CINXE.COM
Search results for: statistical quality control
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: statistical quality control</title> <meta name="description" content="Search results for: statistical quality control"> <meta name="keywords" content="statistical quality control"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="statistical quality control" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="statistical quality control"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21787</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: statistical quality control</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21787</span> The Impact of Artificial Intelligence on Qualty Conrol and Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mary%20Moner%20Botros%20Fanawel">Mary Moner Botros Fanawel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20control%20structure" title=" hierarchical control structure"> hierarchical control structure</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20with%20DBPs%20objectives%20proportion" title=" water quality with DBPs objectives proportion"> water quality with DBPs objectives proportion</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20I%20error" title=" type I error"> type I error</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20plan" title=" economic plan"> economic plan</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20function%20bootstrap%20control%20limit" title=" distribution function bootstrap control limit"> distribution function bootstrap control limit</a>, <a href="https://publications.waset.org/abstracts/search?q=p-value%20method" title=" p-value method"> p-value method</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-control%20signals" title=" out-of-control signals"> out-of-control signals</a>, <a href="https://publications.waset.org/abstracts/search?q=p-value" title=" p-value"> p-value</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20characteristics" title=" quality characteristics"> quality characteristics</a> </p> <a href="https://publications.waset.org/abstracts/184564/the-impact-of-artificial-intelligence-on-qualty-conrol-and-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21786</span> Economic Design of a Quality Control Chart for the Proportion of Defective Items</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Encarnaci%C3%B3n%20%C3%81lvarez-Verdejo">Encarnación Álvarez-Verdejo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%BAl%20Amor-Pulido"> Raúl Amor-Pulido</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20J.%20Moya-Fern%C3%A1ndez"> Pablo J. Moya-Fernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20F.%20Mu%C3%B1oz-Rosas"> Juan F. Muñoz-Rosas</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20J.%20Blanco-Encomienda"> Francisco J. Blanco-Encomienda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=proportion" title="proportion">proportion</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20I%20error" title=" type I error"> type I error</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20plan" title=" economic plan"> economic plan</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20function" title=" distribution function"> distribution function</a> </p> <a href="https://publications.waset.org/abstracts/42442/economic-design-of-a-quality-control-chart-for-the-proportion-of-defective-items" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21785</span> Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bangphan">S. Bangphan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bangphan"> P. Bangphan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.Boonkang"> T.Boonkang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20polished%20cylinder" title="rice polished cylinder">rice polished cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20charts" title=" control charts"> control charts</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20capability" title=" process capability"> process capability</a> </p> <a href="https://publications.waset.org/abstracts/14767/process-capability-analysis-by-using-statistical-process-control-of-rice-polished-cylinder-turning-practice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21784</span> Improvement of Water Distillation Plant by Using Statistical Process Control System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasim%20Kriri">Qasim Kriri</a>, <a href="https://publications.waset.org/abstracts/search?q=Harsh%20B.%20Desai"> Harsh B. Desai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acceptable%20quality%20level" title="acceptable quality level">acceptable quality level</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control" title=" statistical quality control"> statistical quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20charts" title=" control charts"> control charts</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20charts" title=" process charts"> process charts</a> </p> <a href="https://publications.waset.org/abstracts/86102/improvement-of-water-distillation-plant-by-using-statistical-process-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21783</span> Introduction of Robust Multivariate Process Capability Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Khalilloo">Behrooz Khalilloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Shahriari"> Hamid Shahriari</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Roghanian"> Emad Roghanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process capability indices (PCIs) are important concepts of statistical quality control and measure the capability of processes and how much processes are meeting certain specifications. An important issue in statistical quality control is parameter estimation. Under the assumption of multivariate normality, the distribution parameters, mean vector and variance-covariance matrix must be estimated, when they are unknown. Classic estimation methods like method of moment estimation (MME) or maximum likelihood estimation (MLE) makes good estimation of the population parameters when data are not contaminated. But when outliers exist in the data, MME and MLE make weak estimators of the population parameters. So we need some estimators which have good estimation in the presence of outliers. In this work robust M-estimators for estimating these parameters are used and based on robust parameter estimators, robust process capability indices are introduced. The performances of these robust estimators in the presence of outliers and their effects on process capability indices are evaluated by real and simulated multivariate data. The results indicate that the proposed robust capability indices perform much better than the existing process capability indices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multivariate%20process%20capability%20indices" title="multivariate process capability indices">multivariate process capability indices</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20M-estimator" title=" robust M-estimator"> robust M-estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=outlier" title=" outlier"> outlier</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20quality%20control" title=" multivariate quality control"> multivariate quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control" title=" statistical quality control"> statistical quality control</a> </p> <a href="https://publications.waset.org/abstracts/81586/introduction-of-robust-multivariate-process-capability-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21782</span> Therapeutic Effect of 12 Weeks of Sensorimotor Exercise on Pain, Functionality and Quality of Life in Non-athlete Women With Patellofemoral Pain Syndrome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kasbparast%20Mehdi">Kasbparast Mehdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassani%20Zainab"> Hassani Zainab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: The purpose of this research was to investigate the effectiveness of therapeutical sensorimotor exercise. The statistical population of women who were diagnosed with patellofemoral pain syndrome by a doctor and were between the ages of 35 and 45 and registered for the first time in a sports club in the 4th district of Tehran, 30 people by random sampling and according to The include and exclude criteria were selected and divided into 2 equal control and experimental and homogeneous groups (in terms of height, weight and BMI).In both control and experimental groups, the pain was measured using a Visual Analog Scale(VAS) functionality was measured using the step-down test and quality of life was measured using a World Health Organization Quality of Life Scale (WHOQOL-BREF) (pre-test). Then, only the experimental group performed sensorimotor exercises for 12 weeks and 3 sessions each week, a total of 24 sessions and each session for 1 hour, and during this period, the control group only continued their daily activities. After the end of the training period, the desired factors were evaluated again (post-test) in the same way as the pre-test was done for them (experimental group and control group), with the same quality. Findings: The statistical results showed that in the experimental group, the amount of pain, function and quality of life had a statistical improvement (P≤0.05). Conclusion: In general conclusion, it can be stated that using sensorimotor exercises not only improved functionality and quality of life but also reduced the amount of pain in people with patellofemoral pain syndrome. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pain" title="pain">pain</a>, <a href="https://publications.waset.org/abstracts/search?q=PFPS" title=" PFPS"> PFPS</a>, <a href="https://publications.waset.org/abstracts/search?q=sensori%20motor%20training" title=" sensori motor training"> sensori motor training</a>, <a href="https://publications.waset.org/abstracts/search?q=functionality" title=" functionality"> functionality</a> </p> <a href="https://publications.waset.org/abstracts/168007/therapeutic-effect-of-12-weeks-of-sensorimotor-exercise-on-pain-functionality-and-quality-of-life-in-non-athlete-women-with-patellofemoral-pain-syndrome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21781</span> Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20H.%20Aitchanov">B. H. Aitchanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20K.%20Aitchanova"> Sh. K. Aitchanova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Baimuratov"> O. A. Baimuratov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20dynamic%20pulse-frequency%20control%20systems" title="digital dynamic pulse-frequency control systems">digital dynamic pulse-frequency control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pulse-frequency%20modulation" title=" dynamic pulse-frequency modulation"> dynamic pulse-frequency modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20object" title=" control object"> control object</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20filter" title=" discrete filter"> discrete filter</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20device" title=" impulse device"> impulse device</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a> </p> <a href="https://publications.waset.org/abstracts/13825/application-of-statistical-linearized-models-for-investigations-of-digital-dynamic-pulse-frequency-control-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21780</span> Statistical Process Control in Manufacturing, a Case Study on an Iranian Automobile Company </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Khiav">M. E. Khiav</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Borah"> D. J. Borah</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20S.%20Santos"> H. T. S. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20T.%20Faria"> V. T. Faria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For automobile companies, it has become very important to ensure sound quality in manufacturing and assembling in order to prevent occurrence of defects and to reduce the amount of parts replacements to be done in the service centers during the warranty period. Statistical Process Control (SPC) is widely used as the tool to analyze the quality of such processes and plays a significant role in the improvement of the processes by identifying the patterns and the location of the defects. In this paper, a case study has been conducted on an Iranian automobile company. This paper performs a quality analysis of a particular component called “Internal Bearing for the Back Wheel” of a particular car model, manufactured by the company, based on the 10 million data received from its service centers located all over the country. By creating control charts including X bar–S charts and EWMA charts, it has been observed after the year 2009, the specific component underwent frequent failures and there has been a sharp dip in the average distance covered by the cars till the specific component requires replacement/maintenance. Correlation analysis was performed to find out the reasons that might have affected the quality of the specific component in all the cars produced by the company after the year 2009. Apart from manufacturing issues, some political and environmental factors have been identified to have a potential impact on the quality of the component. A maiden attempt has been made to analyze the quality issues within an Iranian automobile manufacturer; such issues often get neglected in developing countries. The paper also discusses the possibility of political scenario of Iran and the country’s environmental conditions affecting the quality of the end products, which not only strengthens the extant literature but also provides a new direction for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capability%20analysis" title="capability analysis">capability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=car%20manufacturing" title=" car manufacturing"> car manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20tools" title=" quality tools"> quality tools</a> </p> <a href="https://publications.waset.org/abstracts/27572/statistical-process-control-in-manufacturing-a-case-study-on-an-iranian-automobile-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21779</span> Development of Sleep Quality Index Using Heart Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongjoo%20Kim">Dongjoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sik%20Son"> Chang-Sik Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Seok%20Kang"> Won-Seok Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adequate sleep affects various parts of one’s overall physical and mental life. As one of the methods in determining the appropriate amount of sleep, this research presents a heart rate based sleep quality index. In order to evaluate sleep quality using the heart rate, sleep data from 280 subjects taken over one month are used. Their sleep data are categorized by a three-part heart rate range. After categorizing, some features are extracted, and the statistical significances are verified for these features. The results show that some features of this sleep quality index model have statistical significance. Thus, this heart rate based sleep quality index may be a useful discriminator of sleep. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sleep" title="sleep">sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20quality" title=" sleep quality"> sleep quality</a>, <a href="https://publications.waset.org/abstracts/search?q=heart%20rate" title=" heart rate"> heart rate</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a> </p> <a href="https://publications.waset.org/abstracts/52817/development-of-sleep-quality-index-using-heart-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21778</span> Adaptive Process Monitoring for Time-Varying Situations Using Statistical Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seulki%20Lee">Seulki Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoung%20Bum%20Kim"> Seoung Bum Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statistical process control (SPC) is a practical and effective method for quality control. The most important and widely used technique in SPC is a control chart. The main goal of a control chart is to detect any assignable changes that affect the quality output. Most conventional control charts, such as Hotelling’s T2 charts, are commonly based on the assumption that the quality characteristics follow a multivariate normal distribution. However, in modern complicated manufacturing systems, appropriate control chart techniques that can efficiently handle the nonnormal processes are required. To overcome the shortcomings of conventional control charts for nonnormal processes, several methods have been proposed to combine statistical learning algorithms and multivariate control charts. Statistical learning-based control charts, such as support vector data description (SVDD)-based charts, k-nearest neighbors-based charts, have proven their improved performance in nonnormal situations compared to that of the T2 chart. Beside the nonnormal property, time-varying operations are also quite common in real manufacturing fields because of various factors such as product and set-point changes, seasonal variations, catalyst degradation, and sensor drifting. However, traditional control charts cannot accommodate future condition changes of the process because they are formulated based on the data information recorded in the early stage of the process. In the present paper, we propose a SVDD algorithm-based control chart, which is capable of adaptively monitoring time-varying and nonnormal processes. We reformulated the SVDD algorithm into a time-adaptive SVDD algorithm by adding a weighting factor that reflects time-varying situations. Moreover, we defined the updating region for the efficient model-updating structure of the control chart. The proposed control chart simultaneously allows efficient model updates and timely detection of out-of-control signals. The effectiveness and applicability of the proposed chart were demonstrated through experiments with the simulated data and the real data from the metal frame process in mobile device manufacturing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multivariate%20control%20chart" title="multivariate control chart">multivariate control chart</a>, <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20method" title=" nonparametric method"> nonparametric method</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20data%20description" title=" support vector data description"> support vector data description</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying%20process" title=" time-varying process"> time-varying process</a> </p> <a href="https://publications.waset.org/abstracts/52078/adaptive-process-monitoring-for-time-varying-situations-using-statistical-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21777</span> Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Gholizadeh">Hadi Gholizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Tajdin"> Ali Tajdin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=goal%20programming" title="goal programming">goal programming</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=vague%20environment" title=" vague environment"> vague environment</a>, <a href="https://publications.waset.org/abstracts/search?q=disposable%20glasses%E2%80%99%20optimization" title=" disposable glasses’ optimization"> disposable glasses’ optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression" title=" fuzzy regression"> fuzzy regression</a> </p> <a href="https://publications.waset.org/abstracts/80299/optimizing-and-evaluating-performance-quality-control-of-the-production-process-of-disposable-essentials-using-approach-vague-goal-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21776</span> Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Heydari">Ali Akbar Heydari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20chart" title="control chart">control chart</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chain%20approach" title=" markov chain approach"> markov chain approach</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20design" title=" statistical design"> statistical design</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic" title=" synthetic"> synthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20parameter" title=" variable parameter"> variable parameter</a> </p> <a href="https://publications.waset.org/abstracts/146094/statistical-design-of-synthetic-vp-x-bar-control-chat-using-markov-chain-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21775</span> Jointly Optimal Statistical Process Control and Maintenance Policy for Deteriorating Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucas%20Paganin">Lucas Paganin</a>, <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis"> Viliam Makis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the advent of globalization, the market competition has become a major issue for most companies. One of the main strategies to overcome this situation is the quality improvement of the product at a lower cost to meet customers’ expectations. In order to achieve the desired quality of products, it is important to control the process to meet the specifications, and to implement the optimal maintenance policy for the machines and the production lines. Thus, the overall objective is to reduce process variation and the production and maintenance costs. In this paper, an integrated model involving Statistical Process Control (SPC) and maintenance is developed to achieve this goal. Therefore, the main focus of this paper is to develop the jointly optimal maintenance and statistical process control policy minimizing the total long run expected average cost per unit time. In our model, the production process can go out of control due to either the deterioration of equipment or other assignable causes. The equipment is also subject to failures in any of the operating states due to deterioration and aging. Hence, the process mean is controlled by an Xbar control chart using equidistant sampling epochs. We assume that the machine inspection epochs are the times when the control chart signals an out-of-control condition, considering both true and false alarms. At these times, the production process will be stopped, and an investigation will be conducted not only to determine whether it is a true or false alarm, but also to identify the causes of the true alarm, whether it was caused by the change in the machine setting, by other assignable causes, or by both. If the system is out of control, the proper actions will be taken to bring it back to the in-control state. At these epochs, a maintenance action can be taken, which can be no action, or preventive replacement of the unit. When the equipment is in the failure state, a corrective maintenance action is performed, which can be minimal repair or replacement of the machine and the process is brought to the in-control state. SMDP framework is used to formulate and solve the joint control problem. Numerical example is developed to demonstrate the effectiveness of the control policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maintenance" title="maintenance">maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-Markov%20decision%20process" title=" semi-Markov decision process"> semi-Markov decision process</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=Xbar%20control%20chart" title=" Xbar control chart"> Xbar control chart</a> </p> <a href="https://publications.waset.org/abstracts/122378/jointly-optimal-statistical-process-control-and-maintenance-policy-for-deteriorating-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21774</span> Setting Control Limits For Inaccurate Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ran%20Etgar">Ran Etgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X ̅-chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter (Y ̅) is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title="quality control">quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20control" title=" process control"> process control</a>, <a href="https://publications.waset.org/abstracts/search?q=round-off" title=" round-off"> round-off</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=rounding%20error" title=" rounding error"> rounding error</a> </p> <a href="https://publications.waset.org/abstracts/166517/setting-control-limits-for-inaccurate-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21773</span> Reduction in Hot Metal Silicon through Statistical Analysis at G-Blast Furnace, Tata Steel Jamshedpur </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoumodip%20Roy">Shoumodip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Singhania"> Ankit Singhania</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Mallick"> Santanu Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhiram%20%20Jha"> Abhiram Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20%20Agarwal"> M. K. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Ramna"> R. V. Ramna</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Singh"> Uttam Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of hot metal at any blast furnace is judged by the silicon content in it. Lower hot metal silicon not only enhances process efficiency at steel melting shops but also reduces hot metal costs. The Hot metal produced at G-Blast furnace Tata Steel Jamshedpur has a significantly higher Si content than Benchmark Blast furnaces. The higher content of hot metal Si is mainly due to inferior raw material quality than those used in benchmark blast furnaces. With minimum control over raw material quality, the only option left to control hot metal Si is via optimizing the furnace parameters. Therefore, in order to identify the levers to reduce hot metal Si, Data mining was carried out, and multiple regression models were developed. The statistical analysis revealed that Slag B3{(CaO+MgO)/SiO2}, Slag Alumina and Hot metal temperature are key controllable parameters affecting hot metal silicon. Contour Plots were used to determine the optimum range of levels identified through statistical analysis. A trial plan was formulated to operate relevant parameters, at G blast furnace, in the identified range to reduce hot metal silicon. This paper details out the process followed and subsequent reduction in hot metal silicon by 15% at G blast furnace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title="blast furnace">blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20tools" title=" statistical tools"> statistical tools</a> </p> <a href="https://publications.waset.org/abstracts/74955/reduction-in-hot-metal-silicon-through-statistical-analysis-at-g-blast-furnace-tata-steel-jamshedpur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21772</span> Statistical Quality Control on Assignable Causes of Variation on Cement Production in Ashaka Cement PLC Gombe State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamisu%20Idi">Hamisu Idi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focuses on studying the impact of influencer recommendation in the quality of cement production. Exploratory research was done on monthly basis, where data were obtained from secondary source i.e. the record kept by an automated recompilation machine. The machine keeps all the records of the mills downtime which the process manager checks for validation and refer the fault (if any) to the department responsible for maintenance or measurement taking so as to prevent future occurrence. The findings indicated that the product of the Ashaka Cement Plc. were considered as qualitative, since all the production processes were found to be in control (preset specifications) with the exception of the natural cause of variation which is normal in the production process as it will not affect the outcome of the product. It is reduced to the bearest minimum since it cannot be totally eliminated. It is also hopeful that the findings of this study would be of great assistance to the management of Ashaka cement factory and the process manager in particular at various levels in the monitoring and implementation of statistical process control. This study is therefore of great contribution to the knowledge in this regard and it is hopeful that it would open more research in that direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=variation" title=" variation"> variation</a>, <a href="https://publications.waset.org/abstracts/search?q=assignable%20cause" title=" assignable cause"> assignable cause</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20cause" title=" common cause"> common cause</a> </p> <a href="https://publications.waset.org/abstracts/48594/statistical-quality-control-on-assignable-causes-of-variation-on-cement-production-in-ashaka-cement-plc-gombe-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21771</span> Statistical Model of Water Quality in Estero El Macho, Machala-El Oro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Zhindon%20Almeida">Rafael Zhindon Almeida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20modeling" title="statistical modeling">statistical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20linear%20regression" title=" multiple linear regression"> multiple linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20components" title=" principal components"> principal components</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20models" title=" statistical models"> statistical models</a> </p> <a href="https://publications.waset.org/abstracts/176758/statistical-model-of-water-quality-in-estero-el-macho-machala-el-oro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21770</span> Rounded-off Measurements and Their Implication on Control Charts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ran%20Etgar">Ran Etgar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of rounding off measurements in continuous variables is commonly encountered. Although it usually has minor effects, sometimes it can lead to poor outcomes in statistical process control using X ̅-chart. The traditional control limits can cause incorrect conclusions if applied carelessly. This study looks into the limitations of classical control limits, particularly the impact of asymmetry. An approach to determining the distribution function of the measured parameter (Y ̅) is presented, resulting in a more precise method to establish the upper and lower control limits. The proposed method, while slightly more complex than Shewhart's original idea, is still user-friendly and accurate and only requires the use of two straightforward tables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inaccurate%20measurement" title="inaccurate measurement">inaccurate measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=SPC" title=" SPC"> SPC</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=rounded-off" title=" rounded-off"> rounded-off</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20chart" title=" control chart"> control chart</a> </p> <a href="https://publications.waset.org/abstracts/188545/rounded-off-measurements-and-their-implication-on-control-charts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21769</span> On the Bootstrap P-Value Method in Identifying out of Control Signals in Multivariate Control Chart</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Ikpotokin">O. Ikpotokin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In any production process, every product is aimed to attain a certain standard, but the presence of assignable cause of variability affects our process, thereby leading to low quality of product. The ability to identify and remove this type of variability reduces its overall effect, thereby improving the quality of the product. In case of a univariate control chart signal, it is easy to detect the problem and give a solution since it is related to a single quality characteristic. However, the problems involved in the use of multivariate control chart are the violation of multivariate normal assumption and the difficulty in identifying the quality characteristic(s) that resulted in the out of control signals. The purpose of this paper is to examine the use of non-parametric control chart (the bootstrap approach) for obtaining control limit to overcome the problem of multivariate distributional assumption and the p-value method for detecting out of control signals. Results from a performance study show that the proposed bootstrap method enables the setting of control limit that can enhance the detection of out of control signals when compared, while the p-value method also enhanced in identifying out of control variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bootstrap%20control%20limit" title="bootstrap control limit">bootstrap control limit</a>, <a href="https://publications.waset.org/abstracts/search?q=p-value%20method" title=" p-value method"> p-value method</a>, <a href="https://publications.waset.org/abstracts/search?q=out-of-control%20signals" title=" out-of-control signals"> out-of-control signals</a>, <a href="https://publications.waset.org/abstracts/search?q=p-value" title=" p-value"> p-value</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20characteristics" title=" quality characteristics"> quality characteristics</a> </p> <a href="https://publications.waset.org/abstracts/77853/on-the-bootstrap-p-value-method-in-identifying-out-of-control-signals-in-multivariate-control-chart" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21768</span> Analyzing On-Line Process Data for Industrial Production Quality Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Woo%20Cho">Hyun-Woo Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monitoring of industrial production quality has to be implemented to alarm early warning for unusual operating conditions. Furthermore, identification of their assignable causes is necessary for a quality control purpose. For such tasks many multivariate statistical techniques have been applied and shown to be quite effective tools. This work presents a process data-based monitoring scheme for production processes. For more reliable results some additional steps of noise filtering and preprocessing are considered. It may lead to enhanced performance by eliminating unwanted variation of the data. The performance evaluation is executed using data sets from test processes. The proposed method is shown to provide reliable quality control results, and thus is more effective in quality monitoring in the example. For practical implementation of the method, an on-line data system must be available to gather historical and on-line data. Recently large amounts of data are collected on-line in most processes and implementation of the current scheme is feasible and does not give additional burdens to users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detection" title="detection">detection</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20data" title=" process data"> process data</a> </p> <a href="https://publications.waset.org/abstracts/27819/analyzing-on-line-process-data-for-industrial-production-quality-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">559</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21767</span> Controlling the Process of a Chicken Dressing Plant through Statistical Process Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasper%20Kevin%20C.%20Dionisio">Jasper Kevin C. Dionisio</a>, <a href="https://publications.waset.org/abstracts/search?q=Denise%20Mae%20M.%20Unsay"> Denise Mae M. Unsay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a manufacturing firm, controlling the process ensures that optimum efficiency, productivity, and quality in an organization are achieved. An operation with no standardized procedure yields a poor productivity, inefficiency, and an out of control process. This study focuses on controlling the small intestine processing of a chicken dressing plant through the use of Statistical Process Control (SPC). Since the operation does not employ a standard procedure and does not have an established standard time, the process through the assessment of the observed time of the overall operation of small intestine processing, through the use of X-Bar R Control Chart, is found to be out of control. In the solution of this problem, the researchers conduct a motion and time study aiming to establish a standard procedure for the operation. The normal operator was picked through the use of Westinghouse Rating System. Instead of utilizing the traditional motion and time study, the researchers used the X-Bar R Control Chart in determining the process average of the process that is used for establishing the standard time. The observed time of the normal operator was noted and plotted to the X-Bar R Control Chart. Out of control points that are due to assignable cause were removed and the process average, or the average time the normal operator conducted the process, which was already in control and free form any outliers, was obtained. The process average was then used in determining the standard time of small intestine processing. As a recommendation, the researchers suggest the implementation of the standard time established which is with consonance to the standard procedure which was adopted from the normal operator. With that recommendation, the whole operation will induce a 45.54 % increase in their productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20and%20time%20study" title="motion and time study">motion and time study</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20controlling" title=" process controlling"> process controlling</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Bar%20R%20Control%20chart" title=" X-Bar R Control chart"> X-Bar R Control chart</a> </p> <a href="https://publications.waset.org/abstracts/78980/controlling-the-process-of-a-chicken-dressing-plant-through-statistical-process-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21766</span> Optimizing Performance of Tablet's Direct Compression Process Using Fuzzy Goal Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Al-Refaie">Abbas Al-Refaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at improving the performance of the tableting process using statistical quality control and fuzzy goal programming. The tableting process was studied. Statistical control tools were used to characterize the existing process for three critical responses including the averages of a tablet’s weight, hardness, and thickness. At initial process factor settings, the estimated process capability index values for the tablet’s averages of weight, hardness, and thickness were 0.58, 3.36, and 0.88, respectively. The L<sub>9</sub> array was utilized to provide experimentation design. Fuzzy goal programming was then employed to find the combination of optimal factor settings. Optimization results showed that the process capability index values for a tablet’s averages of weight, hardness, and thickness were improved to 1.03, 4.42, and 1.42, respectively. Such improvements resulted in significant savings in quality and production costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20goal%20programming" title="fuzzy goal programming">fuzzy goal programming</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20charts" title=" control charts"> control charts</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20capability" title=" process capability"> process capability</a>, <a href="https://publications.waset.org/abstracts/search?q=tablet%20optimization" title=" tablet optimization"> tablet optimization</a> </p> <a href="https://publications.waset.org/abstracts/60977/optimizing-performance-of-tablets-direct-compression-process-using-fuzzy-goal-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21765</span> A Statistical Approach to Rationalise the Number of Working Load Test for Quality Control of Pile Installation in Singapore Jurong Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuo%20Xu">Nuo Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kok%20Hun%20Goh"> Kok Hun Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeyatharan%20Kumarasamy"> Jeyatharan Kumarasamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pile load testing is significant during foundation construction due to its traditional role of design validation and routine quality control of the piling works. In order to verify whether piles can take loadings at specified settlements, piles will have to undergo working load test where the test load should normally up to 150% of the working load of a pile. Selection or sampling of piles for the working load test is done subject to the number specified in Singapore National Annex to Eurocode 7 SS EN 1997-1:2010. This paper presents an innovative way to rationalize the number of pile load test by adopting statistical analysis approach and looking at the coefficient of variance of pile elastic modulus using a case study at Singapore Tuas depot. Results are very promising and have shown that it is possible to reduce the number of working load test without influencing the reliability and confidence on the pile quality. Moving forward, it is suggested that more load test data from other geological formations to be examined to compare with the findings from this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus%20of%20pile%20under%20soil%20interaction" title="elastic modulus of pile under soil interaction">elastic modulus of pile under soil interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=jurong%20formation" title=" jurong formation"> jurong formation</a>, <a href="https://publications.waset.org/abstracts/search?q=kentledge%20test" title=" kentledge test"> kentledge test</a>, <a href="https://publications.waset.org/abstracts/search?q=pile%20load%20test" title=" pile load test"> pile load test</a> </p> <a href="https://publications.waset.org/abstracts/82593/a-statistical-approach-to-rationalise-the-number-of-working-load-test-for-quality-control-of-pile-installation-in-singapore-jurong-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21764</span> Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objetives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingyu%20Xie">Mingyu Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mietek%20Brdys"> Mietek Brdys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper develops a non-linear model predictive control (NMPC) of water quality in drinking water distribution systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20control%20structure" title=" hierarchical control structure"> hierarchical control structure</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20with%20DBPs%20objectives" title=" water quality with DBPs objectives"> water quality with DBPs objectives</a> </p> <a href="https://publications.waset.org/abstracts/32624/nonlinear-model-predictive-control-of-water-quality-in-drinking-water-distribution-systems-with-dbps-objetives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21763</span> Application of Hyperbinomial Distribution in Developing a Modified p-Chart</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shourav%20Ahmed">Shourav Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gulam%20Kibria"> M. Gulam Kibria</a>, <a href="https://publications.waset.org/abstracts/search?q=Kais%20Zaman"> Kais Zaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control charts graphically verify variation in quality parameters. Attribute type control charts deal with quality parameters that can only hold two states, e.g., good or bad, yes or no, etc. At present, p-control chart is most commonly used to deal with attribute type data. In construction of p-control chart using binomial distribution, the value of proportion non-conforming must be known or estimated from limited sample information. As the probability distribution of fraction non-conforming (p) is considered in hyperbinomial distribution unlike a constant value in case of binomial distribution, it reduces the risk of false detection. In this study, a statistical control chart is proposed based on hyperbinomial distribution when prior estimate of proportion non-conforming is unavailable and is estimated from limited sample information. We developed the control limits of the proposed modified p-chart using the mean and variance of hyperbinomial distribution. The proposed modified p-chart can also utilize additional sample information when they are available. The study also validates the use of modified p-chart by comparing with the result obtained using cumulative distribution function of hyperbinomial distribution. The study clearly indicates that the use of hyperbinomial distribution in construction of p-control chart yields much accurate estimate of quality parameters than using binomial distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binomial%20distribution" title="binomial distribution">binomial distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20charts" title=" control charts"> control charts</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20distribution%20function" title=" cumulative distribution function"> cumulative distribution function</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper%20binomial%20distribution" title=" hyper binomial distribution"> hyper binomial distribution</a> </p> <a href="https://publications.waset.org/abstracts/90750/application-of-hyperbinomial-distribution-in-developing-a-modified-p-chart" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21762</span> Reduction of Defects Using Seven Quality Control Tools for Productivity Improvement at Automobile Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Sattar%20Jamali">Abdul Sattar Jamali</a>, <a href="https://publications.waset.org/abstracts/search?q=Imdad%20Ali%20Memon"> Imdad Ali Memon</a>, <a href="https://publications.waset.org/abstracts/search?q=Maqsood%20Ahmed%20Memon"> Maqsood Ahmed Memon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quality of production near to zero defects is an objective of every manufacturing and service organization. In order to maintain and improve the quality by reduction in defects, Statistical tools are being used by any organizations. There are many statistical tools are available to assess the quality. Keeping in view the importance of many statistical tools, traditional 7QC tools has been used in any manufacturing and automobile Industry. Therefore, the 7QC tools have been successfully applied at one of the Automobile Company Pakistan. Preliminary survey has been done for the implementation of 7QC tool in the assembly line of Automobile Industry. During preliminary survey two inspection points were decided to collect the data, which are Chassis line and trim line. The data for defects at Chassis line and trim line were collected for reduction in defects which ultimately improve productivity. Every 7QC tools has its benefits observed from the results. The flow charts developed for better understanding about inspection point for data collection. The check sheets developed for helps for defects data collection. Histogram represents the severity level of defects. Pareto charts show the cumulative effect of defects. The Cause and Effect diagrams developed for finding the root causes of each defects. Scatter diagram developed the relation of defects increasing or decreasing. The P-Control charts developed for showing out of control points beyond the limits for corrective actions. The successful implementation of 7QC tools at the inspection points at Automobile Industry concluded that the considerable amount of reduction on defects level, as in Chassis line from 132 defects to 13 defects. The total 90% defects were reduced in Chassis Line. In Trim line defects were reduced from 157 defects to 28 defects. The total 82% defects were reduced in Trim Line. As the Automobile Company exercised only few of the 7 QC tools, not fully getting the fruits by the application of 7 QC tools. Therefore, it is suggested the company may need to manage a mechanism for the application of 7 QC tools at every section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=check%20sheet" title="check sheet">check sheet</a>, <a href="https://publications.waset.org/abstracts/search?q=cause%20and%20effect%20diagram" title=" cause and effect diagram"> cause and effect diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20chart" title=" control chart"> control chart</a>, <a href="https://publications.waset.org/abstracts/search?q=histogram" title=" histogram"> histogram</a> </p> <a href="https://publications.waset.org/abstracts/54358/reduction-of-defects-using-seven-quality-control-tools-for-productivity-improvement-at-automobile-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21761</span> Pattern Identification in Statistical Process Control Using Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pramila%20Devi">M. Pramila Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20N.%20Indra%20Kiran"> N. V. N. Indra Kiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control charts, predominantly in the form of X-bar chart, are important tools in statistical process control (SPC). They are useful in determining whether a process is behaving as intended or there are some unnatural causes of variation. A process is out of control if a point falls outside the control limits or a series of point’s exhibit an unnatural pattern. In this paper, a study is carried out on four training algorithms for CCPs recognition. For those algorithms optimal structure is identified and then they are studied for type I and type II errors for generalization without early stopping and with early stopping and the best one is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20chart%20pattern%20recognition" title="control chart pattern recognition">control chart pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=backpropagation" title=" backpropagation"> backpropagation</a>, <a href="https://publications.waset.org/abstracts/search?q=generalization" title=" generalization"> generalization</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20stopping" title=" early stopping"> early stopping</a> </p> <a href="https://publications.waset.org/abstracts/6307/pattern-identification-in-statistical-process-control-using-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21760</span> Confidence Intervals for Process Capability Indices for Autocorrelated Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jane%20A.%20Luke">Jane A. Luke </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Persistent pressure passed on to manufacturers from escalating consumer expectations and the ever growing global competitiveness have produced a rapidly increasing interest in the development of various manufacturing strategy models. Academic and industrial circles are taking keen interest in the field of manufacturing strategy. Many manufacturing strategies are currently centered on the traditional concepts of focused manufacturing capabilities such as quality, cost, dependability and innovation. Process capability indices was conducted assuming that the process under study is in statistical control and independent observations are generated over time. However, in practice, it is very common to come across processes which, due to their inherent natures, generate autocorrelated observations. The degree of autocorrelation affects the behavior of patterns on control charts. Even, small levels of autocorrelation between successive observations can have considerable effects on the statistical properties of conventional control charts. When observations are autocorrelated the classical control charts exhibit nonrandom patterns and lack of control. Many authors have considered the effect of autocorrelation on the performance of statistical process control charts. In this paper, the effect of autocorrelation on confidence intervals for different PCIs was included. Stationary Gaussian processes is explained. Effect of autocorrelation on PCIs is described in detail. Confidence intervals for Cp and Cpk are constructed for PCIs when data are both independent and autocorrelated. Confidence intervals for Cp and Cpk are computed. Approximate lower confidence limits for various Cpk are computed assuming AR(1) model for the data. Simulation studies and industrial examples are considered to demonstrate the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autocorrelation" title="autocorrelation">autocorrelation</a>, <a href="https://publications.waset.org/abstracts/search?q=AR%281%29%20model" title=" AR(1) model"> AR(1) model</a>, <a href="https://publications.waset.org/abstracts/search?q=Bissell%E2%80%99s%20approximation" title=" Bissell’s approximation"> Bissell’s approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=confidence%20intervals" title=" confidence intervals"> confidence intervals</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=specification%20limits" title=" specification limits"> specification limits</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20Gaussian%20processes" title=" stationary Gaussian processes"> stationary Gaussian processes</a> </p> <a href="https://publications.waset.org/abstracts/15612/confidence-intervals-for-process-capability-indices-for-autocorrelated-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21759</span> The Effect of Benson Relaxation Method on Quality of Life in Hemodialysis Patients in 2012-2013, Kermanshah, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fateme%20Hadadian">Fateme Hadadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Khaledi%20Paveh"> Behnam Khaledi Paveh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Feizi"> Hosein Feizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: High number of patients with end-stage renal disease worldwide, and Iran and the patients required hemodialysis, As well as symptoms and treatment process and its impact on quality of life The researcher had to take a step towards solving these problems. Methods: In randomized clinical trial in 60 hemodialysis patients admitted to hospital hemodialysis Imam Reza (AS) were studied. Using questionnaires dialysis patients' QOL, quality of life was measured in patients and controls were divided randomly into two groups. Benson's relaxation method for the experimental group and two months at home, once per day, respectively and the control group received no special action. Immediately after the end of the period with was used for evaluating the quality of life in both the experimental and control groups were survey and data using independent t-test were used for statistical analysis. Results: The general dimensions of quality of life scores before and after intervention, there was significant difference (P=0/001). But this difference was not significant after QOL (P=0/2). Between QOL scores before and after treatment between the two groups was statistically significant (P=0/02). Conclusion: Benson relaxation has the desired effect on quality of life in hemodialysis patients and can be used as a useful method to enhance the quality of life in hemodialysis patients, implementation and training will be given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hemodialysis" title="hemodialysis">hemodialysis</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=Benson%20muscle%20relaxation" title=" Benson muscle relaxation"> Benson muscle relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/7832/the-effect-of-benson-relaxation-method-on-quality-of-life-in-hemodialysis-patients-in-2012-2013-kermanshah-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21758</span> Distribution-Free Exponentially Weighted Moving Average Control Charts for Monitoring Process Variability </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Fang%20Tsai">Chen-Fang Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shin-Li%20Lu"> Shin-Li Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distribution-free control chart is an oncoming area from the statistical process control charts in recent years. Some researchers have developed various nonparametric control charts and investigated the detection capability of these charts. The major advantage of nonparametric control charts is that the underlying process is not specifically considered the assumption of normality or any parametric distribution. In this paper, two nonparametric exponentially weighted moving average (EWMA) control charts based on nonparametric tests, namely NE-S and NE-M control charts, are proposed for monitoring process variability. Generally, weighted moving average (GWMA) control charts are extended by utilizing design and adjustment parameters for monitoring the changes in the process variability, namely NG-S and NG-M control charts. Statistical performance is also investigated on NG-S and NG-M control charts with run rules. Moreover, sensitivity analysis is performed to show the effects of design parameters under the nonparametric NG-S and NG-M control charts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Distribution-free%20control%20chart" title="Distribution-free control chart">Distribution-free control chart</a>, <a href="https://publications.waset.org/abstracts/search?q=EWMA%20control%20charts" title=" EWMA control charts"> EWMA control charts</a>, <a href="https://publications.waset.org/abstracts/search?q=GWMA%20control%20charts" title=" GWMA control charts"> GWMA control charts</a> </p> <a href="https://publications.waset.org/abstracts/88638/distribution-free-exponentially-weighted-moving-average-control-charts-for-monitoring-process-variability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=726">726</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=727">727</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20quality%20control&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>