an IID sample <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},X_{2},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},X_{2},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/869cccabc3ea7b90d40e40158d740fc88e07889a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.748ex; height:2.509ex;" alt="{\displaystyle X_{1},X_{2},\ldots }"></span> from the standard Cauchy distribution, then the sequence of their sample mean is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{n}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{n}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f1cb1e5c38939530ab9064741a85308d49bd286" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.826ex; height:6.843ex;" alt="{\displaystyle S_{n}={\frac {1}{n}}\sum _{i=1}^{n}X_{i}}"></span>, which also has the standard Cauchy distribution. Consequently, no matter how many terms we take, the sample average does not converge. </p><p>Similarly, the sample variance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{n}={\frac {1}{n}}\sum _{i=1}^{n}(X_{i}-S_{n})^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{n}={\frac {1}{n}}\sum _{i=1}^{n}(X_{i}-S_{n})^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f6fb9497ff209c6284f2409ec2e275aecbe5a90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.716ex; height:6.843ex;" alt="{\displaystyle V_{n}={\frac {1}{n}}\sum _{i=1}^{n}(X_{i}-S_{n})^{2}}"></span> also does not converge. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Sample_mean_and_variance_of_IID_samples_from_a_standard_Cauchy_distribution..png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Sample_mean_and_variance_of_IID_samples_from_a_standard_Cauchy_distribution..png/470px-Sample_mean_and_variance_of_IID_samples_from_a_standard_Cauchy_distribution..png" decoding="async" width="470" height="145" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Sample_mean_and_variance_of_IID_samples_from_a_standard_Cauchy_distribution..png/705px-Sample_mean_and_variance_of_IID_samples_from_a_standard_Cauchy_distribution..png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Sample_mean_and_variance_of_IID_samples_from_a_standard_Cauchy_distribution..png/940px-Sample_mean_and_variance_of_IID_samples_from_a_standard_Cauchy_distribution..png 2x" data-file-width="1589" data-file-height="490" /></a><figcaption>A typical trajectory of sample means looks like long periods of slow convergence to zero, punctuated by large jumps away from zero, but never getting too far away. A typical trajectory of sample variances looks similar, but the jumps accumulate faster than the decay, diverging to infinity.</figcaption></figure> <p>A typical trajectory of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1},S_{2},...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1},S_{2},...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ae6fa467ca96d49d6cb1d8a68128e4db62b0af6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.741ex; height:2.509ex;" alt="{\displaystyle S_{1},S_{2},...}"></span> looks like long periods of slow convergence to zero, punctuated by large jumps away from zero, but never getting too far away. A typical trajectory of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{1},V_{2},...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V_{1},V_{2},...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76c44008528b4bda0e71fda0c45e5363fc4cc95e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.602ex; height:2.509ex;" alt="{\displaystyle V_{1},V_{2},...}"></span> looks similar, but the jumps accumulate faster than the decay, diverging to infinity. These two kinds of trajectories are plotted in the figure. </p><p>Moments of sample lower than order 1 would converge to zero. Moments of sample higher than order 2 would diverge to infinity even faster than sample variance. </p> <div class="mw-heading mw-heading3"><h3 id="Mean">Mean</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=16" title="Edit section: Mean"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If a <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> has a <a href="/wiki/Probability_density_function" title="Probability density function">density function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, then the mean, if it exists, is given by </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{\infty }xf(x)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{\infty }xf(x)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fc56d12486e97ee46dab1ecb16d115522fa1d42" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:14.16ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{\infty }xf(x)\,dx.}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>)</b></td></tr></tbody></table> <p>We may evaluate this two-sided <a href="/wiki/Improper_integral" title="Improper integral">improper integral</a> by computing the sum of two one-sided improper integrals. That is, </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 0em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{-\infty }^{a}xf(x)\,dx+\int _{a}^{\infty }xf(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{-\infty }^{a}xf(x)\,dx+\int _{a}^{\infty }xf(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e830005b8c4b7693aefff30646bc82c95827a3c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.76ex; height:6.009ex;" alt="{\displaystyle \int _{-\infty }^{a}xf(x)\,dx+\int _{a}^{\infty }xf(x)\,dx}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>)</b></td></tr></tbody></table> <p>for an arbitrary real number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>. </p><p>For the integral to exist (even as an infinite value), at least one of the terms in this sum should be finite, or both should be infinite and have the same sign. But in the case of the Cauchy distribution, both the terms in this sum (<b><a href="#math_2">2</a></b>) are infinite and have opposite sign. Hence (<b><a href="#math_1">1</a></b>) is undefined, and thus so is the mean.<sup id="cite_ref-uah_16-0" class="reference"><a href="#cite_note-uah-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> When the mean of a probability distribution function (PDF) is undefined, no one can compute a reliable average over the experimental data points, regardless of the sample's size. </p><p>Note that the <a href="/wiki/Cauchy_principal_value" title="Cauchy principal value">Cauchy principal value</a> of the mean of the Cauchy distribution is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{a\to \infty }\int _{-a}^{a}xf(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{a\to \infty }\int _{-a}^{a}xf(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ddb8b599994ca15088909702923d21c45035545a" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.283ex; height:6.009ex;" alt="{\displaystyle \lim _{a\to \infty }\int _{-a}^{a}xf(x)\,dx}"></span> which is zero. On the other hand, the related integral <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{a\to \infty }\int _{-2a}^{a}xf(x)\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msubsup> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{a\to \infty }\int _{-2a}^{a}xf(x)\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a1a84a8d0a7bd2d4d5f3891b3a167c6d026710b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.105ex; height:6.009ex;" alt="{\displaystyle \lim _{a\to \infty }\int _{-2a}^{a}xf(x)\,dx}"></span> is <i>not</i> zero, as can be seen by computing the integral. This again shows that the mean (<b><a href="#math_1">1</a></b>) cannot exist. </p><p>Various results in probability theory about <a href="/wiki/Expected_value" title="Expected value">expected values</a>, such as the <a href="/wiki/Strong_law_of_large_numbers" class="mw-redirect" title="Strong law of large numbers">strong law of large numbers</a>, fail to hold for the Cauchy distribution.<sup id="cite_ref-uah_16-1" class="reference"><a href="#cite_note-uah-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Smaller_moments">Smaller moments</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=17" title="Edit section: Smaller moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The absolute moments for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p\in (-1,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p\in (-1,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d5f33da09f102f8091f8de3cae196d69d606aae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:11.076ex; height:2.843ex;" alt="{\displaystyle p\in (-1,1)}"></span> are defined. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \mathrm {Cauchy} (0,\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> <mi mathvariant="normal">y</mi> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \mathrm {Cauchy} (0,\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4692c5281ab25d46ffeb4ebe7b80af11969d2113" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.032ex; height:2.843ex;" alt="{\displaystyle X\sim \mathrm {Cauchy} (0,\gamma )}"></span> we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [|X|^{p}]=\gamma ^{p}\mathrm {sec} (\pi p/2).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">c</mi> </mrow> <mo stretchy="false">(</mo> <mi>π<!-- π --></mi> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [|X|^{p}]=\gamma ^{p}\mathrm {sec} (\pi p/2).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34e2a867bc2b1f3c8c5fe805aa71577f466e948c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.91ex; height:3.009ex;" alt="{\displaystyle \operatorname {E} [|X|^{p}]=\gamma ^{p}\mathrm {sec} (\pi p/2).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Higher_moments">Higher moments</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=18" title="Edit section: Higher moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Cauchy distribution does not have finite moments of any order. Some of the higher <a href="/wiki/Raw_moment" class="mw-redirect" title="Raw moment">raw moments</a> do exist and have a value of infinity, for example, the raw second moment: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} [X^{2}]&\propto \int _{-\infty }^{\infty }{\frac {x^{2}}{1+x^{2}}}\,dx=\int _{-\infty }^{\infty }1-{\frac {1}{1+x^{2}}}\,dx\\[8pt]&=\int _{-\infty }^{\infty }dx-\int _{-\infty }^{\infty }{\frac {1}{1+x^{2}}}\,dx=\int _{-\infty }^{\infty }dx-\pi =\infty .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="1.1em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>∝<!-- ∝ --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>d</mi> <mi>x</mi> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>d</mi> <mi>x</mi> <mo>−<!-- − --></mo> <mi>π<!-- π --></mi> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} [X^{2}]&\propto \int _{-\infty }^{\infty }{\frac {x^{2}}{1+x^{2}}}\,dx=\int _{-\infty }^{\infty }1-{\frac {1}{1+x^{2}}}\,dx\\[8pt]&=\int _{-\infty }^{\infty }dx-\int _{-\infty }^{\infty }{\frac {1}{1+x^{2}}}\,dx=\int _{-\infty }^{\infty }dx-\pi =\infty .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b821427592463519bb2fe3f38a52f61183af76cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:55.705ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {E} [X^{2}]&\propto \int _{-\infty }^{\infty }{\frac {x^{2}}{1+x^{2}}}\,dx=\int _{-\infty }^{\infty }1-{\frac {1}{1+x^{2}}}\,dx\\[8pt]&=\int _{-\infty }^{\infty }dx-\int _{-\infty }^{\infty }{\frac {1}{1+x^{2}}}\,dx=\int _{-\infty }^{\infty }dx-\pi =\infty .\end{aligned}}}"></span></dd></dl> <p>By re-arranging the formula, one can see that the second moment is essentially the infinite integral of a constant (here 1). Higher even-powered raw moments will also evaluate to infinity. Odd-powered raw moments, however, are undefined, which is distinctly different from existing with the value of infinity. The odd-powered raw moments are undefined because their values are essentially equivalent to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty -\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty -\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2de5209a9f5b3bab9a466abf9221e9c91755020" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.488ex; height:2.176ex;" alt="{\displaystyle \infty -\infty }"></span> since the two halves of the integral both diverge and have opposite signs. The first raw moment is the mean, which, being odd, does not exist. (See also the discussion above about this.) This in turn means that all of the <a href="/wiki/Central_moment" title="Central moment">central moments</a> and <a href="/wiki/Standardized_moment" title="Standardized moment">standardized moments</a> are undefined since they are all based on the mean. The variance—which is the second central moment—is likewise non-existent (despite the fact that the raw second moment exists with the value infinity). </p><p>The results for higher moments follow from <a href="/wiki/H%C3%B6lder%27s_inequality" title="Hölder's inequality">Hölder's inequality</a>, which implies that higher moments (or halves of moments) diverge if lower ones do. </p> <div class="mw-heading mw-heading3"><h3 id="Moments_of_truncated_distributions">Moments of truncated distributions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=19" title="Edit section: Moments of truncated distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider the <a href="/wiki/Truncated_distribution" title="Truncated distribution">truncated distribution</a> defined by restricting the standard Cauchy distribution to the interval <span class="texhtml">[−10<sup>100</sup>, 10<sup>100</sup>]</span>. Such a truncated distribution has all moments (and the central limit theorem applies for <a href="/wiki/I.i.d." class="mw-redirect" title="I.i.d.">i.i.d.</a> observations from it); yet for almost all practical purposes it behaves like a Cauchy distribution.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Estimation_of_parameters">Estimation of parameters</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=20" title="Edit section: Estimation of parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Because the parameters of the Cauchy distribution do not correspond to a mean and variance, attempting to estimate the parameters of the Cauchy distribution by using a sample mean and a sample variance will not succeed.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> For example, if an i.i.d. sample of size <i>n</i> is taken from a Cauchy distribution, one may calculate the sample mean as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac7289290243ac81a5db64d7ad3e75c72536941d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.918ex; height:6.843ex;" alt="{\displaystyle {\bar {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}}"></span></dd></dl> <p>Although the sample values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e87000dd6142b81d041896a30fe58f0c3acb2158" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.129ex; height:2.009ex;" alt="{\displaystyle x_{i}}"></span> will be concentrated about the central value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>, the sample mean will become increasingly variable as more observations are taken, because of the increased probability of encountering sample points with a large absolute value. In fact, the distribution of the sample mean will be equal to the distribution of the observations themselves; i.e., the sample mean of a large sample is no better (or worse) an estimator of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> than any single observation from the sample. Similarly, calculating the sample variance will result in values that grow larger as more observations are taken. </p><p>Therefore, more robust means of estimating the central value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> and the scaling parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> are needed. One simple method is to take the median value of the sample as an estimator of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> and half the sample <a href="/wiki/Interquartile_range" title="Interquartile range">interquartile range</a> as an estimator of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>. Other, more precise and robust methods have been developed <sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> For example, the <a href="/wiki/Truncated_mean" title="Truncated mean">truncated mean</a> of the middle 24% of the sample <a href="/wiki/Order_statistics" class="mw-redirect" title="Order statistics">order statistics</a> produces an estimate for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> that is more efficient than using either the sample median or the full sample mean.<sup id="cite_ref-rothenberg_21-0" class="reference"><a href="#cite_note-rothenberg-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-bloch_22-0" class="reference"><a href="#cite_note-bloch-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> However, because of the <a href="/wiki/Fat_tails" class="mw-redirect" title="Fat tails">fat tails</a> of the Cauchy distribution, the efficiency of the estimator decreases if more than 24% of the sample is used.<sup id="cite_ref-rothenberg_21-1" class="reference"><a href="#cite_note-rothenberg-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-bloch_22-1" class="reference"><a href="#cite_note-bloch-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">Maximum likelihood</a> can also be used to estimate the parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span>. However, this tends to be complicated by the fact that this requires finding the roots of a high degree polynomial, and there can be multiple roots that represent local maxima.<sup id="cite_ref-ferguson_23-0" class="reference"><a href="#cite_note-ferguson-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Also, while the maximum likelihood estimator is asymptotically efficient, it is relatively inefficient for small samples.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> The log-likelihood function for the Cauchy distribution for sample size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\ell }}(x_{1},\dotsc ,x_{n}\mid \!x_{0},\gamma )=-n\log(\gamma \pi )-\sum _{i=1}^{n}\log \left(1+\left({\frac {x_{i}-x_{0}}{\gamma }}\right)^{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>ℓ<!-- ℓ --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>∣<!-- ∣ --></mo> <mspace width="negativethinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mi>n</mi> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mi>π<!-- π --></mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>log</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mi>γ<!-- γ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\ell }}(x_{1},\dotsc ,x_{n}\mid \!x_{0},\gamma )=-n\log(\gamma \pi )-\sum _{i=1}^{n}\log \left(1+\left({\frac {x_{i}-x_{0}}{\gamma }}\right)^{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a81471fcd2d12dcea12aa0d6b1b121da22b65370" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:63.538ex; height:7.509ex;" alt="{\displaystyle {\hat {\ell }}(x_{1},\dotsc ,x_{n}\mid \!x_{0},\gamma )=-n\log(\gamma \pi )-\sum _{i=1}^{n}\log \left(1+\left({\frac {x_{i}-x_{0}}{\gamma }}\right)^{2}\right)}"></span></dd></dl> <p>Maximizing the log likelihood function with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> by taking the first derivative produces the following system of equations: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d\ell }{dx_{0}}}=\sum _{i=1}^{n}{\frac {2(x_{i}-x_{0})}{\gamma ^{2}+\left(x_{i}-\!x_{0}\right)^{2}}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>ℓ<!-- ℓ --></mi> </mrow> <mrow> <mi>d</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mspace width="negativethinmathspace" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d\ell }{dx_{0}}}=\sum _{i=1}^{n}{\frac {2(x_{i}-x_{0})}{\gamma ^{2}+\left(x_{i}-\!x_{0}\right)^{2}}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa571958dfe086b163998cf3e3b1ea4f000c0c9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.378ex; height:7.009ex;" alt="{\displaystyle {\frac {d\ell }{dx_{0}}}=\sum _{i=1}^{n}{\frac {2(x_{i}-x_{0})}{\gamma ^{2}+\left(x_{i}-\!x_{0}\right)^{2}}}=0}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d\ell }{d\gamma }}=\sum _{i=1}^{n}{\frac {2\left(x_{i}-x_{0}\right)^{2}}{\gamma (\gamma ^{2}+\left(x_{i}-x_{0}\right)^{2})}}-{\frac {n}{\gamma }}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>ℓ<!-- ℓ --></mi> </mrow> <mrow> <mi>d</mi> <mi>γ<!-- γ --></mi> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mi>γ<!-- γ --></mi> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {d\ell }{d\gamma }}=\sum _{i=1}^{n}{\frac {2\left(x_{i}-x_{0}\right)^{2}}{\gamma (\gamma ^{2}+\left(x_{i}-x_{0}\right)^{2})}}-{\frac {n}{\gamma }}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48d5534de6fde8b0d4fd48cc87ee5ad0bf633008" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:38.787ex; height:7.343ex;" alt="{\displaystyle {\frac {d\ell }{d\gamma }}=\sum _{i=1}^{n}{\frac {2\left(x_{i}-x_{0}\right)^{2}}{\gamma (\gamma ^{2}+\left(x_{i}-x_{0}\right)^{2})}}-{\frac {n}{\gamma }}=0}"></span></dd></dl> <p>Note that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{n}{\frac {\left(x_{i}-x_{0}\right)^{2}}{\gamma ^{2}+\left(x_{i}-x_{0}\right)^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{n}{\frac {\left(x_{i}-x_{0}\right)^{2}}{\gamma ^{2}+\left(x_{i}-x_{0}\right)^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f840c8395e09ccc1995f9ea6597225b50dd24b49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:19.97ex; height:7.343ex;" alt="{\displaystyle \sum _{i=1}^{n}{\frac {\left(x_{i}-x_{0}\right)^{2}}{\gamma ^{2}+\left(x_{i}-x_{0}\right)^{2}}}}"></span></dd></dl> <p>is a monotone function in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> and that the solution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> must satisfy </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \min |x_{i}-x_{0}|\leq \gamma \leq \max |x_{i}-x_{0}|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">min</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mi>γ<!-- γ --></mi> <mo>≤<!-- ≤ --></mo> <mo movablelimits="true" form="prefix">max</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \min |x_{i}-x_{0}|\leq \gamma \leq \max |x_{i}-x_{0}|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/520a83bcd19a33facb47573bc68a823a985b327b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.376ex; height:2.843ex;" alt="{\displaystyle \min |x_{i}-x_{0}|\leq \gamma \leq \max |x_{i}-x_{0}|.}"></span></dd></dl> <p>Solving just for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> requires solving a polynomial of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2n-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2n-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb6ce8a02613283b1e60305814a1457335b44437" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.56ex; height:2.343ex;" alt="{\displaystyle 2n-1}"></span>,<sup id="cite_ref-ferguson_23-1" class="reference"><a href="#cite_note-ferguson-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> and solving just for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \,\!\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \,\!\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaeacaae3f2fab32bfe582cacf8480256fab819d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \,\!\gamma }"></span> requires solving a polynomial of degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/134afa8ff09fdddd24b06f289e92e3a045092bd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.557ex; height:2.176ex;" alt="{\displaystyle 2n}"></span>. Therefore, whether solving for one parameter or for both parameters simultaneously, a <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerical</a> solution on a computer is typically required. The benefit of maximum likelihood estimation is asymptotic efficiency; estimating <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> using the sample median is only about 81% as asymptotically efficient as estimating <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> by maximum likelihood.<sup id="cite_ref-bloch_22-2" class="reference"><a href="#cite_note-bloch-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> The truncated sample mean using the middle 24% order statistics is about 88% as asymptotically efficient an estimator of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span> as the maximum likelihood estimate.<sup id="cite_ref-bloch_22-3" class="reference"><a href="#cite_note-bloch-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> When <a href="/wiki/Newton%27s_method" title="Newton's method">Newton's method</a> is used to find the solution for the maximum likelihood estimate, the middle 24% order statistics can be used as an initial solution for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86f21d0e31751534cd6584264ecf864a6aa792cf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle x_{0}}"></span>. </p><p>The shape can be estimated using the median of absolute values, since for location 0 Cauchy variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \mathrm {Cauchy} (0,\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> <mi mathvariant="normal">y</mi> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \mathrm {Cauchy} (0,\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4692c5281ab25d46ffeb4ebe7b80af11969d2113" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.032ex; height:2.843ex;" alt="{\displaystyle X\sim \mathrm {Cauchy} (0,\gamma )}"></span>, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {median} (|X|)=\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>median</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {median} (|X|)=\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c58d16d9bcfa98d35953729f2fa9a152195f775c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.806ex; height:2.843ex;" alt="{\displaystyle \operatorname {median} (|X|)=\gamma }"></span> the shape parameter. </p> <div class="mw-heading mw-heading2"><h2 id="Multivariate_Cauchy_distribution">Multivariate Cauchy distribution</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=21" title="Edit section: Multivariate Cauchy distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Random_vector" class="mw-redirect" title="Random vector">random vector</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=(X_{1},\ldots ,X_{k})^{T}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=(X_{1},\ldots ,X_{k})^{T}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6063f91ebf415962c75e7d0c8367e5d7d484a49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.447ex; height:3.176ex;" alt="{\displaystyle X=(X_{1},\ldots ,X_{k})^{T}}"></span> is said to have the multivariate Cauchy distribution if every linear combination of its components <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=a_{1}X_{1}+\cdots +a_{k}X_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=a_{1}X_{1}+\cdots +a_{k}X_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a2ca2f36c4969385b422fae21fa690609bf7e07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:23.87ex; height:2.509ex;" alt="{\displaystyle Y=a_{1}X_{1}+\cdots +a_{k}X_{k}}"></span> has a Cauchy distribution. That is, for any constant vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\in \mathbb {R} ^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\in \mathbb {R} ^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21a7cb3fb4c0eaafe9fa5a8a560b276f96fe2dde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.837ex; height:2.676ex;" alt="{\displaystyle a\in \mathbb {R} ^{k}}"></span>, the random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=a^{T}X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=a^{T}X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb2ee4c302d7022f923450445680041f5f64cede" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.471ex; height:2.676ex;" alt="{\displaystyle Y=a^{T}X}"></span> should have a univariate Cauchy distribution.<sup id="cite_ref-ferg2_27-0" class="reference"><a href="#cite_note-ferg2-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> The characteristic function of a multivariate Cauchy distribution is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{X}(t)=e^{ix_{0}(t)-\gamma (t)},\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{X}(t)=e^{ix_{0}(t)-\gamma (t)},\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f79e727f880fb0482adc8485b9bf64920fad33d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.229ex; width:18.961ex; height:3.343ex;" alt="{\displaystyle \varphi _{X}(t)=e^{ix_{0}(t)-\gamma (t)},\!}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca4c1f2c7719b7304f44a3cc5dd0416f701ac3a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.033ex; height:2.843ex;" alt="{\displaystyle x_{0}(t)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54fa4a5d64e164410e4a18106677bebefe1a1f1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.911ex; height:2.843ex;" alt="{\displaystyle \gamma (t)}"></span> are real functions with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca4c1f2c7719b7304f44a3cc5dd0416f701ac3a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.033ex; height:2.843ex;" alt="{\displaystyle x_{0}(t)}"></span> a <a href="/wiki/Homogeneous_function" title="Homogeneous function">homogeneous function</a> of degree one and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54fa4a5d64e164410e4a18106677bebefe1a1f1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.911ex; height:2.843ex;" alt="{\displaystyle \gamma (t)}"></span> a positive homogeneous function of degree one.<sup id="cite_ref-ferg2_27-1" class="reference"><a href="#cite_note-ferg2-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> More formally:<sup id="cite_ref-ferg2_27-2" class="reference"><a href="#cite_note-ferg2-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{0}(at)=ax_{0}(t),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>a</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{0}(at)=ax_{0}(t),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4acbdf046c09d72eefe3b52b0082326581df591e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.271ex; height:2.843ex;" alt="{\displaystyle x_{0}(at)=ax_{0}(t),}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma (at)=|a|\gamma (t),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma (at)=|a|\gamma (t),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f9b8825cc0774d7e20a9484ebd6b43d84880e48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.321ex; height:2.843ex;" alt="{\displaystyle \gamma (at)=|a|\gamma (t),}"></span></dd></dl> <p>for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>. </p><p>An example of a bivariate Cauchy distribution can be given by:<sup id="cite_ref-bivar_28-0" class="reference"><a href="#cite_note-bivar-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x,y;x_{0},y_{0},\gamma )={1 \over 2\pi }\left[{\gamma \over ((x-x_{0})^{2}+(y-y_{0})^{2}+\gamma ^{2})^{3/2}}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>γ<!-- γ --></mi> <mrow> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x,y;x_{0},y_{0},\gamma )={1 \over 2\pi }\left[{\gamma \over ((x-x_{0})^{2}+(y-y_{0})^{2}+\gamma ^{2})^{3/2}}\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d8819f3c50d69b56d61fe3055c18b1b53d37e50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:57.938ex; height:7.509ex;" alt="{\displaystyle f(x,y;x_{0},y_{0},\gamma )={1 \over 2\pi }\left[{\gamma \over ((x-x_{0})^{2}+(y-y_{0})^{2}+\gamma ^{2})^{3/2}}\right].}"></span></dd></dl> <p>Note that in this example, even though the covariance between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> is 0, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> are not <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">statistically independent</a>.<sup id="cite_ref-bivar_28-1" class="reference"><a href="#cite_note-bivar-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p><p>We also can write this formula for complex variable. Then the probability density function of complex cauchy is : </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(z;z_{0},\gamma )={1 \over 2\pi }\left[{\gamma \over (|z-z_{0}|^{2}+\gamma ^{2})^{3/2}}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>;</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>π<!-- π --></mi> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>γ<!-- γ --></mi> <mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>z</mi> <mo>−<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(z;z_{0},\gamma )={1 \over 2\pi }\left[{\gamma \over (|z-z_{0}|^{2}+\gamma ^{2})^{3/2}}\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de0257adbd6a9a7b9216baf7a6837e0da6255390" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.132ex; height:7.509ex;" alt="{\displaystyle f(z;z_{0},\gamma )={1 \over 2\pi }\left[{\gamma \over (|z-z_{0}|^{2}+\gamma ^{2})^{3/2}}\right].}"></span></dd></dl> <p>Like how the standard Cauchy distribution is the Student t-distribution with one degree of freedom, the multidimensional Cauchy density is the <a href="/wiki/Multivariate_Student_distribution" class="mw-redirect" title="Multivariate Student distribution">multivariate Student distribution</a> with one degree of freedom. The density of a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> dimension Student distribution with one degree of freedom is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f({\mathbf {x} };{\mathbf {\mu } },{\mathbf {\Sigma } },k)={\frac {\Gamma \left({\frac {1+k}{2}}\right)}{\Gamma ({\frac {1}{2}})\pi ^{\frac {k}{2}}\left|{\mathbf {\Sigma } }\right|^{\frac {1}{2}}\left[1+({\mathbf {x} }-{\mathbf {\mu } })^{T}{\mathbf {\Sigma } }^{-1}({\mathbf {x} }-{\mathbf {\mu } })\right]^{\frac {1+k}{2}}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Σ<!-- Σ --></mi> </mrow> </mrow> <mo>,</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Σ<!-- Σ --></mi> </mrow> </mrow> <mo>|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <msup> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>+</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>T</mi> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">Σ<!-- Σ --></mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi>μ<!-- μ --></mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <mi>k</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f({\mathbf {x} };{\mathbf {\mu } },{\mathbf {\Sigma } },k)={\frac {\Gamma \left({\frac {1+k}{2}}\right)}{\Gamma ({\frac {1}{2}})\pi ^{\frac {k}{2}}\left|{\mathbf {\Sigma } }\right|^{\frac {1}{2}}\left[1+({\mathbf {x} }-{\mathbf {\mu } })^{T}{\mathbf {\Sigma } }^{-1}({\mathbf {x} }-{\mathbf {\mu } })\right]^{\frac {1+k}{2}}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9e1b5b8a0ffbbba9a4478b2acb4da449c1006d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:59.694ex; height:10.343ex;" alt="{\displaystyle f({\mathbf {x} };{\mathbf {\mu } },{\mathbf {\Sigma } },k)={\frac {\Gamma \left({\frac {1+k}{2}}\right)}{\Gamma ({\frac {1}{2}})\pi ^{\frac {k}{2}}\left|{\mathbf {\Sigma } }\right|^{\frac {1}{2}}\left[1+({\mathbf {x} }-{\mathbf {\mu } })^{T}{\mathbf {\Sigma } }^{-1}({\mathbf {x} }-{\mathbf {\mu } })\right]^{\frac {1+k}{2}}}}.}"></span></dd></dl> <p>The properties of multidimensional Cauchy distribution are then special cases of the multivariate Student distribution. </p> <div class="mw-heading mw-heading2"><h2 id="Transformation_properties">Transformation properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=22" title="Edit section: Transformation properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Cauchy} (x_{0},\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Cauchy} (x_{0},\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42271c514c4d48251b1742aed2381e4946af347a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.253ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Cauchy} (x_{0},\gamma )}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle kX+\ell \sim {\textrm {Cauchy}}(x_{0}k+\ell ,\gamma |k|)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> <mi>X</mi> <mo>+</mo> <mi>ℓ<!-- ℓ --></mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Cauchy</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>k</mi> <mo>+</mo> <mi>ℓ<!-- ℓ --></mi> <mo>,</mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle kX+\ell \sim {\textrm {Cauchy}}(x_{0}k+\ell ,\gamma |k|)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c682430d121bfb710a4c16574bdf7ec3aa25656" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.801ex; height:2.843ex;" alt="{\displaystyle kX+\ell \sim {\textrm {Cauchy}}(x_{0}k+\ell ,\gamma |k|)}"></span><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Cauchy} (x_{0},\gamma _{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Cauchy} (x_{0},\gamma _{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a05107452fafe468c17498d672a9381ff4bd3869" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.25ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Cauchy} (x_{0},\gamma _{0})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \operatorname {Cauchy} (x_{1},\gamma _{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim \operatorname {Cauchy} (x_{1},\gamma _{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72d93c80654485a89396b229b8f1e2741feb1b0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.043ex; height:2.843ex;" alt="{\displaystyle Y\sim \operatorname {Cauchy} (x_{1},\gamma _{1})}"></span> are independent, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X+Y\sim \operatorname {Cauchy} (x_{0}+x_{1},\gamma _{0}+\gamma _{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X+Y\sim \operatorname {Cauchy} (x_{0}+x_{1},\gamma _{0}+\gamma _{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c50422d0774c33c06aec403cefc2a08636d28c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.186ex; height:2.843ex;" alt="{\displaystyle X+Y\sim \operatorname {Cauchy} (x_{0}+x_{1},\gamma _{0}+\gamma _{1})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X-Y\sim \operatorname {Cauchy} (x_{0}-x_{1},\gamma _{0}+\gamma _{1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>−<!-- − --></mo> <mi>Y</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X-Y\sim \operatorname {Cauchy} (x_{0}-x_{1},\gamma _{0}+\gamma _{1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/871c1eaadfa9d583335f9e8dbdf117644158d932" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.186ex; height:2.843ex;" alt="{\displaystyle X-Y\sim \operatorname {Cauchy} (x_{0}-x_{1},\gamma _{0}+\gamma _{1})}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Cauchy} (0,\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Cauchy} (0,\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3304a6b1a85ce9faa67ea50e845e1034b5c5994a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.032ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Cauchy} (0,\gamma )}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{X}}\sim \operatorname {Cauchy} (0,{\tfrac {1}{\gamma }})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>X</mi> </mfrac> </mstyle> </mrow> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>γ<!-- γ --></mi> </mfrac> </mstyle> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{X}}\sim \operatorname {Cauchy} (0,{\tfrac {1}{\gamma }})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79ceb96f3389f5fdb5adb233d5a1448dc6607a80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:18.755ex; height:3.676ex;" alt="{\displaystyle {\tfrac {1}{X}}\sim \operatorname {Cauchy} (0,{\tfrac {1}{\gamma }})}"></span></li> <li><a href="/wiki/McCullagh%27s_parametrization_of_the_Cauchy_distributions" title="McCullagh's parametrization of the Cauchy distributions">McCullagh's parametrization of the Cauchy distributions</a>:<sup id="cite_ref-McCullagh1992_30-0" class="reference"><a href="#cite_note-McCullagh1992-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> Expressing a Cauchy distribution in terms of one complex parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi =x_{0}+i\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>i</mi> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi =x_{0}+i\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7154f47992ba47c28dd949c399e4287bfbd916c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.901ex; height:2.676ex;" alt="{\displaystyle \psi =x_{0}+i\gamma }"></span>, define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Cauchy} (\psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Cauchy} (\psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f932893157e690c61b4b04ff023c0b9b072fe251" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.086ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Cauchy} (\psi )}"></span> to mean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Cauchy} (x_{0},|\gamma |)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Cauchy} (x_{0},|\gamma |)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c36e33b64989941cb73ff6248925ca5b9d8569b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.547ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Cauchy} (x_{0},|\gamma |)}"></span>. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Cauchy} (\psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Cauchy} (\psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f932893157e690c61b4b04ff023c0b9b072fe251" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.086ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Cauchy} (\psi )}"></span> then: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {aX+b}{cX+d}}\sim \operatorname {Cauchy} \left({\frac {a\psi +b}{c\psi +d}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>X</mi> <mo>+</mo> <mi>b</mi> </mrow> <mrow> <mi>c</mi> <mi>X</mi> <mo>+</mo> <mi>d</mi> </mrow> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mi>ψ<!-- ψ --></mi> <mo>+</mo> <mi>b</mi> </mrow> <mrow> <mi>c</mi> <mi>ψ<!-- ψ --></mi> <mo>+</mo> <mi>d</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {aX+b}{cX+d}}\sim \operatorname {Cauchy} \left({\frac {a\psi +b}{c\psi +d}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2853554577ec58046688103194cb40b35135d3c5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:29.506ex; height:6.176ex;" alt="{\displaystyle {\frac {aX+b}{cX+d}}\sim \operatorname {Cauchy} \left({\frac {a\psi +b}{c\psi +d}}\right)}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span> are real numbers.</li> <li>Using the same convention as above, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Cauchy} (\psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Cauchy} (\psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f932893157e690c61b4b04ff023c0b9b072fe251" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.086ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Cauchy} (\psi )}"></span> then:<sup id="cite_ref-McCullagh1992_30-1" class="reference"><a href="#cite_note-McCullagh1992-30"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {X-i}{X+i}}\sim \operatorname {CCauchy} \left({\frac {\psi -i}{\psi +i}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>X</mi> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> <mrow> <mi>X</mi> <mo>+</mo> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <mi>CCauchy</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ψ<!-- ψ --></mi> <mo>−<!-- − --></mo> <mi>i</mi> </mrow> <mrow> <mi>ψ<!-- ψ --></mi> <mo>+</mo> <mi>i</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {X-i}{X+i}}\sim \operatorname {CCauchy} \left({\frac {\psi -i}{\psi +i}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92a8bdb9dc78dda3736fbe51bb7c2c716602cd24" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.334ex; height:6.176ex;" alt="{\displaystyle {\frac {X-i}{X+i}}\sim \operatorname {CCauchy} \left({\frac {\psi -i}{\psi +i}}\right)}"></span>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {CCauchy} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>CCauchy</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {CCauchy} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/092871abd0f496771f023ff03ff276f24ad051cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.364ex; height:2.509ex;" alt="{\displaystyle \operatorname {CCauchy} }"></span> is the <a href="/wiki/Circular_Cauchy_distribution" class="mw-redirect" title="Circular Cauchy distribution">circular Cauchy distribution</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Lévy_measure"><span id="L.C3.A9vy_measure"></span>Lévy measure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=23" title="Edit section: Lévy measure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Cauchy distribution is the <a href="/wiki/Stable_distribution" title="Stable distribution">stable distribution</a> of index 1. The <a href="/wiki/L%C3%A9vy_process#L.C3.A9vy.E2.80.93Khintchine_representation" title="Lévy process">Lévy–Khintchine representation</a> of such a stable distribution of parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> is given, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Stable} (\gamma ,0,0)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Stable</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Stable} (\gamma ,0,0)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e99537f25b80fb36fbafdaf5165e6a0eb8f71b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.261ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Stable} (\gamma ,0,0)\,}"></span> by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} \left(e^{ixX}\right)=\exp \left(\int _{\mathbb {R} }(e^{ixy}-1)\Pi _{\gamma }(dy)\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> <mi>X</mi> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> <mi>y</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi mathvariant="normal">Π<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>d</mi> <mi>y</mi> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} \left(e^{ixX}\right)=\exp \left(\int _{\mathbb {R} }(e^{ixy}-1)\Pi _{\gamma }(dy)\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2fab777f07cb5437a8571cc0f7c6b515edd944d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.221ex; height:6.176ex;" alt="{\displaystyle \operatorname {E} \left(e^{ixX}\right)=\exp \left(\int _{\mathbb {R} }(e^{ixy}-1)\Pi _{\gamma }(dy)\right)}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pi _{\gamma }(dy)=\left(c_{1,\gamma }{\frac {1}{y^{1+\gamma }}}1_{\left\{y>0\right\}}+c_{2,\gamma }{\frac {1}{|y|^{1+\gamma }}}1_{\left\{y<0\right\}}\right)\,dy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">Π<!-- Π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>d</mi> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>+</mo> <mi>γ<!-- γ --></mi> </mrow> </msup> </mfrac> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mrow> <mi>y</mi> <mo>></mo> <mn>0</mn> </mrow> <mo>}</mo> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>y</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>+</mo> <mi>γ<!-- γ --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mrow> <mi>y</mi> <mo><</mo> <mn>0</mn> </mrow> <mo>}</mo> </mrow> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pi _{\gamma }(dy)=\left(c_{1,\gamma }{\frac {1}{y^{1+\gamma }}}1_{\left\{y>0\right\}}+c_{2,\gamma }{\frac {1}{|y|^{1+\gamma }}}1_{\left\{y<0\right\}}\right)\,dy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da733fd097f6bb2316e6f423c7b4127e8c61a0c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:50.282ex; height:7.509ex;" alt="{\displaystyle \Pi _{\gamma }(dy)=\left(c_{1,\gamma }{\frac {1}{y^{1+\gamma }}}1_{\left\{y>0\right\}}+c_{2,\gamma }{\frac {1}{|y|^{1+\gamma }}}1_{\left\{y<0\right\}}\right)\,dy}"></span></dd></dl> <p>and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{1,\gamma },c_{2,\gamma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{1,\gamma },c_{2,\gamma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdb43f02ba1ca6242bae8cc7f2179b23396f2ce5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.856ex; height:2.343ex;" alt="{\displaystyle c_{1,\gamma },c_{2,\gamma }}"></span> can be expressed explicitly.<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup> In the case <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5682ebb86d6f024a15f4a2c1c7cb08412720bcaf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.523ex; height:2.676ex;" alt="{\displaystyle \gamma =1}"></span> of the Cauchy distribution, one has <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{1,\gamma }=c_{2,\gamma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{1,\gamma }=c_{2,\gamma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/712ee6b265857554f0d8808f36fe13992794e671" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.921ex; height:2.343ex;" alt="{\displaystyle c_{1,\gamma }=c_{2,\gamma }}"></span>. </p><p>This last representation is a consequence of the formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi |x|=\operatorname {PV} \int _{\mathbb {R} \smallsetminus \lbrace 0\rbrace }(1-e^{ixy})\,{\frac {dy}{y^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mi>PV</mi> <mo>⁡<!-- --></mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>∖<!-- ∖ --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>x</mi> <mi>y</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi |x|=\operatorname {PV} \int _{\mathbb {R} \smallsetminus \lbrace 0\rbrace }(1-e^{ixy})\,{\frac {dy}{y^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae3fffc82be3a75a27318a5e53711fe7376a260f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:30.27ex; height:6.176ex;" alt="{\displaystyle \pi |x|=\operatorname {PV} \int _{\mathbb {R} \smallsetminus \lbrace 0\rbrace }(1-e^{ixy})\,{\frac {dy}{y^{2}}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Related_distributions">Related distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=24" title="Edit section: Related distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Cauchy} (0,1)\sim {\textrm {t}}(\mathrm {df} =1)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">f</mi> </mrow> <mo>=</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Cauchy} (0,1)\sim {\textrm {t}}(\mathrm {df} =1)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1613fefb39eaeafebf6d06e9897bfb424d96e394" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.472ex; height:2.843ex;" alt="{\displaystyle \operatorname {Cauchy} (0,1)\sim {\textrm {t}}(\mathrm {df} =1)\,}"></span> <a href="/wiki/Student%27s_t_distribution" class="mw-redirect" title="Student's t distribution">Student's <i>t</i> distribution</a></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Cauchy} (\mu ,\sigma )\sim {\textrm {t}}_{(\mathrm {df} =1)}(\mu ,\sigma )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo>,</mo> <mi>σ<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>∼<!-- ∼ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>t</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">f</mi> </mrow> <mo>=</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo>,</mo> <mi>σ<!-- σ --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Cauchy} (\mu ,\sigma )\sim {\textrm {t}}_{(\mathrm {df} =1)}(\mu ,\sigma )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53f607d281ec1e88e9669211df72fb9cf4b5740c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:28.363ex; height:3.176ex;" alt="{\displaystyle \operatorname {Cauchy} (\mu ,\sigma )\sim {\textrm {t}}_{(\mathrm {df} =1)}(\mu ,\sigma )\,}"></span> <a href="/wiki/Student%27s_t_distribution#location-scale" class="mw-redirect" title="Student's t distribution">non-standardized Student's <i>t</i> distribution</a></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,Y\sim {\textrm {N}}(0,1)\,X,Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>N</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,Y\sim {\textrm {N}}(0,1)\,X,Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aae93f8003e602d099a225551a7ecd2777a3221d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.971ex; height:2.843ex;" alt="{\displaystyle X,Y\sim {\textrm {N}}(0,1)\,X,Y}"></span> independent, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {X}{Y}}\sim {\textrm {Cauchy}}(0,1)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>X</mi> <mi>Y</mi> </mfrac> </mstyle> </mrow> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Cauchy</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {X}{Y}}\sim {\textrm {Cauchy}}(0,1)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af46100c1143ace3221ceeefc9b5653f6cc94486" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:18.575ex; height:3.509ex;" alt="{\displaystyle {\tfrac {X}{Y}}\sim {\textrm {Cauchy}}(0,1)\,}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim {\textrm {U}}(0,1)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>U</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim {\textrm {U}}(0,1)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aad5661a45188133b972d0a4208144463dd761e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.377ex; height:2.843ex;" alt="{\displaystyle X\sim {\textrm {U}}(0,1)\,}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan \left(\pi \left(X-{\tfrac {1}{2}}\right)\right)\sim {\textrm {Cauchy}}(0,1)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mi>π<!-- π --></mi> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Cauchy</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan \left(\pi \left(X-{\tfrac {1}{2}}\right)\right)\sim {\textrm {Cauchy}}(0,1)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/064edb3b43203a3852c208f3a3b7ffe45b9d0485" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:32.156ex; height:3.509ex;" alt="{\displaystyle \tan \left(\pi \left(X-{\tfrac {1}{2}}\right)\right)\sim {\textrm {Cauchy}}(0,1)\,}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Log-Cauchy} (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">L</mi> <mi mathvariant="normal">o</mi> <mi mathvariant="normal">g</mi> <mtext>-</mtext> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">u</mi> <mi mathvariant="normal">c</mi> <mi mathvariant="normal">h</mi> <mi mathvariant="normal">y</mi> </mrow> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Log-Cauchy} (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/76aaa50db736c2552578bc76c248859f90c330ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.484ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Log-Cauchy} (0,1)}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(X)\sim {\textrm {Cauchy}}(0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Cauchy</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(X)\sim {\textrm {Cauchy}}(0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/486e81d2c785d9b94b1ca0289af4716497c5f224" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.681ex; height:2.843ex;" alt="{\displaystyle \ln(X)\sim {\textrm {Cauchy}}(0,1)}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Cauchy} (x_{0},\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Cauchy} (x_{0},\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42271c514c4d48251b1742aed2381e4946af347a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.253ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Cauchy} (x_{0},\gamma )}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{X}}\sim \operatorname {Cauchy} \left({\tfrac {x_{0}}{x_{0}^{2}+\gamma ^{2}}},{\tfrac {\gamma }{x_{0}^{2}+\gamma ^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>X</mi> </mfrac> </mstyle> </mrow> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>γ<!-- γ --></mi> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{X}}\sim \operatorname {Cauchy} \left({\tfrac {x_{0}}{x_{0}^{2}+\gamma ^{2}}},{\tfrac {\gamma }{x_{0}^{2}+\gamma ^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20b77e3d15083e677b4001a9141ff29a403002b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.721ex; height:6.176ex;" alt="{\displaystyle {\tfrac {1}{X}}\sim \operatorname {Cauchy} \left({\tfrac {x_{0}}{x_{0}^{2}+\gamma ^{2}}},{\tfrac {\gamma }{x_{0}^{2}+\gamma ^{2}}}\right)}"></span></li> <li>The Cauchy distribution is a limiting case of a <a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson distribution</a> of type 4<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2011)">citation needed</span></a></i>]</sup></li> <li>The Cauchy distribution is a special case of a <a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson distribution</a> of type 7.<sup id="cite_ref-jkb1_1-2" class="reference"><a href="#cite_note-jkb1-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></li> <li>The Cauchy distribution is a <a href="/wiki/Stable_distribution" title="Stable distribution">stable distribution</a>: if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim {\textrm {Stable}}(1,0,\gamma ,\mu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Stable</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo>,</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim {\textrm {Stable}}(1,0,\gamma ,\mu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cef81d3d0f4444f971ac89f1b01cc8940166b2e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.31ex; height:2.843ex;" alt="{\displaystyle X\sim {\textrm {Stable}}(1,0,\gamma ,\mu )}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Cauchy} (\mu ,\gamma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo>,</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Cauchy} (\mu ,\gamma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81d76227f43d451c60827c4578d8661ee6b1a66d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.271ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Cauchy} (\mu ,\gamma )}"></span>.</li> <li>The Cauchy distribution is a singular limit of a <a href="/wiki/Hyperbolic_distribution" title="Hyperbolic distribution">hyperbolic distribution</a><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2011)">citation needed</span></a></i>]</sup></li> <li>The <a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">wrapped Cauchy distribution</a>, taking values on a circle, is derived from the Cauchy distribution by wrapping it around the circle.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim {\textrm {N}}(0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>N</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim {\textrm {N}}(0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec13faeed644556e14e43978e2a9f979534b2834" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.99ex; height:2.843ex;" alt="{\displaystyle X\sim {\textrm {N}}(0,1)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z\sim \operatorname {Inverse-Gamma} (1/2,s^{2}/2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">v</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">s</mi> <mi mathvariant="normal">e</mi> <mtext>-</mtext> <mi mathvariant="normal">G</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">a</mi> </mrow> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>,</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z\sim \operatorname {Inverse-Gamma} (1/2,s^{2}/2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69ee92b82adb624412a9db2f94b8a867a12b775b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.627ex; height:3.176ex;" alt="{\displaystyle Z\sim \operatorname {Inverse-Gamma} (1/2,s^{2}/2)}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=\mu +X{\sqrt {Z}}\sim \operatorname {Cauchy} (\mu ,s)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo>+</mo> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>Z</mi> </msqrt> </mrow> <mo>∼<!-- ∼ --></mo> <mi>Cauchy</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo>,</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=\mu +X{\sqrt {Z}}\sim \operatorname {Cauchy} (\mu ,s)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0d5d488431bae334794a69f3fd54cf70caa0dd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.829ex; height:3.176ex;" alt="{\displaystyle Y=\mu +X{\sqrt {Z}}\sim \operatorname {Cauchy} (\mu ,s)}"></span>. For half-Cauchy distributions, the relation holds by setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim {\textrm {N}}(0,1)I\{X\geq 0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>∼<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>N</mtext> </mrow> </mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>I</mi> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim {\textrm {N}}(0,1)I\{X\geq 0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2c2383b2c57af0670d14da8db2c28230a5eb5e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.727ex; height:2.843ex;" alt="{\displaystyle X\sim {\textrm {N}}(0,1)I\{X\geq 0\}}"></span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Relativistic_Breit–Wigner_distribution"><span id="Relativistic_Breit.E2.80.93Wigner_distribution"></span>Relativistic Breit–Wigner distribution</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=25" title="Edit section: Relativistic Breit–Wigner distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner distribution</a></div> <p>In <a href="/wiki/Nuclear_physics" title="Nuclear physics">nuclear</a> and <a href="/wiki/Particle_physics" title="Particle physics">particle physics</a>, the energy profile of a <a href="/wiki/Resonance" title="Resonance">resonance</a> is described by the <a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">relativistic Breit–Wigner distribution</a>, while the Cauchy distribution is the (non-relativistic) Breit–Wigner distribution.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2011)">citation needed</span></a></i>]</sup> </p> <div class="mw-heading mw-heading2"><h2 id="Occurrence_and_applications">Occurrence and applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=26" title="Edit section: Occurrence and applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In <a href="/wiki/Spectroscopy" title="Spectroscopy">spectroscopy</a>, the Cauchy distribution describes the shape of <a href="/wiki/Spectral_line" title="Spectral line">spectral lines</a> which are subject to <a href="/wiki/Homogeneous_broadening" title="Homogeneous broadening">homogeneous broadening</a> in which all atoms interact in the same way with the frequency range contained in the line shape. Many mechanisms cause homogeneous broadening, most notably <a href="/wiki/Line_broadening#Pressure_broadening" class="mw-redirect" title="Line broadening">collision broadening</a>.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> <a href="/wiki/Spectral_line#Natural_broadening" title="Spectral line">Lifetime or natural broadening</a> also gives rise to a line shape described by the Cauchy distribution.</li> <li>Applications of the Cauchy distribution or its transformation can be found in fields working with <a href="/wiki/Exponential_growth" title="Exponential growth">exponential growth</a>. A 1958 paper by White <sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> derived the test statistic for estimators of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\beta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>β<!-- β --></mi> <mo stretchy="false">^<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\beta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efdb50e00928e4013750a476dab75eeb3cbd5799" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.451ex; height:3.176ex;" alt="{\displaystyle {\hat {\beta }}}"></span> for the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{t+1}=\beta {x}_{t}+\varepsilon _{t+1},\beta >1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>β<!-- β --></mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>ε<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>β<!-- β --></mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{t+1}=\beta {x}_{t}+\varepsilon _{t+1},\beta >1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7edac7d560e5c61f0377517f8f879361904ea2e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.32ex; height:2.509ex;" alt="{\displaystyle x_{t+1}=\beta {x}_{t}+\varepsilon _{t+1},\beta >1}"></span> and where the maximum likelihood estimator is found using ordinary least squares showed the sampling distribution of the statistic is the Cauchy distribution.</li></ul> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Cauchy_distribution.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Cauchy_distribution.png/250px-Cauchy_distribution.png" decoding="async" width="250" height="177" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Cauchy_distribution.png/375px-Cauchy_distribution.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/61/Cauchy_distribution.png/500px-Cauchy_distribution.png 2x" data-file-width="623" data-file-height="441" /></a><figcaption>Fitted cumulative Cauchy distribution to maximum one-day rainfalls using <a href="/wiki/CumFreq" title="CumFreq">CumFreq</a>, see also <a href="/wiki/Distribution_fitting" class="mw-redirect" title="Distribution fitting">distribution fitting</a><sup id="cite_ref-cumfreq_34-0" class="reference"><a href="#cite_note-cumfreq-34"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup></figcaption></figure> <ul><li>The Cauchy distribution is often the distribution of observations for objects that are spinning. The classic reference for this is called the Gull's lighthouse problem<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup> and as in the above section as the Breit–Wigner distribution in particle physics.</li> <li>In <a href="/wiki/Hydrology" title="Hydrology">hydrology</a> the Cauchy distribution is applied to extreme events such as annual maximum one-day rainfalls and river discharges. The blue picture illustrates an example of fitting the Cauchy distribution to ranked monthly maximum one-day rainfalls showing also the 90% <a href="/wiki/Confidence_belt" class="mw-redirect" title="Confidence belt">confidence belt</a> based on the <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a>. The rainfall data are represented by <a href="/wiki/Plotting_position" class="mw-redirect" title="Plotting position">plotting positions</a> as part of the <a href="/wiki/Cumulative_frequency_analysis" title="Cumulative frequency analysis">cumulative frequency analysis</a>.</li> <li>The expression for the imaginary part of complex <a href="/wiki/Permittivity" title="Permittivity">electrical permittivity</a>, according to the Lorentz model, is a Cauchy distribution.</li> <li>As an additional distribution to model <a href="/wiki/Fat_tails" class="mw-redirect" title="Fat tails">fat tails</a> in <a href="/wiki/Computational_finance" title="Computational finance">computational finance</a>, Cauchy distributions can be used to model VAR (<a href="/wiki/Value_at_risk" title="Value at risk">value at risk</a>) producing a much larger probability of extreme risk than <a href="/wiki/Gaussian_Distribution" class="mw-redirect" title="Gaussian Distribution">Gaussian Distribution</a>.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=27" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/L%C3%A9vy_flight" title="Lévy flight">Lévy flight</a> and <a href="/wiki/L%C3%A9vy_process" title="Lévy process">Lévy process</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace distribution</a>, the Fourier transform of the Cauchy distribution</li> <li><a href="/wiki/Cauchy_process" title="Cauchy process">Cauchy process</a></li> <li><a href="/wiki/Stable_process" title="Stable process">Stable process</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash distribution</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=28" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-jkb1-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-jkb1_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-jkb1_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-jkb1_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFN._L._JohnsonS._KotzN._Balakrishnan1994" class="citation book cs1">N. L. Johnson; S. Kotz; N. Balakrishnan (1994). <i>Continuous Univariate Distributions, Volume 1</i>. New York: Wiley.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Continuous+Univariate+Distributions%2C+Volume+1&rft.place=New+York&rft.pub=Wiley&rft.date=1994&rft.au=N.+L.+Johnson&rft.au=S.+Kotz&rft.au=N.+Balakrishnan&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span>, Chapter 16.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Cauchy and the Witch of Agnesi in <i>Statistics on the Table</i>, S M Stigler Harvard 1999 Chapter 18</span> </li> <li id="cite_note-feller-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-feller_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeller1971" class="citation book cs1">Feller, William (1971). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/introductiontopr00fell/page/704"><i>An Introduction to Probability Theory and Its Applications, Volume II</i></a></span> (2 ed.). New York: John Wiley & Sons Inc. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/introductiontopr00fell/page/704">704</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-25709-7" title="Special:BookSources/978-0-471-25709-7"><bdi>978-0-471-25709-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+Introduction+to+Probability+Theory+and+Its+Applications%2C+Volume+II&rft.place=New+York&rft.pages=704&rft.edition=2&rft.pub=John+Wiley+%26+Sons+Inc.&rft.date=1971&rft.isbn=978-0-471-25709-7&rft.aulast=Feller&rft.aufirst=William&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fintroductiontopr00fell%2Fpage%2F704&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/LorentzianFunction.html">"Lorentzian Function"</a>. <i>MathWorld</i>. Wolfram Research<span class="reference-accessdate">. Retrieved <span class="nowrap">27 October</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Lorentzian+Function&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FLorentzianFunction.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-mathmethods-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-mathmethods_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRileyHobsonBence2006" class="citation book cs1">Riley, Ken F.; Hobson, Michael P.; Bence, Stephen J. (2006). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalmeth00rile_192"><i>Mathematical Methods for Physics and Engineering</i></a></span> (3 ed.). Cambridge, UK: Cambridge University Press. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/mathematicalmeth00rile_192/page/n1362">1333</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-511-16842-0" title="Special:BookSources/978-0-511-16842-0"><bdi>978-0-511-16842-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+Methods+for+Physics+and+Engineering&rft.place=Cambridge%2C+UK&rft.pages=1333&rft.edition=3&rft.pub=Cambridge+University+Press&rft.date=2006&rft.isbn=978-0-511-16842-0&rft.aulast=Riley&rft.aufirst=Ken+F.&rft.au=Hobson%2C+Michael+P.&rft.au=Bence%2C+Stephen+J.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fmathematicalmeth00rile_192&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-primer-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-primer_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBalakrishnanNevrozov2003" class="citation book cs1">Balakrishnan, N.; Nevrozov, V. B. (2003). <a rel="nofollow" class="external text" href="https://archive.org/details/primeronstatisti0000bala/page/305"><i>A Primer on Statistical Distributions</i></a> (1 ed.). Hoboken, New Jersey: John Wiley & Sons Inc. pp. <a rel="nofollow" class="external text" href="https://archive.org/details/primeronstatisti0000bala/page/305">305</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-42798-5" title="Special:BookSources/0-471-42798-5"><bdi>0-471-42798-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Primer+on+Statistical+Distributions&rft.place=Hoboken%2C+New+Jersey&rft.pages=305&rft.edition=1&rft.pub=John+Wiley+%26+Sons+Inc.&rft.date=2003&rft.isbn=0-471-42798-5&rft.aulast=Balakrishnan&rft.aufirst=N.&rft.au=Nevrozov%2C+V.+B.&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fprimeronstatisti0000bala%2Fpage%2F305&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLiNadarajah2020" class="citation journal cs1">Li, Rui; Nadarajah, Saralees (2020-03-01). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/s00181-018-1570-0">"A review of Student's t distribution and its generalizations"</a>. <i>Empirical Economics</i>. <b>58</b> (3): 1461–1490. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00181-018-1570-0">10.1007/s00181-018-1570-0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1435-8921">1435-8921</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Empirical+Economics&rft.atitle=A+review+of+Student%E2%80%99s+t+distribution+and+its+generalizations&rft.volume=58&rft.issue=3&rft.pages=1461-1490&rft.date=2020-03-01&rft_id=info%3Adoi%2F10.1007%2Fs00181-018-1570-0&rft.issn=1435-8921&rft.aulast=Li&rft.aufirst=Rui&rft.au=Nadarajah%2C+Saralees&rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs00181-018-1570-0&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-:0-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPillai_N.Meng,_X.L.2016" class="citation journal cs1">Pillai N.; Meng, X.L. (2016). "An unexpected encounter with Cauchy and Lévy". <i><a href="/wiki/The_Annals_of_Statistics" class="mw-redirect" title="The Annals of Statistics">The Annals of Statistics</a></i>. <b>44</b> (5): 2089–2097. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1505.01957">1505.01957</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1214%2F15-AOS1407">10.1214/15-AOS1407</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:31582370">31582370</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Annals+of+Statistics&rft.atitle=An+unexpected+encounter+with+Cauchy+and+L%C3%A9vy&rft.volume=44&rft.issue=5&rft.pages=2089-2097&rft.date=2016&rft_id=info%3Aarxiv%2F1505.01957&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A31582370%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1214%2F15-AOS1407&rft.au=Pillai+N.&rft.au=Meng%2C+X.L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCampbell_B._ReadN._BalakrishnanBrani_VidakovicSamuel_Kotz2006" class="citation book cs1">Campbell B. Read; N. Balakrishnan; Brani Vidakovic; Samuel Kotz (2006). <a href="/wiki/Encyclopedia_of_Statistical_Sciences" title="Encyclopedia of Statistical Sciences"><i>Encyclopedia of Statistical Sciences</i></a> (2nd ed.). <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley & Sons">John Wiley & Sons</a>. p. 778. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-471-15044-2" title="Special:BookSources/978-0-471-15044-2"><bdi>978-0-471-15044-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopedia+of+Statistical+Sciences&rft.pages=778&rft.edition=2nd&rft.pub=John+Wiley+%26+Sons&rft.date=2006&rft.isbn=978-0-471-15044-2&rft.au=Campbell+B.+Read&rft.au=N.+Balakrishnan&rft.au=Brani+Vidakovic&rft.au=Samuel+Kotz&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnight1976" class="citation journal cs1">Knight, Franck B. (1976). <a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2041858">"A characterization of the Cauchy type"</a>. <i><a href="/wiki/Proceedings_of_the_American_Mathematical_Society" title="Proceedings of the American Mathematical Society">Proceedings of the American Mathematical Society</a></i>. <b>55</b> (1): 130–135. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2041858">10.2307/2041858</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2041858">2041858</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+American+Mathematical+Society&rft.atitle=A+characterization+of+the+Cauchy+type&rft.volume=55&rft.issue=1&rft.pages=130-135&rft.date=1976&rft_id=info%3Adoi%2F10.2307%2F2041858&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2041858%23id-name%3DJSTOR&rft.aulast=Knight&rft.aufirst=Franck+B.&rft_id=https%3A%2F%2Fdoi.org%2F10.2307%252F2041858&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.quantumcalculus.org/updates-to-the-cauchy-central-limit/">"Updates to the Cauchy Central Limit"</a>. <i>Quantum Calculus</i>. 13 November 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">21 June</span> 2023</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Quantum+Calculus&rft.atitle=Updates+to+the+Cauchy+Central+Limit&rft.date=2022-11-13&rft_id=https%3A%2F%2Fwww.quantumcalculus.org%2Fupdates-to-the-cauchy-central-limit%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFredericNielsen2019" class="citation arxiv cs1">Frederic, Chyzak; Nielsen, Frank (2019). "A closed-form formula for the Kullback-Leibler divergence between Cauchy distributions". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1905.10965">1905.10965</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.IT">cs.IT</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+closed-form+formula+for+the+Kullback-Leibler+divergence+between+Cauchy+distributions&rft.date=2019&rft_id=info%3Aarxiv%2F1905.10965&rft.aulast=Frederic&rft.aufirst=Chyzak&rft.au=Nielsen%2C+Frank&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsenOkamura2023" class="citation journal cs1">Nielsen, Frank; Okamura, Kazuki (2023). "On f-Divergences Between Cauchy Distributions". <i>IEEE Transactions on Information Theory</i>. <b>69</b> (5): 3150–3171. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2101.12459">2101.12459</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FTIT.2022.3231645">10.1109/TIT.2022.3231645</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231728407">231728407</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=IEEE+Transactions+on+Information+Theory&rft.atitle=On+f-Divergences+Between+Cauchy+Distributions&rft.volume=69&rft.issue=5&rft.pages=3150-3171&rft.date=2023&rft_id=info%3Aarxiv%2F2101.12459&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231728407%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1109%2FTIT.2022.3231645&rft.aulast=Nielsen&rft.aufirst=Frank&rft.au=Okamura%2C+Kazuki&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVasicek1976" class="citation journal cs1">Vasicek, Oldrich (1976). "A Test for Normality Based on Sample Entropy". <i>Journal of the Royal Statistical Society, Series B</i>. <b>38</b> (1): 54–59. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.2517-6161.1976.tb01566.x">10.1111/j.2517-6161.1976.tb01566.x</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+Royal+Statistical+Society%2C+Series+B&rft.atitle=A+Test+for+Normality+Based+on+Sample+Entropy&rft.volume=38&rft.issue=1&rft.pages=54-59&rft.date=1976&rft_id=info%3Adoi%2F10.1111%2Fj.2517-6161.1976.tb01566.x&rft.aulast=Vasicek&rft.aufirst=Oldrich&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkBera2009" class="citation journal cs1">Park, Sung Y.; Bera, Anil K. (2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110930062639/http://www.econ.yorku.ca/cesg/papers/berapark.pdf">"Maximum entropy autoregressive conditional heteroskedasticity model"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Econometrics</i>. <b>150</b> (2). Elsevier: 219–230. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jeconom.2008.12.014">10.1016/j.jeconom.2008.12.014</a>. Archived from <a rel="nofollow" class="external text" href="http://www.econ.yorku.ca/cesg/papers/berapark.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2011-09-30<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-06-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Econometrics&rft.atitle=Maximum+entropy+autoregressive+conditional+heteroskedasticity+model&rft.volume=150&rft.issue=2&rft.pages=219-230&rft.date=2009&rft_id=info%3Adoi%2F10.1016%2Fj.jeconom.2008.12.014&rft.aulast=Park&rft.aufirst=Sung+Y.&rft.au=Bera%2C+Anil+K.&rft_id=http%3A%2F%2Fwww.econ.yorku.ca%2Fcesg%2Fpapers%2Fberapark.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-uah-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-uah_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-uah_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKyle_Siegrist" class="citation web cs1">Kyle Siegrist. <a rel="nofollow" class="external text" href="http://www.randomservices.org/random/special/Cauchy.html">"Cauchy Distribution"</a>. <i>Random</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210709183100/http://www.randomservices.org/random/special/Cauchy.html">Archived</a> from the original on 9 July 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">5 July</span> 2021</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Random&rft.atitle=Cauchy+Distribution&rft.au=Kyle+Siegrist&rft_id=http%3A%2F%2Fwww.randomservices.org%2Frandom%2Fspecial%2FCauchy.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHampel1998" class="citation cs2">Hampel, Frank (1998), <a rel="nofollow" class="external text" href="https://www.research-collection.ethz.ch/bitstream/20.500.11850/145503/1/eth-24416-01.pdf">"Is statistics too difficult?"</a> <span class="cs1-format">(PDF)</span>, <i>Canadian Journal of Statistics</i>, <b>26</b> (3): 497–513, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3315772">10.2307/3315772</a>, <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/20.500.11850%2F145503">20.500.11850/145503</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3315772">3315772</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:53117661">53117661</a>, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125125836/https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/145503/eth-24416-01.pdf;jsessionid=90EA750F49FB4DCEE3C23A4F8B49916B?sequence=1">archived</a> from the original on 2022-01-25<span class="reference-accessdate">, retrieved <span class="nowrap">2019-09-25</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Canadian+Journal+of+Statistics&rft.atitle=Is+statistics+too+difficult%3F&rft.volume=26&rft.issue=3&rft.pages=497-513&rft.date=1998&rft_id=info%3Ahdl%2F20.500.11850%2F145503&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A53117661%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3315772%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3315772&rft.aulast=Hampel&rft.aufirst=Frank&rft_id=https%3A%2F%2Fwww.research-collection.ethz.ch%2Fbitstream%2F20.500.11850%2F145503%2F1%2Feth-24416-01.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span>.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.statistics4u.info/fundstat_eng/ee_distri_cauchy.html">"Illustration of instability of sample means"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170324193842/http://www.statistics4u.info/fundstat_eng/ee_distri_cauchy.html">Archived</a> from the original on 2017-03-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-11-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Illustration+of+instability+of+sample+means&rft_id=http%3A%2F%2Fwww.statistics4u.info%2Ffundstat_eng%2Fee_distri_cauchy.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCane1974" class="citation journal cs1">Cane, Gwenda J. (1974). "Linear Estimation of Parameters of the Cauchy Distribution Based on Sample Quantiles". <i>Journal of the American Statistical Association</i>. <b>69</b> (345): 243–245. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01621459.1974.10480163">10.1080/01621459.1974.10480163</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2285535">2285535</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.atitle=Linear+Estimation+of+Parameters+of+the+Cauchy+Distribution+Based+on+Sample+Quantiles&rft.volume=69&rft.issue=345&rft.pages=243-245&rft.date=1974&rft_id=info%3Adoi%2F10.1080%2F01621459.1974.10480163&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2285535%23id-name%3DJSTOR&rft.aulast=Cane&rft.aufirst=Gwenda+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZhang2010" class="citation journal cs1">Zhang, Jin (2010). "A Highly Efficient L-estimator for the Location Parameter of the Cauchy Distribution". <i>Computational Statistics</i>. <b>25</b> (1): 97–105. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00180-009-0163-y">10.1007/s00180-009-0163-y</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123586208">123586208</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Computational+Statistics&rft.atitle=A+Highly+Efficient+L-estimator+for+the+Location+Parameter+of+the+Cauchy+Distribution&rft.volume=25&rft.issue=1&rft.pages=97-105&rft.date=2010&rft_id=info%3Adoi%2F10.1007%2Fs00180-009-0163-y&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123586208%23id-name%3DS2CID&rft.aulast=Zhang&rft.aufirst=Jin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-rothenberg-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-rothenberg_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-rothenberg_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRothenbergFisherTilanus1964" class="citation journal cs1">Rothenberg, Thomas J.; Fisher, Franklin, M.; Tilanus, C.B. (1964). "A note on estimation from a Cauchy sample". <i>Journal of the American Statistical Association</i>. <b>59</b> (306): 460–463. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01621459.1964.10482170">10.1080/01621459.1964.10482170</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.atitle=A+note+on+estimation+from+a+Cauchy+sample&rft.volume=59&rft.issue=306&rft.pages=460-463&rft.date=1964&rft_id=info%3Adoi%2F10.1080%2F01621459.1964.10482170&rft.aulast=Rothenberg&rft.aufirst=Thomas+J.&rft.au=Fisher%2C+Franklin%2C+M.&rft.au=Tilanus%2C+C.B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-bloch-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-bloch_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bloch_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-bloch_22-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-bloch_22-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBloch1966" class="citation journal cs1">Bloch, Daniel (1966). "A note on the estimation of the location parameters of the Cauchy distribution". <i>Journal of the American Statistical Association</i>. <b>61</b> (316): 852–855. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01621459.1966.10480912">10.1080/01621459.1966.10480912</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2282794">2282794</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.atitle=A+note+on+the+estimation+of+the+location+parameters+of+the+Cauchy+distribution&rft.volume=61&rft.issue=316&rft.pages=852-855&rft.date=1966&rft_id=info%3Adoi%2F10.1080%2F01621459.1966.10480912&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2282794%23id-name%3DJSTOR&rft.aulast=Bloch&rft.aufirst=Daniel&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-ferguson-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-ferguson_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ferguson_23-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerguson1978" class="citation journal cs1"><a href="/wiki/Thomas_S._Ferguson" title="Thomas S. Ferguson">Ferguson, Thomas S.</a> (1978). "Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4". <i>Journal of the American Statistical Association</i>. <b>73</b> (361): 211–213. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01621459.1978.10480031">10.1080/01621459.1978.10480031</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2286549">2286549</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.atitle=Maximum+Likelihood+Estimates+of+the+Parameters+of+the+Cauchy+Distribution+for+Samples+of+Size+3+and+4&rft.volume=73&rft.issue=361&rft.pages=211-213&rft.date=1978&rft_id=info%3Adoi%2F10.1080%2F01621459.1978.10480031&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2286549%23id-name%3DJSTOR&rft.aulast=Ferguson&rft.aufirst=Thomas+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCohen_Freue2007" class="citation journal cs1">Cohen Freue, Gabriella V. (2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110816002255/http://faculty.ksu.edu.sa/69424/USEPAP/Coushy%20dist.pdf">"The Pitman estimator of the Cauchy location parameter"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Statistical Planning and Inference</i>. <b>137</b> (6): 1901. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jspi.2006.05.002">10.1016/j.jspi.2006.05.002</a>. Archived from <a rel="nofollow" class="external text" href="http://faculty.ksu.edu.sa/69424/USEPAP/Coushy%20dist.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2011-08-16.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Statistical+Planning+and+Inference&rft.atitle=The+Pitman+estimator+of+the+Cauchy+location+parameter&rft.volume=137&rft.issue=6&rft.pages=1901&rft.date=2007&rft_id=info%3Adoi%2F10.1016%2Fj.jspi.2006.05.002&rft.aulast=Cohen+Freue&rft.aufirst=Gabriella+V.&rft_id=http%3A%2F%2Ffaculty.ksu.edu.sa%2F69424%2FUSEPAP%2FCoushy%2520dist.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilcox2012" class="citation book cs1">Wilcox, Rand (2012). <i>Introduction to Robust Estimation & Hypothesis Testing</i>. Elsevier.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Robust+Estimation+%26+Hypothesis+Testing&rft.pub=Elsevier&rft.date=2012&rft.aulast=Wilcox&rft.aufirst=Rand&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarnett1966" class="citation journal cs1">Barnett, V. D. (1966). "Order Statistics Estimators of the Location of the Cauchy Distribution". <i>Journal of the American Statistical Association</i>. <b>61</b> (316): 1205–1218. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01621459.1966.10482205">10.1080/01621459.1966.10482205</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2283210">2283210</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.atitle=Order+Statistics+Estimators+of+the+Location+of+the+Cauchy+Distribution&rft.volume=61&rft.issue=316&rft.pages=1205-1218&rft.date=1966&rft_id=info%3Adoi%2F10.1080%2F01621459.1966.10482205&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2283210%23id-name%3DJSTOR&rft.aulast=Barnett&rft.aufirst=V.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-ferg2-27"><span class="mw-cite-backlink">^ <a href="#cite_ref-ferg2_27-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ferg2_27-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-ferg2_27-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFerguson1962" class="citation journal cs1">Ferguson, Thomas S. (1962). <a rel="nofollow" class="external text" href="http://projecteuclid.org/download/pdf_1/euclid.aoms/1177704357">"A Representation of the Symmetric Bivariate Cauchy Distribution"</a>. <i>The Annals of Mathematical Statistics</i>. <b>33</b> (4): 1256–1266. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faoms%2F1177704357">10.1214/aoms/1177704357</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2237984">2237984</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-07</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Annals+of+Mathematical+Statistics&rft.atitle=A+Representation+of+the+Symmetric+Bivariate+Cauchy+Distribution&rft.volume=33&rft.issue=4&rft.pages=1256-1266&rft.date=1962&rft_id=info%3Adoi%2F10.1214%2Faoms%2F1177704357&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2237984%23id-name%3DJSTOR&rft.aulast=Ferguson&rft.aufirst=Thomas+S.&rft_id=http%3A%2F%2Fprojecteuclid.org%2Fdownload%2Fpdf_1%2Feuclid.aoms%2F1177704357&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-bivar-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-bivar_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bivar_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMolenberghsLesaffre1997" class="citation journal cs1">Molenberghs, Geert; Lesaffre, Emmanuel (1997). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090914055538/http://www3.stat.sinica.edu.tw/statistica/oldpdf/A7n310.pdf">"Non-linear Integral Equations to Approximate Bivariate Densities with Given Marginals and Dependence Function"</a> <span class="cs1-format">(PDF)</span>. <i>Statistica Sinica</i>. <b>7</b>: 713–738. Archived from <a rel="nofollow" class="external text" href="http://www3.stat.sinica.edu.tw/statistica/oldpdf/A7n310.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2009-09-14.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Statistica+Sinica&rft.atitle=Non-linear+Integral+Equations+to+Approximate+Bivariate+Densities+with+Given+Marginals+and+Dependence+Function&rft.volume=7&rft.pages=713-738&rft.date=1997&rft.aulast=Molenberghs&rft.aufirst=Geert&rft.au=Lesaffre%2C+Emmanuel&rft_id=http%3A%2F%2Fwww3.stat.sinica.edu.tw%2Fstatistica%2Foldpdf%2FA7n310.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLemons2002" class="citation cs2">Lemons, Don S. (2002), "An Introduction to Stochastic Processes in Physics", <i>American Journal of Physics</i>, <b>71</b> (2), The Johns Hopkins University Press: 35, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003AmJPh..71..191L">2003AmJPh..71..191L</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1119%2F1.1526134">10.1119/1.1526134</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-8018-6866-1" title="Special:BookSources/0-8018-6866-1"><bdi>0-8018-6866-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Journal+of+Physics&rft.atitle=An+Introduction+to+Stochastic+Processes+in+Physics&rft.volume=71&rft.issue=2&rft.pages=35&rft.date=2002&rft_id=info%3Adoi%2F10.1119%2F1.1526134&rft_id=info%3Abibcode%2F2003AmJPh..71..191L&rft.isbn=0-8018-6866-1&rft.aulast=Lemons&rft.aufirst=Don+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-McCullagh1992-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-McCullagh1992_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-McCullagh1992_30-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="/wiki/Peter_McCullagh" title="Peter McCullagh">McCullagh, P.</a>, <a rel="nofollow" class="external text" href="https://archive.today/20120707071014/http://biomet.oxfordjournals.org/cgi/content/abstract/79/2/247">"Conditional inference and Cauchy models"</a>, <i><a href="/wiki/Biometrika" title="Biometrika">Biometrika</a></i>, volume 79 (1992), pages 247–259. <a rel="nofollow" class="external text" href="http://www.stat.uchicago.edu/~pmcc/pubs/paper18.pdf">PDF</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100610000327/http://www.stat.uchicago.edu/~pmcc/pubs/paper18.pdf">Archived</a> 2010-06-10 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> from McCullagh's homepage.</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKyprianou,_Andreas2009" class="citation book cs1">Kyprianou, Andreas (2009). <a rel="nofollow" class="external text" href="http://www.maths.bath.ac.uk/~ak257/LCSB/part1.pdf"><i>Lévy processes and continuous-state branching processes:part I</i></a> <span class="cs1-format">(PDF)</span>. p. 11. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303235654/http://www.maths.bath.ac.uk/~ak257/LCSB/part1.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2016-03-03<span class="reference-accessdate">. Retrieved <span class="nowrap">2016-05-04</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=L%C3%A9vy+processes+and+continuous-state+branching+processes%3Apart+I&rft.pages=11&rft.date=2009&rft.au=Kyprianou%2C+Andreas&rft_id=http%3A%2F%2Fwww.maths.bath.ac.uk%2F~ak257%2FLCSB%2Fpart1.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFE._Hecht1987" class="citation book cs1">E. Hecht (1987). <i>Optics</i> (2nd ed.). <a href="/wiki/Addison-Wesley" title="Addison-Wesley">Addison-Wesley</a>. p. 603.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Optics&rft.pages=603&rft.edition=2nd&rft.pub=Addison-Wesley&rft.date=1987&rft.au=E.+Hecht&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWhite,_J.S.1958" class="citation journal cs1">White, J.S. (December 1958). <a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faoms%2F1177706450">"The Limiting Distribution of the Serial Correlation Coefficient in the Explosive Case"</a>. <i>The Annals of Mathematical Statistics</i>. <b>29</b> (4): 1188–1197. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1214%2Faoms%2F1177706450">10.1214/aoms/1177706450</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Annals+of+Mathematical+Statistics&rft.atitle=The+Limiting+Distribution+of+the+Serial+Correlation+Coefficient+in+the+Explosive+Case&rft.volume=29&rft.issue=4&rft.pages=1188-1197&rft.date=1958-12&rft_id=info%3Adoi%2F10.1214%2Faoms%2F1177706450&rft.au=White%2C+J.S.&rft_id=https%3A%2F%2Fdoi.org%2F10.1214%252Faoms%252F1177706450&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-cumfreq-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-cumfreq_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.waterlog.info/cumfreq.htm">"CumFreq, free software for cumulative frequency analysis and probability distribution fitting"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180221100105/https://www.waterlog.info/cumfreq.htm">Archived</a> from the original on 2018-02-21.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=CumFreq%2C+free+software+for+cumulative+frequency+analysis+and+probability+distribution+fitting&rft_id=https%3A%2F%2Fwww.waterlog.info%2Fcumfreq.htm&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text">Gull, S.F. (1988) Bayesian Inductive Inference and Maximum Entropy. Kluwer Academic Publishers, Berlin. <a rel="nofollow" class="external free" href="https://doi.org/10.1007/978-94-009-3049-0_4">https://doi.org/10.1007/978-94-009-3049-0_4</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220125125834/https://link.springer.com/chapter/10.1007%2F978-94-009-3049-0_4">Archived</a> 2022-01-25 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text">Tong Liu (2012), An intermediate distribution between Gaussian and Cauchy distributions. <a rel="nofollow" class="external free" href="https://arxiv.org/pdf/1208.5109.pdf">https://arxiv.org/pdf/1208.5109.pdf</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200624234315/https://arxiv.org/pdf/1208.5109.pdf">Archived</a> 2020-06-24 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Cauchy_distribution&action=edit&section=29" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Cauchy_distribution">"Cauchy distribution"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Cauchy+distribution&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DCauchy_distribution&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://jeff560.tripod.com/c.html">Earliest Uses: The entry on Cauchy distribution has some historical information.</a></li> <li><span class="citation mathworld" id="Reference-Mathworld-Cauchy_Distribution"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/CauchyDistribution.html">"Cauchy Distribution"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Cauchy+Distribution&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FCauchyDistribution.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ACauchy+distribution" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="https://www.gnu.org/software/gsl/manual/gsl-ref.html#SEC294">GNU Scientific Library – Reference Manual</a></li> <li><a rel="nofollow" class="external text" href="http://www.jstatsoft.org/v16/i04/paper">Ratios of Normal Variables by George Marsaglia</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Probability_distributions_(list)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_distributions" title="Template:Probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_distributions" title="Template talk:Probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_distributions" title="Special:EditPage/Template:Probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Probability_distributions_(list)" style="font-size:114%;margin:0 4em"><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distributions</a> (<a href="/wiki/List_of_probability_distributions" title="List of probability distributions">list</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Discrete <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">with finite <br />support</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benford%27s_law" title="Benford's law">Benford</a></li> <li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial</a></li> <li><a href="/wiki/Categorical_distribution" title="Categorical distribution">Categorical</a></li> <li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">Hypergeometric</a> <ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">Negative</a></li></ul></li> <li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li> <li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li> <li><a href="/wiki/Soliton_distribution" title="Soliton distribution">Soliton</a></li> <li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">Discrete uniform</a></li> <li><a href="/wiki/Zipf%27s_law" title="Zipf's law">Zipf</a></li> <li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">Beta negative binomial</a></li> <li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson</a></li> <li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">Discrete phase-type</a></li> <li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li> <li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">Extended negative binomial</a></li> <li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="Flory–Schulz distribution">Flory–Schulz</a></li> <li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="Gauss–Kuzmin distribution">Gauss–Kuzmin</a></li> <li><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric</a></li> <li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">Logarithmic</a></li> <li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">Mixed Poisson</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial</a></li> <li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li> <li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">Parabolic fractal</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li> <li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="Yule–Simon distribution">Yule–Simon</a></li> <li><a href="/wiki/Zeta_distribution" title="Zeta distribution">Zeta</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">Arcsine</a></li> <li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li> <li><a href="/wiki/Balding%E2%80%93Nichols_model" title="Balding–Nichols model">Balding–Nichols</a></li> <li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li> <li><a href="/wiki/Beta_distribution" title="Beta distribution">Beta</a> <ul><li><a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">Beta rectangular</a></li> <li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">Continuous Bernoulli</a></li> <li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="Irwin–Hall distribution">Irwin–Hall</a></li> <li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li> <li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">Logit-normal</a></li> <li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">Noncentral beta</a></li> <li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li> <li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">Raised cosine</a></li> <li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">Reciprocal</a></li> <li><a href="/wiki/Triangular_distribution" title="Triangular distribution">Triangular</a></li> <li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li> <li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">Uniform</a></li> <li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li> <li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li> <li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li> <li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime</a></li> <li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li> <li><a href="/wiki/Chi_distribution" title="Chi distribution">Chi</a></li> <li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">Chi-squared</a> <ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">Noncentral</a></li> <li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">Inverse</a> <ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">Scaled</a></li></ul></li></ul></li> <li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li> <li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a> <ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">Hyper</a></li></ul></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential</a> <ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">Hyperexponential</a></li> <li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">Hypoexponential</a></li> <li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">Logarithmic</a></li></ul></li> <li><a href="/wiki/F-distribution" title="F-distribution"><i>F</i></a> <ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">Noncentral</a></li></ul></li> <li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">Folded normal</a></li> <li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma</a> <ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">Generalized</a></li> <li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li> <li><a href="/wiki/Gompertz_distribution" title="Gompertz distribution">Gompertz</a> <ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">Shifted</a></li></ul></li> <li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">Half-logistic</a></li> <li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">Half-normal</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling's T-squared distribution">Hotelling's <i>T</i>-squared</a></li> <li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">Inverse Gaussian</a> <ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov</a></li> <li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li> <li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">Log-Cauchy</a></li> <li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">Log-Laplace</a></li> <li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">Log-logistic</a></li> <li><a href="/wiki/Log-normal_distribution" title="Log-normal distribution">Log-normal</a></li> <li><a href="/wiki/Log-t_distribution" title="Log-t distribution">Log-t</a></li> <li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li> <li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">Matrix-exponential</a></li> <li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann</a></li> <li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="Maxwell–Jüttner distribution">Maxwell–Jüttner</a></li> <li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li> <li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li> <li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">Phase-type</a></li> <li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li> <li><a href="/wiki/Rayleigh_distribution" title="Rayleigh distribution">Rayleigh</a></li> <li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li> <li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">Truncated normal</a></li> <li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li> <li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a> <ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">Discrete</a></li></ul></li> <li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks's lambda distribution">Wilks's lambda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Cauchy</a></li> <li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">Exponential power</a></li> <li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher's z-distribution">Fisher's <i>z</i></a></li> <li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li> <li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li> <li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">Generalized normal</a></li> <li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">Generalized hyperbolic</a></li> <li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">Geometric stable</a></li> <li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li> <li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li> <li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">Hyperbolic secant</a></li> <li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson's SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li> <li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a> <ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">Asymmetric</a></li></ul></li> <li><a href="/wiki/Logistic_distribution" title="Logistic distribution">Logistic</a></li> <li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">Noncentral <i>t</i></a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal (Gaussian)</a></li> <li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">Normal-inverse Gaussian</a></li> <li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">Skew normal</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash</a></li> <li><a href="/wiki/Stable_distribution" title="Stable distribution">Stable</a></li> <li><a href="/wiki/Student%27s_t-distribution" title="Student's t-distribution">Student's <i>t</i></a></li> <li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="Tracy–Widom distribution">Tracy–Widom</a></li> <li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">Variance-gamma</a></li> <li><a href="/wiki/Voigt_profile" title="Voigt profile">Voigt</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">Generalized chi-squared</a></li> <li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">Generalized extreme value</a></li> <li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">Generalized Pareto</a></li> <li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="Marchenko–Pastur distribution">Marchenko–Pastur</a></li> <li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li> <li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li> <li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li> <li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li> <li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li> <li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li> <li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li> <li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li> <li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">Shifted log-logistic</a></li> <li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nobold"><i>Discrete: </i></span></li> <li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens's sampling formula">Ewens</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial</a> <ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li> <li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">Negative</a></li></ul></li> <li><span class="nobold"><i>Continuous: </i></span></li> <li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a> <ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">Multivariate Laplace</a></li> <li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Multivariate normal</a></li> <li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">Multivariate stable</a></li> <li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">Multivariate <i>t</i></a></li> <li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">Normal-gamma</a> <ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">Inverse</a></li></ul></li> <li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li> <li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li> <li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">Matrix normal</a></li> <li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">Matrix <i>t</i></a></li> <li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">Matrix gamma</a> <ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a> <ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">Normal</a></li> <li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">Inverse</a></li> <li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">Normal-inverse</a></li> <li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">Complex</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt> <dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd> <dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">Univariate von Mises</a></dd> <dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">Wrapped normal</a></dd> <dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">Wrapped Cauchy</a></dd> <dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">Wrapped exponential</a></dd> <dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">Wrapped asymmetric Laplace</a></dd> <dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">Wrapped Lévy</a></dd> <dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt> <dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd> <dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt> <dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">Bivariate von Mises</a></dd> <dt><span class="nobold"><i>Multivariate</i></span></dt> <dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von Mises–Fisher distribution">von Mises–Fisher</a></dd> <dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Degenerate</i></span></dt> <dd><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></dd> <dt><span class="nobold"><i>Singular</i></span></dt> <dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson</a></li> <li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential</a></li> <li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">Natural exponential</a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale</a></li> <li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">Maximum entropy</a></li> <li><a href="/wiki/Mixture_distribution" title="Mixture distribution">Mixture</a></li> <li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li> <li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">Wrapped</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐b78pt Cached time: 20241122140655 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.885 seconds Real time usage: 1.199 seconds Preprocessor visited node count: 4793/1000000 Post‐expand include size: 150884/2097152 bytes Template argument size: 5016/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 146379/5000000 bytes Lua time usage: 0.417/10.000 seconds Lua memory usage: 7107336/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 729.129 1 -total 41.20% 300.373 1 Template:Reflist 18.51% 134.965 8 Template:Cite_book 14.71% 107.241 1 Template:Short_description 14.46% 105.465 1 Template:ProbDistributions 14.05% 102.424 4 Template:Navbox 10.13% 73.871 16 Template:Cite_journal 8.91% 64.987 2 Template:Pagetype 7.27% 52.976 3 Template:Citation_needed 6.08% 44.350 3 Template:Fix --> <!-- Saved in parser cache with key enwiki:pcache:idhash:7003-0!canonical and timestamp 20241122140655 and revision id 1258378620. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Cauchy_distribution&oldid=1258378620">https://en.wikipedia.org/w/index.php?title=Cauchy_distribution&oldid=1258378620</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Augustin-Louis_Cauchy" title="Category:Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li><li><a href="/wiki/Category:Continuous_distributions" title="Category:Continuous distributions">Continuous distributions</a></li><li><a href="/wiki/Category:Probability_distributions_with_non-finite_variance" title="Category:Probability distributions with non-finite variance">Probability distributions with non-finite variance</a></li><li><a href="/wiki/Category:Power_laws" title="Category:Power laws">Power laws</a></li><li><a href="/wiki/Category:Stable_distributions" title="Category:Stable distributions">Stable distributions</a></li><li><a href="/wiki/Category:Location-scale_family_probability_distributions" title="Category:Location-scale family probability distributions">Location-scale family probability distributions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2011" title="Category:Articles with unsourced statements from March 2011">Articles with unsourced statements from March 2011</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2011" title="Category:Articles with unsourced statements from April 2011">Articles with unsourced statements from April 2011</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 19 November 2024, at 10:58<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Cauchy_distribution&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-n2fsv","wgBackendResponseTime":188,"wgPageParseReport":{"limitreport":{"cputime":"0.885","walltime":"1.199","ppvisitednodes":{"value":4793,"limit":1000000},"postexpandincludesize":{"value":150884,"limit":2097152},"templateargumentsize":{"value":5016,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":146379,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 729.129 1 -total"," 41.20% 300.373 1 Template:Reflist"," 18.51% 134.965 8 Template:Cite_book"," 14.71% 107.241 1 Template:Short_description"," 14.46% 105.465 1 Template:ProbDistributions"," 14.05% 102.424 4 Template:Navbox"," 10.13% 73.871 16 Template:Cite_journal"," 8.91% 64.987 2 Template:Pagetype"," 7.27% 52.976 3 Template:Citation_needed"," 6.08% 44.350 3 Template:Fix"]},"scribunto":{"limitreport-timeusage":{"value":"0.417","limit":"10.000"},"limitreport-memusage":{"value":7107336,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-b78pt","timestamp":"20241122140655","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Cauchy distribution","url":"https:\/\/en.wikipedia.org\/wiki\/Cauchy_distribution","sameAs":"http:\/\/www.wikidata.org\/entity\/Q726441","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q726441","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-11-05T11:24:16Z","dateModified":"2024-11-19T10:58:46Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/8c\/Cauchy_pdf.svg","headline":"probability distribution"}</script> </body> </html>