CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 177 results for author: <span class="mathjax">Krajnovi膰, D</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Krajnovi膰, D"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Krajnovi%C4%87%2C+D&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Krajnovi膰, D"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15053">arXiv:2502.15053</a> <span> [<a href="https://arxiv.org/pdf/2502.15053">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11207-023-02214-6">10.1007/s11207-023-02214-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bo拧kovi膰's method for determining the axis and rate of solar rotation by observing sunspots in 1777 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Husak%2C+M">Mirko Husak</a>, <a href="/search/astro-ph?searchtype=author&query=Braj%C5%A1a%2C+R">Roman Braj拧a</a>, <a href="/search/astro-ph?searchtype=author&query=%C5%A0poljari%C4%87%2C+D">Dragan 艩poljari膰</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Ru%C5%BEdjak%2C+D">Domagoj Ru啪djak</a>, <a href="/search/astro-ph?searchtype=author&query=Skoki%C4%87%2C+I">Ivica Skoki膰</a>, <a href="/search/astro-ph?searchtype=author&query=Ro%C5%A1a%2C+D">Dragan Ro拧a</a>, <a href="/search/astro-ph?searchtype=author&query=Hr%C5%BEina%2C+D">Damir Hr啪ina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15053v1-abstract-short" style="display: inline;"> In 1777 Ru膽er Bo拧kovi膰 observed sunspots, determined their positions and the solar rotation elements by his own methods briefly described here. We repeat his calculations of the mean solar time, sunspot positions, and solar rotation elements using both the Bo拧kovi膰's original equations and equations adapted for modern computers. We repeat the calculations using two values of the obliquity of the e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15053v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15053v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15053v1-abstract-full" style="display: none;"> In 1777 Ru膽er Bo拧kovi膰 observed sunspots, determined their positions and the solar rotation elements by his own methods briefly described here. We repeat his calculations of the mean solar time, sunspot positions, and solar rotation elements using both the Bo拧kovi膰's original equations and equations adapted for modern computers. We repeat the calculations using two values of the obliquity of the ecliptic, Bo拧kovi膰's, and an interpolated one. Using his 1777 observations, Bo拧kovi膰 obtained the solar equator's inclination, ecliptic longitude of the ascending node, and sidereal and synodic rotation periods. We analyzed and compared these original Bo拧kovi膰 results with our repeated calculations. Our results confirm the validity of Bo拧kovi膰's methods and the precision of his calculations. Additionally, the paper presents the solar differential rotation determination using all 1777 observations by Ru膽er Bo拧kovi膰. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15053v1-abstract-full').style.display = 'none'; document.getElementById('2502.15053v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Research paper in Solar physics journal, 30 pages, 7 figures, and 12 Tables. Generated in Overleaf LaTeX, then converted to PNG, and merged in PDF. There were technical error in TEX file, which I could not resolve</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sol Phys 298, 122 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18182">arXiv:2411.18182</a> <span> [<a href="https://arxiv.org/pdf/2411.18182">pdf</a>, <a href="https://arxiv.org/format/2411.18182">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Rediscovering the Milky Way with orbit superposition approach and APOGEE data III. Panoramic view of the bulge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Khoperskov%2C+S">Sergey Khoperskov</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Matteo%2C+P">Paola Di Matteo</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">Matthias Steinmetz</a>, <a href="/search/astro-ph?searchtype=author&query=Ratcliffe%2C+B">Bridget Ratcliffe</a>, <a href="/search/astro-ph?searchtype=author&query=van+de+Ven%2C+G">Glenn van de Ven</a>, <a href="/search/astro-ph?searchtype=author&query=Boin%2C+T">Tristan Boin</a>, <a href="/search/astro-ph?searchtype=author&query=Haywood%2C+M">Misha Haywood</a>, <a href="/search/astro-ph?searchtype=author&query=Kacharov%2C+N">Nikolay Kacharov</a>, <a href="/search/astro-ph?searchtype=author&query=Minchev%2C+I">Ivan Minchev</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Valentini%2C+M">Marica Valentini</a>, <a href="/search/astro-ph?searchtype=author&query=de+Jong%2C+R+S">Roelof S. de Jong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18182v1-abstract-short" style="display: inline;"> The innermost parts of the Milky Way (MW) are very difficult to observe due to the high extinction along the line of sight, especially close to the disc mid-plane. However, this region contains the most massive complex stellar component of the MW, the bulge, primarily composed of disc stars whose structure is (re-)shaped by the evolution of the bar. In this work, we extend the application of the o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18182v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18182v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18182v1-abstract-full" style="display: none;"> The innermost parts of the Milky Way (MW) are very difficult to observe due to the high extinction along the line of sight, especially close to the disc mid-plane. However, this region contains the most massive complex stellar component of the MW, the bulge, primarily composed of disc stars whose structure is (re-)shaped by the evolution of the bar. In this work, we extend the application of the orbit superposition method to explore the present-day 3D structure, orbital composition, chemical abundance trends and kinematics of the MW bulge. Thanks to our approach, we are able to transfer astrometry from Gaia and stellar parameters from APOGEE DR 17 to map the inner MW without obscuration by the survey footprint and selection function. We demonstrate that the MW bulge is made of two main populations originating from a metal-poor, high-伪 thick disc and a metal-rich, low-伪 thin disc, with a mass ratio of 4:3, seen as two major components in the MDF. Finer MDF structures hint at multiple sub-populations associated with different orbital families of the bulge, which, however, have broad MDFs themselves. Decomposition using 2D GMMs in [Fe/H] -[Mg/Fe] identifies five components including a population with ex-situ origin. Two dominant ones correspond to the thin and thick discs and two in between trace the transition between them. We show that no universal metallicity gradient value can characterise the MW bulge. The radial gradients closely trace the X-shaped bulge density structure, while the vertical gradient variations follow the boxy component. While having, on average, subsolar metallicity, the MW bulge populations are more metal-rich compared to the surrounding disc, in agreement with extragalactic observations and state-of-the-art simulations reinforcing its secular origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18182v1-abstract-full').style.display = 'none'; document.getElementById('2411.18182v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 20 figures; submitted to A&A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16866">arXiv:2411.16866</a> <span> [<a href="https://arxiv.org/pdf/2411.16866">pdf</a>, <a href="https://arxiv.org/format/2411.16866">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Rediscovering the Milky Way with orbit superposition approach and APOGEE data II. Chrono-chemo-kinematics of the disc </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Khoperskov%2C+S">Sergey Khoperskov</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">Matthias Steinmetz</a>, <a href="/search/astro-ph?searchtype=author&query=Haywood%2C+M">Misha Haywood</a>, <a href="/search/astro-ph?searchtype=author&query=van+de+Ven%2C+G">Glenn van de Ven</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Ratcliffe%2C+B">Bridget Ratcliffe</a>, <a href="/search/astro-ph?searchtype=author&query=Minchev%2C+I">Ivan Minchev</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Matteo%2C+P">Paola Di Matteo</a>, <a href="/search/astro-ph?searchtype=author&query=Kacharov%2C+N">Nikolay Kacharov</a>, <a href="/search/astro-ph?searchtype=author&query=Marques%2C+L">L茅a Marques</a>, <a href="/search/astro-ph?searchtype=author&query=Valentini%2C+M">Marica Valentini</a>, <a href="/search/astro-ph?searchtype=author&query=de+Jong%2C+R+S">Roelof S. de Jong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16866v1-abstract-short" style="display: inline;"> The stellar disc is the dominant luminous component of the Milky Way (MW). Although our understanding of its structure is rapidly expanding due to advances in large-scale stellar surveys, our picture of the MW disc remains substantially obscured by selection functions and incomplete spatial coverage of observational data. In this work, we present the comprehensive chrono-chemo-kinematic structure… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16866v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16866v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16866v1-abstract-full" style="display: none;"> The stellar disc is the dominant luminous component of the Milky Way (MW). Although our understanding of its structure is rapidly expanding due to advances in large-scale stellar surveys, our picture of the MW disc remains substantially obscured by selection functions and incomplete spatial coverage of observational data. In this work, we present the comprehensive chrono-chemo-kinematic structure of the MW disc, recovered using a novel orbit superposition approach combined with data from APOGEE DR 17. We detect periodic azimuthal metallicity variations within 6-8 kpc with an amplitude of 0.05-0.1 dex peaking along the bar major axis. The radial metallicity profile of the MW also varies with azimuth, displaying a pattern typical among other disc galaxies: a decline outside the solar radius and an almost flat profile in the inner region, attributed to the presence of old, metal-poor high-伪 populations, which comprise about 40% of the total stellar mass. The geometrically defined thick disc and the high-伪 populations have comparable masses, with differences in their stellar population content, which we quantify using the reconstructed 3D MW structure. The well-known [伪/Fe]-bimodality in the MW disc, once weighted by stellar mass, is less pronounced at a given metallicity for the whole galaxy but distinctly visible in a narrow range of galactic radii (5-9 kpc), explaining its relative lack of prominence in external galaxies and galaxy formation simulations. Analysing a more evident double age-abundance sequence, we construct a scenario for the MW disc formation, advocating for an inner/outer disc dichotomy genetically linked to the MW's evolutionary stages. In this picture, the extended solar vicinity is a transition zone that shares chemical properties of both the inner (old age-metallicity sequence) and outer discs (young age-metallicity sequence). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16866v1-abstract-full').style.display = 'none'; document.getElementById('2411.16866v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 34 figures; submitted to A&A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16372">arXiv:2411.16372</a> <span> [<a href="https://arxiv.org/pdf/2411.16372">pdf</a>, <a href="https://arxiv.org/format/2411.16372">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202452595">10.1051/0004-6361/202452595 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large-Scale Stellar Age-Velocity Spiral Pattern in NGC 4030 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Breda%2C+I">Iris Breda</a>, <a href="/search/astro-ph?searchtype=author&query=van+de+Ven%2C+G">Glenn van de Ven</a>, <a href="/search/astro-ph?searchtype=author&query=Thater%2C+S">Sabine Thater</a>, <a href="/search/astro-ph?searchtype=author&query=Falc%C3%B3n-Barroso%2C+J">J. Falc贸n-Barroso</a>, <a href="/search/astro-ph?searchtype=author&query=Jethwa%2C+P">Prashin Jethwa</a>, <a href="/search/astro-ph?searchtype=author&query=Gadotti%2C+D+A">Dimitri A. Gadotti</a>, <a href="/search/astro-ph?searchtype=author&query=Onodera%2C+M">Masato Onodera</a>, <a href="/search/astro-ph?searchtype=author&query=Pessa%2C+I">Ismael Pessa</a>, <a href="/search/astro-ph?searchtype=author&query=Schaye%2C+J">Joop Schaye</a>, <a href="/search/astro-ph?searchtype=author&query=Hensler%2C+G">Gerhard Hensler</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=-Krause%2C+A+F">Anja F. -Krause</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Ziegler%2C+B">Bodo Ziegler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16372v1-abstract-short" style="display: inline;"> The processes driving the formation and evolution of late-type galaxies (LTGs) continue to be a debated subject in extragalactic astronomy. Investigating stellar kinematics, especially when combined with age estimates, provides crucial insights into the formation and subsequent development of galactic discs. Post-processing of exceptionally high-quality Integral Field Spectroscopy (IFS) data of NG… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16372v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16372v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16372v1-abstract-full" style="display: none;"> The processes driving the formation and evolution of late-type galaxies (LTGs) continue to be a debated subject in extragalactic astronomy. Investigating stellar kinematics, especially when combined with age estimates, provides crucial insights into the formation and subsequent development of galactic discs. Post-processing of exceptionally high-quality Integral Field Spectroscopy (IFS) data of NGC 4030 acquired with the Multi Unit Spectroscopic Explorer (MUSE), clearly reveals a striking grand design spiral pattern in the velocity dispersion map not previously detected in other galaxies. This pattern spatially correlates with HII regions, suggesting that stars currently being born exhibit lower velocity dispersion as compared to surrounding areas where star formation (SF) is less active. We examine the age-velocity relation (AVR) and propose that its configuration might be shaped by a combination of heating mechanisms, seemingly consistent with findings from recent high-resolution cosmological zoom-in simulations. The complex structure of the uncovered AVR of NGC 4030 support the hypothesis that stellar populations initially inherit the velocity dispersion 蟽 of the progenitor cold molecular gas, which depends on formation time and galactocentric distance, subsequently experiencing kinematic heating by cumulative gravitational interactions during their lifetime. While advancing our understanding of the AVR, these findings offer a new framework for investigating disk heating mechanisms, and their role in the evolution of galactic disks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16372v1-abstract-full').style.display = 'none'; document.getElementById('2411.16372v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in A&A letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 692, L10 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15062">arXiv:2411.15062</a> <span> [<a href="https://arxiv.org/pdf/2411.15062">pdf</a>, <a href="https://arxiv.org/format/2411.15062">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Rediscovering the Milky Way with orbit superposition approach and APOGEE data I. Method validation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Khoperskov%2C+S">Sergey Khoperskov</a>, <a href="/search/astro-ph?searchtype=author&query=van+de+Ven%2C+G">Glenn van de Ven</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">Matthias Steinmetz</a>, <a href="/search/astro-ph?searchtype=author&query=Ratcliffe%2C+B">Bridget Ratcliffe</a>, <a href="/search/astro-ph?searchtype=author&query=Minchev%2C+I">Ivan Minchev</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Haywood%2C+M">Misha Haywood</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Matteo%2C+P">Paola Di Matteo</a>, <a href="/search/astro-ph?searchtype=author&query=Kacharov%2C+N">Nikolay Kacharov</a>, <a href="/search/astro-ph?searchtype=author&query=Marques%2C+L">L茅a Marques</a>, <a href="/search/astro-ph?searchtype=author&query=Valentini%2C+M">Marica Valentini</a>, <a href="/search/astro-ph?searchtype=author&query=de+Jong%2C+R+S">Roelof S. de Jong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15062v1-abstract-short" style="display: inline;"> We introduce a novel orbit superposition method designed to reconstruct the stellar density structure, kinematics, and chemical abundance distribution of the entire Milky Way by leveraging 6D phase-space information from its resolved stellar populations, limited by the spatial coverage of APOGEE DR17. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15062v1-abstract-full" style="display: none;"> We introduce a novel orbit superposition method designed to reconstruct the stellar density structure, kinematics, and chemical abundance distribution of the entire Milky Way by leveraging 6D phase-space information from its resolved stellar populations, limited by the spatial coverage of APOGEE DR17. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15062v1-abstract-full').style.display = 'none'; document.getElementById('2411.15062v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 13 figures, submitted to A&A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16067">arXiv:2408.16067</a> <span> [<a href="https://arxiv.org/pdf/2408.16067">pdf</a>, <a href="https://arxiv.org/format/2408.16067">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450547">10.1051/0004-6361/202450547 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A galactic outflow traced by its extended Mg II emission out to a $\sim30$ kpc radius in the Hubble Ultra Deep Field with MUSE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pessa%2C+I">Ismael Pessa</a>, <a href="/search/astro-ph?searchtype=author&query=Wisotzki%2C+L">Lutz Wisotzki</a>, <a href="/search/astro-ph?searchtype=author&query=Urrutia%2C+T">Tanya Urrutia</a>, <a href="/search/astro-ph?searchtype=author&query=Pharo%2C+J">John Pharo</a>, <a href="/search/astro-ph?searchtype=author&query=Augustin%2C+R">Ramona Augustin</a>, <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N+F">Nicolas F. Bouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Feltre%2C+A">Anna Feltre</a>, <a href="/search/astro-ph?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/astro-ph?searchtype=author&query=Kozlova%2C+D">Daria Kozlova</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Kusakabe%2C+H">Haruka Kusakabe</a>, <a href="/search/astro-ph?searchtype=author&query=Leclercq%2C+F">Floriane Leclercq</a>, <a href="/search/astro-ph?searchtype=author&query=Salas%2C+H">H茅ctor Salas</a>, <a href="/search/astro-ph?searchtype=author&query=Schaye%2C+J">Joop Schaye</a>, <a href="/search/astro-ph?searchtype=author&query=Verhamme%2C+A">Anne Verhamme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16067v3-abstract-short" style="display: inline;"> We report the discovery of a rare Mg II $位$$位$ 2796, 2803 doublet emission halo around a star forming galaxy with $\log (M_\star$/M$_\odot) = 10.3 \pm 0.3$ at $z=0.737$ in deep (9.94 h) VLT/MUSE data from the MUSE-HUDF mosaic. While the central region prominently displays an absorption-dominated Mg II doublet, characterized by discernible P-Cyg features, our examination reveals a remarkably extend… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16067v3-abstract-full').style.display = 'inline'; document.getElementById('2408.16067v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16067v3-abstract-full" style="display: none;"> We report the discovery of a rare Mg II $位$$位$ 2796, 2803 doublet emission halo around a star forming galaxy with $\log (M_\star$/M$_\odot) = 10.3 \pm 0.3$ at $z=0.737$ in deep (9.94 h) VLT/MUSE data from the MUSE-HUDF mosaic. While the central region prominently displays an absorption-dominated Mg II doublet, characterized by discernible P-Cyg features, our examination reveals a remarkably extended Mg II emission, spanning approximately $\sim30$ kpc from the central galaxy. We introduce a simple outflow radiative transfer modeling scheme based on the Sobolev approximation, and we employ a Bayesian Monte Carlo Markov Chain (MCMC) fitting to find the best-fitting parameters that match our data. The model reproduces several key features of the observed Mg II halo and allows us to constrain the kinematics and geometry of the outflowing gas. Our data are consistent with a biconical wind whose velocity increases with radius, pointing nearly towards the observer, with an opening angle of $59\pm4^{\circ}$ In general, we find that our outflow model performs better in the inner regions of the galactic wind ($\lesssim 10$ kpc $\approx 6$ half-light radii), reaching a velocity of $\sim120$ km s$^{-1}$ at 10 kpc from the central galaxy. However, discrepancies between the data and the model in the outer regions suggest the possible influence of additional mechanisms, such as inflows, satellite interactions, or turbulence, which might significantly shape the circumgalactic medium (CGM) of galaxies at larger impact parameters. This analysis underscores the complexity of galactic outflows and encourages further exploration of the processes governing the dynamics of galactic winds through spatially resolved studies of the CGM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16067v3-abstract-full').style.display = 'none'; document.getElementById('2408.16067v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages + appendix, 18 figures, accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 691, A5 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.21628">arXiv:2407.21628</a> <span> [<a href="https://arxiv.org/pdf/2407.21628">pdf</a>, <a href="https://arxiv.org/ps/2407.21628">ps</a>, <a href="https://arxiv.org/format/2407.21628">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Ram-pressure stripped radio tails detected in the dynamically active environment of the Shapley Supercluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Merluzzi%2C+P">P. Merluzzi</a>, <a href="/search/astro-ph?searchtype=author&query=Venturi%2C+T">T. Venturi</a>, <a href="/search/astro-ph?searchtype=author&query=Busarello%2C+G">G. Busarello</a>, <a href="/search/astro-ph?searchtype=author&query=Di+Gennaro%2C+G">G. Di Gennaro</a>, <a href="/search/astro-ph?searchtype=author&query=Giacintucci%2C+S">S. Giacintucci</a>, <a href="/search/astro-ph?searchtype=author&query=Casasola%2C+V">V. Casasola</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">D. Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Vernstrom%2C+T">T. Vernstrom</a>, <a href="/search/astro-ph?searchtype=author&query=Carretti%2C+E">E. Carretti</a>, <a href="/search/astro-ph?searchtype=author&query=Smirnov%2C+O">O. Smirnov</a>, <a href="/search/astro-ph?searchtype=author&query=Trehaeven%2C+K">K. Trehaeven</a>, <a href="/search/astro-ph?searchtype=author&query=Anderson%2C+C+S">C. S. Anderson</a>, <a href="/search/astro-ph?searchtype=author&query=Chesters%2C+J">J. Chesters</a>, <a href="/search/astro-ph?searchtype=author&query=Heald%2C+G">G. Heald</a>, <a href="/search/astro-ph?searchtype=author&query=Hopkins%2C+A+M">A. M. Hopkins</a>, <a href="/search/astro-ph?searchtype=author&query=Koribalski%2C+B">B. Koribalski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.21628v1-abstract-short" style="display: inline;"> We study the radio continuum emission of four galaxies experiencing ram-pressure stripping in four clusters of the Shapley supercluster at redshift z~0.05. Multi-band (235-1367 MHz) radio data, complemented by integral-field spectroscopy, allow us to detect and analyse in detail the non-thermal component both in the galaxy discs and the radio continuum tails. Three galaxies present radio continuum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21628v1-abstract-full').style.display = 'inline'; document.getElementById('2407.21628v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.21628v1-abstract-full" style="display: none;"> We study the radio continuum emission of four galaxies experiencing ram-pressure stripping in four clusters of the Shapley supercluster at redshift z~0.05. Multi-band (235-1367 MHz) radio data, complemented by integral-field spectroscopy, allow us to detect and analyse in detail the non-thermal component both in the galaxy discs and the radio continuum tails. Three galaxies present radio continuum tails which are tens of kiloparsecs long. By deriving the radio spectral index in the inner and outer tails and comparing our findings with the distribution of the extraplanar ionised gas and the results of N-body/hydrodynamical simulations, we demonstrate that these tails are caused by the ram pressure which, together with the ionised gas, sweeps the magnetic field from the galaxy discs. We suggest that the radio continuum emission in these tails can be differently powered by (i) in situ star formation; (ii) relativistic electrons stripped from the disc; (iii) shock excitation or a combination of them. All the ram-pressure stripped galaxies are found in environments where cluster-cluster interactions occurred and/or are ongoing thus strongly supporting the thesis that cluster and group collisions and mergers may locally increase the ram pressure and trigger hydrodynamical interactions between the intracluster medium and the interstellar medium of galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.21628v1-abstract-full').style.display = 'none'; document.getElementById('2407.21628v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13915">arXiv:2406.13915</a> <span> [<a href="https://arxiv.org/pdf/2406.13915">pdf</a>, <a href="https://arxiv.org/format/2406.13915">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The Blue Multi Unit Spectroscopic Explorer (BlueMUSE) on the VLT: End-To-End simulator 'BlueSi' </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Wendt%2C+M">Martin Wendt</a>, <a href="/search/astro-ph?searchtype=author&query=Castro%2C+N">Norberto Castro</a>, <a href="/search/astro-ph?searchtype=author&query=Martens%2C+S">Sven Martens</a>, <a href="/search/astro-ph?searchtype=author&query=Pharo%2C+J">John Pharo</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">Johan Richard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13915v1-abstract-short" style="display: inline;"> BlueMUSE is a blue, medium spectral resolution, panoramic integral-field spectrograph under development for the Very Large Telescope (VLT). We demonstrate and discuss an early End-To-End simulation software for final BlueMUSE datacube products. Early access to such simulations is key to a number of aspects already in the development stage of a new major instrument. We outline the software design c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13915v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13915v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13915v1-abstract-full" style="display: none;"> BlueMUSE is a blue, medium spectral resolution, panoramic integral-field spectrograph under development for the Very Large Telescope (VLT). We demonstrate and discuss an early End-To-End simulation software for final BlueMUSE datacube products. Early access to such simulations is key to a number of aspects already in the development stage of a new major instrument. We outline the software design choices, including lessons learned from the MUSE instrument in operation at the VLT since 2014. The current simulation software package is utilized to evaluate some of the technical specifications of BlueMUSE as well as giving assistance in the assessment of certain trade offs regarding instrument capabilities, e.g., spatial and spectral resolution and sampling. By providing simulations of the end-user product including realistic environmental conditions such as sky contamination and seeing, BlueSi can be used to devise and prepare the science of the instrument by individual research teams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13915v1-abstract-full').style.display = 'none'; document.getElementById('2406.13915v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proc. SPIE 13101-78, Software and Cyberinfrastructure for Astronomy VIII, (18 June 2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13914">arXiv:2406.13914</a> <span> [<a href="https://arxiv.org/pdf/2406.13914">pdf</a>, <a href="https://arxiv.org/format/2406.13914">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3019831">10.1117/12.3019831 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Blue Multi Unit Spectroscopic Explorer (BlueMUSE) on the VLT: science drivers and overview of instrument design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">Johan Richard</a>, <a href="/search/astro-ph?searchtype=author&query=Giroud%2C+R">R茅mi Giroud</a>, <a href="/search/astro-ph?searchtype=author&query=Laurent%2C+F">Florence Laurent</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Jeanneau%2C+A">Alexandre Jeanneau</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Abreu%2C+M">Manuel Abreu</a>, <a href="/search/astro-ph?searchtype=author&query=Adamo%2C+A">Angela Adamo</a>, <a href="/search/astro-ph?searchtype=author&query=Araujo%2C+R">Ricardo Araujo</a>, <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N">Nicolas Bouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Cai%2C+Z">Zhemin Cai</a>, <a href="/search/astro-ph?searchtype=author&query=Castro%2C+N">Norberto Castro</a>, <a href="/search/astro-ph?searchtype=author&query=Calcines%2C+A">Ariadna Calcines</a>, <a href="/search/astro-ph?searchtype=author&query=Chapuis%2C+D">Diane Chapuis</a>, <a href="/search/astro-ph?searchtype=author&query=Claeyssens%2C+A">Ad茅la茂de Claeyssens</a>, <a href="/search/astro-ph?searchtype=author&query=Cortese%2C+L">Luca Cortese</a>, <a href="/search/astro-ph?searchtype=author&query=Daddi%2C+E">Emanuele Daddi</a>, <a href="/search/astro-ph?searchtype=author&query=Davison%2C+C">Christopher Davison</a>, <a href="/search/astro-ph?searchtype=author&query=Goodwin%2C+M">Michael Goodwin</a>, <a href="/search/astro-ph?searchtype=author&query=Harris%2C+R">Robert Harris</a>, <a href="/search/astro-ph?searchtype=author&query=Hayes%2C+M">Matthew Hayes</a>, <a href="/search/astro-ph?searchtype=author&query=Jauzac%2C+M">Mathilde Jauzac</a>, <a href="/search/astro-ph?searchtype=author&query=Kelz%2C+A">Andreas Kelz</a>, <a href="/search/astro-ph?searchtype=author&query=Kneib%2C+J">Jean-Paul Kneib</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13914v2-abstract-short" style="display: inline;"> BlueMUSE is a blue-optimised, medium spectral resolution, panoramic integral field spectrograph under development for the Very Large Telescope (VLT). With an optimised transmission down to 350 nm, spectral resolution of R$\sim$3500 on average across the wavelength range, and a large FoV (1 arcmin$^2$), BlueMUSE will open up a new range of galactic and extragalactic science cases facilitated by its… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13914v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13914v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13914v2-abstract-full" style="display: none;"> BlueMUSE is a blue-optimised, medium spectral resolution, panoramic integral field spectrograph under development for the Very Large Telescope (VLT). With an optimised transmission down to 350 nm, spectral resolution of R$\sim$3500 on average across the wavelength range, and a large FoV (1 arcmin$^2$), BlueMUSE will open up a new range of galactic and extragalactic science cases facilitated by its specific capabilities. The BlueMUSE consortium includes 9 institutes located in 7 countries and is led by the Centre de Recherche Astrophysique de Lyon (CRAL). The BlueMUSE project development is currently in Phase A, with an expected first light at the VLT in 2031. We introduce here the Top Level Requirements (TLRs) derived from the main science cases, and then present an overview of the BlueMUSE system and its subsystems fulfilling these TLRs. We specifically emphasize the tradeoffs that are made and the key distinctions compared to the MUSE instrument, upon which the system architecture is built. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13914v2-abstract-full').style.display = 'none'; document.getElementById('2406.13914v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, proceedings of the SPIE astronomical telescopes and instrumentation conference, Yokohama, 16-21 June</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.10533">arXiv:2404.10533</a> <span> [<a href="https://arxiv.org/pdf/2404.10533">pdf</a>, <a href="https://arxiv.org/format/2404.10533">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Stellar angular momentum of intermediate redshift galaxies in MUSE surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=L%C3%B3pez%2C+C+M">Constanza Mu帽oz L贸pez</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Epinat%2C+B">B. Epinat</a>, <a href="/search/astro-ph?searchtype=author&query=Herrero-Alonso%2C+Y">Y. Herrero-Alonso</a>, <a href="/search/astro-ph?searchtype=author&query=Urrutia%2C+T">T. Urrutia</a>, <a href="/search/astro-ph?searchtype=author&query=Mercier%2C+W">W. Mercier</a>, <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N+F">N. F. Bouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L+A">L. A. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Contini%2C+T">T. Contini</a>, <a href="/search/astro-ph?searchtype=author&query=Michel-Dansac%2C+L">L. Michel-Dansac</a>, <a href="/search/astro-ph?searchtype=author&query=Pessa%2C+I">I. Pessa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.10533v1-abstract-short" style="display: inline;"> We quantify the stellar rotation of galaxies by computing the $位_{R}$ parameter, a proxy for the stellar angular momentum in a sample of 106 galaxies with redshift 0.1 $<$ z $<$ 0.8 and stellar masses from $\sim$10$^{7.5}$ to 10$^{11.8}$ M$_{\odot}$. The sample is located in the CANDELS/GOODS-S and COSMOS fields, and it was observed by various MUSE surveys. We create stellar velocity and velocity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10533v1-abstract-full').style.display = 'inline'; document.getElementById('2404.10533v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.10533v1-abstract-full" style="display: none;"> We quantify the stellar rotation of galaxies by computing the $位_{R}$ parameter, a proxy for the stellar angular momentum in a sample of 106 galaxies with redshift 0.1 $<$ z $<$ 0.8 and stellar masses from $\sim$10$^{7.5}$ to 10$^{11.8}$ M$_{\odot}$. The sample is located in the CANDELS/GOODS-S and COSMOS fields, and it was observed by various MUSE surveys. We create stellar velocity and velocity dispersion maps using a full-spectrum fitting technique, covering spatially $\sim$2$R_{e}$ for the galaxies. We study the impact of the atmospheric seeing on the spin parameter and apply corrections when pertinent. Through the analysis of the $位_{R}-蔚$ diagram, we notice that the fraction of round and massive galaxies increases with redshift. We lack galaxies with $位_{R}$ < 0.1 in the sample and we find only one potential, but uncertain, low-mass slow rotator at z $\sim0.3$. Moreover, we do not see an evident evolution or trend in the stellar angular momentum with redshift. We characterize the sample environment using two indicators: a local estimator based on the Voronoi tesselation method, and a global estimator derived by the use of the Friends-of-Friends algorithm. We find no correlation between the environment and $位_{R}$ given that we are not probing dense regions or massive galaxy structures. We also analyze the kinematic maps of the sample finding that about 40$\%$ of galaxies are consistent with being regular rotators, having rotating stellar discs with flat velocity dispersion maps, while $\sim20\%$ of galaxies have complex velocity maps and can be identified as non-regular rotators in spite of their $位_{R}$ values. For the remaining galaxies the classification is uncertain. As we lack galaxies with $位_{R}$< 0.1, we are not able to identify when galaxies become slow rotators within the surveyed environments, area and redshift range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.10533v1-abstract-full').style.display = 'none'; document.getElementById('2404.10533v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 18 figures, full abstract on the paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03939">arXiv:2404.03939</a> <span> [<a href="https://arxiv.org/pdf/2404.03939">pdf</a>, <a href="https://arxiv.org/format/2404.03939">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae912">10.1093/mnras/stae912 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Recovery of the low- and high-mass end slopes of the IMF in massive early-type galaxies using detailed elemental abundances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Emsellem%2C+E">Eric Emsellem</a>, <a href="/search/astro-ph?searchtype=author&query=Mercier%2C+W">Wilfried Mercier</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">Matthias Steinmetz</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03939v1-abstract-short" style="display: inline;"> Star formation in the early Universe has left its imprint on the chemistry of observable stars in galaxies. We derive elemental abundances and the slope of the low-mass end of the initial mass function (IMF) for a sample of 25 very massive galaxies, separated into brightest cluster galaxies (BCGs) and their massive satellites. The elemental abundances of BGCs and their satellites are similar, but… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03939v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03939v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03939v1-abstract-full" style="display: none;"> Star formation in the early Universe has left its imprint on the chemistry of observable stars in galaxies. We derive elemental abundances and the slope of the low-mass end of the initial mass function (IMF) for a sample of 25 very massive galaxies, separated into brightest cluster galaxies (BCGs) and their massive satellites. The elemental abundances of BGCs and their satellites are similar, but for some elements, satellite galaxies show a correlation with the global velocity dispersion. Using a subset of derived elemental abundances, we model the star formation histories of these galaxies with chemical evolution models, and predict the high-mass end slope of the IMF and star formation timescales. The high-mass end IMF slope of the satellite galaxies correlates with the global velocity dispersion. The low- and the high-mass end IMF slopes are weakly correlated in a general sense that top heavy IMFs are paired with bottom heavy IMFs. Our results do not necessarily imply that the IMF was simultaneously bottom and top heavy. Instead, our findings can be considered consistent with a temporal variation in the IMF, where, for massive galaxies, the high-mass end IMF slope is representative of the very early age and the low-mass end slope of the later star formation. The small but noticeable differences between the BCGs and the satellites in terms of their elemental abundances and IMF slopes, together with their stellar kinematical properties, suggest somewhat different formation pathways, where BCGs experience more major, gas-free mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03939v1-abstract-full').style.display = 'none'; document.getElementById('2404.03939v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS, 27 pages, 18 figures, 5 tables (including Appendices and supplementary material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15149">arXiv:2401.15149</a> <span> [<a href="https://arxiv.org/pdf/2401.15149">pdf</a>, <a href="https://arxiv.org/format/2401.15149">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> $蠅$ Centauri: A MUSE discovery of a counter-rotating core </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pechetti%2C+R">Renuka Pechetti</a>, <a href="/search/astro-ph?searchtype=author&query=Kamann%2C+S">Sebastian Kamann</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Seth%2C+A">Anil Seth</a>, <a href="/search/astro-ph?searchtype=author&query=van+de+Ven%2C+G">Glenn van de Ven</a>, <a href="/search/astro-ph?searchtype=author&query=Neumayer%2C+N">Nadine Neumayer</a>, <a href="/search/astro-ph?searchtype=author&query=Dreizler%2C+S">Stefan Dreizler</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a>, <a href="/search/astro-ph?searchtype=author&query=Martens%2C+S">Sven Martens</a>, <a href="/search/astro-ph?searchtype=author&query=Wragg%2C+F">Florence Wragg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15149v1-abstract-short" style="display: inline;"> $蠅… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15149v1-abstract-full').style.display = 'inline'; document.getElementById('2401.15149v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15149v1-abstract-full" style="display: none;"> $蠅$ Centauri is considered the most massive globular cluster of the Milky Way and likely the former nuclear star cluster of a galaxy accreted by the Milky Way. It is speculated to contain an intermediate-mass black hole (IMBH) from several dynamical models. However, uncertainties regarding the location of the cluster center or the retention of stellar remnants limit the robustness of the IMBH detections reported so far. In this paper, we derive and study the stellar kinematics from the highest-resolution spectroscopic data yet, using the Multi Unit Spectroscopic Explorer (MUSE) in the narrow field mode (NFM) and wide field mode (WFM). Our exceptional data near the center reveal for the first time that stars within the inner 20" ($\sim$0.5 pc) counter-rotate relative to the bulk rotation of the cluster. Using this dataset, we measure the rotation and line-of-sight velocity dispersion (LOSVD) profile out to 120$''$ with different centers proposed in the literature. We find that the velocity dispersion profiles using different centers match well with those previously published. Based on the counter--rotation, we determine a kinematic center and look for any signs of an IMBH using the high-velocity stars close to the center. We do not find any significant outliers $>$60 km/s within the central 20$''$, consistent with no IMBH being present at the center of $蠅$ Centauri. A detailed analysis of Jeans' modeling of the putative IMBH will be presented in the next paper of the series. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15149v1-abstract-full').style.display = 'none'; document.getElementById('2401.15149v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS, 16 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00924">arXiv:2312.00924</a> <span> [<a href="https://arxiv.org/pdf/2312.00924">pdf</a>, <a href="https://arxiv.org/format/2312.00924">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348038">10.1051/0004-6361/202348038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MAGIC: Muse gAlaxy Groups In Cosmos -- A survey to probe the impact of environment on galaxy evolution over the last 8 Gyr </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Epinat%2C+B">B. Epinat</a>, <a href="/search/astro-ph?searchtype=author&query=Contini%2C+T">T. Contini</a>, <a href="/search/astro-ph?searchtype=author&query=Mercier%2C+W">W. Mercier</a>, <a href="/search/astro-ph?searchtype=author&query=Ciesla%2C+L">L. Ciesla</a>, <a href="/search/astro-ph?searchtype=author&query=Lemaux%2C+B+C">B. C. Lemaux</a>, <a href="/search/astro-ph?searchtype=author&query=Johnson%2C+S+D">S. D. Johnson</a>, <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">J. Richard</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">J. Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L+A">L. A. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Carton%2C+D">D. Carton</a>, <a href="/search/astro-ph?searchtype=author&query=Michel-Dansac%2C+L">L. Michel-Dansac</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+R">R. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">D. Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Finley%2C+H">H. Finley</a>, <a href="/search/astro-ph?searchtype=author&query=Schroetter%2C+I">I. Schroetter</a>, <a href="/search/astro-ph?searchtype=author&query=Ventou%2C+E">E. Ventou</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Melgarejo%2C+V">V. Abril-Melgarejo</a>, <a href="/search/astro-ph?searchtype=author&query=Boselli%2C+A">A. Boselli</a>, <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N+F">N. F. Bouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Kollatschny%2C+W">W. Kollatschny</a>, <a href="/search/astro-ph?searchtype=author&query=Kovac%2C+K">K. Kovac</a>, <a href="/search/astro-ph?searchtype=author&query=Paalvast%2C+M">M. Paalvast</a>, <a href="/search/astro-ph?searchtype=author&query=Soucail%2C+G">G. Soucail</a>, <a href="/search/astro-ph?searchtype=author&query=Urrutia%2C+T">T. Urrutia</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">P. M. Weilbacher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00924v4-abstract-short" style="display: inline;"> We introduce the MUSE gAlaxy Groups in COSMOS (MAGIC) survey, which was built to study the impact of environment on galaxy evolution over the last 8 Gyr. It consists of 17 MUSE fields targeting 14 massive structures at intermediate redshift ($0.3<z<0.8$) in the COSMOS area. We securely measured the redshifts for 1419 sources and identified 76 galaxy pairs and 67 groups of at least 3 members using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00924v4-abstract-full').style.display = 'inline'; document.getElementById('2312.00924v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00924v4-abstract-full" style="display: none;"> We introduce the MUSE gAlaxy Groups in COSMOS (MAGIC) survey, which was built to study the impact of environment on galaxy evolution over the last 8 Gyr. It consists of 17 MUSE fields targeting 14 massive structures at intermediate redshift ($0.3<z<0.8$) in the COSMOS area. We securely measured the redshifts for 1419 sources and identified 76 galaxy pairs and 67 groups of at least 3 members using a friends-of-friends algorithm. The environment of galaxies is quantified from group properties, as well as from global and local density estimators. The MAGIC survey has increased the number of objects with a secure spectroscopic redshift over its footprint by a factor of about 5. Most of the new redshifts have apparent magnitudes in the $z^{++}$ band $z_{app}^{++}>21.5$. The spectroscopic redshift completeness is high: in the redshift range of [OII] emitters ($0.25 \le z < 1.5$), where most of the groups are found, it globally reaches a maximum of 80% down to $z_{app}^{++}=25.9$, and locally decreases from $\sim 100$% to $\sim50$% in magnitude bins from $z_{app}^{++}=23-24$ to $z_{app}^{++}=25.5$. We find that the fraction of quiescent galaxies increases with local density and with the time spent in groups. A morphological dichotomy is also found between bulge-dominated quiescent and disk-dominated star-forming galaxies. As environment gets denser, the peak of the stellar mass distribution shifts towards $M_*>10^{10}~M_\odot$, and the fraction of galaxies with $M_*<10^9~M_\odot$ decreases significantly, even for star-forming galaxies. We also highlight peculiar features such as close groups, extended nebulae, and a gravitational arc. Our results suggest that galaxies are preprocessed in groups of increasing mass before entering rich groups and clusters. We publicly release two catalogs containing the properties of galaxies and groups, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00924v4-abstract-full').style.display = 'none'; document.getElementById('2312.00924v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 22 figures, accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A, 683, A205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13355">arXiv:2307.13355</a> <span> [<a href="https://arxiv.org/pdf/2307.13355">pdf</a>, <a href="https://arxiv.org/format/2307.13355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346700">10.1051/0004-6361/202346700 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stellar angular momentum of disk galaxies at z = 0.7 in the MAGIC survey I. Impact of the environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Mercier%2C+W">W. Mercier</a>, <a href="/search/astro-ph?searchtype=author&query=Epinat%2C+B">B. Epinat</a>, <a href="/search/astro-ph?searchtype=author&query=Contini%2C+T">T. Contini</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">D. Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Ciesla%2C+L">L. Ciesla</a>, <a href="/search/astro-ph?searchtype=author&query=Lemaux%2C+B+C">B. C. Lemaux</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Melgarejo%2C+V">V. Abril-Melgarejo</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L">L. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Pelliccia%2C+D">D. Pelliccia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13355v1-abstract-short" style="display: inline;"> Aims: At intermediate redshift, galaxy groups/clusters are thought to impact galaxies (e.g. their angular momentum). We investigate whether the environment has an impact on the galaxies' angular momentum and identify underlying driving physical mechanisms. Methods: We derive robust estimates of the stellar angular momentum using Hubble Space Telescope (HST) images combined with spatially resolve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13355v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13355v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13355v1-abstract-full" style="display: none;"> Aims: At intermediate redshift, galaxy groups/clusters are thought to impact galaxies (e.g. their angular momentum). We investigate whether the environment has an impact on the galaxies' angular momentum and identify underlying driving physical mechanisms. Methods: We derive robust estimates of the stellar angular momentum using Hubble Space Telescope (HST) images combined with spatially resolved ionised gas kinematics from the Multi-Unit Spectroscopic Explorer (MUSE) for a sample of ~200 galaxies in groups and in the field at z~0.7 drawn from the MAGIC survey. Using various environmental tracers, we study the position of the galaxies in the the angular momentum-stellar mass (Fall) relation as a function of environment. Results: We measure a 0.12 dex (2sigma significant) depletion of angular momentum for low-mass galaxies (M* < 10^10 Msun) in groups with respect to the field. Massive galaxies located in dense environments have less angular momentum than expected from the low-mass Fall relation but, without a comparable field sample, we cannot infer whether this effect is mass- or environmentally-driven. Furthermore, massive galaxies are found in the centre of the structures and have low systemic velocities. The observed depletion of angular momentum at low mass does not appear linked with the strength of the over-density around the galaxies but it is strongly correlated with the galaxies' systemic velocity normalised by the dispersion of their host group and with their ionised gas velocity dispersion. Conclusions: Group galaxies seem depleted in angular momentum, especially at low mass. Our results suggest that this depletion might be induced by physical mechanisms that scale with the systemic velocity of the galaxies (e.g. stripping or merging) and that such mechanism might be responsible for enhancing the velocity dispersion of the gas as galaxies lose angular momentum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13355v1-abstract-full').style.display = 'none'; document.getElementById('2307.13355v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, including 5 appendices, 14 figures, accepted version before language correction</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 677, A143 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13035">arXiv:2307.13035</a> <span> [<a href="https://arxiv.org/pdf/2307.13035">pdf</a>, <a href="https://arxiv.org/format/2307.13035">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346987">10.1051/0004-6361/202346987 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MUSE-Faint survey. III. Constraining scalar field dark matter with Antlia B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=J%C3%BAlio%2C+M+P">Mariana P. J煤lio</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Zoutendijk%2C+S+L">Sebastiaan L. Zoutendijk</a>, <a href="/search/astro-ph?searchtype=author&query=Read%2C+J+I">Justin I. Read</a>, <a href="/search/astro-ph?searchtype=author&query=Vaz%2C+D">Daniel Vaz</a>, <a href="/search/astro-ph?searchtype=author&query=Kamann%2C+S">Sebastian Kamann</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L+A">Leindert A. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">Matthias Steinmetz</a>, <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N">Nicolas Bouch茅</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13035v2-abstract-short" style="display: inline;"> Aims. We use the stellar line-of-sight velocities of Antlia B (Ant B), a faint dwarf galaxy in the NGC 3109 association, to derive constraints on the fundamental properties of scalar field dark matter (SFDM), which was originally proposed to solve the small-scale problems faced by cold dark matter models. Methods. We used the first spectroscopic observations of Ant B, a distant (d $\sim$ 1.35 Mpc)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13035v2-abstract-full').style.display = 'inline'; document.getElementById('2307.13035v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13035v2-abstract-full" style="display: none;"> Aims. We use the stellar line-of-sight velocities of Antlia B (Ant B), a faint dwarf galaxy in the NGC 3109 association, to derive constraints on the fundamental properties of scalar field dark matter (SFDM), which was originally proposed to solve the small-scale problems faced by cold dark matter models. Methods. We used the first spectroscopic observations of Ant B, a distant (d $\sim$ 1.35 Mpc) faint dwarf ($M_\text{V} = -9.7$, $M_\star \sim 8\times10^5$M$_\odot$), from MUSE-Faint, a survey of ultra-faint dwarfs conducted using the Multi Unit Spectroscopic Explorer. By measuring the line-of-sight velocities of stars in the $1'\times 1'$ field of view, we identified 127 stars as members of Ant B, which enabled us to model its dark matter density profile with the Jeans modelling code GravSphere. We implemented a model for SFDM into GravSphere and used this to place constraints on the self-coupling strength of this model. Results. We find a virial mass of ${M_{200} \approx 1.66^{+2.51}_{-0.92}\times 10^9}$ $M_\odot$ and a concentration parameter of ${c_{200}\approx 17.38^{+6.06}_{-4.20}}$ for Ant B. These results are consistent with the mass-concentration relations in the literature. We constrain the characteristic length scale of the repulsive self-interaction $R_{\text{TF}}$ of the SFDM model to $R_{\text{TF}} \lesssim 180$ pc ($68\%$ confidence level), which translates to a self-coupling strength of $\frac{g}{m^2c^4}\lesssim 5.2 \times 10^{-20}$ eV$^{-1}$cm$^3$. The constraint on the characteristic length scale of the repulsive self-interaction is inconsistent with the value required to match observations of the cores of dwarf galaxies in the Local Group, suggesting that the cored density profiles of those galaxies are not caused by SFDM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13035v2-abstract-full').style.display = 'none'; document.getElementById('2307.13035v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A on 21-07-2023. 17 pages, 22 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 678, A38 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.08675">arXiv:2301.08675</a> <span> [<a href="https://arxiv.org/pdf/2301.08675">pdf</a>, <a href="https://arxiv.org/format/2301.08675">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244787">10.1051/0004-6361/202244787 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinematic differences between multiple populations in Galactic globular clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Martens%2C+S">Sven Martens</a>, <a href="/search/astro-ph?searchtype=author&query=Kamann%2C+S">Sebastian Kamann</a>, <a href="/search/astro-ph?searchtype=author&query=Dreizler%2C+S">Stefan Dreizler</a>, <a href="/search/astro-ph?searchtype=author&query=G%C3%B6ttgens%2C+F">Fabian G枚ttgens</a>, <a href="/search/astro-ph?searchtype=author&query=Husser%2C+T">Tim-Oliver Husser</a>, <a href="/search/astro-ph?searchtype=author&query=Latour%2C+M">Marilyn Latour</a>, <a href="/search/astro-ph?searchtype=author&query=Balakina%2C+E">Elena Balakina</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Pechetti%2C+R">Renuka Pechetti</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.08675v1-abstract-short" style="display: inline;"> The formation process of multiple populations in globular clusters is still up for debate. Kinematic differences between the populations are particularly interesting in this respect, because they allow us to distinguish between single-epoch formation scenarios and multi-epoch formation scenarios. We analyze the kinematics of 25 globular clusters and aim to find kinematic differences between multip… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08675v1-abstract-full').style.display = 'inline'; document.getElementById('2301.08675v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.08675v1-abstract-full" style="display: none;"> The formation process of multiple populations in globular clusters is still up for debate. Kinematic differences between the populations are particularly interesting in this respect, because they allow us to distinguish between single-epoch formation scenarios and multi-epoch formation scenarios. We analyze the kinematics of 25 globular clusters and aim to find kinematic differences between multiple populations to constrain their formation process. We split red-giant branch (RGB) stars in each cluster into three populations (P1, P2, P3) for the type-II clusters and two populations (P1 and P2) otherwise using Hubble photometry. We derive the rotation and dispersion profiles for each cluster and its populations by using all stars with radial velocity measurements obtained from MUSE spectroscopy. Based on these profiles, we calculate the rotation strength in terms of ordered-over-random motion $\left(v/蟽\right)_\mathrm{HL}$ evaluated at the half-light radius of the cluster. We detect rotation in all but four clusters. For NGC~104, NGC~1851, NGC~2808, NGC~5286, NGC~5904, NGC~6093, NGC~6388, NGC~6541, NGC~7078 and NGC~7089 we also detect rotation for P1 and/or P2 stars. For NGC~2808, NGC~6093 and NGC~7078 we find differences in $\left(v/蟽\right)_\mathrm{HL}$ between P1 and P2 that are larger than $1蟽$. Whereas we find that P2 rotates faster than P1 for NGC~6093 and NGC~7078, the opposite is true for NGC~2808. However, even for these three clusters, the differences are still of low significance. We find that the strength of rotation of a cluster generally scales with its median relaxation time. For P1 and P2, the corresponding relation is very weak at best. We observe no correlation between the difference in rotation strength between P1 and P2 and cluster relaxation time. The MUSE stellar radial velocities that this analysis is based on are made publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.08675v1-abstract-full').style.display = 'none'; document.getElementById('2301.08675v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 671, A106 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.08493">arXiv:2211.08493</a> <span> [<a href="https://arxiv.org/pdf/2211.08493">pdf</a>, <a href="https://arxiv.org/format/2211.08493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244187">10.1051/0004-6361/202244187 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MUSE Hubble Ultra Deep Field surveys: Data release II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Conseil%2C+S">Simon Conseil</a>, <a href="/search/astro-ph?searchtype=author&query=Maseda%2C+M">Michael Maseda</a>, <a href="/search/astro-ph?searchtype=author&query=Nanayakkara%2C+T">Themiya Nanayakkara</a>, <a href="/search/astro-ph?searchtype=author&query=Wendt%2C+M">Martin Wendt</a>, <a href="/search/astro-ph?searchtype=author&query=Bacher%2C+R">Raphael Bacher</a>, <a href="/search/astro-ph?searchtype=author&query=Mary%2C+D">David Mary</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L">Leindert Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Bouche%2C+N">Nicolas Bouche</a>, <a href="/search/astro-ph?searchtype=author&query=Contini%2C+T">Thierry Contini</a>, <a href="/search/astro-ph?searchtype=author&query=Epinat%2C+B">Benoit Epinat</a>, <a href="/search/astro-ph?searchtype=author&query=Feltre%2C+A">Anna Feltre</a>, <a href="/search/astro-ph?searchtype=author&query=Guo%2C+Y">Yucheng Guo</a>, <a href="/search/astro-ph?searchtype=author&query=Herenz%2C+C">Christian Herenz</a>, <a href="/search/astro-ph?searchtype=author&query=Kollatschny%2C+W">Wolfram Kollatschny</a>, <a href="/search/astro-ph?searchtype=author&query=Kusakabe%2C+H">Haruka Kusakabe</a>, <a href="/search/astro-ph?searchtype=author&query=Leclercq%2C+F">Floriane Leclercq</a>, <a href="/search/astro-ph?searchtype=author&query=Michel-Dansac%2C+L">Leo Michel-Dansac</a>, <a href="/search/astro-ph?searchtype=author&query=Pello%2C+R">Roser Pello</a>, <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">Johan Richard</a>, <a href="/search/astro-ph?searchtype=author&query=Roth%2C+M">Martin Roth</a>, <a href="/search/astro-ph?searchtype=author&query=Salvignol%2C+G">Gregory Salvignol</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.08493v2-abstract-short" style="display: inline;"> We present the second data release of the MUSE Hubble UDF surveys, which includes the deepest spectroscopic survey ever performed. The MUSE data, with their 3D content, amazing depth, wide spectral range, and excellent spatial and medium spectral resolution, are rich in information. This update of the first release incorporates a new 141-hour adaptive-optics-assisted MXDF field (1' diameter FoV) i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08493v2-abstract-full').style.display = 'inline'; document.getElementById('2211.08493v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.08493v2-abstract-full" style="display: none;"> We present the second data release of the MUSE Hubble UDF surveys, which includes the deepest spectroscopic survey ever performed. The MUSE data, with their 3D content, amazing depth, wide spectral range, and excellent spatial and medium spectral resolution, are rich in information. This update of the first release incorporates a new 141-hour adaptive-optics-assisted MXDF field (1' diameter FoV) in addition to the reprocessed 10-hour mosaic (3'x3') and the single 31-hour deep field (1'x1'). We have securely identified and measured the redshift of 2221 sources, an increase of 41% compared to the first release. With the exception of 8 stars, the collected sample consists of 25 nearby galaxies (z < 0.25), 677 OII emitters (z=0.25-1.5), 201 galaxies in the MUSE redshift desert range (z=1.5-2.8), and 1308 LAEs (z=2.8-6.7). This represents an order of magnitude more redshifts than the collection of all spectroscopic redshifts obtained before MUSE in the Hubble UDF area (2221 vs 292). At z > 3, the difference is even more striking, with a factor of 65 increase (1308 vs 20). We compared the measured redshifts against three published photometric redshift catalogs and find the photo-z accuracy to be lower than the constraints provided by photo-z fitting codes. 80% of the galaxies have an HST counterpart. They are on average faint, with a median magnitude of 25.7 and 28.7 for the OII and Ly-alpha emitters, respectively. SED fits show that these galaxies tend to be low-mass star-forming galaxies, with a median stellar mass of 6.2 10**8 M and a median SFR of 0.4 M/yr. 20% of our catalog, or 424 galaxies, have no HST counterpart. The vast majority of these new sources are high EQW z>2.8 LAEs that are detected by MUSE thanks to their bright and asymmetric broad Ly-alpha line. We release advanced data products, specific software, and a web interface to select and download data sets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.08493v2-abstract-full').style.display = 'none'; document.getElementById('2211.08493v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 48 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 670, A4 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.08724">arXiv:2204.08724</a> <span> [<a href="https://arxiv.org/pdf/2204.08724">pdf</a>, <a href="https://arxiv.org/format/2204.08724">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243110">10.1051/0004-6361/202243110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scaling relations of z~0.25-1.5 galaxies in various environments from the morpho-kinematic analysis of the MAGIC sample </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Mercier%2C+W">W. Mercier</a>, <a href="/search/astro-ph?searchtype=author&query=Epinat%2C+B">B. Epinat</a>, <a href="/search/astro-ph?searchtype=author&query=Contini%2C+T">T. Contini</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Melgarejo%2C+V">V. Abril-Melgarejo</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L">L. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">J. Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Finley%2C+H">H. Finley</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">D. Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Michel-Dansac%2C+L">L. Michel-Dansac</a>, <a href="/search/astro-ph?searchtype=author&query=Ventou%2C+E">E. Ventou</a>, <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N">N. Bouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Dumoulin%2C+J">J. Dumoulin</a>, <a href="/search/astro-ph?searchtype=author&query=Pineda%2C+J+C+B">Juan C. B. Pineda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.08724v2-abstract-short" style="display: inline;"> The evolution of galaxies is influenced by many physical processes which may vary depending on their environment. We combine Hubble Space Telescope (HST) and Multi-Unit Spectroscopic Explorer (MUSE) data of galaxies at 0.25<z<1.5 to probe the impact of environment on the size-mass relation, the Main Sequence (MS) and the Tully-Fisher relation (TFR). We perform a morpho-kinematic modelling of 593… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08724v2-abstract-full').style.display = 'inline'; document.getElementById('2204.08724v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.08724v2-abstract-full" style="display: none;"> The evolution of galaxies is influenced by many physical processes which may vary depending on their environment. We combine Hubble Space Telescope (HST) and Multi-Unit Spectroscopic Explorer (MUSE) data of galaxies at 0.25<z<1.5 to probe the impact of environment on the size-mass relation, the Main Sequence (MS) and the Tully-Fisher relation (TFR). We perform a morpho-kinematic modelling of 593 [Oii] emitters in various environments in the COSMOS area from the MUSE-gAlaxy Groups In Cosmos (MAGIC) survey. The HST F814W images are modelled with a bulge-disk decomposition to estimate their bulge-disk ratio, effective radius and disk inclination. We use the [Oii]位位3727, 3729 doublet to extract the ionised gas kinematic maps from the MUSE cubes, and we model them for a sample of 146 [Oii] emitters, with bulge and disk components constrained from morphology and a dark matter halo. We find an offset of 0.03 dex on the size-mass relation zero point between the field and the large structure subsamples, with a richness threshold of N=10 to separate between small and large structures, and of 0.06 dex with N=20. Similarly, we find a 0.1 dex difference on the MS with N=10 and 0.15 dex with N=20. These results suggest that galaxies in massive structures are smaller by 14% and have star formation rates reduced by a factor of 1.3-1.5 with respect to field galaxies at z=0.7. Finally, we do not find any impact of the environment on the TFR, except when using N=20 with an offset of 0.04 dex. We discard the effect of quenching for the largest structures that would lead to an offset in the opposite direction. We find that, at z=0.7, if quenching impacts the mass budget of galaxies in structures, these galaxies would have been affected quite recently, for roughly 0.7-1.5 Gyr. This result holds when including the gas mass, but vanishes once we include the asymmetric drift correction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.08724v2-abstract-full').style.display = 'none'; document.getElementById('2204.08724v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 29 figures, 5 tables, 7 appendices, language checked and appendix table updated (accepted for publication in A&A)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 665, A54 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02532">arXiv:2203.02532</a> <span> [<a href="https://arxiv.org/pdf/2203.02532">pdf</a>, <a href="https://arxiv.org/format/2203.02532">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac634">10.1093/mnras/stac634 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gas inflows in the polar ring of NGC 4111: the birth of an AGN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Hauschild-Roier%2C+G+R">Gabriel R. Hauschild-Roier</a>, <a href="/search/astro-ph?searchtype=author&query=Storchi-Bergmann%2C+T">Thaisa Storchi-Bergmann</a>, <a href="/search/astro-ph?searchtype=author&query=McDermid%2C+R+M">Richard M. McDermid</a>, <a href="/search/astro-ph?searchtype=author&query=Walsh%2C+J+L">Jonelle L. Walsh</a>, <a href="/search/astro-ph?searchtype=author&query=Tan%2C+J">Joanne Tan</a>, <a href="/search/astro-ph?searchtype=author&query=Cohn%2C+J">Jonathan Cohn</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Greene%2C+J">Jenny Greene</a>, <a href="/search/astro-ph?searchtype=author&query=Valluri%2C+M">Monica Valluri</a>, <a href="/search/astro-ph?searchtype=author&query=G%C3%BCltekin%2C+K">Kayhan G眉ltekin</a>, <a href="/search/astro-ph?searchtype=author&query=Thater%2C+S">Sabine Thater</a>, <a href="/search/astro-ph?searchtype=author&query=van+de+Ven%2C+G">Glenn van de Ven</a>, <a href="/search/astro-ph?searchtype=author&query=Gebhardt%2C+K">Karl Gebhardt</a>, <a href="/search/astro-ph?searchtype=author&query=L%C3%BCtzgendorf%2C+N">Nora L眉tzgendorf</a>, <a href="/search/astro-ph?searchtype=author&query=Boizelle%2C+B+D">Benjamin D. Boizelle</a>, <a href="/search/astro-ph?searchtype=author&query=Ma%2C+C">Chung-Pei Ma</a>, <a href="/search/astro-ph?searchtype=author&query=Barth%2C+A+J">Aaron J. Barth</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02532v2-abstract-short" style="display: inline;"> We have used Hubble Space Telescope (HST) images, SAURON Integral Field Spectroscopy (IFS) and adaptative optics assisted Gemini NIFS near-infrared K-band IFS to map the stellar and gas distribution, excitation and kinematics of the inner few kpc of the nearby edge-on S0 galaxy NGC 4111. The HST images map its $\approx$ 450 pc diameter dusty polar ring, with an estimated gas mass $\ge10^7$ M… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02532v2-abstract-full').style.display = 'inline'; document.getElementById('2203.02532v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02532v2-abstract-full" style="display: none;"> We have used Hubble Space Telescope (HST) images, SAURON Integral Field Spectroscopy (IFS) and adaptative optics assisted Gemini NIFS near-infrared K-band IFS to map the stellar and gas distribution, excitation and kinematics of the inner few kpc of the nearby edge-on S0 galaxy NGC 4111. The HST images map its $\approx$ 450 pc diameter dusty polar ring, with an estimated gas mass $\ge10^7$ M$_\odot$. The NIFS datacube maps the inner 110 pc radius at $\approx$ 7 pc spatial resolution revealing a $\approx$ 220 pc diameter polar ring in hot ($2267\pm166$ K) molecular H$_2$ 1-0 S(1) gas embedded in the polar ring. The stellar velocity field shows disk-dominated kinematics along the galaxy plane both in the SAURON large-scale and in the NIFS nuclear-scale data. The large-scale [O III] $\lambda5007$ 脜velocity field shows a superposition of two disk kinematics: one similar to that of the stars and another along the polar ring, showing non-circular motions that seem to connect with the velocity field of the nuclear H$_2$ ring, whose kinematics indicate accelerated inflow to the nucleus. The estimated mass inflow rate is enough not only to feed an Active Galactic Nucleus (AGN) but also to trigger circumnuclear star formation in the near future. We propose a scenario in which gas from the polar ring, which probably originated from the capture of a dwarf galaxy, is moving inwards and triggering an AGN, as supported by the local X-ray emission, which seems to be the source of the H$_2$ 1-0 S(1) excitation. The fact that we see neither near-UV nor Br$纬$ emission suggests that the nascent AGN is still deeply buried under the optically thick dust of the polar ring. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02532v2-abstract-full').style.display = 'none'; document.getElementById('2203.02532v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 21 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 512, Issue 2, May 2022, Pages 2556-2572 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09374">arXiv:2112.09374</a> <span> [<a href="https://arxiv.org/pdf/2112.09374">pdf</a>, <a href="https://arxiv.org/format/2112.09374">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The MUSE-Faint survey. III. No large dark-matter cores and no significant tidal stripping in ultra-faint dwarf galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zoutendijk%2C+S+L">Sebastiaan L. Zoutendijk</a>, <a href="/search/astro-ph?searchtype=author&query=J%C3%BAlio%2C+M+P">Mariana P. J煤lio</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Read%2C+J+I">Justin I. Read</a>, <a href="/search/astro-ph?searchtype=author&query=Vaz%2C+D">Daniel Vaz</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L+A">Leindert A. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N+F">Nicolas F. Bouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/astro-ph?searchtype=author&query=Schaye%2C+J">Joop Schaye</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">Matthias Steinmetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09374v1-abstract-short" style="display: inline;"> [Abridged] Aims. The lowest-mass galaxies, ultra-faint dwarf galaxies, promise unparalleled constraints on how feedback regulates galaxy formation, and on the small-scale matter power spectrum. Their inner dark-matter densities can also be used to constrain dark-matter models. In this paper, we present 201 new stellar line-of-sight velocities from the MUSE-Faint survey for the (ultra-)faint dwarf… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09374v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09374v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09374v1-abstract-full" style="display: none;"> [Abridged] Aims. The lowest-mass galaxies, ultra-faint dwarf galaxies, promise unparalleled constraints on how feedback regulates galaxy formation, and on the small-scale matter power spectrum. Their inner dark-matter densities can also be used to constrain dark-matter models. In this paper, we present 201 new stellar line-of-sight velocities from the MUSE-Faint survey for the (ultra-)faint dwarf galaxies Antlia B, Leo T, Hydra II, and Grus 1. Combining these with literature data, we obtain the tightest constraints to date on their dark-matter halo masses and inner dark-matter densities. Methods. We use the Jeans equations implemented in CJAM to model the density profiles and constrain the presence of dark-matter cores and solitons (a prediction of fuzzy dark-matter models). Further modelling is done with GravSphere to test the influence of the choice of modelling tool. We calculate masses, concentrations, and circular velocities from the profiles, include results for Eridanus 2 from our previous work, and compare these properties to theoretical scaling relations, deriving constraints on tidal stripping in the process. Results. We find that dark-matter cores as large as those of more massive dwarf galaxies are ruled out for our galaxies (core radius $r_\mathrm{c} < 66$-$95\,\mathrm{pc}$ at the 68% confidence level). We constrain the soliton radii to $r_\mathrm{sol} < 13$-$112\,\mathrm{pc}$ (68% confidence level). We find that the galaxies are consistent with not having been significantly tidally stripped within their half-light radii. The virial masses and concentrations are sensitive to the choice of dynamical modelling tool: GravSphere produces results consistent with $M_{200} \sim 10^9\,M_\odot$, as expected from models in which ultra-faint dwarf galaxies are re-ionization fossils, while CJAM prefers haloes that are less massive. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09374v1-abstract-full').style.display = 'none'; document.getElementById('2112.09374v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 6 figures, 8 tables, excluding appendices. Submitted to A&A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01620">arXiv:2111.01620</a> <span> [<a href="https://arxiv.org/pdf/2111.01620">pdf</a>, <a href="https://arxiv.org/format/2111.01620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3210">10.1093/mnras/stab3210 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-checking SMBH mass estimates in NGC 6958 -- I: Stellar dynamics from adaptive optics-assisted MUSE observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Thater%2C+S">Sabine Thater</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a>, <a href="/search/astro-ph?searchtype=author&query=Nguyen%2C+D+D">Dieu D. Nguyen</a>, <a href="/search/astro-ph?searchtype=author&query=Bureau%2C+M">Martin Bureau</a>, <a href="/search/astro-ph?searchtype=author&query=Cappellari%2C+M">Michele Cappellari</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+T+A">Timothy A. Davis</a>, <a href="/search/astro-ph?searchtype=author&query=Iguchi%2C+S">Satoru Iguchi</a>, <a href="/search/astro-ph?searchtype=author&query=McDermid%2C+R">Richard McDermid</a>, <a href="/search/astro-ph?searchtype=author&query=Onishi%2C+K">Kyoko Onishi</a>, <a href="/search/astro-ph?searchtype=author&query=Sarzi%2C+M">Marc Sarzi</a>, <a href="/search/astro-ph?searchtype=author&query=van+de+Ven%2C+G">Glenn van de Ven</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01620v1-abstract-short" style="display: inline;"> Supermassive black hole masses (MBH) can dynamically be estimated with various methods and using different kinematic tracers. Different methods have only been cross-checked for a small number of galaxies and often show discrepancies. To understand these discrepancies, detailed cross-comparisons of additional galaxies are needed. We present the first part of our cross-comparison between stellar- an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01620v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01620v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01620v1-abstract-full" style="display: none;"> Supermassive black hole masses (MBH) can dynamically be estimated with various methods and using different kinematic tracers. Different methods have only been cross-checked for a small number of galaxies and often show discrepancies. To understand these discrepancies, detailed cross-comparisons of additional galaxies are needed. We present the first part of our cross-comparison between stellar- and gas-based MBH estimates in the nearby fast-rotating early-type galaxy NGC 6958. The measurements presented here are based on ground-layer adaptive optics-assisted Multi-Unit Spectroscopic Explorer (MUSE) science verification data at around 0.6 arcsec spatial resolution. The spatial resolution is a key ingredient for the measurement and we provide a Gaussian parametrisation of the adaptive optics-assisted point spread function (PSF) for various wavelengths. From the MUSE data, we extracted the stellar kinematics and constructed dynamical models. Using an axisymmetric Schwarzschild technique, we measured an MBH of (3.6+2.7-2.4)\times 10^8 Msun at 3蟽significance taking kinematical and dynamical systematics (e.g.,radially-varying mass-to-light ratio) into account. We also added a dark halo, but our data does not allow to constrain the dark matter fraction. Adding dark matter with an abundance matching prior results in a 25 per cent more massive black hole. Jeans anisotropic models return MBH of (4.6+2.5-2.7) \times 10^8 Msun and (8.6+0.8-0.8) \times 10^8 Msun at 3蟽confidence for spherical and cylindrical alignment of the velocity ellipsoid, respectively. In a follow-up study, we will compare the stellar-based MBH with those from cold and warm gas tracers, which will provide additional constraints for the MBH for NGC 6958, and insights into assumptions that lead to potential systematic uncertainty. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01620v1-abstract-full').style.display = 'none'; document.getElementById('2111.01620v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS, 21 pages, 18 Figures (Including Appendix). Supplementary information is added at the end of the file (3 pages)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.14640">arXiv:2109.14640</a> <span> [<a href="https://arxiv.org/pdf/2109.14640">pdf</a>, <a href="https://arxiv.org/format/2109.14640">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2852">10.1093/mnras/stab2852 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical modelling of the twisted galaxy PGC 046832 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Emsellem%2C+E">Eric Emsellem</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Maseda%2C+M">Michael Maseda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.14640v1-abstract-short" style="display: inline;"> We analyse VLT/MUSE observations of PGC 046832, the brightest cluster galaxy of Abell 3556. The velocity structure of this galaxy is startling and shows two reversals in sign along the minor axis, and one along the major axis. We use triaxial Schwarzschild models to infer the intrinsic shape, central black hole mass and orbit distribution of this galaxy. The shape determination suggests that the g… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14640v1-abstract-full').style.display = 'inline'; document.getElementById('2109.14640v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.14640v1-abstract-full" style="display: none;"> We analyse VLT/MUSE observations of PGC 046832, the brightest cluster galaxy of Abell 3556. The velocity structure of this galaxy is startling and shows two reversals in sign along the minor axis, and one along the major axis. We use triaxial Schwarzschild models to infer the intrinsic shape, central black hole mass and orbit distribution of this galaxy. The shape determination suggests that the galaxy is highly triaxial in the centre (almost prolate) but has a low triaxiality (almost oblate) in the outer parts. The orbit distribution of the best-fit Schwarzschild model shows that the kinematic reversal along the projected minor axis is driven by a slight asymmetry in the distribution and amount of long axis tubes in the inner parts. The kinematic reversals along the projected major axis are driven by a high fraction of counter-rotating orbits at intermediate radii in the galaxy. Using chemical tagging of orbits in the Schwarzschild model, we do not find evidence for any association of these orbits with specific stellar population parameters. Although the inner part of the galaxy almost certainty formed through one or more dry mergers producing the prolate shape, the outer parts are consistent with both accretion and in situ formation. While axisymmetric models suggests the presence of a supermassive black hole with mass $\sim 6 \times 10^9$M$_{\odot}$ and $\sim 10^{10}$M$_{\odot}$ (with Schwarzschild and Jeans modelling, resp), triaxial Schwarzschild models provide only an upper limit of $\sim 2 \times 10^9$M$_{\odot}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14640v1-abstract-full').style.display = 'none'; document.getElementById('2109.14640v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by MNRAS. 23 pages, 28 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.07545">arXiv:2109.07545</a> <span> [<a href="https://arxiv.org/pdf/2109.07545">pdf</a>, <a href="https://arxiv.org/format/2109.07545">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141762">10.1051/0004-6361/202141762 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MUSE Extremely Deep Field: Evidence for SFR-induced cores in dark-matter dominated galaxies at z=1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N+F">Nicolas F. Bouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Bera%2C+S">Samuel Bera</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Emsellem%2C+E">Eric Emsellem</a>, <a href="/search/astro-ph?searchtype=author&query=Mercier%2C+W">Wilfried Mercier</a>, <a href="/search/astro-ph?searchtype=author&query=Schaye%2C+J">Joop Schaye</a>, <a href="/search/astro-ph?searchtype=author&query=%C3%89pinat%2C+B">Beno卯t 脡pinat</a>, <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">Johan Richard</a>, <a href="/search/astro-ph?searchtype=author&query=Zoutendijk%2C+S+L">Sebastiaan L. Zoutendijk</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Melgarejo%2C+V">Valentina Abril-Melgarejo</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Contini%2C+T">Thierry Contini</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L">Leindert Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Wisotzki%2C+L">Lutz Wisotzki</a>, <a href="/search/astro-ph?searchtype=author&query=Maseda%2C+M">Michael Maseda</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">Matthias Steinmetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.07545v2-abstract-short" style="display: inline;"> Disc-halo decomposition on rotationally supported star-forming galaxies (SFGs) at $z>1$ are often limited to massive galaxies ($M_\star>10^{10}~M_\odot$) and rely on either deep Integral Field Spectroscopy data or stacking analyses. We present a study of the dark matter (DM) content of nine $z\approx1$ SFGs selected Using the brightest [OII] emitters in the deepest Multi-Unit Spectrograph Explorer… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07545v2-abstract-full').style.display = 'inline'; document.getElementById('2109.07545v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.07545v2-abstract-full" style="display: none;"> Disc-halo decomposition on rotationally supported star-forming galaxies (SFGs) at $z>1$ are often limited to massive galaxies ($M_\star>10^{10}~M_\odot$) and rely on either deep Integral Field Spectroscopy data or stacking analyses. We present a study of the dark matter (DM) content of nine $z\approx1$ SFGs selected Using the brightest [OII] emitters in the deepest Multi-Unit Spectrograph Explorer (MUSE) field to date, namely the 140hr MUSE Extremely Deep Field, we perform disk-halo decompositions on 9 low-mass SFGs (with $10^{8.5}<M_\star<10^{10.5}~M_\odot$) using a novel 3D modeling approach, which together with the exquisite S/N allows us to measure individual rotation curves to $3\times R_e$. The disk-halo decomposition includes a stellar, DM, gas, and occasionally a bulge component. The DM component primarily uses the generalized $伪,尾,纬$ profile or a Navarro-Frenk-White (NFW) profile. The disk stellar masses $M_\star$ obtained from the [OII] disk-halo decomposition agree with the values inferred from the spectral energy distributions. While the rotation curves show diverse shapes, ranging from rising to declining at large radii, the DM fractions within the half-light radius $f_{\rm DM}(<R_e)$ are found to be 60\% to 95\%, extending to lower masses (densities) recent results on massive SFGs with $M_\star>10^{10}~M_\odot$. The DM halos show constant surface densities of $\sim100~M_\odot$ pc$^{-2}$. Half of the sample shows a strong preference for cored over cuspy DM profiles. The presence of DM cores appears to be related to galaxies with stellar-to-halo mass $\log M_\star/M_{\rm vir}\approx-2.5$. In addition, the cuspiness of the DM profiles is found to be a strong function of the recent star-formation activity. Both of these results are interpreted as evidence for feedback-induced core formation in the Cold Dark Matter context. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07545v2-abstract-full').style.display = 'none'; document.getElementById('2109.07545v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 11 figures, accepted for publication in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 658, A76 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.11393">arXiv:2108.11393</a> <span> [<a href="https://arxiv.org/pdf/2108.11393">pdf</a>, <a href="https://arxiv.org/format/2108.11393">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2449">10.1093/mnras/stab2449 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Central kinematics of the Galactic globular cluster M80 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=G%C3%B6ttgens%2C+F">Fabian G枚ttgens</a>, <a href="/search/astro-ph?searchtype=author&query=Kamann%2C+S">Sebastian Kamann</a>, <a href="/search/astro-ph?searchtype=author&query=Baumgardt%2C+H">Holger Baumgardt</a>, <a href="/search/astro-ph?searchtype=author&query=Dreizler%2C+S">Stefan Dreizler</a>, <a href="/search/astro-ph?searchtype=author&query=Giesers%2C+B">Benjamin Giesers</a>, <a href="/search/astro-ph?searchtype=author&query=Husser%2C+T">Tim-Oliver Husser</a>, <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=F%C3%A9tick%2C+R">Romain F茅tick</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.11393v1-abstract-short" style="display: inline;"> We use spectra observed with the integral-field spectrograph MUSE to reveal the central kinematics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Using observations obtained with the recently commissioned narrow-field mode of MUSE, we are able to analyse 932 stars in the central 7.5 arcsec by 7.5 arcsec of the cluster for which no useful spectra previously existed. Mean radial veloci… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11393v1-abstract-full').style.display = 'inline'; document.getElementById('2108.11393v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.11393v1-abstract-full" style="display: none;"> We use spectra observed with the integral-field spectrograph MUSE to reveal the central kinematics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Using observations obtained with the recently commissioned narrow-field mode of MUSE, we are able to analyse 932 stars in the central 7.5 arcsec by 7.5 arcsec of the cluster for which no useful spectra previously existed. Mean radial velocities of individual stars derived from the spectra are compared to predictions from axisymmetric Jeans models, resulting in radial profiles of the velocity dispersion, the rotation amplitude, and the mass-to-light ratio. The new data allow us to search for an intermediate-mass black hole (IMBH) in the centre of the cluster. Our Jeans model finds two similarly probable solutions around different dynamical cluster centres. The first solution has a centre close to the photometric estimates available in the literature and does not need an IMBH to fit the observed kinematics. The second solution contains a location of the cluster centre that is offset by about 2.4 arcsec from the first one and it needs an IMBH mass of $4600^{+1700}_{-1400}$ solar masses. N-body models support the existence of an IMBH in this cluster with a mass of up to 6000 solar masses in this cluster, although models without an IMBH provide a better fit to the observed surface brightness profile. They further indicate that the cluster has lost nearly all stellar-mass black holes. We further discuss the detection of two potential high-velocity stars with radial velocities of 80 to 90 km/s relative to the cluster mean. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11393v1-abstract-full').style.display = 'none'; document.getElementById('2108.11393v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in MNRAS; data can be found here: https://doi.org/10.25625/VCNHOR</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06448">arXiv:2106.06448</a> <span> [<a href="https://arxiv.org/pdf/2106.06448">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.18727/0722-6691/5232">10.18727/0722-6691/5232 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The VST Early-type GAlaxy Survey: Exploring the Outskirts and Intra-cluster Regions of Galaxies in the Low-surface-brightness Regime </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Iodice%2C+E">Enrichetta Iodice</a>, <a href="/search/astro-ph?searchtype=author&query=Spavone%2C+M">Marilena Spavone</a>, <a href="/search/astro-ph?searchtype=author&query=Capaccioli%2C+M">Massimo Capaccioli</a>, <a href="/search/astro-ph?searchtype=author&query=Schipani%2C+P">Pietro Schipani</a>, <a href="/search/astro-ph?searchtype=author&query=Arnaboldi%2C+M">Magda Arnaboldi</a>, <a href="/search/astro-ph?searchtype=author&query=Cantiello%2C+M">Michele Cantiello</a>, <a href="/search/astro-ph?searchtype=author&query=D%27Ago%2C+G">Giuseppe D'Ago</a>, <a href="/search/astro-ph?searchtype=author&query=De+Cicco%2C+D">Demetra De Cicco</a>, <a href="/search/astro-ph?searchtype=author&query=Forbes%2C+D+A">Duncan A. Forbes</a>, <a href="/search/astro-ph?searchtype=author&query=Greggio%2C+L">Laura Greggio</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=La+Marca%2C+A">Antonio La Marca</a>, <a href="/search/astro-ph?searchtype=author&query=Napolitano%2C+N+R">Nicola R. Napolitano</a>, <a href="/search/astro-ph?searchtype=author&query=Paolillo%2C+M">Maurizio Paolillo</a>, <a href="/search/astro-ph?searchtype=author&query=Ragusa%2C+R">Rossella Ragusa</a>, <a href="/search/astro-ph?searchtype=author&query=Raj%2C+M+A">Maria Angela Raj</a>, <a href="/search/astro-ph?searchtype=author&query=Rampazzo%2C+R">Roberto Rampazzo</a>, <a href="/search/astro-ph?searchtype=author&query=Rejkuba%2C+M">Marina Rejkuba</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06448v1-abstract-short" style="display: inline;"> The VST Early-type GAlaxy Survey (VEGAS) is a deep, multi-band (u, g, r, i) imaging survey, carried out with the 2.6-metre VLT Survey Telescope (VST) at ESO's Paranal Observatory in Chile. VEGAS combines the wide (1-square-degree) OmegaCAM imager and long integration times, together with a specially designed observing strategy. It has proven to be a gold mine for studies of features at very low su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06448v1-abstract-full').style.display = 'inline'; document.getElementById('2106.06448v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06448v1-abstract-full" style="display: none;"> The VST Early-type GAlaxy Survey (VEGAS) is a deep, multi-band (u, g, r, i) imaging survey, carried out with the 2.6-metre VLT Survey Telescope (VST) at ESO's Paranal Observatory in Chile. VEGAS combines the wide (1-square-degree) OmegaCAM imager and long integration times, together with a specially designed observing strategy. It has proven to be a gold mine for studies of features at very low surface brightness, down to levels of mu_g~27-30 magnitudes arcsec^(-2), over 5-8 magnitudes fainter than the dark sky at Paranal. In this article we highlight the main science results obtained with VEGAS observations of galaxies across different environments, from dense clusters of galaxies to unexplored poor groups and in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06448v1-abstract-full').style.display = 'none'; document.getElementById('2106.06448v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in The Messenger, vol. 183, p. 25-29</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.09600">arXiv:2104.09600</a> <span> [<a href="https://arxiv.org/pdf/2104.09600">pdf</a>, <a href="https://arxiv.org/format/2104.09600">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab1137">10.1093/mnras/stab1137 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deciphering the Origin of Ionized Gas in IC 1459 with VLT/MUSE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Mulcahey%2C+C+R">Celia R. Mulcahey</a>, <a href="/search/astro-ph?searchtype=author&query=Prichard%2C+L+J">Laura J. Prichard</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Jorgenson%2C+R+A">Regina A. Jorgenson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.09600v1-abstract-short" style="display: inline;"> IC 1459 is an early-type galaxy (ETG) with a rapidly counter-rotating stellar core, and is the central galaxy in a gas-rich group of spirals. In this work, we investigate the abundant ionized gas in IC 1459 and present new stellar orbital models to connect its complex array of observed properties and build a more complete picture of its evolution. Using the Multi-Unit Spectroscopic Explorer (MUSE)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09600v1-abstract-full').style.display = 'inline'; document.getElementById('2104.09600v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.09600v1-abstract-full" style="display: none;"> IC 1459 is an early-type galaxy (ETG) with a rapidly counter-rotating stellar core, and is the central galaxy in a gas-rich group of spirals. In this work, we investigate the abundant ionized gas in IC 1459 and present new stellar orbital models to connect its complex array of observed properties and build a more complete picture of its evolution. Using the Multi-Unit Spectroscopic Explorer (MUSE), the optical integral field unit (IFU) on the Very Large Telescope (VLT), we examine the gas and stellar properties of IC 1459 to decipher the origin and powering mechanism of the galaxy's ionized gas. We detect ionized gas in a non-disk-like structure rotating in the opposite sense to the central stars. Using emission-line flux ratios and velocity dispersion from full-spectral fitting, we find two kinematically distinct regions of shocked emission-line gas in IC 1459, which we distinguished using narrow ($蟽$ $\leq$ 155 km s$^{-1}$) and broad ($蟽$ $>$ 155 km s$^{-1}$) profiles. Our results imply that the emission-line gas in IC 1459 has a different origin than that of its counter-rotating stellar component. We propose that the ionized gas is from late-stage accretion of gas from the group environment, which occurred long after the formation of the central stellar component. We find that shock heating and AGN activity are both ionizing mechanisms in IC 1459 but that the dominant excitation mechanism is by post-asymptotic giant branch stars from its old stellar population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.09600v1-abstract-full').style.display = 'none'; document.getElementById('2104.09600v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. 12 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07478">arXiv:2103.07478</a> <span> [<a href="https://arxiv.org/pdf/2103.07478">pdf</a>, <a href="https://arxiv.org/format/2103.07478">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202040186">10.1051/0004-6361/202040186 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the assembly history of massive galaxies. A pilot project with VEGAS deep imaging and M3G integral field spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Spavone%2C+M">Marilena Spavone</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Emsellem%2C+E">Eric Emsellem</a>, <a href="/search/astro-ph?searchtype=author&query=Iodice%2C+E">Enrichetta Iodice</a>, <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07478v1-abstract-short" style="display: inline;"> In this paper we present the new deep images from the VEGAS survey of three massive ($M_{*} \simeq 10^{12}$~M$_\odot$) galaxies from the MUSE Most Massive Galaxies (M3G) project, with distances in the range $151\leq D \leq 183$ Mpc: PGC007748, PGC015524 and PGC049940. The long integration time and the wide field of view of OmegaCam@VST allowed us to map the light and color distributions down to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07478v1-abstract-full').style.display = 'inline'; document.getElementById('2103.07478v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07478v1-abstract-full" style="display: none;"> In this paper we present the new deep images from the VEGAS survey of three massive ($M_{*} \simeq 10^{12}$~M$_\odot$) galaxies from the MUSE Most Massive Galaxies (M3G) project, with distances in the range $151\leq D \leq 183$ Mpc: PGC007748, PGC015524 and PGC049940. The long integration time and the wide field of view of OmegaCam@VST allowed us to map the light and color distributions down to $渭_g\simeq30$~mag/arcsec$^2$ and out to $\sim 2R_e$. The deep data are crucial to estimate the contribution of the different galaxy's components, in particular the accreted fraction in the stellar halo. The available integral-field observations with MUSE cover a limited portion of each galaxy (out to $\sim 1R_e$), but, from the imaging analysis we find that they map the kinematics and stellar population beyond the first transition radius, where the contribution of the accreted component starts to dominate. The main goal of this work is to correlate the scales of the different components derived from the image analysis with the kinematics and stellar population profiles from the MUSE data. Results were used to address the assembly history of the three galaxies with the help of the theoretical predictions. Our results suggest that PGC049940 has the lowest accreted mass fraction of 77%. The higher accreted mass fraction estimated for PGC007748 and PGC015524 (86% and 89%, respectively), combined with the flat $位_R$ profiles suggest that a great majority of the mass has been acquired through major mergers, which have also shaped the shallower metallicity profiles observed at larger radii. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07478v1-abstract-full').style.display = 'none'; document.getElementById('2103.07478v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A. 12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 649, A161 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.12250">arXiv:2101.12250</a> <span> [<a href="https://arxiv.org/pdf/2101.12250">pdf</a>, <a href="https://arxiv.org/format/2101.12250">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202040225">10.1051/0004-6361/202040225 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MUSE Hubble Ultra Deep Field Survey XVI. The angular momentum of low-mass star-forming galaxies. A cautionary tale and insights from TNG50 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N+F">Nicolas F. Bouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Genel%2C+S">Shy Genel</a>, <a href="/search/astro-ph?searchtype=author&query=Pellissier%2C+A">Alisson Pellissier</a>, <a href="/search/astro-ph?searchtype=author&query=Dubois%2C+C">C茅dric Dubois</a>, <a href="/search/astro-ph?searchtype=author&query=Contini%2C+T">Thierry Contini</a>, <a href="/search/astro-ph?searchtype=author&query=Epinat%2C+B">Beno卯t Epinat</a>, <a href="/search/astro-ph?searchtype=author&query=Pillepich%2C+A">Annalisa Pillepich</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Nelson%2C+D">Dylan Nelson</a>, <a href="/search/astro-ph?searchtype=author&query=Abril-Melgarejo%2C+V">Valentina Abril-Melgarejo</a>, <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">Johan Richard</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L+A">Leindert A. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Maseda%2C+M">Michael Maseda</a>, <a href="/search/astro-ph?searchtype=author&query=Mercier%2C+W">Wilfried Mercier</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">Matthias Steinmetz</a>, <a href="/search/astro-ph?searchtype=author&query=Vogelsberger%2C+M">Mark Vogelsberger</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.12250v3-abstract-short" style="display: inline;"> We investigate the specific angular momentum (sAM) $ j(<r)$ profiles of intermediate redshift ($0.4<z<1.4$) star-forming galaxies (SFGs) in the relatively unexplored regime of low masses (down to $M_\star\sim 10^8$M$_{\odot}$), and small sizes (down to $R_{\rm e}\sim 1.5$ kpc) and characterize the sAM scaling relation and its redshift evolution. We have developed a 3D methodology to constrain sAM… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12250v3-abstract-full').style.display = 'inline'; document.getElementById('2101.12250v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.12250v3-abstract-full" style="display: none;"> We investigate the specific angular momentum (sAM) $ j(<r)$ profiles of intermediate redshift ($0.4<z<1.4$) star-forming galaxies (SFGs) in the relatively unexplored regime of low masses (down to $M_\star\sim 10^8$M$_{\odot}$), and small sizes (down to $R_{\rm e}\sim 1.5$ kpc) and characterize the sAM scaling relation and its redshift evolution. We have developed a 3D methodology to constrain sAM profiles of the star-forming gas using a forward modeling approach with \galpak{} that incorporates the effects of beam smearing, yielding the intrinsic morpho-kinematic properties even with limited spatial resolution data. Using mock observations from the TNG50 simulation, we find that our 3D methodology robustly recovers the star formation rate (SFR)-weighted $j(<r)$ profiles down to low effective signal-to-noise ratio (SNR) of $\gtrapprox3$. We applied our methodology blindly to a sample of 494 \OII{}-selected SFGs in the MUSE Ultra Deep Field (UDF) 9~arcmin$^2$ mosaic data, covering the unexplored $8<\log M_*/$M$_{\odot}<9$ mass range. We find that the (SFR-weighted) sAM relation follows $j\propto M_\star^伪$ with an index $伪$ varying from $伪=0.3$ to $伪=0.5$, from $\log M_\star/$M$_{\odot}=8$ to $\log M_*/$M$_{\odot}=10.5$. The UDF sample supports a redshift evolution consistent with the $(1+z)^{-0.5}$ expectation from a Universe in expansion. The scatter of the sAM sequence is a strong function of the dynamical state with $\log j|_{M_*}\propto 0.65 \times \log(V_{\rm max}/蟽)$ where $蟽$ is the velocity dispersion at $2 R_{\rm e}$. In TNG50, SFGs also form a $j-M_{\star}-(V/蟽)$ plane but it correlates more with galaxy size than with morphological parameters. Our results suggest that SFGs might experience a dynamical transformation before their morphological transformation to becoming passive via either merging or secular evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.12250v3-abstract-full').style.display = 'none'; document.getElementById('2101.12250v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, accepted version; The TNG50 data is publicly available at https://www.tng-project.org</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 654, A49 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08069">arXiv:2101.08069</a> <span> [<a href="https://arxiv.org/pdf/2101.08069">pdf</a>, <a href="https://arxiv.org/format/2101.08069">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038818">10.1051/0004-6361/202038818 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Tully-Fisher relation in dense groups at $z \sim 0.7$ in the MAGIC survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Abril-Melgarejo%2C+V">Valentina Abril-Melgarejo</a>, <a href="/search/astro-ph?searchtype=author&query=Epinat%2C+B">Beno卯t Epinat</a>, <a href="/search/astro-ph?searchtype=author&query=Mercier%2C+W">Wilfried Mercier</a>, <a href="/search/astro-ph?searchtype=author&query=Contini%2C+T">Thierry Contini</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L+A">Leindert A. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Finley%2C+H">Hayley Finley</a>, <a href="/search/astro-ph?searchtype=author&query=Michel-Dansac%2C+L">L茅o Michel-Dansac</a>, <a href="/search/astro-ph?searchtype=author&query=Ventou%2C+E">Emmy Ventou</a>, <a href="/search/astro-ph?searchtype=author&query=Amram%2C+P">Philipe Amram</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Mahler%2C+G">Guillaume Mahler</a>, <a href="/search/astro-ph?searchtype=author&query=Pineda%2C+J+C+B">Juan C. B. Pineda</a>, <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">Johan Richard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08069v3-abstract-short" style="display: inline;"> Galaxies in dense environments are subject to interactions and mechanisms which directly affect their evolution by lowering their gas fractions and reducing their star-forming capacity earlier than their isolated counterparts. The aim of our project is to get new insights about the role of environment on the stellar and baryonic content of galaxies using a kinematic approach, through the study of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08069v3-abstract-full').style.display = 'inline'; document.getElementById('2101.08069v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08069v3-abstract-full" style="display: none;"> Galaxies in dense environments are subject to interactions and mechanisms which directly affect their evolution by lowering their gas fractions and reducing their star-forming capacity earlier than their isolated counterparts. The aim of our project is to get new insights about the role of environment on the stellar and baryonic content of galaxies using a kinematic approach, through the study of the Tully-Fisher relation (TFR). We study a sample of galaxies in 8 groups spanning a redshift range of $0.5<z<0.8$ and located in 10 pointings of the MAGIC MUSE Guaranteed Time Observations program. We perform a morpho-kinematics analysis of this sample and set up a selection based on galaxy size, [OII] emission line doublet signal-to-noise ratio, bulge-to-disk ratio and nuclear activity to construct a robust kinematic sample of 67 star-forming galaxies. This selection considerably reduces the number of outliers in the TFR, which are predominantly dispersion-dominated galaxies. Our results suggest a significant offset of the TFR zero-point between galaxies in low- and high-density environments, whatever kinematics estimator is used. This can be interpreted as a decrease of either stellar mass by $\sim 0.05 - 0.3$ dex or an increase of rotation velocity by $\sim 0.02 - 0.06$ dex for galaxies in groups, depending on the samples used for comparison. We also studied the stellar and baryon mass fractions within stellar disks and found they both increase with stellar mass, the trend being more pronounced for the stellar component alone. These fractions do not exceed 50%. We show that this evolution of the TFR is consistent either with a decrease of star formation or with a contraction of the mass distribution due to the environment. These two effects probably act together with their relative contribution depending on the mass regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08069v3-abstract-full').style.display = 'none'; document.getElementById('2101.08069v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 647, A152 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.07932">arXiv:2101.07932</a> <span> [<a href="https://arxiv.org/pdf/2101.07932">pdf</a>, <a href="https://arxiv.org/format/2101.07932">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abde3d">10.3847/1538-4357/abde3d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A restless supermassive black hole in the galaxy J0437+2456 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pesce%2C+D+W">Dominic W. Pesce</a>, <a href="/search/astro-ph?searchtype=author&query=Seth%2C+A+C">Anil C. Seth</a>, <a href="/search/astro-ph?searchtype=author&query=Greene%2C+J+E">Jenny E. Greene</a>, <a href="/search/astro-ph?searchtype=author&query=Braatz%2C+J+A">James A. Braatz</a>, <a href="/search/astro-ph?searchtype=author&query=Condon%2C+J+J">James J. Condon</a>, <a href="/search/astro-ph?searchtype=author&query=Kent%2C+B+R">Brian R. Kent</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.07932v1-abstract-short" style="display: inline;"> We present the results from an observing campaign to confirm the peculiar motion of the supermassive black hole (SMBH) in J0437+2456 first reported in Pesce et al. (2018). Deep observations with the Arecibo Observatory have yielded a detection of neutral hydrogen (HI) emission, from which we measure a recession velocity of 4910 km s$^{-1}$ for the galaxy as a whole. We have also obtained near-infr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07932v1-abstract-full').style.display = 'inline'; document.getElementById('2101.07932v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.07932v1-abstract-full" style="display: none;"> We present the results from an observing campaign to confirm the peculiar motion of the supermassive black hole (SMBH) in J0437+2456 first reported in Pesce et al. (2018). Deep observations with the Arecibo Observatory have yielded a detection of neutral hydrogen (HI) emission, from which we measure a recession velocity of 4910 km s$^{-1}$ for the galaxy as a whole. We have also obtained near-infrared integral field spectroscopic observations of the galactic nucleus with the Gemini North telescope, yielding spatially resolved stellar and gas kinematics with a central velocity at the innermost radii ($0.1^{\prime \prime} \approx 34$ pc) of 4860 km s$^{-1}$. Both measurements differ significantly from the $\sim$4810 km s$^{-1}$ H$_2$O megamaser velocity of the SMBH, supporting the prior indications of a velocity offset between the SMBH and its host galaxy. However, the two measurements also differ significantly from one another, and the galaxy as a whole exhibits a complex velocity structure that implies the system has recently been dynamically disturbed. These results make it clear that the SMBH is not at rest with respect to the systemic velocity of the galaxy, though the specific nature of the mobile SMBH -- i.e., whether it traces an ongoing galaxy merger, a binary black hole system, or a gravitational wave recoil event -- remains unclear. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.07932v1-abstract-full').style.display = 'none'; document.getElementById('2101.07932v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.00253">arXiv:2101.00253</a> <span> [<a href="https://arxiv.org/pdf/2101.00253">pdf</a>, <a href="https://arxiv.org/format/2101.00253">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202040239">10.1051/0004-6361/202040239 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MUSE-Faint survey. II. The dark matter-density profile of the ultra-faint dwarf galaxy Eridanus 2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zoutendijk%2C+S+L">Sebastiaan L. Zoutendijk</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Bouch%C3%A9%2C+N+F">Nicolas F. Bouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/astro-ph?searchtype=author&query=Maseda%2C+M+V">Michael V. Maseda</a>, <a href="/search/astro-ph?searchtype=author&query=Schaye%2C+J">Joop Schaye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.00253v3-abstract-short" style="display: inline;"> Aims. We use stellar line-of-sight velocities to constrain the dark matter-density profile of Eridanus 2, an ultra-faint dwarf galaxy ($M_\mathrm{V} = -7.1$, $M_* \approx 9 \times 10^4\,M_\odot$). We furthermore derive constraints on fundamental properties of self-interacting and fuzzy dark matter scenarios. Methods. We present new observations of Eridanus 2 from MUSE-Faint, a survey of ultra-fain… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00253v3-abstract-full').style.display = 'inline'; document.getElementById('2101.00253v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.00253v3-abstract-full" style="display: none;"> Aims. We use stellar line-of-sight velocities to constrain the dark matter-density profile of Eridanus 2, an ultra-faint dwarf galaxy ($M_\mathrm{V} = -7.1$, $M_* \approx 9 \times 10^4\,M_\odot$). We furthermore derive constraints on fundamental properties of self-interacting and fuzzy dark matter scenarios. Methods. We present new observations of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with MUSE on the Very Large Telescope, and determine line-of-sight velocities for stars inside the half-light radius. Combined with literature data, we have 92 stellar tracers out to twice the half-light radius. We constrain models of cold dark matter, self-interacting dark matter, and fuzzy dark matter with these tracers, using CJAM and pyGravSphere for the dynamical analysis. Results. We find substantial evidence for cold dark matter over self-interacting dark matter and weak evidence for fuzzy dark matter over cold dark matter. We find a virial mass $M_{200} \sim 10^8\,M_\odot$ and astrophysical factors $J(伪_\mathrm{c}^J) \sim 10^{11}\,M_\odot^2\,\mathrm{kpc}^{-5}$ and $D(伪_\mathrm{c}^D) \sim 10^2$-$10^{2.5}\,M_\odot\,\mathrm{kpc}^{-2}$. We do not resolve a core ($r_\mathrm{c} < 47\,\mathrm{pc}$, 68-% level) or soliton ($r_\mathrm{sol} < 7.2\,\mathrm{pc}$, 68-% level). These limits are equivalent to an effective self-interaction coefficient $f螕< 2.2 \times 10^{-29}\,\mathrm{cm}^3\,\mathrm{s}^{-1}\,\mathrm{eV}^{-1}\,c^2$ and a fuzzy-dark-matter particle mass $m_\mathrm{a} > 4.0 \times 10^{-20}\,\mathrm{eV}\,c^{-2}$. The constraint on self-interaction is complementary to those from gamma-ray searches. The constraint on fuzzy-dark-matter particle mass is inconsistent with those obtained for larger dwarf galaxies, suggesting that the flattened density profiles of those galaxies are not caused by fuzzy dark matter. (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.00253v3-abstract-full').style.display = 'none'; document.getElementById('2101.00253v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 14 figures, 8 tables. Minor changes, electronic table moved to appendix. Version as accepted on 2021-04-24 for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 651, A80 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.07882">arXiv:2012.07882</a> <span> [<a href="https://arxiv.org/pdf/2012.07882">pdf</a>, <a href="https://arxiv.org/format/2012.07882">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039443">10.1051/0004-6361/202039443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical emission lines in the most massive galaxies: morphology, kinematics and ionisation properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Pagotto%2C+I">I. Pagotto</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">D. Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">M. den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=Emsellem%2C+E">E. Emsellem</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">J. Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">P. M. Weilbacher</a>, <a href="/search/astro-ph?searchtype=author&query=Kollatschny%2C+W">W. Kollatschny</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">M. Steinmetz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.07882v1-abstract-short" style="display: inline;"> To better characterize the upper end of the galaxy stellar mass range, the MUSE Most Massive Galaxies (M3G) Survey targeted the most massive galaxies (M$>10^{12}$ M$_{\odot}$) found in the densest known clusters of galaxies at $z\sim0.046$. The sample is composed by 25 early-type galaxies: 14 BCGs, of which 3 are in the densest region of the Shapley Super Cluster (SSC), and 11 massive satellites i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07882v1-abstract-full').style.display = 'inline'; document.getElementById('2012.07882v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.07882v1-abstract-full" style="display: none;"> To better characterize the upper end of the galaxy stellar mass range, the MUSE Most Massive Galaxies (M3G) Survey targeted the most massive galaxies (M$>10^{12}$ M$_{\odot}$) found in the densest known clusters of galaxies at $z\sim0.046$. The sample is composed by 25 early-type galaxies: 14 BCGs, of which 3 are in the densest region of the Shapley Super Cluster (SSC), and 11 massive satellites in the SSC. In this work we aim at deriving the spatial distribution and kinematics of the gas, and discussing its ionisation mechanism and origin in the optical wavelength range with MUSE data. We fit the continuum of the spectra using an extensive library of single stellar population models and model the emission lines employing up to three Gaussian functions. In the M3G sample, ionized-gas was detected in 5 BCGs, of which one is in the densest region of the SSC, and 6 massive satellites in the SSC. Among these objects, [OI] and [NI] were detected in 3 BCGs and one satellite. The gas is centrally concentrated in almost all objects, except for 2 BCGs that show filaments and 2 massive satellites with extended emission. The emission line profiles of 3 BCGs present red/blueshifted components. The presence of dust was revealed by analysing Balmer line ratios obtaining a mean $E(B-V)$ of 0.2-0.3. The emission-line diagnostic diagrams show predominately LINER line ratios with little contamination from star formation. The gas was detected in 80% of fast rotators and 35% of slow rotators. The orientations of stellar and gaseous rotations are aligned with respect to each other for 60% of satellites and 25% of BCGs. The presence of misalignments points to an external origin of the gas for 3 BCGs and 2 satellites. On the other hand, some of these systems are characterized by triaxial and prolate-like stellar rotation that could support an internal origin of the gas even in case of misalignments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.07882v1-abstract-full').style.display = 'none'; document.getElementById('2012.07882v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 25 figures, A&A accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 649, A63 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13772">arXiv:2007.13772</a> <span> [<a href="https://arxiv.org/pdf/2007.13772">pdf</a>, <a href="https://arxiv.org/format/2007.13772">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa2248">10.1093/mnras/staa2248 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Census and classification of low-surface-brightness structures in nearby early-type galaxies from the MATLAS survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=B%C3%ADlek%2C+M">Michal B铆lek</a>, <a href="/search/astro-ph?searchtype=author&query=Duc%2C+P">Pierre-Alain Duc</a>, <a href="/search/astro-ph?searchtype=author&query=Cuillandre%2C+J">Jean-Charles Cuillandre</a>, <a href="/search/astro-ph?searchtype=author&query=Gwyn%2C+S">Stephen Gwyn</a>, <a href="/search/astro-ph?searchtype=author&query=Cappellari%2C+M">Michele Cappellari</a>, <a href="/search/astro-ph?searchtype=author&query=Bekaert%2C+D+V">David V. Bekaert</a>, <a href="/search/astro-ph?searchtype=author&query=Bonfini%2C+P">Paolo Bonfini</a>, <a href="/search/astro-ph?searchtype=author&query=Bitsakis%2C+T">Theodoros Bitsakis</a>, <a href="/search/astro-ph?searchtype=author&query=Paudel%2C+S">Sanjaya Paudel</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Durrell%2C+P+R">Patrick R. Durrell</a>, <a href="/search/astro-ph?searchtype=author&query=Marleau%2C+F">Francine Marleau</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13772v2-abstract-short" style="display: inline;"> The morphology of galaxies gives essential constraints on the models of galaxy evolution. The morphology of the features in the low-surface-brightness regions of galaxies has not been fully explored yet because of observational difficulties. Here we present the results of our visual inspections of very deep images of a large volume-limited sample of 177 nearby massive early-type galaxies (ETGs) fr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13772v2-abstract-full').style.display = 'inline'; document.getElementById('2007.13772v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13772v2-abstract-full" style="display: none;"> The morphology of galaxies gives essential constraints on the models of galaxy evolution. The morphology of the features in the low-surface-brightness regions of galaxies has not been fully explored yet because of observational difficulties. Here we present the results of our visual inspections of very deep images of a large volume-limited sample of 177 nearby massive early-type galaxies (ETGs) from the MATLAS survey. The images reach a surface-brightness limit of $28.5-29$ mag arcsec$^{-2}$ in the $g'$ band. Using a dedicated navigation tool and questionnaire, we looked for structures at the outskirts of the galaxies such as tidal shells, streams, tails, disturbed outer isophotes or peripheral star-forming disks, and simultaneously noted the presence of contaminating sources, such as Galactic cirrus. We also inspected internal sub-structures such as bars and dust lanes. We discuss the reliability of this visual classification investigating the variety of answers made by the participants. We present the incidence of these structures and the trends of the incidence with the mass of the host galaxy and the density of its environment. We find an incidence of shells, stream and tails of approximately 15%, about the same for each category. For galaxies with masses over $10^{11}$ M$_\odot$, the incidence of shells and streams increases about 1.7 times. We also note a strong unexpected anticorrelation of the incidence of Galactic cirrus with the environment density of the target galaxy. Correlations with other properties of the galaxies, and comparisons to model predictions, will be presented in future papers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13772v2-abstract-full').style.display = 'none'; document.getElementById('2007.13772v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. On-line versions of the figures, as well as the full data-base, is made publicly available at http://obas-matlas.u-strasbg.fr . 35 pages, 19 figures, 12 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02355">arXiv:2005.02355</a> <span> [<a href="https://arxiv.org/pdf/2005.02355">pdf</a>, <a href="https://arxiv.org/format/2005.02355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa1265">10.1093/mnras/staa1265 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic Hydrogen Clues to the Formation of Counterrotating Stellar Discs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Young%2C+L+M">Lisa M Young</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Duc%2C+P">Pierre-Alain Duc</a>, <a href="/search/astro-ph?searchtype=author&query=Serra%2C+P">Paolo Serra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02355v1-abstract-short" style="display: inline;"> We present interferometric HI observations of six double-disc stellar counterrotator ("2$蟽$") galaxies from the Atlas3D sample. Three are detected in HI emission; two of these are new detections. NGC 7710 shows a modestly asymmetric HI disc, and the atomic gas in PGC 056772 is centrally peaked but too poorly resolved to identify the direction of rotation. IC 0719, the most instructive system in th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02355v1-abstract-full').style.display = 'inline'; document.getElementById('2005.02355v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02355v1-abstract-full" style="display: none;"> We present interferometric HI observations of six double-disc stellar counterrotator ("2$蟽$") galaxies from the Atlas3D sample. Three are detected in HI emission; two of these are new detections. NGC 7710 shows a modestly asymmetric HI disc, and the atomic gas in PGC 056772 is centrally peaked but too poorly resolved to identify the direction of rotation. IC 0719, the most instructive system in this study, shows an extended, strongly warped disc of 43 kpc diameter, with a faint tail extending towards its neighbor IC 0718. The gas has likely been accreted from this external source during an encounter whose geometry directed the gas into misaligned retrograde orbits (with respect to the primary stellar body of IC 0719). In the interior, where dynamical time-scales are shorter, the HI has settled into the equatorial plane forming the retrograde secondary stellar disc. This is the first direct evidence that a double-disc stellar counterrotator could be formed through the accretion of retrograde gas. However, the dominant formation pathway for the formation of $2蟽$ galaxies is still unclear. The Atlas3D sample shows some cases of the retrograde accretion scenario and also some cases in which a scenario based on an unusually well-aligned merger is more likely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02355v1-abstract-full').style.display = 'none'; document.getElementById('2005.02355v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MNRAS, accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.07449">arXiv:2004.07449</a> <span> [<a href="https://arxiv.org/pdf/2004.07449">pdf</a>, <a href="https://arxiv.org/format/2004.07449">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa1043">10.1093/mnras/staa1043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Precise Benchmark for Cluster Scaling Relations: Fundamental Plane, Mass Plane and IMF in the Coma Cluster from Dynamical Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Shetty%2C+S">Shravan Shetty</a>, <a href="/search/astro-ph?searchtype=author&query=Cappellari%2C+M">Michele Cappellari</a>, <a href="/search/astro-ph?searchtype=author&query=McDermid%2C+R+M">Richard M. McDermid</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=de+Zeeuw%2C+P+T">P. T. de Zeeuw</a>, <a href="/search/astro-ph?searchtype=author&query=Davies%2C+R+L">Roger L. Davies</a>, <a href="/search/astro-ph?searchtype=author&query=Kobayashi%2C+C">Chiaki Kobayashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.07449v1-abstract-short" style="display: inline;"> We study a sample of 148 early-type galaxies in the Coma cluster using SDSS photometry and spectra, and calibrate our results using detailed dynamical models for a subset of these galaxies, to create a precise benchmark for dynamical scaling relations in high-density environments. For these galaxies, we successfully measured global galaxy properties, modeled stellar populations, and created dynami… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07449v1-abstract-full').style.display = 'inline'; document.getElementById('2004.07449v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.07449v1-abstract-full" style="display: none;"> We study a sample of 148 early-type galaxies in the Coma cluster using SDSS photometry and spectra, and calibrate our results using detailed dynamical models for a subset of these galaxies, to create a precise benchmark for dynamical scaling relations in high-density environments. For these galaxies, we successfully measured global galaxy properties, modeled stellar populations, and created dynamical models, and support the results using detailed dynamical models of 16 galaxies, including the two most massive cluster galaxies, using data taken with the SAURON IFU. By design, the study provides minimal scatter in derived scaling relations due to the small uncertainty in the relative distances of galaxies compared to the cluster distance. Our results demonstrate low ($\leq$55% for 90$^{th}$ percentile) dark matter fractions in the inner 1$R_{\rm e}$ ~of galaxies. Owing to the study design, we produce the tightest, to our knowledge, IMF-$蟽_e$ relation of galaxies, with a slope consistent with that seen in local galaxies. Leveraging our dynamical models, we transform the classical Fundamental Plane of the galaxies to the Mass Plane. We find that the coefficients of the mass plane are close to predictions from the virial theorem, and have significantly lower scatter compared to the Fundamental plane. We show that Coma galaxies occupy similar locations in the (M$_*$ - $R_{\rm e}$) and (M$_*$ - $蟽_e$) relations as local field galaxies but are older. This, and the fact we find only three slow rotators in the cluster, is consistent with the scenario of hierarchical galaxy formation and expectations of the kinematic morphology-density relation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.07449v1-abstract-full').style.display = 'none'; document.getElementById('2004.07449v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures, Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.03886">arXiv:2004.03886</a> <span> [<a href="https://arxiv.org/pdf/2004.03886">pdf</a>, <a href="https://arxiv.org/format/2004.03886">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsta.2019.0517">10.1098/rsta.2019.0517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> John Couch Adams: mathematical astronomer, college friend of George Gabriel Stokes and promotor of women in astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.03886v1-abstract-short" style="display: inline;"> John Couch Adams predicted the location of Neptune in the sky, calculated the expectation of the change in the mean motion of the Moon due to the Earth's pull, and determined the origin and the orbit of the Leonids meteor shower which had puzzled astronomers for almost a thousand years. With his achievements Adams can be compared with his good friend George Stokes. Not only were they born in the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03886v1-abstract-full').style.display = 'inline'; document.getElementById('2004.03886v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.03886v1-abstract-full" style="display: none;"> John Couch Adams predicted the location of Neptune in the sky, calculated the expectation of the change in the mean motion of the Moon due to the Earth's pull, and determined the origin and the orbit of the Leonids meteor shower which had puzzled astronomers for almost a thousand years. With his achievements Adams can be compared with his good friend George Stokes. Not only were they born in the same year, but were also both senior wranglers, received the Smith's Prizes and Copley medals, lived, thought and researched at Pembroke College, and shared an appreciation of Newton. On the other hand, Adams' prediction of Neptune's location had absolutely no influence on its discovery in Berlin. His lunar theory did not offer a physical explanation for the Moon's motion. The origin of the Leonids was explained by others before him. Adams refused a knighthood and an appointment as Astronomer Royal. He was reluctant and slow to publish, but loved to derive the values of logarithms to 263 decimal places. The maths and calculations at which he so excelled mark one of the high points of celestial mechanics, but are rarely taught nowadays in undergraduate courses. The differences and similarities between Adams and Stokes could not be more striking. This volume attests to the lasting legacy of Stokes' scientific work. What is then Adams' legacy? In this contribution I will outline Adams' life, instances when Stokes' and Adams' lives touched the most, his scientific achievements and a usually overlooked legacy: female higher education and support of a woman astronomer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.03886v1-abstract-full').style.display = 'none'; document.getElementById('2004.03886v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 1 figure; accepted for publication in "Stokes at 200" issue of Philosophical Transactions A, guest edited by Silvana Cardoso, Julyan Cartwright, Herbert Huppert and Christopher Ness</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11277">arXiv:2001.11277</a> <span> [<a href="https://arxiv.org/pdf/2001.11277">pdf</a>, <a href="https://arxiv.org/format/2001.11277">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201937040">10.1051/0004-6361/201937040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Formation channels of slowly rotating early-type galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Ural%2C+U">Ugur Ural</a>, <a href="/search/astro-ph?searchtype=author&query=Kuntschner%2C+H">Harald Kuntschner</a>, <a href="/search/astro-ph?searchtype=author&query=Goudfrooij%2C+P">Paul Goudfrooij</a>, <a href="/search/astro-ph?searchtype=author&query=Wolfe%2C+M">Michael Wolfe</a>, <a href="/search/astro-ph?searchtype=author&query=Cappellari%2C+M">Michele Cappellari</a>, <a href="/search/astro-ph?searchtype=author&query=Davies%2C+R">Roger Davies</a>, <a href="/search/astro-ph?searchtype=author&query=de+Zeeuw%2C+P+T">P. T. de Zeeuw</a>, <a href="/search/astro-ph?searchtype=author&query=Duc%2C+P">Pierre-Alain Duc</a>, <a href="/search/astro-ph?searchtype=author&query=Emsellem%2C+E">Eric Emsellem</a>, <a href="/search/astro-ph?searchtype=author&query=Karick%2C+A">Arna Karick</a>, <a href="/search/astro-ph?searchtype=author&query=McDermid%2C+R+M">Richard M. McDermid</a>, <a href="/search/astro-ph?searchtype=author&query=Mei%2C+S">Simona Mei</a>, <a href="/search/astro-ph?searchtype=author&query=Naab%2C+T">Thorsten Naab</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11277v1-abstract-short" style="display: inline;"> We study the evidence for a diversity of formation processes in early-type galaxies by presenting the first complete volume-limited sample of slow rotators with both integral-field kinematics from the ATLAS3D Project and high spatial resolution photometry from the Hubble Space Telescope. Analysing the nuclear surface brightness profiles of 12 newly imaged slow rotators, we classify their light pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11277v1-abstract-full').style.display = 'inline'; document.getElementById('2001.11277v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11277v1-abstract-full" style="display: none;"> We study the evidence for a diversity of formation processes in early-type galaxies by presenting the first complete volume-limited sample of slow rotators with both integral-field kinematics from the ATLAS3D Project and high spatial resolution photometry from the Hubble Space Telescope. Analysing the nuclear surface brightness profiles of 12 newly imaged slow rotators, we classify their light profiles as core-less, and place an upper limit to the core size of ~10 pc. Considering the full magnitude and volume-limited ATLAS3D sample, we correlate the presence or lack of cores with stellar kinematics, including the proxy for the stellar angular momentum and the velocity dispersion within one half-light radius, stellar mass, stellar age, $伪$-element abundance, and age and metallicity gradients. More than half of the slow rotators have core-less light profiles, and they are all less massive than $10^{11}$ Msun. Core-less slow rotators show evidence for counter-rotating flattened structures, have steeper metallicity gradients, and a larger dispersion of gradient values than core slow rotators. Our results suggest that core and core-less slow rotators have different assembly processes, where the former are the relics of massive dissipation-less merging in the presence of central supermassive black holes. Formation processes of core-less slow rotators are consistent with accretion of counter-rotating gas or gas-rich mergers of special orbital configurations, which lower the final net angular momentum of stars, but support star formation. We also highlight core fast rotators as galaxies that share properties of core slow rotators and core-less slow rotators. Formation processes similar to those for core-less slow rotators can be invoked to explain the assembly of core fast rotators, with the distinction that these processes form or preserve cores.[Abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11277v1-abstract-full').style.display = 'none'; document.getElementById('2001.11277v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 13 figures, Figure 12 illustrates the main difference between core or core-less and slow or fast rotators; data can be obtained from the Atlas3D survey web site, see http://purl.org/atlas3d</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 635, A129 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.08790">arXiv:2001.08790</a> <span> [<a href="https://arxiv.org/pdf/2001.08790">pdf</a>, <a href="https://arxiv.org/format/2001.08790">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201936155">10.1051/0004-6361/201936155 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MUSE-Faint survey: I. Spectroscopic evidence for a star cluster in Eridanus 2 and constraints on MACHOs as a constituent of dark matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Zoutendijk%2C+S+L">Sebastiaan L. Zoutendijk</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L+A">Leindert A. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Gunawardhana%2C+M+L+P">Madusha L. P. Gunawardhana</a>, <a href="/search/astro-ph?searchtype=author&query=Husser%2C+T">Tim-Oliver Husser</a>, <a href="/search/astro-ph?searchtype=author&query=Kamann%2C+S">Sebastian Kamann</a>, <a href="/search/astro-ph?searchtype=author&query=Padilla%2C+A+F+R">Andr茅s Felipe Ramos Padilla</a>, <a href="/search/astro-ph?searchtype=author&query=Roth%2C+M+M">Martin M. Roth</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=Dreizler%2C+S">Stefan Dreizler</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.08790v2-abstract-short" style="display: inline;"> We aim to provide spectroscopic evidence regarding the nature of the putative star cluster in Eridanus 2 and to place constraints on the mass and abundance of massive astrophysical compact halo objects (MACHOs) as a constituent of dark matter. Methods. We present spectroscopic observations of the central square arcminute of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08790v2-abstract-full').style.display = 'inline'; document.getElementById('2001.08790v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.08790v2-abstract-full" style="display: none;"> We aim to provide spectroscopic evidence regarding the nature of the putative star cluster in Eridanus 2 and to place constraints on the mass and abundance of massive astrophysical compact halo objects (MACHOs) as a constituent of dark matter. Methods. We present spectroscopic observations of the central square arcminute of Eridanus 2 from MUSE-Faint, a survey of ultra-faint dwarf galaxies with the Multi Unit Spectroscopic Explorer on the Very Large Telescope. We derive line-of-sight velocities for possible member stars of the putative cluster and for stars in the centre of Eridanus 2. We discuss the existence of the cluster and determine new constraints for MACHOs using the Fokker-Planck diffusion approximation. Results. Out of 182 extracted spectra, we identify 26 member stars of Eridanus 2, seven of which are possible cluster members. We find intrinsic mean line-of-sight velocities of $79.7^{+3.1}_{-3.8}\,\mathrm{km}\,\mathrm{s}^{-1}$ and $76.0^{+3.2}_{-3.7}\,\mathrm{km}\,\mathrm{s}^{-1}$ for the cluster and the bulk of Eridanus 2, respectively, and intrinsic velocity dispersions of ${<}7.6\,\mathrm{km}\,\mathrm{s}^{-1}$ (68-$\%$ upper limit) and $10.3^{+3.9}_{-3.2}\,\mathrm{km}\,\mathrm{s}^{-1}$, respectively. This indicates the cluster most likely exists as a distinct dynamical population hosted by Eridanus 2, without surplus of dark matter over the background distribution. Among the member stars in the bulk of Eridanus 2, we find possible carbon stars, alluding to the existence of an intermediate-age population. We derive constraints on the fraction of dark matter that can consist of MACHOs with a given mass between $1$-$10^5\,M_\mathrm{sun}$. For dark matter consisting purely of MACHOs, the mass of the MACHOs must be less than ${\sim}7.6\,M_\mathrm{sun}$ and ${\sim}44\,M_\mathrm{sun}$ at a $68$- and $95$-$\%$ confidence level, respectively. (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.08790v2-abstract-full').style.display = 'none'; document.getElementById('2001.08790v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures, 3 tables. 1 electronic table included in source. Accepted for publication in A&A. New in this version: correction to author list</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 635, A107 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.06158">arXiv:1912.06158</a> <span> [<a href="https://arxiv.org/pdf/1912.06158">pdf</a>, <a href="https://arxiv.org/format/1912.06158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz3506">10.1093/mnras/stz3506 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The peculiar kinematics of the multiple populations in the globular cluster Messier 80 (NGC 6093) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kamann%2C+S">Sebastian Kamann</a>, <a href="/search/astro-ph?searchtype=author&query=Dalessandro%2C+E">Emanuele Dalessandro</a>, <a href="/search/astro-ph?searchtype=author&query=Bastian%2C+N">Nate Bastian</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=Dreizler%2C+S">Stefan Dreizler</a>, <a href="/search/astro-ph?searchtype=author&query=Giesers%2C+B">Benjamin Giesers</a>, <a href="/search/astro-ph?searchtype=author&query=G%C3%B6ttgens%2C+F">Fabian G枚ttgens</a>, <a href="/search/astro-ph?searchtype=author&query=Husser%2C+T">Tim-Oliver Husser</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=van+de+Ven%2C+G">Glenn van de Ven</a>, <a href="/search/astro-ph?searchtype=author&query=Watkins%2C+L+L">Laura L. Watkins</a>, <a href="/search/astro-ph?searchtype=author&query=Wisotzki%2C+L">Lutz Wisotzki</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.06158v1-abstract-short" style="display: inline;"> We combine MUSE spectroscopy and Hubble Space Telescope ultraviolet (UV) photometry to perform a study of the chemistry and dynamics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Previous studies have revealed three stellar populations that not only vary in their light-element abundances, but also in their radial distributions, with concentration decreasing with increasing nitrogen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06158v1-abstract-full').style.display = 'inline'; document.getElementById('1912.06158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.06158v1-abstract-full" style="display: none;"> We combine MUSE spectroscopy and Hubble Space Telescope ultraviolet (UV) photometry to perform a study of the chemistry and dynamics of the Galactic globular cluster Messier 80 (M80, NGC 6093). Previous studies have revealed three stellar populations that not only vary in their light-element abundances, but also in their radial distributions, with concentration decreasing with increasing nitrogen enrichment. This remarkable trend, which sets M80 apart from the other Galactic globular clusters, points towards a complex formation and evolutionary history. To better understand how M80 formed and evolved, revealing its internal kinematics is key. We find that the most N-enriched population rotates faster than the other two populations at a 2 sigma confidence level. While our data further suggest that the intermediate population shows the least amount of rotation, this trend is rather marginal (1 - 2 sigma). Using axisymmetric Jeans models, we show that these findings can be explained from the radial distributions of the populations if they possess different angular momenta. Our findings suggest that the populations formed with primordial kinematical differences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.06158v1-abstract-full').style.display = 'none'; document.getElementById('1912.06158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS, 13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11491">arXiv:1911.11491</a> <span> [<a href="https://arxiv.org/pdf/1911.11491">pdf</a>, <a href="https://arxiv.org/format/1911.11491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5281/zenodo.3585459">10.5281/zenodo.3585459 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing the robustness of black hole mass measurements with ALMA and MUSE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Thater%2C+S">Sabine Thater</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Nguyen%2C+D+D">Dieu D. Nguyen</a>, <a href="/search/astro-ph?searchtype=author&query=Iguchi%2C+S">Satoru Iguchi</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11491v1-abstract-short" style="display: inline;"> We present our ongoing work of using two independent tracers to estimate the supermassive black hole mass in the nearby early-type galaxy NGC 6958; namely integrated stellar and molecular gas kinematics. We used data from the Atacama Large Millimeter/submillimeter Array (ALMA), and the adaptive-optics assisted Multi-Unit Spectroscopic Explorer (MUSE) and constructed state-of-the-art dynamical mode… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11491v1-abstract-full').style.display = 'inline'; document.getElementById('1911.11491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11491v1-abstract-full" style="display: none;"> We present our ongoing work of using two independent tracers to estimate the supermassive black hole mass in the nearby early-type galaxy NGC 6958; namely integrated stellar and molecular gas kinematics. We used data from the Atacama Large Millimeter/submillimeter Array (ALMA), and the adaptive-optics assisted Multi-Unit Spectroscopic Explorer (MUSE) and constructed state-of-the-art dynamical models. The different methods provide black hole masses of $(2.89\pm 2.05) \times 10^8M_{\odot}$ from stellar kinematics and $(1.35\pm 0.09) \times 10^8M_{\odot}$ from molecular gas kinematics which are consistent within their $3蟽$ uncertainties. Compared to recent M$_{\rm BH}$ - $蟽_{\rm e}$ scaling relations, we derive a slightly over-massive black hole. Our results also confirm previous findings that gas-based methods tend to provide lower black hole masses than stellar-based methods. More black hole mass measurements and an extensive analysis of the method-dependent systematics are needed in the future to understand this noticeable discrepancy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11491v1-abstract-full').style.display = 'none'; document.getElementById('1911.11491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, Proceeding of IAU Symposium 353, Galactic Dynamics in the Era of Large Surveys, ed. M. Valluri & J. A. Sellwood, Cambridge Univ. Press, in press; submitted September, 2019</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.06070">arXiv:1911.06070</a> <span> [<a href="https://arxiv.org/pdf/1911.06070">pdf</a>, <a href="https://arxiv.org/format/1911.06070">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz3184">10.1093/mnras/stz3184 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MUSE Atlas of Disks (MAD): Ionized gas kinematic maps and an application to Diffuse Ionized Gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=Carollo%2C+C+M">C. Marcella Carollo</a>, <a href="/search/astro-ph?searchtype=author&query=Erroz-Ferrer%2C+S">Santiago Erroz-Ferrer</a>, <a href="/search/astro-ph?searchtype=author&query=Fagioli%2C+M">Martina Fagioli</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Emsellem%2C+E">Eric Emsellem</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Marino%2C+R+A">Raffaella A. Marino</a>, <a href="/search/astro-ph?searchtype=author&query=Onodera%2C+M">Masato Onodera</a>, <a href="/search/astro-ph?searchtype=author&query=Tacchella%2C+S">Sandro Tacchella</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a>, <a href="/search/astro-ph?searchtype=author&query=Woo%2C+J">Joanna Woo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.06070v1-abstract-short" style="display: inline;"> We have obtained data for 41 star forming galaxies in the MUSE Atlas of Disks (MAD) survey with VLT/MUSE. These data allow us, at high resolution of a few 100 pc, to extract ionized gas kinematics ($V, 蟽$) of the centers of nearby star forming galaxies spanning 3 dex in stellar mass. This paper outlines the methodology for measuring the ionized gas kinematics, which we will use in subsequent paper… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06070v1-abstract-full').style.display = 'inline'; document.getElementById('1911.06070v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.06070v1-abstract-full" style="display: none;"> We have obtained data for 41 star forming galaxies in the MUSE Atlas of Disks (MAD) survey with VLT/MUSE. These data allow us, at high resolution of a few 100 pc, to extract ionized gas kinematics ($V, 蟽$) of the centers of nearby star forming galaxies spanning 3 dex in stellar mass. This paper outlines the methodology for measuring the ionized gas kinematics, which we will use in subsequent papers of this survey. We also show how the maps can be used to study the kinematics of diffuse ionized gas for galaxies of various inclinations and masses. Using two different methods to identify the diffuse ionized gas, we measure rotation velocities of this gas for a subsample of 6 galaxies. We find that the diffuse ionized gas rotates on average slower than the star forming gas with lags of 0-10 km/s while also having higher velocity dispersion. The magnitude of these lags is on average 5 km/s lower than observed velocity lags between ionized and molecular gas. Using Jeans models to interpret the lags in rotation velocity and the increase in velocity dispersion we show that most of the diffuse ionized gas kinematics are consistent with its emission originating from a somewhat thicker layer than the star forming gas, with a scale height that is lower than that of the stellar disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.06070v1-abstract-full').style.display = 'none'; document.getElementById('1911.06070v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05891">arXiv:1906.05891</a> <span> [<a href="https://arxiv.org/pdf/1906.05891">pdf</a>, <a href="https://arxiv.org/format/1906.05891">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201935857">10.1051/0004-6361/201935857 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Three Dimensional Optimal Spectral Extraction (TDOSE) from Integral Field Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Schmidt%2C+K+B">K. B. Schmidt</a>, <a href="/search/astro-ph?searchtype=author&query=Wisotzki%2C+L">L. Wisotzki</a>, <a href="/search/astro-ph?searchtype=author&query=Urrutia%2C+T">T. Urrutia</a>, <a href="/search/astro-ph?searchtype=author&query=Kerutt%2C+J">J. Kerutt</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">D. Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Herenz%2C+E+C">E. C. Herenz</a>, <a href="/search/astro-ph?searchtype=author&query=Saust%2C+R">R. Saust</a>, <a href="/search/astro-ph?searchtype=author&query=Contini%2C+T">T. Contini</a>, <a href="/search/astro-ph?searchtype=author&query=Epinat%2C+B">B. Epinat</a>, <a href="/search/astro-ph?searchtype=author&query=Inami%2C+H">H. Inami</a>, <a href="/search/astro-ph?searchtype=author&query=Maseda%2C+M+V">M. V. Maseda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05891v1-abstract-short" style="display: inline;"> [Abbreviated] The amount of integral field spectrograph (IFS) data has grown considerable over the last few decades. The demand for tools to analyze such data is therefore bigger now than ever. We present TDOSE; a flexible Python tool for Three Dimensional Optimal Spectral Extraction from IFS data cubes. TDOSE works on any three-dimensional data cube and bases the spectral extractions on morpholog… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05891v1-abstract-full').style.display = 'inline'; document.getElementById('1906.05891v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05891v1-abstract-full" style="display: none;"> [Abbreviated] The amount of integral field spectrograph (IFS) data has grown considerable over the last few decades. The demand for tools to analyze such data is therefore bigger now than ever. We present TDOSE; a flexible Python tool for Three Dimensional Optimal Spectral Extraction from IFS data cubes. TDOSE works on any three-dimensional data cube and bases the spectral extractions on morphological reference image models. In each wavelength layer of the IFS data cube, TDOSE simultaneously optimizes all sources in the morphological model to minimize the difference between the scaled model components and the IFS data. The flux optimization produces individual data cubes containing the scaled three-dimensional source models. This allows for efficient de-blending of flux in both the spatial and spectral dimensions of the IFS data cubes, and extraction of the corresponding one-dimensional spectra. We present an example of how the three-dimensional source models generated by TDOSE can be used to improve two-dimensional maps of physical parameters. By extracting TDOSE spectra of $\sim$150 [OII] emitters from the MUSE-Wide survey we show that the median increase in line flux is $\sim$5% when using multi-component models as opposed to single-component models. However, the increase in recovered line emission in individual cases can be as much as 50%. Comparing the TDOSE model-based extractions of the MUSE-Wide [OII] emitters with aperture spectra, the TDOSE spectra provides a median flux (S/N) increase of 9% (14%). Hence, TDOSE spectra optimizes the S/N while still being able to recover the total emitted flux. TDOSE version 3.0 presented in this paper is available at https://github.com/kasperschmidt/TDOSE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05891v1-abstract-full').style.display = 'none'; document.getElementById('1906.05891v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by A&A, 24 pages and 11 figures, code available at https://github.com/kasperschmidt/TDOSE</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 628, A91 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.01657">arXiv:1906.01657</a> <span> [<a href="https://arxiv.org/pdf/1906.01657">pdf</a>, <a href="https://arxiv.org/format/1906.01657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> BlueMUSE: Project Overview and Science Cases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">Johan Richard</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Blaizot%2C+J">J茅r茅my Blaizot</a>, <a href="/search/astro-ph?searchtype=author&query=Boissier%2C+S">Samuel Boissier</a>, <a href="/search/astro-ph?searchtype=author&query=Boselli%2C+A">Alessandro Boselli</a>, <a href="/search/astro-ph?searchtype=author&query=NicolasBouch%C3%A9"> NicolasBouch茅</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/astro-ph?searchtype=author&query=Castro%2C+N">Norberto Castro</a>, <a href="/search/astro-ph?searchtype=author&query=Ciesla%2C+L">Laure Ciesla</a>, <a href="/search/astro-ph?searchtype=author&query=Crowther%2C+P">Paul Crowther</a>, <a href="/search/astro-ph?searchtype=author&query=Daddi%2C+E">Emanuele Daddi</a>, <a href="/search/astro-ph?searchtype=author&query=Dreizler%2C+S">Stefan Dreizler</a>, <a href="/search/astro-ph?searchtype=author&query=Duc%2C+P">Pierre-Alain Duc</a>, <a href="/search/astro-ph?searchtype=author&query=Elbaz%2C+D">David Elbaz</a>, <a href="/search/astro-ph?searchtype=author&query=Epinat%2C+B">Benoit Epinat</a>, <a href="/search/astro-ph?searchtype=author&query=Evans%2C+C">Chris Evans</a>, <a href="/search/astro-ph?searchtype=author&query=Fossati%2C+M">Matteo Fossati</a>, <a href="/search/astro-ph?searchtype=author&query=Fumagalli%2C+M">Michele Fumagalli</a>, <a href="/search/astro-ph?searchtype=author&query=Garcia%2C+M">Miriam Garcia</a>, <a href="/search/astro-ph?searchtype=author&query=Garel%2C+T">Thibault Garel</a>, <a href="/search/astro-ph?searchtype=author&query=Hayes%2C+M">Matthew Hayes</a>, <a href="/search/astro-ph?searchtype=author&query=Adamo%2C+A">Angela Adamo</a>, <a href="/search/astro-ph?searchtype=author&query=Herrero%2C+A">Artemio Herrero</a>, <a href="/search/astro-ph?searchtype=author&query=Hugot%2C+E">Emmanuel Hugot</a>, <a href="/search/astro-ph?searchtype=author&query=Humphrey%2C+A">Andrew Humphrey</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.01657v4-abstract-short" style="display: inline;"> We present the concept of BlueMUSE, a blue-optimised, medium spectral resolution, panoramic integral field spectrograph based on the MUSE concept and proposed for the Very Large Telescope. With an optimised transmission down to 350 nm, a larger FoV (1.4 x 1.4 arcmin$^2$) and a higher spectral resolution compared to MUSE, BlueMUSE will open up a new range of galactic and extragalactic science cases… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01657v4-abstract-full').style.display = 'inline'; document.getElementById('1906.01657v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.01657v4-abstract-full" style="display: none;"> We present the concept of BlueMUSE, a blue-optimised, medium spectral resolution, panoramic integral field spectrograph based on the MUSE concept and proposed for the Very Large Telescope. With an optimised transmission down to 350 nm, a larger FoV (1.4 x 1.4 arcmin$^2$) and a higher spectral resolution compared to MUSE, BlueMUSE will open up a new range of galactic and extragalactic science cases allowed by its specific capabilities, beyond those possible with MUSE. For example a survey of massive stars in our galaxy and the Local Group will increase the known population of massive stars by a factor $>$100, to answer key questions about their evolution. Deep field observations with BlueMUSE will also significantly increase samples of Lyman-alpha emitters, spanning the era of Cosmic Noon. This will revolutionise the study of the distant Universe: allowing the intergalactic medium to be detected unambiguously in emission, enabling the study of the exchange of baryons between galaxies and their surroundings. By 2030, at a time when the focus of most of the new large facilities (ELT, JWST) will be on the infra-red, BlueMUSE will be a unique facility, outperforming any ELT instrument in the Blue/UV. It will have a strong synergy with ELT, JWST as well as ALMA, SKA, Euclid and Athena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01657v4-abstract-full').style.display = 'none'; document.getElementById('1906.01657v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 22 figures, minor updates</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.10175">arXiv:1902.10175</a> <span> [<a href="https://arxiv.org/pdf/1902.10175">pdf</a>, <a href="https://arxiv.org/format/1902.10175">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834808">10.1051/0004-6361/201834808 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Six new supermassive black hole mass determinations from adaptive-optics assisted SINFONI observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Thater%2C+S">Sabine Thater</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Cappellari%2C+M">Michele Cappellari</a>, <a href="/search/astro-ph?searchtype=author&query=Davis%2C+T+A">Timothy A. Davis</a>, <a href="/search/astro-ph?searchtype=author&query=de+Zeeuw%2C+P+T">P. Tim de Zeeuw</a>, <a href="/search/astro-ph?searchtype=author&query=McDermid%2C+R+M">Richard M. McDermid</a>, <a href="/search/astro-ph?searchtype=author&query=Sarzi%2C+M">Marc Sarzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.10175v2-abstract-short" style="display: inline;"> Different massive black hole mass - host galaxy scaling relations suggest that the growth of massive black holes is entangled with the evolution of their host galaxies. The number of measured black hole masses is still limited, and additional measurements are necessary to understand the underlying physics of this apparent co-evolution. We add six new black hole mass (MBH) measurements of nearby fa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10175v2-abstract-full').style.display = 'inline'; document.getElementById('1902.10175v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.10175v2-abstract-full" style="display: none;"> Different massive black hole mass - host galaxy scaling relations suggest that the growth of massive black holes is entangled with the evolution of their host galaxies. The number of measured black hole masses is still limited, and additional measurements are necessary to understand the underlying physics of this apparent co-evolution. We add six new black hole mass (MBH) measurements of nearby fast rotating early-type galaxies to the known black hole mass sample, namely NGC 584, NGC 2784, NGC 3640, NGC 4570, NGC 4281 and NGC 7049. Our target galaxies have effective velocity dispersions (蟽e) between 170 and 245 km s^(-1), and thus this work provides additional insight into the black hole properties of intermediate-mass early-type galaxies. We combine high-resolution adaptive-optics SINFONI data with large-scale MUSE, VIMOS and SAURON data from ATLAS3D to derive two-dimensional stellar kinematics maps. We then build both Jeans Anisotropic Models and axisymmetric Schwarzschild models to measure the central black hole masses. Our Schwarzschild models provide black hole masses which are consistent with recent MBH-蟽e scaling relations. NGC 3640 has a velocity dispersion dip and NGC 7049 a constant velocity dispersion in the center, but we can clearly constrain their lower black hole mass limit. We conclude our analysis with a test on NGC 4570 taking into account a variable mass-to-light ratio (M/L) when constructing dynamical models. When considering M/L variations linked mostly to radial changes in the stellar metallicity, we find that the dynamically determined black hole mass from NGC 4570 decreases by 30%. Further investigations are needed in the future to account for the impact of radial M/L gradients on dynamical modeling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.10175v2-abstract-full').style.display = 'none'; document.getElementById('1902.10175v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages 19 Figures, accepted for publication in A&A, corrected references and typos</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 625, A62 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.11059">arXiv:1811.11059</a> <span> [<a href="https://arxiv.org/pdf/1811.11059">pdf</a>, <a href="https://arxiv.org/format/1811.11059">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2318">10.1093/mnras/stz2318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The impact of AGN on stellar kinematics and orbits in simulated massive galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Frigo%2C+M">Matteo Frigo</a>, <a href="/search/astro-ph?searchtype=author&query=Naab%2C+T">Thorsten Naab</a>, <a href="/search/astro-ph?searchtype=author&query=Hirschmann%2C+M">Michaela Hirschmann</a>, <a href="/search/astro-ph?searchtype=author&query=Choi%2C+E">Ena Choi</a>, <a href="/search/astro-ph?searchtype=author&query=Somerville%2C+R">Rachel Somerville</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovic%2C+D">Davor Krajnovic</a>, <a href="/search/astro-ph?searchtype=author&query=Dav%C3%A9%2C+R">Romeel Dav茅</a>, <a href="/search/astro-ph?searchtype=author&query=Cappellari%2C+M">Michele Cappellari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.11059v1-abstract-short" style="display: inline;"> We present a series of 20 cosmological zoom simulations of the formation of massive galaxies with and without a model for AGN feedback. Differences in stellar population and kinematic properties are evaluated by constructing mock integral field unit (IFU) maps. The impact of the AGN is weak at high redshift when all systems are mostly fast-rotating and disc-like. After $z \sim 1$ the AGN simulatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11059v1-abstract-full').style.display = 'inline'; document.getElementById('1811.11059v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.11059v1-abstract-full" style="display: none;"> We present a series of 20 cosmological zoom simulations of the formation of massive galaxies with and without a model for AGN feedback. Differences in stellar population and kinematic properties are evaluated by constructing mock integral field unit (IFU) maps. The impact of the AGN is weak at high redshift when all systems are mostly fast-rotating and disc-like. After $z \sim 1$ the AGN simulations result in lower mass, older, less metal rich and slower rotating systems with less disky isophotes - in general agreement with observations. Two-dimensional kinematic maps of in-situ and accreted stars show that these differences result from reduced in-situ star formation due to AGN feedback. A full analysis of stellar orbits indicates that galaxies simulated with AGN are typically more triaxial and have higher fractions of x-tubes and box orbits and lower fractions of z-tubes. This trend can also be explained by reduced late in-situ star formation. We introduce a global parameter, $尉_3$ , to characterise the anti-correlation between the third-order kinematic moment $h_3$ and the line-of-sight velocity ($v_{los}/蟽$), and compare to ATLAS$^{3D}$ observations. The kinematic asymmetry parameter $尉_3$ might be a useful diagnostic for large integral field surveys as it is a kinematic indicator for intrinsic shape and orbital content. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.11059v1-abstract-full').style.display = 'none'; document.getElementById('1811.11059v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.06549">arXiv:1811.06549</a> <span> [<a href="https://arxiv.org/pdf/1811.06549">pdf</a>, <a href="https://arxiv.org/format/1811.06549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834656">10.1051/0004-6361/201834656 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The MUSE-Wide Survey: Survey Description and First Data Release </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Urrutia%2C+T">T. Urrutia</a>, <a href="/search/astro-ph?searchtype=author&query=Wisotzki%2C+L">L. Wisotzki</a>, <a href="/search/astro-ph?searchtype=author&query=Kerutt%2C+J">J. Kerutt</a>, <a href="/search/astro-ph?searchtype=author&query=Schmidt%2C+K+B">K. B. Schmidt</a>, <a href="/search/astro-ph?searchtype=author&query=Herenz%2C+E+C">E. C. Herenz</a>, <a href="/search/astro-ph?searchtype=author&query=Klar%2C+J">J. Klar</a>, <a href="/search/astro-ph?searchtype=author&query=Saust%2C+R">R. Saust</a>, <a href="/search/astro-ph?searchtype=author&query=Werhahn%2C+M">M. Werhahn</a>, <a href="/search/astro-ph?searchtype=author&query=Diener%2C+C">C. Diener</a>, <a href="/search/astro-ph?searchtype=author&query=Caruana%2C+J">J. Caruana</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">D. Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Bacon%2C+R">R. Bacon</a>, <a href="/search/astro-ph?searchtype=author&query=Boogaard%2C+L">L. Boogaard</a>, <a href="/search/astro-ph?searchtype=author&query=Brinchman%2C+J">J. Brinchman</a>, <a href="/search/astro-ph?searchtype=author&query=Enke%2C+H">H. Enke</a>, <a href="/search/astro-ph?searchtype=author&query=Maseda%2C+M">M. Maseda</a>, <a href="/search/astro-ph?searchtype=author&query=Nanayakkara%2C+T">T. Nanayakkara</a>, <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">J. Richard</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">M. Steinmetz</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">P. M. Weilbacher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.06549v2-abstract-short" style="display: inline;"> We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing "spectroscopy of everything" without photometric pre-selection.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06549v2-abstract-full').style.display = 'inline'; document.getElementById('1811.06549v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.06549v2-abstract-full" style="display: none;"> We present the MUSE-Wide survey, a blind, 3D spectroscopic survey in the CANDELS/GOODS-S and CANDELS/COSMOS regions. Each MUSE-Wide pointing has a depth of 1 hour and hence targets more extreme and more luminous objects over 10 times the area of the MUSE-Deep fields (Bacon et al. 2017). The legacy value of MUSE-Wide lies in providing "spectroscopy of everything" without photometric pre-selection. We describe the data reduction, post-processing and PSF characterization of the first 44 CANDELS/GOODS-S MUSE-Wide pointings released with this publication. Using a 3D matched filtering approach we detected 1,602 emission line sources, including 479 Lyman-$伪$ (Lya) emitting galaxies with redshifts $2.9 \lesssim z \lesssim 6.3$. We cross-match the emission line sources to existing photometric catalogs, finding almost complete agreement in redshifts and stellar masses for our low redshift (z < 1.5) emitters. At high redshift, we only find ~55% matches to photometric catalogs. We encounter a higher outlier rate and a systematic offset of $螖$z$\simeq$0.2 when comparing our MUSE redshifts with photometric redshifts. Cross-matching the emission line sources with X-ray catalogs from the Chandra Deep Field South, we find 127 matches, including 10 objects with no prior spectroscopic identification. Stacking X-ray images centered on our Lya emitters yielded no signal; the Lya population is not dominated by even low luminosity AGN. A total of 9,205 photometrically selected objects from the CANDELS survey lie in the MUSE-Wide footprint, which we provide optimally extracted 1D spectra of. We are able to determine the spectroscopic redshift of 98% of 772 photometrically selected galaxies brighter than 24th F775W magnitude. All the data in the first data release - datacubes, catalogs, extracted spectra, maps - are available on the website https://musewide.aip.de. [abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.06549v2-abstract-full').style.display = 'none'; document.getElementById('1811.06549v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages 15+1 figures. Accepted, A&A. Comments welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 624, A141 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.10612">arXiv:1807.10612</a> <span> [<a href="https://arxiv.org/pdf/1807.10612">pdf</a>, <a href="https://arxiv.org/format/1807.10612">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty1958">10.1093/mnras/sty1958 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cluster kinematics and stellar rotation in NGC 419 with MUSE and adaptive optics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Kamann%2C+S">Sebastian Kamann</a>, <a href="/search/astro-ph?searchtype=author&query=Bastian%2C+N+J">Nathan J. Bastian</a>, <a href="/search/astro-ph?searchtype=author&query=Husser%2C+T">Tim-Oliver Husser</a>, <a href="/search/astro-ph?searchtype=author&query=Martocchia%2C+S">Silvia Martocchia</a>, <a href="/search/astro-ph?searchtype=author&query=Usher%2C+C">Christopher Usher</a>, <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=Dreizler%2C+S">Stefan Dreizler</a>, <a href="/search/astro-ph?searchtype=author&query=Kelz%2C+A">Andreas Kelz</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Richard%2C+J">Johan Richard</a>, <a href="/search/astro-ph?searchtype=author&query=Steinmetz%2C+M">Matthias Steinmetz</a>, <a href="/search/astro-ph?searchtype=author&query=Weilbacher%2C+P+M">Peter M. Weilbacher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.10612v1-abstract-short" style="display: inline;"> We present adaptive optics (AO) assisted integral-field spectroscopy of the intermediate-age star cluster NGC 419 in the Small Magellanic Cloud. By investigating the cluster dynamics and the rotation properties of main sequence turn-off stars (MSTO), we demonstrate the power of AO-fed MUSE observations for this class of objects. Based on 1 049 radial velocity measurements, we determine a dynamical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10612v1-abstract-full').style.display = 'inline'; document.getElementById('1807.10612v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.10612v1-abstract-full" style="display: none;"> We present adaptive optics (AO) assisted integral-field spectroscopy of the intermediate-age star cluster NGC 419 in the Small Magellanic Cloud. By investigating the cluster dynamics and the rotation properties of main sequence turn-off stars (MSTO), we demonstrate the power of AO-fed MUSE observations for this class of objects. Based on 1 049 radial velocity measurements, we determine a dynamical cluster mass of 1.4+/-0.2x10^5 M_sun and a dynamical mass-to-light ratio of 0.67+/-0.08, marginally higher than simple stellar population predictions for a Kroupa initial mass function. A stacking analysis of spectra at both sides of the extended MSTO reveals significant rotational broadening. Our analysis further provides tentative evidence that red MSTO stars rotate faster than their blue counterparts. We find average V sin i values of 87+/-16 km/s and 130+/-22 km/s for blue and red MSTO stars, respectively. Potential systematic effects due to the low spectral resolution of MUSE can reach 30 km/s but the difference in V sin i between the populations is unlikely to be affected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.10612v1-abstract-full').style.display = 'none'; document.getElementById('1807.10612v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures; accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.02399">arXiv:1804.02399</a> <span> [<a href="https://arxiv.org/pdf/1804.02399">pdf</a>, <a href="https://arxiv.org/format/1804.02399">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aabc57">10.3847/1538-4357/aabc57 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Black Hole in the Most Massive Ultracompact Dwarf Galaxy M59-UCD3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Ahn%2C+C+P">Christopher P. Ahn</a>, <a href="/search/astro-ph?searchtype=author&query=Seth%2C+A+C">Anil C. Seth</a>, <a href="/search/astro-ph?searchtype=author&query=Cappellari%2C+M">Michele Cappellari</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Strader%2C+J">Jay Strader</a>, <a href="/search/astro-ph?searchtype=author&query=Voggel%2C+K+T">Karina T. Voggel</a>, <a href="/search/astro-ph?searchtype=author&query=Walsh%2C+J+L">Jonelle L. Walsh</a>, <a href="/search/astro-ph?searchtype=author&query=Bahramian%2C+A">Arash Bahramian</a>, <a href="/search/astro-ph?searchtype=author&query=Baumgardt%2C+H">Holger Baumgardt</a>, <a href="/search/astro-ph?searchtype=author&query=Brodie%2C+J">Jean Brodie</a>, <a href="/search/astro-ph?searchtype=author&query=Chilingarian%2C+I">Igor Chilingarian</a>, <a href="/search/astro-ph?searchtype=author&query=Chomiuk%2C+L">Laura Chomiuk</a>, <a href="/search/astro-ph?searchtype=author&query=Brok%2C+M+d">Mark den Brok</a>, <a href="/search/astro-ph?searchtype=author&query=Frank%2C+M">Matthias Frank</a>, <a href="/search/astro-ph?searchtype=author&query=Hilker%2C+M">Michael Hilker</a>, <a href="/search/astro-ph?searchtype=author&query=McDermid%2C+R+M">Richard M. McDermid</a>, <a href="/search/astro-ph?searchtype=author&query=Mieske%2C+S">Steffen Mieske</a>, <a href="/search/astro-ph?searchtype=author&query=Neumayer%2C+N">Nadine Neumayer</a>, <a href="/search/astro-ph?searchtype=author&query=Nguyen%2C+D+D">Dieu D. Nguyen</a>, <a href="/search/astro-ph?searchtype=author&query=Pechetti%2C+R">Renuka Pechetti</a>, <a href="/search/astro-ph?searchtype=author&query=Romanowsky%2C+A+J">Aaron J. Romanowsky</a>, <a href="/search/astro-ph?searchtype=author&query=Spitler%2C+L">Lee Spitler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.02399v1-abstract-short" style="display: inline;"> We examine the internal properties of the most massive ultracompact dwarf galaxy (UCD), M59-UCD3, by combining adaptive optics assisted near-IR integral field spectroscopy from Gemini/NIFS, and Hubble Space Telescope (HST) imaging. We use the multi-band HST imaging to create a mass model that suggests and accounts for the presence of multiple stellar populations and structural components. We combi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02399v1-abstract-full').style.display = 'inline'; document.getElementById('1804.02399v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.02399v1-abstract-full" style="display: none;"> We examine the internal properties of the most massive ultracompact dwarf galaxy (UCD), M59-UCD3, by combining adaptive optics assisted near-IR integral field spectroscopy from Gemini/NIFS, and Hubble Space Telescope (HST) imaging. We use the multi-band HST imaging to create a mass model that suggests and accounts for the presence of multiple stellar populations and structural components. We combine these mass models with kinematics measurements from Gemini/NIFS to find a best-fit stellar mass-to-light ratio ($M/L$) and black hole (BH) mass using Jeans Anisotropic Models (JAM), axisymmetric Schwarzschild models, and triaxial Schwarzschild models. The best fit parameters in the JAM and axisymmetric Schwarzschild models have black holes between 2.5 and 5.9 million solar masses. The triaxial Schwarzschild models point toward a similar BH mass, but show a minimum $蠂^2$ at a BH mass of $\sim 0$. Models with a BH in all three techniques provide better fits to the central $V_{rms}$ profiles, and thus we estimate the BH mass to be $4.2^{+2.1}_{-1.7} \times 10^{6}$ M$_\odot$ (estimated 1$蟽$ uncertainties). We also present deep radio imaging of M59-UCD3 and two other UCDs in Virgo with dynamical BH mass measurements, and compare these to X-ray measurements to check for consistency with the fundamental plane of BH accretion. We detect faint radio emission in M59cO, but find only upper limits for M60-UCD1 and M59-UCD3 despite X-ray detections in both these sources. The BH mass and nuclear light profile of M59-UCD3 suggests it is the tidally stripped remnant of a $\sim$10$^{9-10}$ M$_\odot$ galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.02399v1-abstract-full').style.display = 'none'; document.getElementById('1804.02399v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 14 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08055">arXiv:1803.08055</a> <span> [<a href="https://arxiv.org/pdf/1803.08055">pdf</a>, <a href="https://arxiv.org/format/1803.08055">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty778">10.1093/mnras/sty778 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A quartet of black holes and a missing duo: probing the low-end of the Mbh - sigma relation with the adaptive optics assisted integral-field spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Cappellari%2C+M">Michele Cappellari</a>, <a href="/search/astro-ph?searchtype=author&query=McDermid%2C+R+M">Richard M. McDermid</a>, <a href="/search/astro-ph?searchtype=author&query=Thater%2C+S">Sabine Thater</a>, <a href="/search/astro-ph?searchtype=author&query=Nyland%2C+K">Kristina Nyland</a>, <a href="/search/astro-ph?searchtype=author&query=de+Zeeuw%2C+P+T">P. Tim de Zeeuw</a>, <a href="/search/astro-ph?searchtype=author&query=Falc%C3%B3n-Barroso%2C+J">Jes煤s Falc贸n-Barroso</a>, <a href="/search/astro-ph?searchtype=author&query=Khochfar%2C+S">Sadegh Khochfar</a>, <a href="/search/astro-ph?searchtype=author&query=Kuntschner%2C+H">Harald Kuntschner</a>, <a href="/search/astro-ph?searchtype=author&query=Sarzi%2C+M">Marc Sarzi</a>, <a href="/search/astro-ph?searchtype=author&query=Young%2C+L+M">Lisa M. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08055v2-abstract-short" style="display: inline;"> We present mass estimates of supermassive black holes in six nearby fast rotating early-type galaxies (NGC4339, NGC4434, NGC4474, NGC4551, NGC4578 and NGC4762) with effective stellar velocity dispersion around 100 km/s. We use near-infrared laser-guide adaptive optics observations with the GEMINI/NIFS to derive stellar kinematics in the galactic nuclei, and SAURON observations from the ATLAS3D Sur… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08055v2-abstract-full').style.display = 'inline'; document.getElementById('1803.08055v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08055v2-abstract-full" style="display: none;"> We present mass estimates of supermassive black holes in six nearby fast rotating early-type galaxies (NGC4339, NGC4434, NGC4474, NGC4551, NGC4578 and NGC4762) with effective stellar velocity dispersion around 100 km/s. We use near-infrared laser-guide adaptive optics observations with the GEMINI/NIFS to derive stellar kinematics in the galactic nuclei, and SAURON observations from the ATLAS3D Survey for large-scale kinematics. We build axisymmetric Jeans anisotropic models and axisymmetric Schwarzschild dynamical models. Both modelling approaches recover consistent orbital anisotropies and black hole masses within 1-2sigma confidence level, except for one galaxy for which the difference is just above the 3sigma level. Two black holes (NGC4339 and NGC4434) are amongst the largest outliers from the current black hole mass - velocity dispersion relation, with masses of $(4.3^{+4.8}_{-2.3})\times10^7$ and $(7.0^{+2.0}_{-2.8})\times10^7$ M$_\odot$, respectively ($3蟽$ confidence level). The black holes in NGC4578 and NGC4762 lie on the scaling relation with masses of $(1.9^{+0.6}_{-1.4})\times10^7$ and $(2.3^{+0.9}_{-0.6})\times10^7$ M$_\odot$, respectively (3sigma confidence level). For two galaxies (NGC4474 and NGC4551) we are able to place upper limits on their black holes masses ($<7\times10^6$ and $<5\times10^6$ M$_\odot$, respectively, $3蟽$ confidence level). The kinematics for these galaxies clearly indicate central velocity dispersion drops within a radius of 35 pc and 80 pc, respectively. These drops cannot be associated with cold stellar structures and our data do not have the resolution to exclude black holes with masses an order of magnitude smaller than the predictions. Parametrizing the orbital distribution in spherical coordinates, the vicinity of the black holes is characterized by isotropic or mildly tangential anisotropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08055v2-abstract-full').style.display = 'none'; document.getElementById('1803.08055v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 23 figures (slightly degraded, full resolution can be found on https://cloud.aip.de/index.php/s/rHzbDcFGJImoPgG , minor linguistic changes); accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.09495">arXiv:1802.09495</a> <span> [<a href="https://arxiv.org/pdf/1802.09495">pdf</a>, <a href="https://arxiv.org/format/1802.09495">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty536">10.1093/mnras/sty536 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Diversity of Atomic Hydrogen in Slow Rotator Early-type Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&query=Young%2C+L+M">Lisa M. Young</a>, <a href="/search/astro-ph?searchtype=author&query=Serra%2C+P">Paolo Serra</a>, <a href="/search/astro-ph?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/astro-ph?searchtype=author&query=Duc%2C+P">Pierre-Alain Duc</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.09495v1-abstract-short" style="display: inline;"> We present interferometric observations of HI in nine slow rotator early-type galaxies of the Atlas3D sample. With these data, we now have sensitive HI searches in 34 of the 36 slow rotators. The aggregate detection rate is 32\% $\pm$ 8\%, consistent with previous work; however, we find two detections with extremely high HI masses, whose gas kinematics are substantially different from what was pre… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09495v1-abstract-full').style.display = 'inline'; document.getElementById('1802.09495v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.09495v1-abstract-full" style="display: none;"> We present interferometric observations of HI in nine slow rotator early-type galaxies of the Atlas3D sample. With these data, we now have sensitive HI searches in 34 of the 36 slow rotators. The aggregate detection rate is 32\% $\pm$ 8\%, consistent with previous work; however, we find two detections with extremely high HI masses, whose gas kinematics are substantially different from what was previously known about HI in slow rotators. These two cases (NGC 1222 and NGC 4191) broaden the known diversity of HI properties in slow rotators. NGC 1222 is a merger remnant with prolate-like rotation and, if it is indeed prolate in shape, an equatorial gas disc; NGC 4191 has two counterrotating stellar discs and an unusually large HI disc. We comment on the implications of this disc for the formation of $2蟽$ galaxies. In general, the HI detection rate, the incidence of relaxed HI discs, and the HI/stellar mass ratios of slow rotators are indistinguishable from those of fast rotators. These broad similarities suggest that the HI we are detecting now is unrelated to the galaxies' formation processes and was often acquired after their stars were mostly in place. We also discuss the HI nondetections; some of these galaxies that are undetected in HI or CO are detected in other tracers (e.g. FIR fine structure lines and dust). The question of whether there is cold gas in massive galaxies' scoured nuclear cores still needs work. Finally, we discuss an unusual isolated HI cloud with a surprisingly faint (undetected) optical counterpart. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.09495v1-abstract-full').style.display = 'none'; document.getElementById('1802.09495v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures. Accepted for publication in MNRAS</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>