CINXE.COM

惯性参考系 - 维基百科,自由的百科全书

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="zh" dir="ltr"> <head> <meta charset="UTF-8"> <title>惯性参考系 - 维基百科,自由的百科全书</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )zhwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"zh", "wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"aae61d00-6aa6-4377-b80c-e5fc05681262","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"惯性参考系","wgTitle":"惯性参考系","wgCurRevisionId":78440659,"wgRevisionId":78440659,"wgArticleId":138325,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["自2024年12月带有失效链接的条目","含有英語的條目","自2020年2月带有失效链接的条目","条目有永久失效的外部链接","经典力学","参考系","相对论"],"wgPageViewLanguage":"zh","wgPageContentLanguage":"zh","wgPageContentModel":"wikitext","wgRelevantPageName":"惯性参考系","wgRelevantArticleId":138325,"wgUserVariant":"zh","wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom": "惯性参照系","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"zh","pageLanguageDir":"ltr","pageVariantFallbacks":["zh-hans","zh-hant","zh-cn","zh-tw","zh-hk","zh-sg","zh-mo","zh-my"]},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgInternalRedirectTargetUrl":"/wiki/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q192735","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.large-font":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.edit0","ext.gadget.WikiMiniAtlas", "ext.gadget.UnihanTooltips","ext.gadget.Difflink","ext.gadget.pseudonamespace-UI","ext.gadget.SpecialWikitext","ext.gadget.switcher","ext.gadget.VariantAlly","ext.gadget.AdvancedSiteNotices","ext.gadget.hideConversionTab","ext.gadget.internalLinkHelper-altcolor","ext.gadget.noteTA","ext.gadget.NavFrame","ext.gadget.collapsibleTables","ext.gadget.scrollUpButton","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=zh&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=ext.gadget.large-font&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=zh&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="惯性参考系 - 维基百科,自由的百科全书"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//zh.m.wikipedia.org/wiki/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" type="application/x-wiki" title="编辑本页" href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (zh)"> <link rel="EditURI" type="application/rsd+xml" href="//zh.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://zh.wikipedia.org/wiki/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="zh" href="https://zh.wikipedia.org/wiki/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="zh-Hans" href="https://zh.wikipedia.org/zh-hans/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="zh-Hans-CN" href="https://zh.wikipedia.org/zh-cn/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="zh-Hans-MY" href="https://zh.wikipedia.org/zh-my/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="zh-Hans-SG" href="https://zh.wikipedia.org/zh-sg/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="zh-Hant" href="https://zh.wikipedia.org/zh-hant/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="zh-Hant-HK" href="https://zh.wikipedia.org/zh-hk/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="zh-Hant-MO" href="https://zh.wikipedia.org/zh-mo/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="zh-Hant-TW" href="https://zh.wikipedia.org/zh-tw/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="alternate" hreflang="x-default" href="https://zh.wikipedia.org/wiki/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.zh"> <link rel="alternate" type="application/atom+xml" title="Wikipedia的Atom feed" href="/w/index.php?title=Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-惯性参考系 rootpage-惯性参考系 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">跳转到内容</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="主菜单" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">主菜单</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">主菜单</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">隐藏</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 导航 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" title="访问首页[z]" accesskey="z"><span>首页</span></a></li><li id="n-indexpage" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%88%86%E7%B1%BB%E7%B4%A2%E5%BC%95" title="以分类索引搜寻中文维基百科"><span>分类索引</span></a></li><li id="n-Featured_content" class="mw-list-item"><a href="/wiki/Portal:%E7%89%B9%E8%89%B2%E5%85%A7%E5%AE%B9" title="查看中文维基百科的特色内容"><span>特色内容</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%96%B0%E8%81%9E%E5%8B%95%E6%85%8B" title="提供当前新闻事件的背景资料"><span>新闻动态</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:%E6%9C%80%E8%BF%91%E6%9B%B4%E6%94%B9" title="列出维基百科中的最近修改[r]" accesskey="r"><span>最近更改</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:%E9%9A%8F%E6%9C%BA%E9%A1%B5%E9%9D%A2" title="随机载入一个页面[x]" accesskey="x"><span>随机条目</span></a></li> </ul> </div> </div> <div id="p-help" class="vector-menu mw-portlet mw-portlet-help" > <div class="vector-menu-heading"> 帮助 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:%E7%9B%AE%E5%BD%95" title="寻求帮助"><span>帮助</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%A4%BE%E7%BE%A4%E9%A6%96%E9%A1%B5" title="关于本计划、你可以做什么、应该如何做"><span>维基社群</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/Wikipedia:%E6%96%B9%E9%87%9D%E8%88%87%E6%8C%87%E5%BC%95" title="查看维基百科的方针和指引"><span>方针与指引</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:%E4%BA%92%E5%8A%A9%E5%AE%A2%E6%A0%88" title="参与维基百科社群的讨论"><span>互助客栈</span></a></li><li id="n-Information_desk" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%9F%A5%E8%AF%86%E9%97%AE%E7%AD%94" title="解答任何与维基百科无关的问题的地方"><span>知识问答</span></a></li><li id="n-conversion" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%AD%97%E8%AF%8D%E8%BD%AC%E6%8D%A2" title="提出字词转换请求"><span>字词转换</span></a></li><li id="n-IRC" class="mw-list-item"><a href="/wiki/Wikipedia:IRC%E8%81%8A%E5%A4%A9%E9%A2%91%E9%81%93"><span>IRC即时聊天</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:%E8%81%94%E7%BB%9C%E6%88%91%E4%BB%AC" title="如何联络维基百科"><span>联络我们</span></a></li><li id="n-about" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E" title="查看维基百科的简介"><span>关于维基百科</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:%E9%A6%96%E9%A1%B5" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="维基百科" src="/static/images/mobile/copyright/wikipedia-wordmark-zh.svg" style="width: 6.5625em; height: 1.375em;"> <img class="mw-logo-tagline" alt="自由的百科全书" src="/static/images/mobile/copyright/wikipedia-tagline-zh.svg" width="103" height="14" style="width: 6.4375em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:%E6%90%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="搜索维基百科[f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>搜索</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搜索维基百科" aria-label="搜索维基百科" autocapitalize="sentences" title="搜索维基百科[f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搜索</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="个人工具"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="更改页面字体大小、宽度和颜色的外观" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="外观" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">外观</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=zh.wikipedia.org&amp;uselang=zh" class=""><span>资助维基百科</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" title="我们推荐您创建账号并登录,但这不是强制性的" class=""><span>创建账号</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" title="建议你登录,尽管并非必须。[o]" accesskey="o" class=""><span>登录</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="更多选项" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="个人工具" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">个人工具</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="用户菜单" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=zh.wikipedia.org&amp;uselang=zh"><span>资助维基百科</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E5%88%9B%E5%BB%BA%E8%B4%A6%E6%88%B7&amp;returnto=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" title="我们推荐您创建账号并登录,但这不是强制性的"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>创建账号</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E7%94%A8%E6%88%B7%E7%99%BB%E5%BD%95&amp;returnto=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" title="建议你登录,尽管并非必须。[o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>登录</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 未登录编辑者的页面 <a href="/wiki/Help:%E6%96%B0%E6%89%8B%E5%85%A5%E9%97%A8" aria-label="了解有关编辑的更多信息"><span>了解详情</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%B4%A1%E7%8C%AE" title="来自此IP地址的编辑列表[y]" accesskey="y"><span>贡献</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:%E6%88%91%E7%9A%84%E8%AE%A8%E8%AE%BA%E9%A1%B5" title="对于来自此IP地址编辑的讨论[n]" accesskey="n"><span>讨论</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="站点"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目录" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目录</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">隐藏</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">序言</div> </a> </li> <li id="toc-概论" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#概论"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>概论</span> </div> </a> <ul id="toc-概论-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-背景" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#背景"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>背景</span> </div> </a> <button aria-controls="toc-背景-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关背景子章节</span> </button> <ul id="toc-背景-sublist" class="vector-toc-list"> <li id="toc-一组物理定律最简的参考系" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#一组物理定律最简的参考系"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>一组物理定律最简的参考系</span> </div> </a> <ul id="toc-一组物理定律最简的参考系-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-绝对空间" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#绝对空间"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>绝对空间</span> </div> </a> <ul id="toc-绝对空间-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-牛顿惯性系" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#牛顿惯性系"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>牛顿惯性系</span> </div> </a> <ul id="toc-牛顿惯性系-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-非惯性系与惯性系之间的分野" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#非惯性系与惯性系之间的分野"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>非惯性系与惯性系之间的分野</span> </div> </a> <button aria-controls="toc-非惯性系与惯性系之间的分野-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>开关非惯性系与惯性系之间的分野子章节</span> </button> <ul id="toc-非惯性系与惯性系之间的分野-sublist" class="vector-toc-list"> <li id="toc-理论" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#理论"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>理论</span> </div> </a> <ul id="toc-理论-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-应用" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#应用"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>应用</span> </div> </a> <ul id="toc-应用-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-牛顿力学" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#牛顿力学"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>牛顿力学</span> </div> </a> <ul id="toc-牛顿力学-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-狭义相对论" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#狭义相对论"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>狭义相对论</span> </div> </a> <ul id="toc-狭义相对论-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-广义相对论" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#广义相对论"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>广义相对论</span> </div> </a> <ul id="toc-广义相对论-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-另见" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#另见"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>另见</span> </div> </a> <ul id="toc-另见-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-註釋" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#註釋"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>註釋</span> </div> </a> <ul id="toc-註釋-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参考文献" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#参考文献"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>参考文献</span> </div> </a> <ul id="toc-参考文献-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-延伸阅读" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#延伸阅读"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>延伸阅读</span> </div> </a> <ul id="toc-延伸阅读-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-外部链接" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#外部链接"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>外部链接</span> </div> </a> <ul id="toc-外部链接-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目录" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="开关目录" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">开关目录</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">惯性参考系</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="前往另一种语言写成的文章。52种语言可用" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-52" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">52种语言</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Inersiestelsel" title="Inersiestelsel – 南非荷兰语" lang="af" hreflang="af" data-title="Inersiestelsel" data-language-autonym="Afrikaans" data-language-local-name="南非荷兰语" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Inertialsystem" title="Inertialsystem – 瑞士德语" lang="gsw" hreflang="gsw" data-title="Inertialsystem" data-language-autonym="Alemannisch" data-language-local-name="瑞士德语" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A5%D8%B7%D8%A7%D8%B1_%D9%85%D8%B1%D8%AC%D8%B9%D9%8A_%D9%82%D8%B5%D9%88%D8%B1%D9%8A" title="إطار مرجعي قصوري – 阿拉伯语" lang="ar" hreflang="ar" data-title="إطار مرجعي قصوري" data-language-autonym="العربية" data-language-local-name="阿拉伯语" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/%C6%8Ftal%C9%99t_hesablama_sistemi" title="Ətalət hesablama sistemi – 阿塞拜疆语" lang="az" hreflang="az" data-title="Ətalət hesablama sistemi" data-language-autonym="Azərbaycanca" data-language-local-name="阿塞拜疆语" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%86%D0%BD%D0%B5%D1%80%D1%86%D1%8B%D1%8F%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%81%D1%96%D1%81%D1%82%D1%8D%D0%BC%D0%B0_%D0%B0%D0%B4%D0%BB%D1%96%D0%BA%D1%83" title="Інерцыяльная сістэма адліку – 白俄罗斯语" lang="be" hreflang="be" data-title="Інерцыяльная сістэма адліку" data-language-autonym="Беларуская" data-language-local-name="白俄罗斯语" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%86%D0%BD%D1%8D%D1%80%D1%86%D1%8B%D0%B9%D0%BD%D0%B0%D1%8F_%D1%81%D1%8B%D1%81%D1%82%D1%8D%D0%BC%D0%B0_%D0%B0%D0%B4%D0%BB%D1%96%D0%BA%D1%83" title="Інэрцыйная сыстэма адліку – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Інэрцыйная сыстэма адліку" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%9C%E0%A4%A1%E0%A4%BC_%E0%A4%AA%E0%A4%B0%E0%A4%B8%E0%A4%82%E0%A4%97_%E0%A4%AA%E0%A4%B0%E0%A4%A8%E0%A4%BE%E0%A4%B2%E0%A4%BF" title="जड़ परसंग परनालि – Bhojpuri" lang="bh" hreflang="bh" data-title="जड़ परसंग परनालि" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9C%E0%A6%A1%E0%A6%BC_%E0%A6%AA%E0%A7%8D%E0%A6%B0%E0%A6%B8%E0%A6%99%E0%A7%8D%E0%A6%97_%E0%A6%95%E0%A6%BE%E0%A6%A0%E0%A6%BE%E0%A6%AE%E0%A7%8B" title="জড় প্রসঙ্গ কাঠামো – 孟加拉语" lang="bn" hreflang="bn" data-title="জড় প্রসঙ্গ কাঠামো" data-language-autonym="বাংলা" data-language-local-name="孟加拉语" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Inercijalni_referentni_okvir" title="Inercijalni referentni okvir – 波斯尼亚语" lang="bs" hreflang="bs" data-title="Inercijalni referentni okvir" data-language-autonym="Bosanski" data-language-local-name="波斯尼亚语" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Sistema_de_refer%C3%A8ncia_inercial" title="Sistema de referència inercial – 加泰罗尼亚语" lang="ca" hreflang="ca" data-title="Sistema de referència inercial" data-language-autonym="Català" data-language-local-name="加泰罗尼亚语" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Inerci%C3%A1ln%C3%AD_vzta%C5%BEn%C3%A1_soustava" title="Inerciální vztažná soustava – 捷克语" lang="cs" hreflang="cs" data-title="Inerciální vztažná soustava" data-language-autonym="Čeština" data-language-local-name="捷克语" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%98%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D0%B0%D0%BB%D0%BB%C4%83_%D0%BF%D1%83%C3%A7%D0%BB%D0%B0%D0%B2_%D1%82%D1%8B%D1%82%C4%83%D0%BC%C4%95" title="Инерциаллă пуçлав тытăмĕ – 楚瓦什语" lang="cv" hreflang="cv" data-title="Инерциаллă пуçлав тытăмĕ" data-language-autonym="Чӑвашла" data-language-local-name="楚瓦什语" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Inertialsystem" title="Inertialsystem – 丹麦语" lang="da" hreflang="da" data-title="Inertialsystem" data-language-autonym="Dansk" data-language-local-name="丹麦语" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Inertialsystem" title="Inertialsystem – 德语" lang="de" hreflang="de" data-title="Inertialsystem" data-language-autonym="Deutsch" data-language-local-name="德语" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CE%B4%CF%81%CE%B1%CE%BD%CE%B5%CE%B9%CE%B1%CE%BA%CF%8C_%CF%83%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%B1%CE%BD%CE%B1%CF%86%CE%BF%CF%81%CE%AC%CF%82" title="Αδρανειακό σύστημα αναφοράς – 希腊语" lang="el" hreflang="el" data-title="Αδρανειακό σύστημα αναφοράς" data-language-autonym="Ελληνικά" data-language-local-name="希腊语" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Inertial_frame_of_reference" title="Inertial frame of reference – 英语" lang="en" hreflang="en" data-title="Inertial frame of reference" data-language-autonym="English" data-language-local-name="英语" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Inercia_kadro_de_referenco" title="Inercia kadro de referenco – 世界语" lang="eo" hreflang="eo" data-title="Inercia kadro de referenco" data-language-autonym="Esperanto" data-language-local-name="世界语" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Sistema_de_referencia_inercial" title="Sistema de referencia inercial – 西班牙语" lang="es" hreflang="es" data-title="Sistema de referencia inercial" data-language-autonym="Español" data-language-local-name="西班牙语" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Inertsiaals%C3%BCsteem" title="Inertsiaalsüsteem – 爱沙尼亚语" lang="et" hreflang="et" data-title="Inertsiaalsüsteem" data-language-autonym="Eesti" data-language-local-name="爱沙尼亚语" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Erreferentzia-sistema_inertzial" title="Erreferentzia-sistema inertzial – 巴斯克语" lang="eu" hreflang="eu" data-title="Erreferentzia-sistema inertzial" data-language-autonym="Euskara" data-language-local-name="巴斯克语" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AF%D8%B3%D8%AA%DA%AF%D8%A7%D9%87_%D9%85%D8%B1%D8%AC%D8%B9_%D9%84%D8%AE%D8%AA" title="دستگاه مرجع لخت – 波斯语" lang="fa" hreflang="fa" data-title="دستگاه مرجع لخت" data-language-autonym="فارسی" data-language-local-name="波斯语" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Inertiaalikoordinaatisto" title="Inertiaalikoordinaatisto – 芬兰语" lang="fi" hreflang="fi" data-title="Inertiaalikoordinaatisto" data-language-autonym="Suomi" data-language-local-name="芬兰语" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/R%C3%A9f%C3%A9rentiel_galil%C3%A9en" title="Référentiel galiléen – 法语" lang="fr" hreflang="fr" data-title="Référentiel galiléen" data-language-autonym="Français" data-language-local-name="法语" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Sistema_inercial" title="Sistema inercial – 加利西亚语" lang="gl" hreflang="gl" data-title="Sistema inercial" data-language-autonym="Galego" data-language-local-name="加利西亚语" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%9C%E0%A4%A1%E0%A4%BC%E0%A4%A4%E0%A5%8D%E0%A4%B5%E0%A5%80%E0%A4%AF_%E0%A4%AB%E0%A5%8D%E0%A4%B0%E0%A5%87%E0%A4%AE" title="जड़त्वीय फ्रेम – 印地语" lang="hi" hreflang="hi" data-title="जड़त्वीय फ्रेम" data-language-autonym="हिन्दी" data-language-local-name="印地语" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Inercijski_referentni_okvir" title="Inercijski referentni okvir – 克罗地亚语" lang="hr" hreflang="hr" data-title="Inercijski referentni okvir" data-language-autonym="Hrvatski" data-language-local-name="克罗地亚语" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Inerciarendszer" title="Inerciarendszer – 匈牙利语" lang="hu" hreflang="hu" data-title="Inerciarendszer" data-language-autonym="Magyar" data-language-local-name="匈牙利语" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BB%D5%B6%D5%A5%D6%80%D6%81%D5%AB%D5%A1%D5%AC_%D5%B0%D5%A1%D5%B7%D5%BE%D5%A1%D6%80%D5%AF%D5%B4%D5%A1%D5%B6_%D5%B0%D5%A1%D5%B4%D5%A1%D5%AF%D5%A1%D6%80%D5%A3" title="Իներցիալ հաշվարկման համակարգ – 亚美尼亚语" lang="hy" hreflang="hy" data-title="Իներցիալ հաշվարկման համակարգ" data-language-autonym="Հայերեն" data-language-local-name="亚美尼亚语" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Kerangka_acuan_inersia" title="Kerangka acuan inersia – 印度尼西亚语" lang="id" hreflang="id" data-title="Kerangka acuan inersia" data-language-autonym="Bahasa Indonesia" data-language-local-name="印度尼西亚语" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Sistema_di_riferimento_inerziale" title="Sistema di riferimento inerziale – 意大利语" lang="it" hreflang="it" data-title="Sistema di riferimento inerziale" data-language-autonym="Italiano" data-language-local-name="意大利语" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%85%A3%E6%80%A7%E7%B3%BB" title="慣性系 – 日语" lang="ja" hreflang="ja" data-title="慣性系" data-language-autonym="日本語" data-language-local-name="日语" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%98%E1%83%9C%E1%83%94%E1%83%A0%E1%83%AA%E1%83%98%E1%83%A3%E1%83%9A%E1%83%98_%E1%83%90%E1%83%97%E1%83%95%E1%83%9A%E1%83%98%E1%83%A1_%E1%83%A1%E1%83%98%E1%83%A1%E1%83%A2%E1%83%94%E1%83%9B%E1%83%90" title="ინერციული ათვლის სისტემა – 格鲁吉亚语" lang="ka" hreflang="ka" data-title="ინერციული ათვლის სისტემა" data-language-autonym="ქართული" data-language-local-name="格鲁吉亚语" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B4%80%EC%84%B1_%EC%A2%8C%ED%91%9C%EA%B3%84" title="관성 좌표계 – 韩语" lang="ko" hreflang="ko" data-title="관성 좌표계" data-language-autonym="한국어" data-language-local-name="韩语" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%98%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D0%B0%D0%BB_%D1%82%D0%BE%D0%BE%D0%BB%D0%BB%D1%8B%D0%BD_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC" title="Инерциал тооллын систем – 蒙古语" lang="mn" hreflang="mn" data-title="Инерциал тооллын систем" data-language-autonym="Монгол" data-language-local-name="蒙古语" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Inertiaalstelsel" title="Inertiaalstelsel – 荷兰语" lang="nl" hreflang="nl" data-title="Inertiaalstelsel" data-language-autonym="Nederlands" data-language-local-name="荷兰语" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Tregleikssystem" title="Tregleikssystem – 挪威尼诺斯克语" lang="nn" hreflang="nn" data-title="Tregleikssystem" data-language-autonym="Norsk nynorsk" data-language-local-name="挪威尼诺斯克语" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Treghetssystem" title="Treghetssystem – 书面挪威语" lang="nb" hreflang="nb" data-title="Treghetssystem" data-language-autonym="Norsk bokmål" data-language-local-name="书面挪威语" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Uk%C5%82ad_inercjalny" title="Układ inercjalny – 波兰语" lang="pl" hreflang="pl" data-title="Układ inercjalny" data-language-autonym="Polski" data-language-local-name="波兰语" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Referencial_inercial" title="Referencial inercial – 葡萄牙语" lang="pt" hreflang="pt" data-title="Referencial inercial" data-language-autonym="Português" data-language-local-name="葡萄牙语" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Sistem_de_referin%C8%9B%C4%83_iner%C8%9Bial" title="Sistem de referință inerțial – 罗马尼亚语" lang="ro" hreflang="ro" data-title="Sistem de referință inerțial" data-language-autonym="Română" data-language-local-name="罗马尼亚语" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D0%BE%D1%82%D1%81%D1%87%D1%91%D1%82%D0%B0" title="Инерциальная система отсчёта – 俄语" lang="ru" hreflang="ru" data-title="Инерциальная система отсчёта" data-language-autonym="Русский" data-language-local-name="俄语" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Inercijski_referentni_okvir" title="Inercijski referentni okvir – 塞尔维亚-克罗地亚语" lang="sh" hreflang="sh" data-title="Inercijski referentni okvir" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="塞尔维亚-克罗地亚语" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Inerci%C3%A1lna_vz%C5%A5a%C5%BEn%C3%A1_s%C3%BAstava" title="Inerciálna vzťažná sústava – 斯洛伐克语" lang="sk" hreflang="sk" data-title="Inerciálna vzťažná sústava" data-language-autonym="Slovenčina" data-language-local-name="斯洛伐克语" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Inercialni_opazovalni_sistem" title="Inercialni opazovalni sistem – 斯洛文尼亚语" lang="sl" hreflang="sl" data-title="Inercialni opazovalni sistem" data-language-autonym="Slovenščina" data-language-local-name="斯洛文尼亚语" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%98%D0%BD%D0%B5%D1%80%D1%86%D0%B8%D1%98%D0%B0%D0%BB%D0%BD%D0%B8_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC_%D1%80%D0%B5%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D1%98%D0%B5" title="Инерцијални систем референције – 塞尔维亚语" lang="sr" hreflang="sr" data-title="Инерцијални систем референције" data-language-autonym="Српски / srpski" data-language-local-name="塞尔维亚语" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Inertialsystem" title="Inertialsystem – 瑞典语" lang="sv" hreflang="sv" data-title="Inertialsystem" data-language-autonym="Svenska" data-language-local-name="瑞典语" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%A3%E0%B8%AD%E0%B8%9A%E0%B8%AD%E0%B9%89%E0%B8%B2%E0%B8%87%E0%B8%AD%E0%B8%B4%E0%B8%87%E0%B9%80%E0%B8%89%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%A2" title="กรอบอ้างอิงเฉื่อย – 泰语" lang="th" hreflang="th" data-title="กรอบอ้างอิงเฉื่อย" data-language-autonym="ไทย" data-language-local-name="泰语" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Eylemsiz_referans_%C3%A7er%C3%A7evesi" title="Eylemsiz referans çerçevesi – 土耳其语" lang="tr" hreflang="tr" data-title="Eylemsiz referans çerçevesi" data-language-autonym="Türkçe" data-language-local-name="土耳其语" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%86%D0%BD%D0%B5%D1%80%D1%86%D1%96%D0%B9%D0%BD%D0%B0_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0_%D0%B2%D1%96%D0%B4%D0%BB%D1%96%D0%BA%D1%83" title="Інерційна система відліку – 乌克兰语" lang="uk" hreflang="uk" data-title="Інерційна система відліку" data-language-autonym="Українська" data-language-local-name="乌克兰语" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Inersial_sanoq_sistemasi" title="Inersial sanoq sistemasi – 乌兹别克语" lang="uz" hreflang="uz" data-title="Inersial sanoq sistemasi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="乌兹别克语" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%E1%BB%87_quy_chi%E1%BA%BFu_qu%C3%A1n_t%C3%ADnh" title="Hệ quy chiếu quán tính – 越南语" lang="vi" hreflang="vi" data-title="Hệ quy chiếu quán tính" data-language-autonym="Tiếng Việt" data-language-local-name="越南语" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%85%A3%E6%80%A7%E5%8F%83%E8%80%83%E7%B3%BB" title="慣性參考系 – 粤语" lang="yue" hreflang="yue" data-title="慣性參考系" data-language-autonym="粵語" data-language-local-name="粤语" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q192735#sitelinks-wikipedia" title="编辑跨语言链接" class="wbc-editpage">编辑链接</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="命名空间"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" title="浏览条目正文[c]" accesskey="c"><span>条目</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" rel="discussion" title="关于此页面的讨论[t]" accesskey="t"><span>讨论</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown " > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="更改语言变体" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">不转换</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-varlang-0" class="selected ca-variants-zh mw-list-item"><a href="/zh/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" lang="zh" hreflang="zh"><span>不转换</span></a></li><li id="ca-varlang-1" class="ca-variants-zh-Hans mw-list-item"><a href="/zh-hans/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" lang="zh-Hans" hreflang="zh-Hans"><span>简体</span></a></li><li id="ca-varlang-2" class="ca-variants-zh-Hant mw-list-item"><a href="/zh-hant/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" lang="zh-Hant" hreflang="zh-Hant"><span>繁體</span></a></li><li id="ca-varlang-3" class="ca-variants-zh-Hans-CN mw-list-item"><a href="/zh-cn/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" lang="zh-Hans-CN" hreflang="zh-Hans-CN"><span>大陆简体</span></a></li><li id="ca-varlang-4" class="ca-variants-zh-Hant-HK mw-list-item"><a href="/zh-hk/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" lang="zh-Hant-HK" hreflang="zh-Hant-HK"><span>香港繁體</span></a></li><li id="ca-varlang-5" class="ca-variants-zh-Hant-MO mw-list-item"><a href="/zh-mo/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" lang="zh-Hant-MO" hreflang="zh-Hant-MO"><span>澳門繁體</span></a></li><li id="ca-varlang-6" class="ca-variants-zh-Hans-MY mw-list-item"><a href="/zh-my/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" lang="zh-Hans-MY" hreflang="zh-Hans-MY"><span>大马简体</span></a></li><li id="ca-varlang-7" class="ca-variants-zh-Hans-SG mw-list-item"><a href="/zh-sg/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" lang="zh-Hans-SG" hreflang="zh-Hans-SG"><span>新加坡简体</span></a></li><li id="ca-varlang-8" class="ca-variants-zh-Hant-TW mw-list-item"><a href="/zh-tw/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" lang="zh-Hant-TW" hreflang="zh-Hant-TW"><span>臺灣正體</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="查看"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"><span>阅读</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=history" title="本页面的早前版本。[h]" accesskey="h"><span>查看历史</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="工具" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">工具</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">工具</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">隐藏</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="更多选项" > <div class="vector-menu-heading"> 操作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB"><span>阅读</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit" title="编辑该页面[e]" accesskey="e"><span>编辑</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=history"><span>查看历史</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 常规 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%85%A5%E9%A1%B5%E9%9D%A2/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" title="列出所有与本页相链的页面[j]" accesskey="j"><span>链入页面</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:%E9%93%BE%E5%87%BA%E6%9B%B4%E6%94%B9/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB" rel="nofollow" title="页面链出所有页面的更改[k]" accesskey="k"><span>相关更改</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Project:%E4%B8%8A%E4%BC%A0" title="上传图像或多媒体文件[u]" accesskey="u"><span>上传文件</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:%E7%89%B9%E6%AE%8A%E9%A1%B5%E9%9D%A2" title="全部特殊页面的列表[q]" accesskey="q"><span>特殊页面</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;oldid=78440659" title="此页面该修订版本的固定链接"><span>固定链接</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=info" title="关于此页面的更多信息"><span>页面信息</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:%E5%BC%95%E7%94%A8%E6%AD%A4%E9%A1%B5%E9%9D%A2&amp;page=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;id=78440659&amp;wpFormIdentifier=titleform" title="有关如何引用此页面的信息"><span>引用此页</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:URL%E7%BC%A9%E7%9F%AD%E7%A8%8B%E5%BA%8F&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E6%2583%25AF%25E6%2580%25A7%25E5%258F%2582%25E8%2580%2583%25E7%25B3%25BB"><span>获取短链接</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fzh.wikipedia.org%2Fwiki%2F%25E6%2583%25AF%25E6%2580%25A7%25E5%258F%2582%25E8%2580%2583%25E7%25B3%25BB"><span>下载二维码</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> 打印/导出 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=show-download-screen"><span>下载为PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="本页面的可打印版本[p]" accesskey="p"><span>打印页面</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 在其他项目中 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q192735" title="链接到连接的数据仓库项目[g]" accesskey="g"><span>维基数据项目</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="页面工具"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="外观"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">外观</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">移至侧栏</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">隐藏</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-noteTA-5ff6fd68" class="mw-indicator"><div class="mw-parser-output"><span class="skin-invert" typeof="mw:File"><span title="本页使用了标题或全文手工转换"><img alt="本页使用了标题或全文手工转换" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/35px-Zh_conversion_icon_m.svg.png" decoding="async" width="35" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/53px-Zh_conversion_icon_m.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Zh_conversion_icon_m.svg/70px-Zh_conversion_icon_m.svg.png 2x" data-file-width="32" data-file-height="20" /></span></span></div></div> </div> <div id="siteSub" class="noprint">维基百科,自由的百科全书</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(重定向自<a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E7%85%A7%E7%B3%BB&amp;redirect=no" class="mw-redirect" title="惯性参照系">惯性参照系</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="zh" dir="ltr"><div id="noteTA-5ff6fd68" class="noteTA"><div class="noteTA-group"><div data-noteta-group-source="module" data-noteta-group="Physics"></div></div></div> <p>在<a href="/wiki/%E7%B6%93%E5%85%B8%E7%89%A9%E7%90%86%E5%AD%B8" title="經典物理學">经典物理学</a>与<a href="/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论">狭义相对论</a>中,<b>惯性参考系</b>或<b>惯性坐标系</b>,简称为<b>惯性系</b>(英語:<span lang="en">Inertial frame of reference</span>)是指可以均匀且<a href="/wiki/%E5%90%84%E5%90%91%E5%90%8C%E6%80%A7" title="各向同性">各向同性</a>地描述空间,并且可以均匀描述时间的<a href="/wiki/%E5%8F%82%E8%80%83%E7%B3%BB" title="参考系">参考系</a>。<sup id="cite_ref-LandauMechanics_1-0" class="reference"><a href="#cite_note-LandauMechanics-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>在惯性参考系内,系统内部的物理规律与系统外的因素无关。<sup id="cite_ref-Ferraro_2-0" class="reference"><a href="#cite_note-Ferraro-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>所有的惯性系之间都在进行匀速平移运动。不同惯性系的测量结果可以通过简单的变换(<a href="/wiki/%E4%BC%BD%E5%88%A9%E7%95%A5%E5%8F%98%E6%8D%A2" title="伽利略变换">伽利略变换</a>或<a href="/wiki/%E6%B4%9B%E4%BC%A6%E5%85%B9%E5%8F%98%E6%8D%A2" title="洛伦兹变换">洛伦兹变换</a>)相互转化。广义相对论中,在任意足够小以致时空曲率与<a href="/wiki/%E6%BD%AE%E6%B1%90%E5%8A%9B" title="潮汐力">潮汐力</a>可以忽略的区域内<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>,人们可以找到一组惯性系来近似描述这个区域。<sup id="cite_ref-Einstein0_4-0" class="reference"><a href="#cite_note-Einstein0-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Giulini_5-0" class="reference"><a href="#cite_note-Giulini-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup>广义相对论中,非惯性系中的系统由于测地线运动原理不会受到外界影响。<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/%E7%89%A9%E7%90%86%E5%AE%9A%E5%BE%8B" title="物理定律">物理定律</a>在所有惯性系中形式一致。<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup>经典物理学与狭义相对论中,在非惯性系里,系统的物理规律会受到参考系相对于惯性系的加速度影响而发生变化。此时物体的受力要考虑<a href="/wiki/%E6%85%A3%E6%80%A7%E5%8A%9B" title="慣性力">惯性力</a>。<sup id="cite_ref-Rothman_8-0" class="reference"><a href="#cite_note-Rothman-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Borowitz_9-0" class="reference"><a href="#cite_note-Borowitz-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup>比如,落地的小球由于地球自转并不是完全沿直线落下。与地球一起运动的观察者必须考虑<a href="/wiki/%E7%A7%91%E9%87%8C%E5%A5%A5%E5%88%A9%E5%8A%9B" title="科里奥利力">科里奥利力</a>才能预测小球的水平运动情况。<a href="/wiki/%E7%A6%BB%E5%BF%83%E5%8A%9B" class="mw-redirect" title="离心力">离心力</a>是另一种与旋转参考系有关的惯性力。 </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="概论"><span id=".E6.A6.82.E8.AE.BA"></span>概论</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=1" title="编辑章节:概论"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>物体的运动只能通过客体(其他物体、观察者或是一组时空坐标)来相对描述。这些客体称作<a href="/wiki/%E5%8F%82%E8%80%83%E7%B3%BB" title="参考系">参考系</a>。如果参考系选择得不好,运动定律就会变得不必要地复杂。例如,在某些参考系中不受外力的物体可以保持静止,而在另外某些参考系中则有可能在未受力的情况下,从某个时刻开始运动。类似地,如果空间的描述不均一或是含时,那么在此时选定的参考系中,自由物体的运动轨迹就有可能变得非常复杂。因而从直觉上来说,力学定律在惯性系中的形式最简。<sup id="cite_ref-LandauMechanics_1-1" class="reference"><a href="#cite_note-LandauMechanics-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p><p>在惯性系中,物体满足<a href="/wiki/%E7%89%9B%E9%A1%BF%E7%AC%AC%E4%B8%80%E5%AE%9A%E5%BE%8B" class="mw-redirect" title="牛顿第一定律">牛顿第一定律</a>,即在不受力的情况下,速度的大小与方向不变。<sup id="cite_ref-LandauMechanics_1-2" class="reference"><a href="#cite_note-LandauMechanics-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>同时,质点满足的<a href="/wiki/%E7%89%9B%E9%A1%BF%E7%AC%AC%E4%BA%8C%E5%AE%9A%E5%BE%8B" class="mw-redirect" title="牛顿第二定律">牛顿第二定律</a>的形式为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =m\mathbf {a} \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =m\mathbf {a} \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89afe672e24bb812537066cb740cc2646cafb58a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.349ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} =m\mathbf {a} \ ,}"></span></dd></dl> <p>其中,<b>F</b>是物体所受的总外力、<i>m</i>为质点的质量,<b>a</b>则是参考系中静止的观察者测得的<a href="/wiki/%E5%8A%A0%E9%80%9F%E5%BA%A6" title="加速度">加速度</a>。<b>F</b>是电磁力、引力以及核力这些“真实”的力的<a href="/wiki/%E5%90%91%E9%87%8F%E5%92%8C" class="mw-redirect" title="向量和">矢量和</a>。与此形成对比的是,在绕着某个轴以角速率<i>Ω</i>旋转的<span class="ilh-all" data-orig-title="旋转参考系" data-lang-code="en" data-lang-name="英语" data-foreign-title="rotating frame of reference"><span class="ilh-page"><a href="/w/index.php?title=%E6%97%8B%E8%BD%AC%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;redlink=1" class="new" title="旋转参考系(页面不存在)">参考系</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/rotating_frame_of_reference" class="extiw" title="en:rotating frame of reference"><span lang="en" dir="auto">rotating frame of reference</span></a></span>)</span></span>中,牛顿第二定律的形式为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} '=m\mathbf {a} \ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} '=m\mathbf {a} \ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1356aefccabd944bdee072beba8017fa5d46b44e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.033ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} &#039;=m\mathbf {a} \ ,}"></span></dd></dl> <p>虽然形式看起来并没有发生变化,但此时的<b>F</b>′则要在<b>F</b>基础上加上下面这些项: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} '=\mathbf {F} -2m\mathbf {\Omega } \times \mathbf {v} _{B}-m\mathbf {\Omega } \times (\mathbf {\Omega } \times \mathbf {x} _{B})-m{\frac {d\mathbf {\Omega } }{dt}}\times \mathbf {x} _{B}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A9;<!-- Ω --></mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} '=\mathbf {F} -2m\mathbf {\Omega } \times \mathbf {v} _{B}-m\mathbf {\Omega } \times (\mathbf {\Omega } \times \mathbf {x} _{B})-m{\frac {d\mathbf {\Omega } }{dt}}\times \mathbf {x} _{B}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ccc3391b76469c57b7613df1ea14d21060239975" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:55.8ex; height:5.509ex;" alt="{\displaystyle \mathbf {F} &#039;=\mathbf {F} -2m\mathbf {\Omega } \times \mathbf {v} _{B}-m\mathbf {\Omega } \times (\mathbf {\Omega } \times \mathbf {x} _{B})-m{\frac {d\mathbf {\Omega } }{dt}}\times \mathbf {x} _{B}\ ,}"></span></dd></dl> <p>其中参考系的旋转通过<a href="/wiki/%E8%A7%92%E9%80%9F%E5%BA%A6" title="角速度">沿着旋转轴、大小为<i>Ω</i>的矢量</a><b>Ω</b>表达,符号×表示矢量间的<a href="/wiki/%E5%8F%89%E7%A7%AF" title="叉积">叉积</a>运算,矢量<b>x</b><sub><i>B</i></sub>为物体的位置,而<b>v</b><sub><i>B</i></sub>则是旋转的观察者看到的速度。 </p><p><b>F</b>′中附加的这些项是由参考系造成的“假想”的力。第一项叫作<a href="/wiki/%E7%A7%91%E9%87%8C%E5%A5%A5%E5%88%A9%E5%8A%9B" title="科里奥利力">科里奥利力</a>,第二项叫作<a href="/wiki/%E7%A6%BB%E5%BF%83%E5%8A%9B" class="mw-redirect" title="离心力">离心力</a>,而第三项则叫作<a href="/wiki/%E6%AC%A7%E6%8B%89%E5%8A%9B" title="欧拉力">欧拉力</a>。这三项共同具有这样一个特点:它们会在<i>Ω</i> = 0时消失,也就是说在惯性系中为零;它们的方向与大小会由于<b>Ω</b>不同,而发生变化;它们在旋转系中普遍存在(即所有质点都会受其影响);它们并没有可以识别的物理来源。同时,这些假想力还不会像<a href="/wiki/%E6%A0%B8%E5%8A%9B" title="核力">核力</a>与<a href="/wiki/%E9%9D%99%E7%94%B5%E5%8A%9B" class="mw-redirect" title="静电力">静电力</a>那样随着质点间距离增大而减小。比如离心力就有可能在质点远离转轴的过程中增大。 </p><p>综上,所有观察者看到的真实力<b>F</b>是一样的;非惯性系中的观察者还要考虑假想力。由于非必须力不存在,惯性系中的物理定律更为简洁。 </p><p>牛顿曾假设存在相对于<a href="/wiki/%E7%B5%95%E5%B0%8D%E7%A9%BA%E9%96%93" class="mw-redirect" title="絕對空間">绝对空间</a><span class="ilh-all" data-orig-title="静止的恒星" data-lang-code="en" data-lang-name="英语" data-foreign-title="fixed stars"><span class="ilh-page"><a href="/w/index.php?title=%E9%9D%99%E6%AD%A2%E7%9A%84%E6%81%92%E6%98%9F&amp;action=edit&amp;redlink=1" class="new" title="静止的恒星(页面不存在)">静止的恒星</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/fixed_stars" class="extiw" title="en:fixed stars"><span lang="en" dir="auto">fixed stars</span></a></span>)</span></span>。<a href="/wiki/%E7%89%9B%E9%A1%BF%E8%BF%90%E5%8A%A8%E5%AE%9A%E5%BE%8B" title="牛顿运动定律">牛顿运动定律</a>在相对于这些恒星静止或匀速运动的参考系中成立。而在相对于静止恒星加速运动的参考系中,比如相对于这些恒星旋转的参考系,运动定律需要附加<a href="/wiki/%E6%85%A3%E6%80%A7%E5%8A%9B" title="慣性力">惯性力</a>,比如前文所说的那些“假想力”。牛顿曾设计过两种可以展示这些力有实际影响的实验:一种是通过测定悬挂着两个绕共同质心旋转的球的绳中的<a href="/wiki/%E6%8B%89%E5%8A%9B" class="mw-redirect" title="拉力">拉力</a>来确定两个球的绝对运动角速度;另一种则是当旋转的水桶突然停止旋转时,其中的水的表面的形状仍成凹状的抛物面。<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>在这两种情形中,如果不考虑离心力与科里奥利力的话,对于旋转的观察者来说,牛顿第二定律将不再成立。 </p><p>不过,那些“静止的”恒星实际上却并不是静止的。<a href="/wiki/%E9%93%B6%E6%B2%B3%E7%B3%BB" title="银河系">银河系</a>内部的恒星会绕着<a href="/wiki/%E9%93%B6%E5%BF%83" class="mw-redirect" title="银心">银心</a>转动(表现为<a href="/wiki/%E8%87%AA%E8%A1%8C" title="自行">自行</a>)。而银河系外的则也会参与对应星系中的运动:部分由于<a href="/wiki/%E5%AE%87%E5%AE%99%E8%86%A8%E8%84%B9" class="mw-redirect" title="宇宙膨脹">宇宙膨胀</a>,部分是它们的<a href="/wiki/%E6%9C%AC%E5%8B%95%E9%80%9F%E5%BA%A6" title="本動速度">本动</a>。<sup id="cite_ref-Balbi_11-0" class="reference"><a href="#cite_note-Balbi-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><a href="/wiki/%E4%BB%99%E5%A5%B3%E5%BA%A7%E6%98%9F%E7%B3%BB" title="仙女座星系">仙女座星系</a>更是在以<span class="nowrap"><span style="display:none" class="sortkey">7005117000000000000♠</span>117&#160;km/s</span>的速度<a href="/wiki/%E4%BB%99%E5%A5%B3%E5%BA%A7%E6%98%9F%E7%B3%BB-%E9%93%B6%E6%B2%B3%E7%B3%BB%E7%9A%84%E7%A2%B0%E6%92%9E" title="仙女座星系-银河系的碰撞">撞向银河系</a>。<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup>惯性系的概念现在不再以“静止的恒星”或是绝对空间来定义。但惯性系的确认仍是基于其中的物理定律是否简洁,特别是是否需要考虑惯性力。<sup id="cite_ref-Stachel_13-0" class="reference"><a href="#cite_note-Stachel-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>实际情况中,将“静止”恒星作为惯性系所造成的偏差非常小。例如,地球绕太阳公转时的离心加速度要比太阳公转的离心加速度大约三千多万倍。<sup id="cite_ref-Graneau_14-0" class="reference"><a href="#cite_note-Graneau-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>对于宇宙是否在转动的这个更进一步的问题,尽管存在更明确的观测(<a href="/wiki/%E6%B5%8B%E9%87%8F%E4%B8%8D%E7%A1%AE%E5%AE%9A%E5%BA%A6" title="测量不确定度">测量不确定度</a>更小的观测),例如,并不各向同性的<a href="/wiki/%E5%AE%87%E5%AE%99%E5%BE%AE%E6%B3%A2%E8%83%8C%E6%99%AF%E8%BE%90%E5%B0%84" class="mw-redirect" title="宇宙微波背景辐射">宇宙微波背景辐射</a>或<a href="/wiki/%E5%A4%AA%E5%88%9D%E6%A0%B8%E5%90%88%E6%88%90" title="太初核合成">太初核合成</a>,<sup id="cite_ref-Thompson_15-0" class="reference"><a href="#cite_note-Thompson-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Szydlowski_16-0" class="reference"><a href="#cite_note-Szydlowski-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup>在这里還是通过银河系目前形状的形成来探讨这个问题。<sup id="cite_ref-Genz_17-0" class="reference"><a href="#cite_note-Genz-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup>银河系较为平坦的形状来源于其在惯性系中的转动速率。如果我们将其视在转动速率完全归因为惯性系中的转动,那么在我们假设部分转动效应实际来源于宇宙整体的转动时就可以得到不同的平坦程度。基于物理定律,科学家构造了一种考虑到宇宙转动的模型。如果考虑转动的模型要比没有考虑转动的模型中的物理定律更为符合观测结果,我们就需要选定转动的最佳拟合值,以与其他相关观测结果相符。而如果天文观测中不能得到转动参数,或是理论超出观测误差限,现有物理定律就有必要进行修正,比如引入<a href="/wiki/%E6%9A%97%E7%89%A9%E8%B4%A8" title="暗物质">暗物质</a>来解释<a href="/wiki/%E6%98%9F%E7%B3%BB%E8%87%AA%E8%BD%89%E5%95%8F%E9%A1%8C" title="星系自轉問題">星系自轉問題</a>。到目前为止,有关观测显示宇宙自转速率非常之慢,角速率上限为60·10<sup>12</sup>年自转一次(10<sup>−13</sup> rad/yr)。<sup id="cite_ref-Birch_18-0" class="reference"><a href="#cite_note-Birch-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup>人们也由此质疑宇宙是否真在转动。不过如果人们找到转动的明确证据,经典力学与狭义相对论中有关惯性力的说法就需要修正,或者用广义相对论中时空曲率与物体沿测地线运动的说法取代。 </p><p>而在微观尺度上,当<a href="/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%A6" title="量子力学">量子</a>效应非常显著时,就需要引入相应的<span class="ilh-all" data-orig-title="量子参考系" data-lang-code="en" data-lang-name="英语" data-foreign-title="quantum reference frame"><span class="ilh-page"><a href="/w/index.php?title=%E9%87%8F%E5%AD%90%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;redlink=1" class="new" title="量子参考系(页面不存在)">量子参考系</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/quantum_reference_frame" class="extiw" title="en:quantum reference frame"><span lang="en" dir="auto">quantum reference frame</span></a></span>)</span></span>。 </p> <div class="mw-heading mw-heading2"><h2 id="背景"><span id=".E8.83.8C.E6.99.AF"></span>背景</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=2" title="编辑章节:背景"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="一组物理定律最简的参考系"><span id=".E4.B8.80.E7.BB.84.E7.89.A9.E7.90.86.E5.AE.9A.E5.BE.8B.E6.9C.80.E7.AE.80.E7.9A.84.E5.8F.82.E8.80.83.E7.B3.BB"></span>一组物理定律最简的参考系</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=3" title="编辑章节:一组物理定律最简的参考系"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>依据<a href="/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论">狭义相对论</a>的第一条公设,惯性系中所有物理定律的形式最简,且惯性系间通过匀速<a href="/wiki/%E5%B9%B3%E7%A7%BB%E8%BF%90%E5%8A%A8" title="平移运动">平移运动</a>联系在一起:<sup id="cite_ref-Einstein_19-0" class="reference"><a href="#cite_note-Einstein-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r61209892">.mw-parser-output .templatequote{margin-top:0;overflow:hidden}.mw-parser-output .templatequote .templatequotecite{line-height:1em;text-align:left;padding-left:2em;margin-top:0}.mw-parser-output .templatequote .templatequotecite cite{font-size:small}</style> <blockquote class="templatequote"><p>狭义相对论是以下面的公设为基础的(而伽利略-牛顿的力学也满足这个公设):如果这样来选取一个坐标系<i>K</i>,使物理定律依照於这个坐标系得以最简单的形式成立,那么对于任何另一个对于<i>K</i>作匀速平移运动的坐标系<i><span lang="en">K'</span></i>,这些定律也同样成立。</p><div class="templatequotecite"><cite>——<a href="/wiki/%E9%98%BF%E5%B0%94%E4%BC%AF%E7%89%B9%C2%B7%E7%88%B1%E5%9B%A0%E6%96%AF%E5%9D%A6" title="阿尔伯特·爱因斯坦">阿尔伯特·爱因斯坦</a>,《广义相对论的基础》:§A.1</cite></div></blockquote> <p>这种最简性原则意味着惯性系中的物理定律并不像非惯性系中那样需要考虑外在因素。<sup id="cite_ref-Ferraro_2-1" class="reference"><a href="#cite_note-Ferraro-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>这个原理既可以在牛顿力学中使用,也可以在狭义相对论中使用<sup id="cite_ref-Nagel_21-0" class="reference"><a href="#cite_note-Nagel-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Blagojević_22-0" class="reference"><a href="#cite_note-Blagojević-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>套入比较实际的例子,惯性系的等价性意味着箱中的科学家不能通过任何实验来判定他的绝对速度(否则他就能够构造从尤参考系)。<sup id="cite_ref-Einstein2_23-0" class="reference"><a href="#cite_note-Einstein2-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Feynman_24-0" class="reference"><a href="#cite_note-Feynman-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup>依据这个定义以及光速不变原理,惯性系间的变换可以通过对称变换的<a href="/wiki/%E9%BE%90%E5%8A%A0%E8%90%8A%E7%BE%A4" title="龐加萊群">庞加莱群</a>中的<a href="/wiki/%E6%B4%9B%E4%BC%A6%E5%85%B9%E5%8F%98%E6%8D%A2" title="洛伦兹变换">洛伦兹变换</a>实现。<sup id="cite_ref-Wachter_25-0" class="reference"><a href="#cite_note-Wachter-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup>牛顿力学则可以视为狭义相对论在光速无限时的一种特例,惯性系之间的变换通过对称变换中的<a href="/wiki/%E4%BC%BD%E5%88%A9%E7%95%A5%E5%8F%98%E6%8D%A2#伽利略群的中心擴張" title="伽利略变换">伽利略群</a>实现。 </p> <div class="mw-heading mw-heading3"><h3 id="绝对空间"><span id=".E7.BB.9D.E5.AF.B9.E7.A9.BA.E9.97.B4"></span>绝对空间</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=4" title="编辑章节:绝对空间"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r85100532">.mw-parser-output .hatnote{font-size:small}.mw-parser-output div.hatnote{padding-left:2em;margin-bottom:0.8em;margin-top:0.8em}.mw-parser-output .hatnote-notice-img::after{content:"\202f \202f \202f \202f "}.mw-parser-output .hatnote-notice-img-small::after{content:"\202f \202f "}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}body.skin-minerva .mw-parser-output .hatnote-notice-img,body.skin-minerva .mw-parser-output .hatnote-notice-img-small{display:none}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E7%BB%9D%E5%AF%B9%E6%97%B6%E7%A9%BA" class="mw-redirect" title="绝对时空">绝对时空</a></div> <p>牛顿在与“静止”恒星相对静止的参考系中“安置”了绝对空间。惯性系就是相对于绝对空间匀速平移运动的参考系。然而即使在牛顿时代,也有一些科学家(<a href="/wiki/%E6%81%A9%E6%96%AF%E7%89%B9%C2%B7%E9%A9%AC%E8%B5%AB" title="恩斯特·马赫">马赫</a>所说的“相对主义者”<sup id="cite_ref-Mach_26-0" class="reference"><a href="#cite_note-Mach-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup>)觉得绝对空间是力学表述的缺陷,应该用其他概念替换掉。 </p><p><span class="ilh-all" data-orig-title="路德维希·朗格" data-lang-code="en" data-lang-name="英语" data-foreign-title="Ludwig Lange (physicist)"><span class="ilh-page"><a href="/w/index.php?title=%E8%B7%AF%E5%BE%B7%E7%BB%B4%E5%B8%8C%C2%B7%E6%9C%97%E6%A0%BC&amp;action=edit&amp;redlink=1" class="new" title="路德维希·朗格(页面不存在)">路德维希·朗格</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Ludwig_Lange_(physicist)" class="extiw" title="en:Ludwig Lange (physicist)"><span lang="en" dir="auto">Ludwig Lange (physicist)</span></a></span>)</span></span>曾在1885年给出惯性系的一种操作定义<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Barbour_28-0" class="reference"><a href="#cite_note-Barbour-28"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Iro_29-0" class="reference"><a href="#cite_note-Iro-29"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup>: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r61209892"> <blockquote class="templatequote"><p>在惯性系中,从同一点向三个不同方向(非共面)扔出的质点都会直线运动。</p></blockquote> <p>马赫曾讨论过朗格的这种提法。<sup id="cite_ref-Mach_26-1" class="reference"><a href="#cite_note-Mach-26"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>后世的科学家也讨论过牛顿力学中“绝对空间”存在的不足<sup id="cite_ref-Blagojević2_30-0" class="reference"><a href="#cite_note-Blagojević2-30"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup>: </p> <ul><li>绝对空间的存在与经典力学的内在逻辑抵触,因为依据伽利略相对性原理,不存在特殊的惯性系。</li> <li>绝对时空也不能解释惯性力,因为它们与相对於惯性系的加速度有关。</li> <li>如果引入绝对空间的话,那么就会存在这样的推论,即物体本身是抗拒加速的,但这种效应是不存在的、</li></ul> <p>此外也有科学家对于惯性系的定义做了进一步的讨论<sup id="cite_ref-Woodhouse0_31-0" class="reference"><a href="#cite_note-Woodhouse0-31"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-DiSalle_32-0" class="reference"><a href="#cite_note-DiSalle-32"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup>: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r61209892"> <blockquote class="templatequote"><p>原本的提法“运动定律相对于哪个参考系成立?”是错的。因为运动定律本身就可以确定一类参考系及它们的构造方法。</p></blockquote> <div class="mw-heading mw-heading2"><h2 id="牛顿惯性系"><span id=".E7.89.9B.E9.A1.BF.E6.83.AF.E6.80.A7.E7.B3.BB"></span>牛顿惯性系</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=5" title="编辑章节:牛顿惯性系"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Inertial_frames.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Inertial_frames.svg/250px-Inertial_frames.svg.png" decoding="async" width="250" height="277" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Inertial_frames.svg/375px-Inertial_frames.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Inertial_frames.svg/500px-Inertial_frames.svg.png 2x" data-file-width="704" data-file-height="779" /></a><figcaption>两个相对速度为<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\stackrel {\vec {v}}{}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>v</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\stackrel {\vec {v}}{}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc98c41db839891a8123500ff79707ea00ee367a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:0.85ex; height:2.676ex;" alt="{\displaystyle {\stackrel {\vec {v}}{}}}"></span>的参考系。<i><span lang="en">S'</span></i>系相对于S系旋转了一定的角度。当一个不受力的物体在其中匀直运动,它们就是惯性系。如果在一个参考系中看到一个物体匀直运动,那么在另一个参考系中,那个物体也会在匀直运动。</figcaption></figure> <p>在牛顿力学的范畴内,惯性系是<a href="/wiki/%E7%89%9B%E9%A1%BF%E7%AC%AC%E4%B8%80%E5%AE%9A%E5%BE%8B" class="mw-redirect" title="牛顿第一定律">牛顿第一定律</a>成立的参考系。<sup id="cite_ref-Moeller_33-0" class="reference"><a href="#cite_note-Moeller-33"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup>狭义相对论原理将其中的提法推广到所有物理定律。 </p><p>牛顿认为第一定律在相对于“静止”恒星匀速运动的参考系中成立<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup>,也就是与那些恒星的相对速度的方向与大小都不发生变化。<sup id="cite_ref-Resnick_35-0" class="reference"><a href="#cite_note-Resnick-35"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup>现在人们已经不用涉及到绝对空间的提法,在经典力学中这样定义惯性系:<sup id="cite_ref-Takwale_36-0" class="reference"><a href="#cite_note-Takwale-36"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Woodhouse_37-0" class="reference"><a href="#cite_note-Woodhouse-37"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r61209892"> </p> <blockquote class="templatequote"><p>在惯性系中,物体在不受力的情况下会沿着一条直线,以恒定的速率运动。</p></blockquote> <p>因此相对于惯性系,物体只会在实际受力时才会加速,而在净外力为零时,物体会静止或继续沿着一条直线,以恒定速率匀直运动。牛顿惯性系间的变换是通过<a href="/wiki/%E4%BC%BD%E5%88%A9%E7%95%A5%E5%8F%98%E6%8D%A2" title="伽利略变换">伽利略变换</a>完成的。 </p><p>但这种判定方法存在一定的问题:如果把匀直运动看作是净外力为零的结果,那么这种提法本身并没有给出惯性系有何意义;如果这是在定义惯性系,那么我们就必须得判定净外力何时为零。爱因斯坦也曾提到过这个问题:<sup id="cite_ref-Einstein5_38-0" class="reference"><a href="#cite_note-Einstein5-38"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r61209892"> </p> <blockquote class="templatequote"><p>惯性原理的弱点在于它含有这样的一种循环论证:如果有一物体离开别的物体都足够远,那么它运动起来就没有加速度;而只是由于它运动起来没有加速度,我们才知道它离开别的物体足够远。</p><div class="templatequotecite"><cite>——阿尔伯特·爱因斯坦,《相对论的意义》</cite></div></blockquote> <p>这个问题有一些解决方法。第一种是假设当物体距离某种真实力来源足够远时,这个物体就不会受到那种力的作用。此时,我们只需要确保物体距离所有力的来源足够远,即离其他所有物体足够远,就可以保证它不受力。<sup id="cite_ref-Rosser_40-0" class="reference"><a href="#cite_note-Rosser-40"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup>但关于这种方法有一种存在很久的反驳意见即距离再远的两个物体也会相互影响(<a href="/wiki/%E9%A9%AC%E8%B5%AB%E5%8E%9F%E7%90%86" title="马赫原理">马赫原理</a>)。另一种方法就是辨识所有力的来源,并描述它们对物体的作用力。而在实际情况中,人们可能由于马赫原理以及对于世界了解水平的限制,而漏掉其中某些力或力的影响。第三种方法是在参考系变换过程中,看受力的变化。由于参考系加速度产生的惯性力会在惯性系中消失,而这些惯性力的变换在一般情况下是非常难过复杂的。基于物理定律普适性以及定律表述简洁性的要求,惯性系可以通过惯性力为零来与非惯性系相区别。 </p><p>牛顿本人也曾在运动定律的某个推论中给出了他自己的相对性原理:<sup id="cite_ref-Feynman2_41-0" class="reference"><a href="#cite_note-Feynman2-41"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Principia_42-0" class="reference"><a href="#cite_note-Principia-42"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r61209892"> <blockquote class="templatequote"><p>当某个给定的空间静止或匀直运动,那么这个空间中的物体之间的运动保持不变。</p></blockquote> <p>这条原理与狭义相对论原理有两点不同:它只适用於力学并且没有提到定律表述的简洁性。而它与狭义相对论原理相依的一点就是对于某个特定系统的描述在彼此平移运动的参考系间保持形式不变。<sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="非惯性系与惯性系之间的分野"><span id=".E9.9D.9E.E6.83.AF.E6.80.A7.E7.B3.BB.E4.B8.8E.E6.83.AF.E6.80.A7.E7.B3.BB.E4.B9.8B.E9.97.B4.E7.9A.84.E5.88.86.E9.87.8E"></span>非惯性系与惯性系之间的分野</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=6" title="编辑章节:非惯性系与惯性系之间的分野"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="理论"><span id=".E7.90.86.E8.AE.BA"></span>理论</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=7" title="编辑章节:理论"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r85100532"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E6%85%A3%E6%80%A7%E5%8A%9B" title="慣性力">惯性力</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Rotating_spheres.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Rotating_spheres.svg/180px-Rotating_spheres.svg.png" decoding="async" width="180" height="154" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Rotating_spheres.svg/270px-Rotating_spheres.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Rotating_spheres.svg/360px-Rotating_spheres.svg.png 2x" data-file-width="465" data-file-height="398" /></a><figcaption>两个通过细线连在一起的球以角速率ω转动。由于两个球在转动,细线内部有张力。</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Rotating-sphere_forces.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Rotating-sphere_forces.svg/220px-Rotating-sphere_forces.svg.png" decoding="async" width="220" height="153" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Rotating-sphere_forces.svg/330px-Rotating-sphere_forces.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Rotating-sphere_forces.svg/440px-Rotating-sphere_forces.svg.png 2x" data-file-width="512" data-file-height="355" /></a><figcaption>这个系统在惯性系中的受力分析:细线内部的张力会提供两个球的向心力。</figcaption></figure> <p>非惯性系与惯性系可以通过惯性力的有无来区分,简单来说:<sup id="cite_ref-Rothman_8-1" class="reference"><a href="#cite_note-Rothman-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Borowitz_9-1" class="reference"><a href="#cite_note-Borowitz-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r61209892"> <blockquote class="templatequote"><p>非惯性系的效应导致观察者必须在计算中引入惯性力……</p></blockquote> <p>惯性力存在意味着此时的物理定律并非最简,所以依据狭义相对论,存在惯性力的参考系不是惯性系:<sup id="cite_ref-Arnold2_44-0" class="reference"><a href="#cite_note-Arnold2-44"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r61209892"> <blockquote class="templatequote"><p>在非惯性系中的运动方程与在惯性系中的运动方程相差一项称为惯性力。这使我们能用实验觉察出一个参考系(例如地球的自转)之非惯性系性质。</p></blockquote> <p>非惯性系中的物体会受到惯性力。它是来源于参考系自己加速度的力,而非作用在物体的实际相互作用。前文提到的旋转参考系中的离心力与科里奥利力就是惯性力。 </p><p>那么该如何区分惯性力与实在的力?如果不对二者加以区别的话,那么牛顿对于惯性系的定义就非常难以使用。比如考虑一个在惯性系中静止的物体。物体静止就意味着它所受外力的和为零。但在围绕一个固定轴旋转的参考系中,这个物体看起来就是在向心力(科里奥利力与离心力的和)的作用下做圆周运动。那么此时我们如何将转动参考系判定为非惯性系?此时有两种解决方式,一种是去寻找惯性力的来源。人们会发现并不能找到:没有相关的<span class="ilh-all" data-orig-title="载力子" data-lang-code="en" data-lang-name="英语" data-foreign-title="Force carrier"><span class="ilh-page"><a href="/w/index.php?title=%E8%BD%BD%E5%8A%9B%E5%AD%90&amp;action=edit&amp;redlink=1" class="new" title="载力子(页面不存在)">载力子</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Force_carrier" class="extiw" title="en:Force carrier"><span lang="en" dir="auto">Force carrier</span></a></span>)</span></span>,也没有向引力与电磁作用那样的场源物体。另一种是考察不同参考系中的情况。对于任意惯性系,科里奥利力与离心力为零。因此,可以利用狭义相对论原理,即物理定律在所有惯性系中的形式相同且最简,来将惯性系与非惯性系区分出来。而由此原理,转动参考系就不是惯性系。 </p><p>牛顿本人是用像右图中的两个旋转的球来考察这个问题。他提出如果球不转动的话,那么任意参考系中测得绳张力为零<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup>如果球只是看起来在转动,也就是说在一个转动参考系中看到球静止,那么此时绳中的张力为零,向心力完全由科里奥利力与离心力提供。如果球确实在转动,那么向心力就确实是由张力提供。因此可以通过测量绳的张力来确定惯性系:即绳子张力是向心力来源并且数值保持不变的参考系。也就是说惯性系是惯性力消失的参考系。 </p><p>牛顿还考虑直线加速的一种情况:<sup id="cite_ref-Principia_42-1" class="reference"><a href="#cite_note-Principia-42"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r61209892"> </p> <blockquote class="templatequote"><p>对于一组物体,无论它们相互之间如何运动,如果它们受到平行方向上的相同加速力,它们会继续保持相对运动状态,就像没有收到这种力一样。</p></blockquote> <p>这个原理推广了惯性系中的情况。比如,一个关在正自由落体的电梯中的观察者,会发现只要不知道电梯外的情况,自己就是个有效的惯性系,即使此时他正受引力作用加速下落。所以,严格来说,惯性系是一种相对的概念。依据这一点,人们就可以定义彼此静止或匀速平移的惯性系的集合,而单个惯性系是这个集合的一个元素。在使用这种理念的时候,参考系中观测到的一切物体会具有来自参考系的具有基线的共同加速度。例如,还是在电梯的例子中,所有物体都具有相同的引力加速度,而电梯自己也具有这种加速度。 </p><p>1899年,天文学家<a href="/wiki/%E5%8D%A1%E5%B0%94%C2%B7%E5%8F%B2%E7%93%A6%E8%A5%BF" class="mw-redirect" title="卡尔·史瓦西">卡尔·史瓦西</a>讨论了双星系统的观测。两颗星体的运动轨道共面。在距离这个系统足够近时,从地球上就可以看到双星轨道的近日点相对于太阳系是否仍指向同个方向。史瓦西提出所有观测到的双星系统的角动量方向相对于太阳系的角动量方向保持不变。就像<a href="/wiki/%E9%99%80%E8%9E%BA%E4%BB%AA" class="mw-redirect" title="陀螺仪">陀螺仪</a>那样,所有天体的角动量就是相对于普遍惯性空间的角动量。<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="应用"><span id=".E5.BA.94.E7.94.A8"></span>应用</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=8" title="编辑章节:应用"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%E6%83%AF%E6%80%A7%E5%AF%BC%E8%88%AA%E7%B3%BB%E7%BB%9F" title="惯性导航系统">惯性导航系统</a>使用一组陀螺仪与加速计来确定相对于惯性空间的加速度。在陀螺仪调向惯性空间中的某个方向,角动量守恒定律就会保证在其不受外力时朝向保持不变。<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup>三个正交的陀螺仪 可以构建一个惯性系,加速计可以测量相对于那个惯性系的加速度。此时再辅以测量时间的时钟就可以计算位移。因此惯性导航法是一种不用外界输入因此也不会受外部或内部信号影响的<a href="/wiki/%E8%88%AA%E4%BD%8D%E6%8E%A8%E6%B8%AC%E6%B3%95" title="航位推測法">航位推測法</a>。<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p><p>航海中可用来找到地理北极的<span class="ilh-all" data-orig-title="陀螺罗经" data-lang-code="en" data-lang-name="英语" data-foreign-title="gyrocompass"><span class="ilh-page"><a href="/w/index.php?title=%E9%99%80%E8%9E%BA%E7%BD%97%E7%BB%8F&amp;action=edit&amp;redlink=1" class="new" title="陀螺罗经(页面不存在)">陀螺罗经</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/gyrocompass" class="extiw" title="en:gyrocompass"><span lang="en" dir="auto">gyrocompass</span></a></span>)</span></span>并不是通过地磁场实现其功能的,而是利用惯性系作为其参考系的。从外部看,陀螺罗经会沿着当地的铅垂线。当罗经中的陀螺仪螺旋向上时,陀螺仪的悬挂方式会导致其旋转轴的方向与地轴方向逐渐变得一致。与地轴相同的朝向是陀螺仪的转轴能够与地球保持相对静止并且不必改变与惯性空间的相对方向的唯一方式。在被调至螺旋向上后,罗经会在大概15分钟内就能与地轴指向一致。<sup id="cite_ref-l_50-0" class="reference"><a href="#cite_note-l-50"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="牛顿力学"><span id=".E7.89.9B.E9.A1.BF.E5.8A.9B.E5.AD.A6"></span>牛顿力学</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=9" title="编辑章节:牛顿力学"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r85100532"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E7%89%9B%E9%A1%BF%E8%BF%90%E5%8A%A8%E5%AE%9A%E5%BE%8B" title="牛顿运动定律">牛顿运动定律</a></div> <p>包含相对性原理的<a href="/wiki/%E7%BB%8F%E5%85%B8%E5%8A%9B%E5%AD%A6" title="经典力学">经典力学</a>要求所有惯性系等价。牛顿力学还另添了<a href="/wiki/%E7%BB%9D%E5%AF%B9%E6%97%B6%E7%A9%BA" class="mw-redirect" title="绝对时空">绝对时空</a>的假设。基于这两种假设,同一个事件(时空中的一个点)在两个惯性系的坐标之间的关系由伽利略变换给出: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} ^{\prime }=\mathbf {r} -\mathbf {r} _{0}-\mathbf {v} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r} ^{\prime }=\mathbf {r} -\mathbf {r} _{0}-\mathbf {v} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5732e938834b3f280a5190cae88ce0a55719e13d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.075ex; height:2.843ex;" alt="{\displaystyle \mathbf {r} ^{\prime }=\mathbf {r} -\mathbf {r} _{0}-\mathbf {v} t}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{\prime }=t-t_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{\prime }=t-t_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a281e089522999211e80a4f9521a94ac744fe45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.197ex; height:2.843ex;" alt="{\displaystyle t^{\prime }=t-t_{0}}"></span></dd></dl> <p>其中<b>r</b><sub>0</sub>与<i>t</i><sub>0</sub>是时空原点的偏移量,<b>v</b>是两个惯性系之间的相对速度。在伽利略变换中,两个事件之间的时间间隔<i>t</i><sub>2</sub> − <i>t</i><sub>1</sub>在所有惯性系中不变,两个同时事件之间的距离|<b>r</b><sub>2</sub> − <b>r</b><sub>1</sub>|也是不变的。 </p> <div class="mw-heading mw-heading2"><h2 id="狭义相对论"><span id=".E7.8B.AD.E4.B9.89.E7.9B.B8.E5.AF.B9.E8.AE.BA"></span>狭义相对论</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=10" title="编辑章节:狭义相对论"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r85100532"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论">狭义相对论</a></div> <p><a href="/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论">狭义相对论</a>与牛顿力学一样假设惯性系等价。它还有另一条公设,无论光的传播方向、频率以及光源运动状态如何,真空中光速<i>c</i><sub>0</sub>不变。第二条公设虽然已经得到实验验证,但它会造成一些违反直觉的现象: </p> <ul><li><a href="/wiki/%E6%99%82%E9%96%93%E8%86%A8%E8%84%B9" title="時間膨脹">时间膨胀</a>(运动的时钟变慢)</li> <li><a href="/wiki/%E9%95%BF%E5%BA%A6%E6%94%B6%E7%BC%A9" title="长度收缩">长度收缩</a>(运动物体在运动方向变短)</li> <li><a href="/wiki/%E7%9B%B8%E5%B0%8D%E5%90%8C%E6%99%82" title="相對同時">相对同时</a>(某个参考系内同时的事件在几乎所有相对于那个参考系运动的参考系中不同时。)</li></ul> <p>这些公设的推论是时空的普遍性质。无论涉及的物体结构或是钟表运作如何,它们都普遍成立。这些效应可以用<a href="/wiki/%E6%B4%9B%E4%BC%A6%E5%85%B9%E5%8F%98%E6%8D%A2" title="洛伦兹变换">洛伦兹变换</a>表示: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{\prime }=\gamma \left(x-vt\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mi>t</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{\prime }=\gamma \left(x-vt\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9c8652aef4968f1fb38b27b4c101b32ce1c4ac7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.709ex; height:3.009ex;" alt="{\displaystyle x^{\prime }=\gamma \left(x-vt\right)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{\prime }=y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{\prime }=y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec26be930ba3623580cd2423f1cbd3f64ec4f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.099ex; height:2.843ex;" alt="{\displaystyle y^{\prime }=y}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{\prime }=z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{\prime }=z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8596f9abd69029909bcae73311eb98f0321e2f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.962ex; height:2.509ex;" alt="{\displaystyle z^{\prime }=z}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t^{\prime }=\gamma \left(t-{\frac {vx}{c_{0}^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-variant" mathvariant="normal">&#x2032;<!-- ′ --></mi> </mrow> </msup> <mo>=</mo> <mi>&#x03B3;<!-- γ --></mi> <mrow> <mo>(</mo> <mrow> <mi>t</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mi>x</mi> </mrow> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t^{\prime }=\gamma \left(t-{\frac {vx}{c_{0}^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cb60065a9a24937f543c77deeade7858173976c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:16.927ex; height:7.509ex;" alt="{\displaystyle t^{\prime }=\gamma \left(t-{\frac {vx}{c_{0}^{2}}}\right)}"></span></dd></dl> <p>这里忽略了原点的偏移量,相对速度沿<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>轴方向,<a href="/wiki/%E6%B4%9B%E4%BC%A6%E5%85%B9%E5%9B%A0%E5%AD%90" class="mw-redirect" title="洛伦兹因子">洛伦兹因子</a>γ定义为: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma \ {\stackrel {\mathrm {def} }{=}}\ {\frac {1}{\sqrt {1-(v/c_{0})^{2}}}}\ \geq 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mo>=</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> <mi mathvariant="normal">e</mi> <mi mathvariant="normal">f</mi> </mrow> </mrow> </mover> </mrow> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mo>&#x2265;<!-- ≥ --></mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma \ {\stackrel {\mathrm {def} }{=}}\ {\frac {1}{\sqrt {1-(v/c_{0})^{2}}}}\ \geq 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/528a3377673c0d386c8a0ae38059a01e9ffa88df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:24.545ex; height:6.509ex;" alt="{\displaystyle \gamma \ {\stackrel {\mathrm {def} }{=}}\ {\frac {1}{\sqrt {1-(v/c_{0})^{2}}}}\ \geq 1.}"></span></dd></dl> <p>洛伦兹变换在<i>c</i><sub>0</sub> → ∞或<i>v</i> → 0时与伽利略变换等价。经过洛伦兹变换后,事件间的时间与距离可能会发生变化,不过<span class="ilh-all" data-orig-title="洛伦兹标量" data-lang-code="en" data-lang-name="英语" data-foreign-title="Lorentz scalar"><span class="ilh-page"><a href="/w/index.php?title=%E6%B4%9B%E4%BC%A6%E5%85%B9%E6%A0%87%E9%87%8F&amp;action=edit&amp;redlink=1" class="new" title="洛伦兹标量(页面不存在)">洛伦兹标量</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Lorentz_scalar" class="extiw" title="en:Lorentz scalar"><span lang="en" dir="auto">Lorentz scalar</span></a></span>)</span></span>间隔<i>s</i>却不会发生改变: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}-c_{0}^{2}\left(t_{2}-t_{1}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}-c_{0}^{2}\left(t_{2}-t_{1}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6626c2103c18708bc938eb7b2d536c9c94cbcb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:55.854ex; height:3.509ex;" alt="{\displaystyle s^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}-c_{0}^{2}\left(t_{2}-t_{1}\right)^{2}}"></span></dd></dl> <p>而在相对论中,旋转系只能应用在距离转动中心较近的物体,因为当距离足够大时,物体速度就会超过光速。<sup id="cite_ref-Landau_51-0" class="reference"><a href="#cite_note-Landau-51"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="广义相对论"><span id=".E5.B9.BF.E4.B9.89.E7.9B.B8.E5.AF.B9.E8.AE.BA"></span>广义相对论</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=11" title="编辑章节:广义相对论"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r85100532"><div role="note" class="hatnote navigation-not-searchable">主条目:<a href="/wiki/%E5%B9%BF%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" class="mw-redirect" title="广义相对论">广义相对论</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r85100532"><div role="note" class="hatnote navigation-not-searchable">参见:<a href="/wiki/%E7%AD%89%E6%95%88%E5%8E%9F%E7%90%86" title="等效原理">等效原理</a></div> <p>等效原理是广义相对论的一条基础原理:<sup id="cite_ref-Morin_53-0" class="reference"><a href="#cite_note-Morin-53"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Giancoli_54-0" class="reference"><a href="#cite_note-Giancoli-54"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r61209892"> <blockquote class="templatequote"><p>观察者不能利用实验手段判断加速度是来自引力还是来自加速参考系。</p></blockquote> <p>这条原理由爱因斯坦1907年在《关于相对性原理和由此得到的结论》中引入,而后在1911年发展。<sup id="cite_ref-General_theory_55-0" class="reference"><a href="#cite_note-General_theory-55"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup>这条原理后来得到<span class="ilh-all" data-orig-title="厄缶实验" data-lang-code="en" data-lang-name="英语" data-foreign-title="Eötvös experiment"><span class="ilh-page"><a href="/w/index.php?title=%E5%8E%84%E7%BC%B6%E5%AE%9E%E9%AA%8C&amp;action=edit&amp;redlink=1" class="new" title="厄缶实验(页面不存在)">厄缶实验</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/E%C3%B6tv%C3%B6s_experiment" class="extiw" title="en:Eötvös experiment"><span lang="en" dir="auto">Eötvös experiment</span></a></span>)</span></span>的验证。这个实验确定了所有物体惯性质量与引力质量的比值相同。目前人们在10<sup>11</sup>范围内也没有找出两者的差别。<sup id="cite_ref-NRC_56-0" class="reference"><a href="#cite_note-NRC-56"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Franklin_57-0" class="reference"><a href="#cite_note-Franklin-57"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p><p>爱因斯坦通过把“平直”的<a href="/wiki/%E9%97%B5%E5%8F%AF%E5%A4%AB%E6%96%AF%E5%9F%BA%E6%97%B6%E7%A9%BA" class="mw-redirect" title="闵可夫斯基时空">闵可夫斯基时空</a>取代为具有一定度规的弯曲时空来使“惯性系”与“非惯性系”的效应不再存在区别。在广义相对论中,惯性原理被<a href="/wiki/%E6%B5%8B%E5%9C%B0%E7%BA%BF" title="测地线">测地线</a>运动原理,即物体依照时空曲率运动,取代。在广义相对论中,物体受到曲率的影响不再具有保持速度不变的“惯性”。<span class="ilh-all" data-orig-title="测地线导数" data-lang-code="en" data-lang-name="英语" data-foreign-title="测地线导数"><span class="ilh-page"><a href="/w/index.php?title=%E6%B5%8B%E5%9C%B0%E7%BA%BF%E5%AF%BC%E6%95%B0&amp;action=edit&amp;redlink=1" class="new" title="测地线导数(页面不存在)">测地线导数</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/%E6%B5%8B%E5%9C%B0%E7%BA%BF%E5%AF%BC%E6%95%B0" class="extiw" title="en:测地线导数"><span lang="en" dir="auto">测地线导数</span></a></span>)</span></span>的存在标志着惯性系不再像牛顿力学或是狭义相对论中那样全域存在。 </p><p>不过广义相对论会在充分小的时空区域内退化为狭义相对论。在那种区域内,曲率的影响非常小,人们可以重新使用惯性系中的结论。<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup>因而,狭义相对论有时会称作是“定域理论”。<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="另见"><span id=".E5.8F.A6.E8.A7.81"></span>另见</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=12" title="编辑章节:另见"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="navigation" aria-label="Portals" class="noprint portal plainlist tright" style="margin:0.5em 0 0.5em 1em;border:solid #aaa 1px"> <ul style="display:table;box-sizing:border-box;padding:0.1em;max-width:175px;background:var(--background-color-base,#f9f9f9);font-size:85%;line-height:110%;font-weight:bold"> <li style="display:table-row"><span style="display:table-cell;padding:0.2em;vertical-align:middle;text-align:center"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/25px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png" decoding="async" width="25" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/37px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg/49px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.svg.png 2x" data-file-width="530" data-file-height="600" /></a></span></span><span style="display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle"><a href="/wiki/Portal:%E7%89%A9%E7%90%86" class="mw-redirect" title="Portal:物理">物理主题</a></span></li></ul></div> <ul><li><a href="/wiki/%E5%BE%AE%E5%88%86%E5%90%8C%E8%83%9A" title="微分同胚">微分同胚</a></li> <li><a href="/wiki/%E5%BB%A3%E7%BE%A9%E5%8D%94%E8%AE%8A%E6%80%A7" title="廣義協變性">广义协变性</a></li> <li><a href="/wiki/%E6%B4%9B%E4%BC%A6%E5%85%B9%E5%8D%8F%E5%8F%98%E6%80%A7" class="mw-redirect" title="洛伦兹协变性">洛伦兹协变性</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="註釋"><span id=".E8.A8.BB.E9.87.8B"></span>註釋</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=13" title="编辑章节:註釋"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="notelist" style="list-style-type: lower-alpha;"> <ol class="references"> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">假设坐标系的手性相同。</span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text">牛顿对“相对于什么匀速运动”这个问题的答案是“相对于绝对空间”。而绝对时空在现实中是以“静止”恒星这个形式存在的。有关静止恒星的进一步讨论,请见<cite class="citation book">Henning Genz. <a rel="nofollow" class="external text" href="https://books.google.com/?id=Cn_Q9wbDOM0C&amp;pg=PA150&amp;dq=frame+Newton+%22fixed+stars%22">Nothingness: The Science of Empty Space</a>. Da Capo Press. 2001: 150. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-7382-0610-5" title="Special:网络书源/0-7382-0610-5"><span title="国际标准书号">ISBN</span>&#160;0-7382-0610-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Henning+Genz&amp;rft.btitle=Nothingness%3A+The+Science+of+Empty+Space&amp;rft.date=2001&amp;rft.genre=book&amp;rft.isbn=0-7382-0610-5&amp;rft.pages=150&amp;rft.pub=Da+Capo+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DCn_Q9wbDOM0C%26pg%3DPA150%26dq%3Dframe%2BNewton%2B%2522fixed%2Bstars%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">但在牛顿力学中,这些参考系之间是通过伽利略变换联系起来的,而狭义相对论中用到的则是洛伦兹变换。两种变换在平移速率远低于光速时是一致的。</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">也就是说物理定律的普适性要求所有观察者都能看到相同的张力。在一个参考系中力会大到绳断掉,而在另一个参考系中张力不那么大的情况并不存在。</span> </li> </ol> </div> <div class="mw-heading mw-heading2"><h2 id="参考文献"><span id=".E5.8F.82.E8.80.83.E6.96.87.E7.8C.AE"></span>参考文献</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=14" title="编辑章节:参考文献"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns references-column-width" style="-moz-column-width: 30em; -webkit-column-width: 30em; column-width: 30em; list-style-type: decimal;"> <ol class="references"> <li id="cite_note-LandauMechanics-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-LandauMechanics_1-0"><sup><b>1.0</b></sup></a> <a href="#cite_ref-LandauMechanics_1-1"><sup><b>1.1</b></sup></a> <a href="#cite_ref-LandauMechanics_1-2"><sup><b>1.2</b></sup></a></span> <span class="reference-text"><cite class="citation book">Landau, L. D.; Lifshitz, E. M. Mechanics. Pergamon Press. 1960: 4–6.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Lifshitz%2C+E.+M.&amp;rft.aufirst=L.+D.&amp;rft.aulast=Landau&amp;rft.btitle=Mechanics&amp;rft.date=1960&amp;rft.genre=book&amp;rft.pages=4-6&amp;rft.pub=Pergamon+Press&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Ferraro-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Ferraro_2-0"><sup><b>2.0</b></sup></a> <a href="#cite_ref-Ferraro_2-1"><sup><b>2.1</b></sup></a></span> <span class="reference-text"><cite id="CITEREFFerraro2007" class="citation">Ferraro, Rafael, Einstein's Space-Time: An Introduction to Special and General Relativity, Springer Science &amp; Business Media: 209–210, 2007, <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/9780387699462" title="Special:网络书源/9780387699462"><span title="国际标准书号">ISBN</span>&#160;9780387699462</a></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.aufirst=Rafael&amp;rft.aulast=Ferraro&amp;rft.btitle=Einstein%27s+Space-Time%3A+An+Introduction+to+Special+and+General+Relativity&amp;rft.date=2007&amp;rft.genre=book&amp;rft.isbn=9780387699462&amp;rft.pages=209-210&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><cite class="citation book">Cheng, Ta-Pei. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=thXT19cY9jsC">Einstein's Physics: Atoms, Quanta, and Relativity - Derived, Explained, and Appraised</a> illustrated. OUP Oxford. 2013: 219 <span class="reference-accessdate"> &#91;<span class="nowrap">2017-02-27</span>&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-19-966991-2" title="Special:网络书源/978-0-19-966991-2"><span title="国际标准书号">ISBN</span>&#160;978-0-19-966991-2</a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20160519203838/https://books.google.com/books?id=thXT19cY9jsC">存档</a>于2016-05-19).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.aufirst=Ta-Pei&amp;rft.aulast=Cheng&amp;rft.btitle=Einstein%27s+Physics%3A+Atoms%2C+Quanta%2C+and+Relativity+-+Derived%2C+Explained%2C+and+Appraised&amp;rft.date=2013&amp;rft.edition=illustrated&amp;rft.genre=book&amp;rft.isbn=978-0-19-966991-2&amp;rft.pages=219&amp;rft.pub=OUP+Oxford&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DthXT19cY9jsC&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=thXT19cY9jsC&amp;pg=PA219">Extract of page 219</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20160729080922/https://books.google.com/books?id=thXT19cY9jsC&amp;pg=PA219">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</span> </li> <li id="cite_note-Einstein0-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Einstein0_4-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Albert Einstein. <a rel="nofollow" class="external text" href="https://books.google.com/?id=YLsSxQqEww0C&amp;pg=PA71">Relativity: The Special and General Theory</a> 3rd. Courier Dover Publications. 2001: 71 [Reprint of edition of 1920 translated by RQ Lawson]. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-486-41714-X" title="Special:网络书源/0-486-41714-X"><span title="国际标准书号">ISBN</span>&#160;0-486-41714-X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Albert+Einstein&amp;rft.btitle=Relativity%3A+The+Special+and+General+Theory&amp;rft.date=2001&amp;rft.edition=3rd&amp;rft.genre=book&amp;rft.isbn=0-486-41714-X&amp;rft.pages=71&amp;rft.pub=Courier+Dover+Publications&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DYLsSxQqEww0C%26pg%3DPA71&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Giulini-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-Giulini_5-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Domenico Giulini. <a rel="nofollow" class="external text" href="https://books.google.com/?id=4U1bizA_0gsC&amp;pg=PA19">Special Relativity</a>. Cambridge University Press. 2005: 19. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-19-856746-4" title="Special:网络书源/0-19-856746-4"><span title="国际标准书号">ISBN</span>&#160;0-19-856746-4</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Domenico+Giulini&amp;rft.btitle=Special+Relativity&amp;rft.date=2005&amp;rft.genre=book&amp;rft.isbn=0-19-856746-4&amp;rft.pages=19&amp;rft.pub=Cambridge+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3D4U1bizA_0gsC%26pg%3DPA19&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><cite id="CITEREFGilson2004" class="citation">Gilson, James G., Mach's Principle II, September 1, 2004, <span class="plainlinks"><a rel="nofollow" class="external text" href="//arxiv.org/abs/physics/0409010"><span title="arXiv">arXiv:physics/0409010</span></a>&#8239;<span typeof="mw:File"><span title="可免费查阅"><img alt="可免费查阅" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.aufirst=James+G.&amp;rft.aulast=Gilson&amp;rft.btitle=Mach%27s+Principle+II&amp;rft.date=2004-09-01&amp;rft.genre=book&amp;rft_id=info%3Aarxiv%2Fphysics%2F0409010&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Rothman-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rothman_8-0"><sup><b>7.0</b></sup></a> <a href="#cite_ref-Rothman_8-1"><sup><b>7.1</b></sup></a></span> <span class="reference-text"><cite class="citation book">Milton A. Rothman. <a rel="nofollow" class="external text" href="https://books.google.com/?id=Wdp-DFK3b5YC&amp;pg=PA23&amp;vq=inertial&amp;dq=reference+%22laws+of+physics%22">Discovering the Natural Laws: The Experimental Basis of Physics</a>. Courier Dover Publications. 1989: 23. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-486-26178-6" title="Special:网络书源/0-486-26178-6"><span title="国际标准书号">ISBN</span>&#160;0-486-26178-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Milton+A.+Rothman&amp;rft.btitle=Discovering+the+Natural+Laws%3A+The+Experimental+Basis+of+Physics&amp;rft.date=1989&amp;rft.genre=book&amp;rft.isbn=0-486-26178-6&amp;rft.pages=23&amp;rft.pub=Courier+Dover+Publications&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DWdp-DFK3b5YC%26pg%3DPA23%26vq%3Dinertial%26dq%3Dreference%2B%2522laws%2Bof%2Bphysics%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Borowitz-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-Borowitz_9-0"><sup><b>8.0</b></sup></a> <a href="#cite_ref-Borowitz_9-1"><sup><b>8.1</b></sup></a></span> <span class="reference-text"><cite class="citation book">Sidney Borowitz; Lawrence A. Bornstein. <a rel="nofollow" class="external text" href="https://books.google.com/books?num=10&amp;btnG=Google+Search">A Contemporary View of Elementary Physics</a>. McGraw-Hill. 1968: 138. <a rel="nofollow" class="external text" href="https://www.amazon.com/dp/B000GQB02A"><span title="亚马逊标准识别码">ASIN&#160;B000GQB02A</span></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Lawrence+A.+Bornstein&amp;rft.au=Sidney+Borowitz&amp;rft.btitle=A+Contemporary+View+of+Elementary+Physics&amp;rft.date=1968&amp;rft.genre=book&amp;rft.pages=138&amp;rft.pub=McGraw-Hill&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fnum%3D10%26btnG%3DGoogle%2BSearch&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><cite class="citation book">赵凯华; 罗蔚茵. 力学. 新概念物理教程 第二版. 北京: 高等教育出版社. 2004: 85-86. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-04-015201-2" title="Special:网络书源/978-7-04-015201-2"><span title="国际标准书号">ISBN</span>&#160;978-7-04-015201-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=%E7%BD%97%E8%94%9A%E8%8C%B5&amp;rft.au=%E8%B5%B5%E5%87%AF%E5%8D%8E&amp;rft.btitle=%E5%8A%9B%E5%AD%A6&amp;rft.date=2004&amp;rft.edition=%E7%AC%AC%E4%BA%8C%E7%89%88&amp;rft.genre=book&amp;rft.isbn=978-7-04-015201-2&amp;rft.pages=85%EF%BC%8D86&amp;rft.place=%E5%8C%97%E4%BA%AC&amp;rft.pub=%E9%AB%98%E7%AD%89%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft.series=%E6%96%B0%E6%A6%82%E5%BF%B5%E7%89%A9%E7%90%86%E6%95%99%E7%A8%8B&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Balbi-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Balbi_11-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Amedeo Balbi. <a rel="nofollow" class="external text" href="https://books.google.com/?id=vEJM7s909CYC&amp;pg=PA58&amp;dq=CMB+%22rotation+of+the+universe%22">The Music of the Big Bang</a>. Springer. 2008: 59. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/3-540-78726-7" title="Special:网络书源/3-540-78726-7"><span title="国际标准书号">ISBN</span>&#160;3-540-78726-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Amedeo+Balbi&amp;rft.btitle=The+Music+of+the+Big+Bang&amp;rft.date=2008&amp;rft.genre=book&amp;rft.isbn=3-540-78726-7&amp;rft.pages=59&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DvEJM7s909CYC%26pg%3DPA58%26dq%3DCMB%2B%2522rotation%2Bof%2Bthe%2Buniverse%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><cite class="citation journal">Abraham Loeb; Mark J. Reid; Andreas Brunthaler; Heino Falcke. <a rel="nofollow" class="external text" href="http://www.mpifr-bonn.mpg.de/staff/abrunthaler/pub/loeb.pdf">Constraints on the proper motion of the Andromeda galaxy based on the survival of its satellite M33</a> <span style="font-size:85%;">(PDF)</span>. The Astrophysical Journal. 2005, <b>633</b> (2): 894–898 <span class="reference-accessdate"> &#91;<span class="nowrap">2017-02-27</span>&#93;</span>. <a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005ApJ...633..894L"><span title="Bibcode">Bibcode:2005ApJ...633..894L</span></a>. <span class="plainlinks"><a rel="nofollow" class="external text" href="//arxiv.org/abs/astro-ph/0506609"><span title="arXiv">arXiv:astro-ph/0506609</span></a>&#8239;<span typeof="mw:File"><span title="可免费查阅"><img alt="可免费查阅" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>. <a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F491644"><span title="數位物件識別號">doi:10.1086/491644</span></a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20170811143825/http://www3.mpifr-bonn.mpg.de/staff/abrunthaler/pub/loeb.pdf">存档</a> <span style="font-size:85%;">(PDF)</span>于2017-08-11).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.atitle=Constraints+on+the+proper+motion+of+the+Andromeda+galaxy+based+on+the+survival+of+its+satellite+M33&amp;rft.au=Abraham+Loeb&amp;rft.au=Andreas+Brunthaler&amp;rft.au=Heino+Falcke&amp;rft.au=Mark+J.+Reid&amp;rft.date=2005&amp;rft.genre=article&amp;rft.issue=2&amp;rft.jtitle=The+Astrophysical+Journal&amp;rft.pages=894-898&amp;rft.volume=633&amp;rft_id=http%3A%2F%2Fwww.mpifr-bonn.mpg.de%2Fstaff%2Fabrunthaler%2Fpub%2Floeb.pdf&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0506609&amp;rft_id=info%3Abibcode%2F2005ApJ...633..894L&amp;rft_id=info%3Adoi%2F10.1086%2F491644&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Stachel-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Stachel_13-0">^</a></b></span> <span class="reference-text"><cite class="citation book">John J. Stachel. <a rel="nofollow" class="external text" href="https://books.google.com/?id=OAsQ_hFjhrAC&amp;pg=PA235&amp;dq=%22laws+of+nature+took+a+simpler+form%22">Einstein from "B" to "Z"</a>. Springer. 2002: 235–236. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-8176-4143-2" title="Special:网络书源/0-8176-4143-2"><span title="国际标准书号">ISBN</span>&#160;0-8176-4143-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=John+J.+Stachel&amp;rft.btitle=Einstein+from+%22B%22+to+%22Z%22&amp;rft.date=2002&amp;rft.genre=book&amp;rft.isbn=0-8176-4143-2&amp;rft.pages=235-236&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DOAsQ_hFjhrAC%26pg%3DPA235%26dq%3D%2522laws%2Bof%2Bnature%2Btook%2Ba%2Bsimpler%2Bform%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Graneau-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Graneau_14-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Peter Graneau; Neal Graneau. <a rel="nofollow" class="external text" href="https://books.google.com/?id=xpIJZxDkWAUC&amp;pg=PA144&amp;dq=universe+%22fixed+stars%22+date:2004-2010">In the Grip of the Distant Universe</a>. World Scientific. 2006: 147. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/981-256-754-2" title="Special:网络书源/981-256-754-2"><span title="国际标准书号">ISBN</span>&#160;981-256-754-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Neal+Graneau&amp;rft.au=Peter+Graneau&amp;rft.btitle=In+the+Grip+of+the+Distant+Universe&amp;rft.date=2006&amp;rft.genre=book&amp;rft.isbn=981-256-754-2&amp;rft.pages=147&amp;rft.pub=World+Scientific&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DxpIJZxDkWAUC%26pg%3DPA144%26dq%3Duniverse%2B%2522fixed%2Bstars%2522%2Bdate%3A2004-2010&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Thompson-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Thompson_15-0">^</a></b></span> <span class="reference-text"><cite class="citation book">J Garcio-Bellido. The Paradigm of Inflation. J. M. T. Thompson (编). <a rel="nofollow" class="external text" href="https://books.google.com/?id=3TrsMTmbr-sC&amp;pg=PA32&amp;dq=CMB+%22rotation+of+the+universe%22">Advances in Astronomy</a>. Imperial College Press. 2005: 32, §9. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/1-86094-577-5" title="Special:网络书源/1-86094-577-5"><span title="国际标准书号">ISBN</span>&#160;1-86094-577-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.atitle=The+Paradigm+of+Inflation&amp;rft.au=J+Garcio-Bellido&amp;rft.btitle=Advances+in+Astronomy&amp;rft.date=2005&amp;rft.genre=bookitem&amp;rft.isbn=1-86094-577-5&amp;rft.pages=32%2C+%C2%A79&amp;rft.pub=Imperial+College+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3D3TrsMTmbr-sC%26pg%3DPA32%26dq%3DCMB%2B%2522rotation%2Bof%2Bthe%2Buniverse%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Szydlowski-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-Szydlowski_16-0">^</a></b></span> <span class="reference-text"><cite class="citation journal">Wlodzimierz Godlowski; Marek Szydlowski. <a rel="nofollow" class="external text" href="https://archive.org/details/sim_general-relativity-and-gravitation_2003-12_35_12/page/2171">Dark energy and global rotation of the Universe</a>. General Relativity and Gravitation. 2003, <b>35</b> (12): 2171. <a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003GReGr..35.2171G"><span title="Bibcode">Bibcode:2003GReGr..35.2171G</span></a>. <span class="plainlinks"><a rel="nofollow" class="external text" href="//arxiv.org/abs/astro-ph/0303248"><span title="arXiv">arXiv:astro-ph/0303248</span></a>&#8239;<span typeof="mw:File"><span title="可免费查阅"><img alt="可免费查阅" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-file-width="512" data-file-height="813" /></span></span></span>. <a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1027301723533"><span title="數位物件識別號">doi:10.1023/A:1027301723533</span></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.atitle=Dark+energy+and+global+rotation+of+the+Universe&amp;rft.au=Marek+Szydlowski&amp;rft.au=Wlodzimierz+Godlowski&amp;rft.date=2003&amp;rft.genre=article&amp;rft.issue=12&amp;rft.jtitle=General+Relativity+and+Gravitation&amp;rft.pages=2171&amp;rft.volume=35&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsim_general-relativity-and-gravitation_2003-12_35_12%2Fpage%2F2171&amp;rft_id=info%3Aarxiv%2Fastro-ph%2F0303248&amp;rft_id=info%3Abibcode%2F2003GReGr..35.2171G&amp;rft_id=info%3Adoi%2F10.1023%2FA%3A1027301723533&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Genz-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-Genz_17-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Henning Genz. <a rel="nofollow" class="external text" href="https://books.google.com/?id=Cn_Q9wbDOM0C&amp;pg=PA274&amp;dq=%22rotation+of+the+universe%22">Nothingness</a>. Da Capo Press. 2001: 275. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-7382-0610-5" title="Special:网络书源/0-7382-0610-5"><span title="国际标准书号">ISBN</span>&#160;0-7382-0610-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Henning+Genz&amp;rft.btitle=Nothingness&amp;rft.date=2001&amp;rft.genre=book&amp;rft.isbn=0-7382-0610-5&amp;rft.pages=275&amp;rft.pub=Da+Capo+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DCn_Q9wbDOM0C%26pg%3DPA274%26dq%3D%2522rotation%2Bof%2Bthe%2Buniverse%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Birch-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Birch_18-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.nature.com/nature/journal/v298/n5873/abs/298451a0.html">P Birch</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20160305064307/http://www.nature.com/nature/journal/v298/n5873/abs/298451a0.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) <i>Is the Universe rotating?</i> Nature 298, 451 - 454 (29 July 1982)</span> </li> <li id="cite_note-Einstein-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Einstein_19-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Einstein, A., Lorentz, H. A., Minkowski, H., &amp; Weyl, H. <a rel="nofollow" class="external text" href="https://books.google.com/?id=yECokhzsJYIC&amp;pg=PA111&amp;dq=postulate+%22Principle+of+Relativity%22">The Principle of Relativity: a collection of original memoirs on the special and general theory of relativity</a>. Courier Dover Publications. 1952: 111. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-486-60081-5" title="Special:网络书源/0-486-60081-5"><span title="国际标准书号">ISBN</span>&#160;0-486-60081-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Einstein%2C+A.%2C+Lorentz%2C+H.+A.%2C+Minkowski%2C+H.%2C+%26+Weyl%2C+H.&amp;rft.btitle=The+Principle+of+Relativity%3A+a+collection+of+original+memoirs+on+the+special+and+general+theory+of+relativity&amp;rft.date=1952&amp;rft.genre=book&amp;rft.isbn=0-486-60081-5&amp;rft.pages=111&amp;rft.pub=Courier+Dover+Publications&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DyECokhzsJYIC%26pg%3DPA111%26dq%3Dpostulate%2B%2522Principle%2Bof%2BRelativity%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><cite class="citation book">爱因斯坦(著); 范岱年等(编译). 爱因斯坦文集 <b>第二卷</b>. 北京: 商务印书馆. 2010: 332. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-100-07166-6" title="Special:网络书源/978-7-100-07166-6"><span title="国际标准书号">ISBN</span>&#160;978-7-100-07166-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=%E7%88%B1%E5%9B%A0%E6%96%AF%E5%9D%A6%EF%BC%88%E8%91%97%EF%BC%89&amp;rft.au=%E8%8C%83%E5%B2%B1%E5%B9%B4%E7%AD%89%EF%BC%88%E7%BC%96%E8%AF%91%EF%BC%89&amp;rft.btitle=%E7%88%B1%E5%9B%A0%E6%96%AF%E5%9D%A6%E6%96%87%E9%9B%86&amp;rft.date=2010&amp;rft.genre=book&amp;rft.isbn=978-7-100-07166-6&amp;rft.pages=332&amp;rft.place=%E5%8C%97%E4%BA%AC&amp;rft.pub=%E5%95%86%E5%8A%A1%E5%8D%B0%E4%B9%A6%E9%A6%86&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Nagel-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Nagel_21-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Ernest Nagel. <a rel="nofollow" class="external text" href="https://books.google.com/?id=u6EycHgRfkQC&amp;pg=PA212&amp;dq=inertial+%22Foucault%27s+pendulum%22">The Structure of Science</a>. Hackett Publishing. 1979: 212. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-915144-71-9" title="Special:网络书源/0-915144-71-9"><span title="国际标准书号">ISBN</span>&#160;0-915144-71-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Ernest+Nagel&amp;rft.btitle=The+Structure+of+Science&amp;rft.date=1979&amp;rft.genre=book&amp;rft.isbn=0-915144-71-9&amp;rft.pages=212&amp;rft.pub=Hackett+Publishing&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3Du6EycHgRfkQC%26pg%3DPA212%26dq%3Dinertial%2B%2522Foucault%2527s%2Bpendulum%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Blagojević-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Blagojević_22-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Milutin Blagojević. <a rel="nofollow" class="external text" href="https://books.google.com/?id=N8JDSi_eNbwC&amp;pg=PA5&amp;dq=inertial+frame+%22absolute+space%22">Gravitation and Gauge Symmetries</a>. CRC Press. 2002: 4. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-7503-0767-6" title="Special:网络书源/0-7503-0767-6"><span title="国际标准书号">ISBN</span>&#160;0-7503-0767-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Milutin+Blagojevi%C4%87&amp;rft.btitle=Gravitation+and+Gauge+Symmetries&amp;rft.date=2002&amp;rft.genre=book&amp;rft.isbn=0-7503-0767-6&amp;rft.pages=4&amp;rft.pub=CRC+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DN8JDSi_eNbwC%26pg%3DPA5%26dq%3Dinertial%2Bframe%2B%2522absolute%2Bspace%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Einstein2-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-Einstein2_23-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Albert Einstein. <a rel="nofollow" class="external text" href="https://books.google.com/?id=3H46AAAAMAAJ&amp;printsec=titlepage&amp;dq=%22The+Principle+of+Relativity%22">Relativity: The Special and General Theory</a>. H. Holt and Company. 1920: 17.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Albert+Einstein&amp;rft.btitle=Relativity%3A+The+Special+and+General+Theory&amp;rft.date=1920&amp;rft.genre=book&amp;rft.pages=17&amp;rft.pub=H.+Holt+and+Company&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3D3H46AAAAMAAJ%26printsec%3Dtitlepage%26dq%3D%2522The%2BPrinciple%2Bof%2BRelativity%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Feynman-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feynman_24-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Richard Phillips Feynman. <a rel="nofollow" class="external text" href="https://books.google.com/?id=ipY8onVQWhcC&amp;pg=PA49&amp;dq=%22The+Principle+of+Relativity%22">Six not-so-easy pieces: Einstein's relativity, symmetry, and space-time</a>. Basic Books. 1998: 73. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-201-32842-9" title="Special:网络书源/0-201-32842-9"><span title="国际标准书号">ISBN</span>&#160;0-201-32842-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Richard+Phillips+Feynman&amp;rft.btitle=Six+not-so-easy+pieces%3A+Einstein%27s+relativity%2C+symmetry%2C+and+space-time&amp;rft.date=1998&amp;rft.genre=book&amp;rft.isbn=0-201-32842-9&amp;rft.pages=73&amp;rft.pub=Basic+Books&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DipY8onVQWhcC%26pg%3DPA49%26dq%3D%2522The%2BPrinciple%2Bof%2BRelativity%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Wachter-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wachter_25-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Armin Wachter; Henning Hoeber. <a rel="nofollow" class="external text" href="https://books.google.com/?id=j3IQpdkinxMC&amp;pg=PA98&amp;dq=%2210-parameter+proper+orthochronous+Poincare+group%22">Compendium of Theoretical Physics</a>. Birkhäuser. 2006: 98. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-387-25799-3" title="Special:网络书源/0-387-25799-3"><span title="国际标准书号">ISBN</span>&#160;0-387-25799-3</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Armin+Wachter&amp;rft.au=Henning+Hoeber&amp;rft.btitle=Compendium+of+Theoretical+Physics&amp;rft.date=2006&amp;rft.genre=book&amp;rft.isbn=0-387-25799-3&amp;rft.pages=98&amp;rft.pub=Birkh%C3%A4user&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3Dj3IQpdkinxMC%26pg%3DPA98%26dq%3D%252210-parameter%2Bproper%2Borthochronous%2BPoincare%2Bgroup%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Mach-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-Mach_26-0"><sup><b>25.0</b></sup></a> <a href="#cite_ref-Mach_26-1"><sup><b>25.1</b></sup></a></span> <span class="reference-text"><cite class="citation book">Ernst Mach. <a rel="nofollow" class="external text" href="https://books.google.com/?id=cyE1AAAAIAAJ&amp;pg=PA33&amp;dq=rotating+sphere+Mach+cord+OR+string+OR+rod">The Science of Mechanics</a>. The Open Court Publishing Co. 1915: 38.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Ernst+Mach&amp;rft.btitle=The+Science+of+Mechanics&amp;rft.date=1915&amp;rft.genre=book&amp;rft.pages=38&amp;rft.pub=The+Open+Court+Publishing+Co.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DcyE1AAAAIAAJ%26pg%3DPA33%26dq%3Drotating%2Bsphere%2BMach%2Bcord%2BOR%2Bstring%2BOR%2Brod&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><cite class="citation journal">Lange, Ludwig. Über die wissenschaftliche Fassung des Galileischen Beharrungsgesetzes. Philosophische Studien. 1885, <b>2</b>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.atitle=%C3%9Cber+die+wissenschaftliche+Fassung+des+Galileischen+Beharrungsgesetzes&amp;rft.au=Lange%2C+Ludwig&amp;rft.date=1885&amp;rft.genre=article&amp;rft.jtitle=Philosophische+Studien&amp;rft.volume=2&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Barbour-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-Barbour_28-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Julian B. Barbour. <a rel="nofollow" class="external text" href="https://books.google.com/?id=WQidkYkleXcC&amp;pg=PA645&amp;dq=Ludwig+Lange+%22operational+definition%22">The Discovery of Dynamics</a> Reprint of 1989 <i>Absolute or Relative Motion?</i>. Oxford University Press. 2001: 645–646. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-19-513202-5" title="Special:网络书源/0-19-513202-5"><span title="国际标准书号">ISBN</span>&#160;0-19-513202-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Julian+B.+Barbour&amp;rft.btitle=The+Discovery+of+Dynamics&amp;rft.date=2001&amp;rft.edition=Reprint+of+1989+%27%27Absolute+or+Relative+Motion%3F%27%27&amp;rft.genre=book&amp;rft.isbn=0-19-513202-5&amp;rft.pages=645-646&amp;rft.pub=Oxford+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DWQidkYkleXcC%26pg%3DPA645%26dq%3DLudwig%2BLange%2B%2522operational%2Bdefinition%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Iro-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Iro_29-0">^</a></b></span> <span class="reference-text">L. Lange (1885) as quoted by Max von Laue in his book (1921) <i>Die Relativitätstheorie</i>, p. 34, and translated by <cite class="citation book">Harald Iro. <a rel="nofollow" class="external text" href="https://books.google.com/?id=-L5ckgdxA5YC&amp;pg=PA179&amp;dq=inertial+noninertial">A Modern Approach to Classical Mechanics</a>. World Scientific. 2002: 169. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/981-238-213-5" title="Special:网络书源/981-238-213-5"><span title="国际标准书号">ISBN</span>&#160;981-238-213-5</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Harald+Iro&amp;rft.btitle=A+Modern+Approach+to+Classical+Mechanics&amp;rft.date=2002&amp;rft.genre=book&amp;rft.isbn=981-238-213-5&amp;rft.pages=169&amp;rft.pub=World+Scientific&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3D-L5ckgdxA5YC%26pg%3DPA179%26dq%3Dinertial%2Bnoninertial&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Blagojević2-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Blagojević2_30-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Milutin Blagojević. <a rel="nofollow" class="external text" href="https://books.google.com/?id=N8JDSi_eNbwC&amp;pg=PA5&amp;dq=inertial+frame+%22absolute+space%22">Gravitation and Gauge Symmetries</a>. CRC Press. 2002: 5. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-7503-0767-6" title="Special:网络书源/0-7503-0767-6"><span title="国际标准书号">ISBN</span>&#160;0-7503-0767-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Milutin+Blagojevi%C4%87&amp;rft.btitle=Gravitation+and+Gauge+Symmetries&amp;rft.date=2002&amp;rft.genre=book&amp;rft.isbn=0-7503-0767-6&amp;rft.pages=5&amp;rft.pub=CRC+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DN8JDSi_eNbwC%26pg%3DPA5%26dq%3Dinertial%2Bframe%2B%2522absolute%2Bspace%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Woodhouse0-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Woodhouse0_31-0">^</a></b></span> <span class="reference-text"><cite class="citation book">NMJ Woodhouse. <a rel="nofollow" class="external text" href="https://books.google.com/?id=tM9hic_wo3sC&amp;pg=PA126&amp;dq=Woodhouse+%22operational+definition%22">Special relativity</a>. London: Springer. 2003: 58. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/1-85233-426-6" title="Special:网络书源/1-85233-426-6"><span title="国际标准书号">ISBN</span>&#160;1-85233-426-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=NMJ+Woodhouse&amp;rft.btitle=Special+relativity&amp;rft.date=2003&amp;rft.genre=book&amp;rft.isbn=1-85233-426-6&amp;rft.pages=58&amp;rft.place=London&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DtM9hic_wo3sC%26pg%3DPA126%26dq%3DWoodhouse%2B%2522operational%2Bdefinition%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-DiSalle-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-DiSalle_32-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Robert DiSalle. Space and Time: Inertial Frames. Edward N. Zalta (编). <a rel="nofollow" class="external text" href="http://plato.stanford.edu/archives/sum2002/entries/spacetime-iframes/#Oth">The Stanford Encyclopedia of Philosophy</a>. 2002 <span class="reference-accessdate"> &#91;<span class="nowrap">2017-02-27</span>&#93;</span>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20160107065921/http://plato.stanford.edu/archives/sum2002/entries/spacetime-iframes/#Oth">存档</a>于2016-01-07).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.atitle=Space+and+Time%3A+Inertial+Frames&amp;rft.au=Robert+DiSalle&amp;rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&amp;rft.date=2002&amp;rft.genre=bookitem&amp;rft_id=http%3A%2F%2Fplato.stanford.edu%2Farchives%2Fsum2002%2Fentries%2Fspacetime-iframes%2F%23Oth&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Moeller-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Moeller_33-0">^</a></b></span> <span class="reference-text"><cite class="citation book">C Møller. <a rel="nofollow" class="external text" href="http://worldcat.org/oclc/220221617&amp;referer=brief_results">The Theory of Relativity</a> Second. Oxford UK: Oxford University Press. 1976: 1 <span class="reference-accessdate"> &#91;<span class="nowrap">2020-10-10</span>&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-19-560539-X" title="Special:网络书源/0-19-560539-X"><span title="国际标准书号">ISBN</span>&#160;0-19-560539-X</a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20090213154602/http://www.worldcat.org/oclc/220221617%26referer%3Dbrief_results">存档</a>于2009-02-13).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=C+M%C3%B8ller&amp;rft.btitle=The+Theory+of+Relativity&amp;rft.date=1976&amp;rft.edition=Second&amp;rft.genre=book&amp;rft.isbn=0-19-560539-X&amp;rft.pages=1&amp;rft.place=Oxford+UK&amp;rft.pub=Oxford+University+Press&amp;rft_id=http%3A%2F%2Fworldcat.org%2Foclc%2F220221617%26referer%3Dbrief_results&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Resnick-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Resnick_35-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Robert Resnick; David Halliday; Kenneth S. Krane. <a rel="nofollow" class="external text" href="https://books.google.com/?id=CucFAAAACAAJ&amp;dq=intitle:physics+inauthor:resnick">Physics</a> 5th. Wiley. 2001. Volume 1, Chapter 3. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-471-32057-9" title="Special:网络书源/0-471-32057-9"><span title="国际标准书号">ISBN</span>&#160;0-471-32057-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=David+Halliday&amp;rft.au=Kenneth+S.+Krane&amp;rft.au=Robert+Resnick&amp;rft.btitle=Physics&amp;rft.date=2001&amp;rft.edition=5th&amp;rft.genre=book&amp;rft.isbn=0-471-32057-9&amp;rft.pages=Volume+1%2C+Chapter+3&amp;rft.pub=Wiley&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DCucFAAAACAAJ%26dq%3Dintitle%3Aphysics%2Binauthor%3Aresnick&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<a href="/wiki/Wikipedia:%E5%A4%B1%E6%95%88%E9%93%BE%E6%8E%A5" title="Wikipedia:失效链接"><span title="">失效連結</span></a>&#93;</span></sup></span> </li> <li id="cite_note-Takwale-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Takwale_36-0">^</a></b></span> <span class="reference-text"><cite class="citation book">RG Takwale. <a rel="nofollow" class="external text" href="https://books.google.com/?id=r5P29cN6s6QC&amp;pg=PA70&amp;dq=fixed+stars+%22inertial+frame%22">Introduction to classical mechanics</a>. New Delhi: Tata McGraw-Hill. 1980: 70. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-07-096617-6" title="Special:网络书源/0-07-096617-6"><span title="国际标准书号">ISBN</span>&#160;0-07-096617-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=RG+Takwale&amp;rft.btitle=Introduction+to+classical+mechanics&amp;rft.date=1980&amp;rft.genre=book&amp;rft.isbn=0-07-096617-6&amp;rft.pages=70&amp;rft.place=New+Delhi&amp;rft.pub=Tata+McGraw-Hill&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3Dr5P29cN6s6QC%26pg%3DPA70%26dq%3Dfixed%2Bstars%2B%2522inertial%2Bframe%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Woodhouse-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Woodhouse_37-0">^</a></b></span> <span class="reference-text"><cite class="citation book">NMJ Woodhouse. <a rel="nofollow" class="external text" href="https://books.google.com/?id=ggPXQAeeRLgC&amp;printsec=frontcover&amp;dq=isbn=1852334266#PPA6,M1">Special relativity</a>. London/Berlin: Springer. 2003: 6. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/1-85233-426-6" title="Special:网络书源/1-85233-426-6"><span title="国际标准书号">ISBN</span>&#160;1-85233-426-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=NMJ+Woodhouse&amp;rft.btitle=Special+relativity&amp;rft.date=2003&amp;rft.genre=book&amp;rft.isbn=1-85233-426-6&amp;rft.pages=6&amp;rft.place=London%2FBerlin&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DggPXQAeeRLgC%26printsec%3Dfrontcover%26dq%3Disbn%3D1852334266%23PPA6%2CM1&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Einstein5-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-Einstein5_38-0">^</a></b></span> <span class="reference-text"><cite class="citation book">A Einstein. <a rel="nofollow" class="external text" href="https://books.google.com/books?num=10&amp;btnG=Google+Search">The Meaning of Relativity</a>. Princeton University Press. 1950: 58.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=A+Einstein&amp;rft.btitle=The+Meaning+of+Relativity&amp;rft.date=1950&amp;rft.genre=book&amp;rft.pages=58&amp;rft.pub=Princeton+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fnum%3D10%26btnG%3DGoogle%2BSearch&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><cite class="citation book">爱因斯坦(著); 许良英等(编译). 爱因斯坦文集 <b>第一卷</b>. 北京: 商务印书馆. 2010: 245. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-100-07166-6" title="Special:网络书源/978-7-100-07166-6"><span title="国际标准书号">ISBN</span>&#160;978-7-100-07166-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=%E7%88%B1%E5%9B%A0%E6%96%AF%E5%9D%A6%EF%BC%88%E8%91%97%EF%BC%89&amp;rft.au=%E8%AE%B8%E8%89%AF%E8%8B%B1%E7%AD%89%EF%BC%88%E7%BC%96%E8%AF%91%EF%BC%89&amp;rft.btitle=%E7%88%B1%E5%9B%A0%E6%96%AF%E5%9D%A6%E6%96%87%E9%9B%86&amp;rft.date=2010&amp;rft.genre=book&amp;rft.isbn=978-7-100-07166-6&amp;rft.pages=245&amp;rft.place=%E5%8C%97%E4%BA%AC&amp;rft.pub=%E5%95%86%E5%8A%A1%E5%8D%B0%E4%B9%A6%E9%A6%86&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Rosser-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rosser_40-0">^</a></b></span> <span class="reference-text"><cite class="citation book">William Geraint Vaughan Rosser. <a rel="nofollow" class="external text" href="https://books.google.com/?id=zpjBEBbIjAIC&amp;pg=PA94&amp;dq=reference+%22laws+of+physics%22">Introductory Special Relativity</a>. CRC Press. 1991: 3. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-85066-838-7" title="Special:网络书源/0-85066-838-7"><span title="国际标准书号">ISBN</span>&#160;0-85066-838-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=William+Geraint+Vaughan+Rosser&amp;rft.btitle=Introductory+Special+Relativity&amp;rft.date=1991&amp;rft.genre=book&amp;rft.isbn=0-85066-838-7&amp;rft.pages=3&amp;rft.pub=CRC+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DzpjBEBbIjAIC%26pg%3DPA94%26dq%3Dreference%2B%2522laws%2Bof%2Bphysics%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Feynman2-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-Feynman2_41-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Richard Phillips Feynman. <a rel="nofollow" class="external text" href="https://books.google.com/?id=ipY8onVQWhcC&amp;pg=PA49&amp;dq=%22The+Principle+of+Relativity%22">Six not-so-easy pieces: Einstein's relativity, symmetry, and space-time</a>. Basic Books. 1998: 50. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-201-32842-9" title="Special:网络书源/0-201-32842-9"><span title="国际标准书号">ISBN</span>&#160;0-201-32842-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Richard+Phillips+Feynman&amp;rft.btitle=Six+not-so-easy+pieces%3A+Einstein%27s+relativity%2C+symmetry%2C+and+space-time&amp;rft.date=1998&amp;rft.genre=book&amp;rft.isbn=0-201-32842-9&amp;rft.pages=50&amp;rft.pub=Basic+Books&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DipY8onVQWhcC%26pg%3DPA49%26dq%3D%2522The%2BPrinciple%2Bof%2BRelativity%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Principia-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-Principia_42-0"><sup><b>40.0</b></sup></a> <a href="#cite_ref-Principia_42-1"><sup><b>40.1</b></sup></a></span> <span class="reference-text"><cite class="citation book">Sir Issac Newton; translated by Andrew Motte. <a rel="nofollow" class="external text" href="https://archive.org/stream/newtonspmathema00newtrich#page/n7/mode/2up">Newton's Principia&#160;: the mathematical principles of natural philosophy</a>. New York: Daniel Adee, 45 Liberty Street.&#160;: 88-89.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Sir+Issac+Newton&amp;rft.au=translated+by+Andrew+Motte&amp;rft.btitle=Newton%27s+Principia+%3A+the+mathematical+principles+of+natural+philosophy&amp;rft.genre=book&amp;rft.pages=88%EF%BC%8D89&amp;rft.place=New+York&amp;rft.pub=Daniel+Adee%2C+45+Liberty+Street&amp;rft_id=https%3A%2F%2Farchive.org%2Fstream%2Fnewtonspmathema00newtrich%23page%2Fn7%2Fmode%2F2up&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Arnold2-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-Arnold2_44-0">^</a></b></span> <span class="reference-text"><cite class="citation book">V. I. Arnol'd. <a rel="nofollow" class="external text" href="https://books.google.com/books?num=10&amp;btnG=Google+Search">Mathematical Methods of Classical Mechanics</a>. Springer. 1989: 129. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-387-96890-2" title="Special:网络书源/978-0-387-96890-2"><span title="国际标准书号">ISBN</span>&#160;978-0-387-96890-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=V.+I.+Arnol%27d&amp;rft.btitle=Mathematical+Methods+of+Classical+Mechanics&amp;rft.date=1989&amp;rft.genre=book&amp;rft.isbn=978-0-387-96890-2&amp;rft.pages=129&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fnum%3D10%26btnG%3DGoogle%2BSearch&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><cite class="citation book">В·И·阿诺尔德(著); 齐民友(译). 经典力学的数学方法. 俄罗斯数学教材选译 第2版. 北京: 高等教育出版社. 2006: 101. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-04-018403-7" title="Special:网络书源/978-7-04-018403-7"><span title="国际标准书号">ISBN</span>&#160;978-7-04-018403-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=%D0%92%C2%B7%D0%98%C2%B7%E9%98%BF%E8%AF%BA%E5%B0%94%E5%BE%B7%EF%BC%88%E8%91%97%EF%BC%89&amp;rft.au=%E9%BD%90%E6%B0%91%E5%8F%8B%EF%BC%88%E8%AF%91%EF%BC%89&amp;rft.btitle=%E7%BB%8F%E5%85%B8%E5%8A%9B%E5%AD%A6%E7%9A%84%E6%95%B0%E5%AD%A6%E6%96%B9%E6%B3%95&amp;rft.date=2006&amp;rft.edition=%E7%AC%AC2%E7%89%88&amp;rft.genre=book&amp;rft.isbn=978-7-04-018403-7&amp;rft.pages=101&amp;rft.place=%E5%8C%97%E4%BA%AC&amp;rft.pub=%E9%AB%98%E7%AD%89%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft.series=%E4%BF%84%E7%BD%97%E6%96%AF%E6%95%B0%E5%AD%A6%E6%95%99%E6%9D%90%E9%80%89%E8%AF%91&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.mpiwg-berlin.mpg.de/Preprints/P271.PDF">In the Shadow of the Relativity Revolution</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20170520084821/http://www.mpiwg-berlin.mpg.de/Preprints/P271.PDF">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) Section 3: The Work of Karl Schwarzschild (2.2 MB PDF-file)</span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><cite class="citation book">Chatfield, Averil B. Fundamentals of High Accuracy Inertial Navigation, Volume 174. AIAA. 1997: 59. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/9781600864278" title="Special:网络书源/9781600864278"><span title="国际标准书号">ISBN</span>&#160;9781600864278</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.aufirst=Averil+B.&amp;rft.aulast=Chatfield&amp;rft.btitle=Fundamentals+of+High+Accuracy+Inertial+Navigation%2C+Volume+174&amp;rft.date=1997&amp;rft.genre=book&amp;rft.isbn=9781600864278&amp;rft.pages=59&amp;rft.pub=AIAA&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><cite class="citation book">Kennie, edited by T.J.M.; Petrie, G. Engineering Surveying Technology Pbk. Hoboken: Taylor &amp; Francis. 1993: 95. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/9780203860748" title="Special:网络书源/9780203860748"><span title="国际标准书号">ISBN</span>&#160;9780203860748</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Petrie%2C+G.&amp;rft.aufirst=edited+by+T.J.M.&amp;rft.aulast=Kennie&amp;rft.btitle=Engineering+Surveying+Technology&amp;rft.date=1993&amp;rft.edition=Pbk.&amp;rft.genre=book&amp;rft.isbn=9780203860748&amp;rft.pages=95&amp;rft.place=Hoboken&amp;rft.pub=Taylor+%26+Francis&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-l-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-l_50-0">^</a></b></span> <span class="reference-text"><cite class="citation journal"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=YlEEAAAAMBAJ&amp;pg=PA82">The gyroscope pilots ships &amp; planes</a>. Life. Mar 15, 1943: 80-83 <span class="reference-accessdate"> &#91;<span class="nowrap">2017-02-27</span>&#93;</span>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20170227154326/https://books.google.com/books?id=YlEEAAAAMBAJ&amp;pg=PA82">存档</a>于2017-02-27).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.atitle=The+gyroscope+pilots+ships+%26+planes&amp;rft.date=1943-03-15&amp;rft.genre=article&amp;rft.jtitle=Life&amp;rft.pages=80%EF%BC%8D83&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DYlEEAAAAMBAJ%26pg%3DPA82&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Landau-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-Landau_51-0">^</a></b></span> <span class="reference-text"><cite class="citation book">LD Landau; LM Lifshitz. <a rel="nofollow" class="external text" href="https://archive.org/details/classicaltheoryo0000land_k6k2">The Classical Theory of Fields</a> 4th Revised English. Pergamon Press. 1975: <a rel="nofollow" class="external text" href="https://archive.org/details/classicaltheoryo0000land_k6k2/page/273">273</a>–274. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-0-7506-2768-9" title="Special:网络书源/978-0-7506-2768-9"><span title="国际标准书号">ISBN</span>&#160;978-0-7506-2768-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=LD+Landau&amp;rft.au=LM+Lifshitz&amp;rft.btitle=The+Classical+Theory+of+Fields&amp;rft.date=1975&amp;rft.edition=4th+Revised+English&amp;rft.genre=book&amp;rft.isbn=978-0-7506-2768-9&amp;rft.pages=273-274&amp;rft.pub=Pergamon+Press&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fclassicaltheoryo0000land_k6k2&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><cite class="citation book">Л·Д·朗道; Е·М·栗弗席兹; 鲁欣, 任朗, 袁炳南(译); 邹振隆(校). 《理论物理学教程第二卷·场论》. 北京: 高等教育出版社.&#160;: 283. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/978-7-04-035173-6" title="Special:网络书源/978-7-04-035173-6"><span title="国际标准书号">ISBN</span>&#160;978-7-04-035173-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=%D0%95%C2%B7%D0%9C%C2%B7%E6%A0%97%E5%BC%97%E5%B8%AD%E5%85%B9&amp;rft.au=%D0%9B%C2%B7%D0%94%C2%B7%E6%9C%97%E9%81%93&amp;rft.au=%E9%82%B9%E6%8C%AF%E9%9A%86%EF%BC%88%E6%A0%A1%EF%BC%89&amp;rft.au=%E9%B2%81%E6%AC%A3%2C+%E4%BB%BB%E6%9C%97%2C+%E8%A2%81%E7%82%B3%E5%8D%97%EF%BC%88%E8%AF%91%EF%BC%89&amp;rft.btitle=%E3%80%8A%E7%90%86%E8%AE%BA%E7%89%A9%E7%90%86%E5%AD%A6%E6%95%99%E7%A8%8B%E7%AC%AC%E4%BA%8C%E5%8D%B7%C2%B7%E5%9C%BA%E8%AE%BA%E3%80%8B&amp;rft.genre=book&amp;rft.isbn=978-7-04-035173-6&amp;rft.pages=283&amp;rft.place=%E5%8C%97%E4%BA%AC&amp;rft.pub=%E9%AB%98%E7%AD%89%E6%95%99%E8%82%B2%E5%87%BA%E7%89%88%E7%A4%BE&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Morin-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-Morin_53-0">^</a></b></span> <span class="reference-text"><cite class="citation book">David Morin. <a rel="nofollow" class="external text" href="https://books.google.com/?id=Ni6CD7K2X4MC&amp;pg=PA469&amp;dq=acceleration+azimuthal+inauthor:Morin">Introduction to Classical Mechanics</a>. Cambridge University Press. 2008: 649. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-521-87622-2" title="Special:网络书源/0-521-87622-2"><span title="国际标准书号">ISBN</span>&#160;0-521-87622-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=David+Morin&amp;rft.btitle=Introduction+to+Classical+Mechanics&amp;rft.date=2008&amp;rft.genre=book&amp;rft.isbn=0-521-87622-2&amp;rft.pages=649&amp;rft.pub=Cambridge+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DNi6CD7K2X4MC%26pg%3DPA469%26dq%3Dacceleration%2Bazimuthal%2Binauthor%3AMorin&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Giancoli-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-Giancoli_54-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Douglas C. Giancoli. <a rel="nofollow" class="external text" href="https://books.google.com/?id=xz-UEdtRmzkC&amp;pg=PA155&amp;dq=%22principle+of+equivalence%22">Physics for Scientists and Engineers with Modern Physics</a>. Pearson Prentice Hall. 2007: 155. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-13-149508-9" title="Special:网络书源/0-13-149508-9"><span title="国际标准书号">ISBN</span>&#160;0-13-149508-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Douglas+C.+Giancoli&amp;rft.btitle=Physics+for+Scientists+and+Engineers+with+Modern+Physics&amp;rft.date=2007&amp;rft.genre=book&amp;rft.isbn=0-13-149508-9&amp;rft.pages=155&amp;rft.pub=Pearson+Prentice+Hall&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3Dxz-UEdtRmzkC%26pg%3DPA155%26dq%3D%2522principle%2Bof%2Bequivalence%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-General_theory-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-General_theory_55-0">^</a></b></span> <span class="reference-text">A. Einstein, "On the influence of gravitation on the propagation of light", <i>Annalen der Physik</i>, vol. 35, (1911)&#160;: 898-908</span> </li> <li id="cite_note-NRC-56"><span class="mw-cite-backlink"><b><a href="#cite_ref-NRC_56-0">^</a></b></span> <span class="reference-text"><cite class="citation book">National Research Council (US). <a rel="nofollow" class="external text" href="https://books.google.com/?id=Hk1wj61PlocC&amp;pg=PA15&amp;dq=equivalence+gravitation">Physics Through the Nineteen Nineties: Overview</a>. National Academies Press. 1986: 15. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-309-03579-1" title="Special:网络书源/0-309-03579-1"><span title="国际标准书号">ISBN</span>&#160;0-309-03579-1</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=National+Research+Council+%28US%29&amp;rft.btitle=Physics+Through+the+Nineteen+Nineties%3A+Overview&amp;rft.date=1986&amp;rft.genre=book&amp;rft.isbn=0-309-03579-1&amp;rft.pages=15&amp;rft.pub=National+Academies+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DHk1wj61PlocC%26pg%3DPA15%26dq%3Dequivalence%2Bgravitation&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-Franklin-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-Franklin_57-0">^</a></b></span> <span class="reference-text"><cite class="citation book">Allan Franklin. <a rel="nofollow" class="external text" href="https://books.google.com/?id=_RN-v31rXuIC&amp;pg=PA66&amp;dq=%22Eotvos+experiment%22">No Easy Answers: Science and the Pursuit of Knowledge</a>. University of Pittsburgh Press. 2007: 66. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-8229-5968-2" title="Special:网络书源/0-8229-5968-2"><span title="国际标准书号">ISBN</span>&#160;0-8229-5968-2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Allan+Franklin&amp;rft.btitle=No+Easy+Answers%3A+Science+and+the+Pursuit+of+Knowledge&amp;rft.date=2007&amp;rft.genre=book&amp;rft.isbn=0-8229-5968-2&amp;rft.pages=66&amp;rft.pub=University+of+Pittsburgh+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3D_RN-v31rXuIC%26pg%3DPA66%26dq%3D%2522Eotvos%2Bexperiment%2522&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><cite class="citation book">Green, Herbert S. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CUJiQjSVCu8C">Information Theory and Quantum Physics: Physical Foundations for Understanding the Conscious Process</a>. Springer. 2000: 154 <span class="reference-accessdate"> &#91;<span class="nowrap">2017-02-27</span>&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/354066517X" title="Special:网络书源/354066517X"><span title="国际标准书号">ISBN</span>&#160;354066517X</a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20170227162347/https://books.google.com/books?id=CUJiQjSVCu8C">存档</a>于2017-02-27).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.aufirst=Herbert+S.&amp;rft.aulast=Green&amp;rft.btitle=Information+Theory+and+Quantum+Physics%3A+Physical+Foundations+for+Understanding+the+Conscious+Process&amp;rft.date=2000&amp;rft.genre=book&amp;rft.isbn=354066517X&amp;rft.pages=154&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DCUJiQjSVCu8C&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=CUJiQjSVCu8C&amp;pg=PA154">Extract of page 154</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20170227231703/https://books.google.com/books?id=CUJiQjSVCu8C&amp;pg=PA154">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><cite class="citation book">Bandyopadhyay, Nikhilendu. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=qMOyfi_i0j8C">Theory of Special Relativity</a>. Academic Publishers. 2000: 116 <span class="reference-accessdate"> &#91;<span class="nowrap">2017-02-27</span>&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/8186358528" title="Special:网络书源/8186358528"><span title="国际标准书号">ISBN</span>&#160;8186358528</a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20170227160543/https://books.google.com/books?id=qMOyfi_i0j8C">存档</a>于2017-02-27).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.aufirst=Nikhilendu&amp;rft.aulast=Bandyopadhyay&amp;rft.btitle=Theory+of+Special+Relativity&amp;rft.date=2000&amp;rft.genre=book&amp;rft.isbn=8186358528&amp;rft.pages=116&amp;rft.pub=Academic+Publishers&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DqMOyfi_i0j8C&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=qMOyfi_i0j8C&amp;pg=PA116">Extract of page 116</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20170227164246/https://books.google.com/books?id=qMOyfi_i0j8C&amp;pg=PA116">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><cite class="citation book">Liddle, Andrew R.; Lyth, David H. <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XmWauPZSovMC">Cosmological Inflation and Large-Scale Structure</a>. Cambridge University Press. 2000: 329 <span class="reference-accessdate"> &#91;<span class="nowrap">2017-02-27</span>&#93;</span>. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-521-57598-2" title="Special:网络书源/0-521-57598-2"><span title="国际标准书号">ISBN</span>&#160;0-521-57598-2</a>. (原始内容<a rel="nofollow" class="external text" href="https://web.archive.org/web/20170227162500/https://books.google.com/books?id=XmWauPZSovMC">存档</a>于2017-02-27).</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Lyth%2C+David+H.&amp;rft.aufirst=Andrew+R.&amp;rft.aulast=Liddle&amp;rft.btitle=Cosmological+Inflation+and+Large-Scale+Structure&amp;rft.date=2000&amp;rft.genre=book&amp;rft.isbn=0-521-57598-2&amp;rft.pages=329&amp;rft.pub=Cambridge+University+Press&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DXmWauPZSovMC&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span> <a rel="nofollow" class="external text" href="https://books.google.com/books?id=XmWauPZSovMC&amp;pg=PA329">Extract of page 329</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20170227150431/https://books.google.com/books?id=XmWauPZSovMC&amp;pg=PA329">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="延伸阅读"><span id=".E5.BB.B6.E4.BC.B8.E9.98.85.E8.AF.BB"></span>延伸阅读</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=15" title="编辑章节:延伸阅读"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Edwin F. Taylor and John Archibald Wheeler, <i>Spacetime Physics</i>, 2nd ed. (Freeman, NY, 1992)</li> <li><a href="/wiki/Albert_Einstein" class="mw-redirect" title="Albert Einstein">Albert Einstein</a>, <i>Relativity, the special and the general theories</i>, 15th ed. (1954)</li> <li><cite class="citation journal"><a href="/wiki/Henri_Poincar%C3%A9" class="mw-redirect" title="Henri Poincaré">Poincaré, Henri</a>. La théorie de Lorentz et le Principe de Réaction. Archives Neerlandaises. 1900, <b>V</b>: 253–78.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.atitle=La+th%C3%A9orie+de+Lorentz+et+le+Principe+de+R%C3%A9action&amp;rft.aufirst=Henri&amp;rft.aulast=Poincar%C3%A9&amp;rft.date=1900&amp;rft.genre=article&amp;rft.jtitle=Archives+Neerlandaises&amp;rft.pages=253-78&amp;rft.volume=V&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><a href="/wiki/Albert_Einstein" class="mw-redirect" title="Albert Einstein">Albert Einstein</a>, <i>On the Electrodynamics of Moving Bodies</i>, included in <i>The Principle of Relativity</i>, page 38. Dover 1923</li> <li><cite class="citation book">Julian B. Barbour; Herbert Pfister. <a rel="nofollow" class="external text" href="https://books.google.com/?id=fKgQ9YpAcwMC&amp;pg=PA445&amp;dq=Birch++%22rotation+of+the+universe%22+-religion+-astrology+date:1990-2000">Mach's Principle: From Newton's Bucket to Quantum Gravity</a>. Birkhäuser. 1998: 445. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-8176-3823-7" title="Special:网络书源/0-8176-3823-7"><span title="国际标准书号">ISBN</span>&#160;0-8176-3823-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=Herbert+Pfister&amp;rft.au=Julian+B.+Barbour&amp;rft.btitle=Mach%27s+Principle%3A+From+Newton%27s+Bucket+to+Quantum+Gravity&amp;rft.date=1998&amp;rft.genre=book&amp;rft.isbn=0-8176-3823-7&amp;rft.pages=445&amp;rft.pub=Birkh%C3%A4user&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3DfKgQ9YpAcwMC%26pg%3DPA445%26dq%3DBirch%2B%2B%2522rotation%2Bof%2Bthe%2Buniverse%2522%2B-religion%2B-astrology%2Bdate%3A1990-2000&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><cite class="citation book">PJ Nahin. <a rel="nofollow" class="external text" href="https://books.google.com/?id=39KQY1FnSfkC&amp;pg=PA369">Time Machines</a>. Springer. 1999: 369; Footnote 12. <a href="/wiki/Special:%E7%BD%91%E7%BB%9C%E4%B9%A6%E6%BA%90/0-387-98571-9" title="Special:网络书源/0-387-98571-9"><span title="国际标准书号">ISBN</span>&#160;0-387-98571-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rfr_id=info%3Asid%2Fzh.wikipedia.org%3A%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;rft.au=PJ+Nahin&amp;rft.btitle=Time+Machines&amp;rft.date=1999&amp;rft.genre=book&amp;rft.isbn=0-387-98571-9&amp;rft.pages=369%3B+Footnote+12&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fbooks.google.com%2F%3Fid%3D39KQY1FnSfkC%26pg%3DPA369&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;">&#160;</span></span></li> <li><a rel="nofollow" class="external text" href="http://www.nipne.ro/rjp/2008_53_1-2/0405_0416.pdf">B Ciobanu, I Radinchi</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20130719090833/http://www.nipne.ro/rjp/2008_53_1-2/0405_0416.pdf">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) <i>Modeling the electric and magnetic fields in a rotating universe</i> Rom. Journ. Phys., Vol. 53, Nos. 1–2, P. 405–415, Bucharest, 2008</li> <li><a rel="nofollow" class="external text" href="http://arxiv.org/abs/gr-qc/0206080v1">Yuri N. Obukhov, Thoralf Chrobok, Mike Scherfner</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20170228083504/http://arxiv.org/abs/gr-qc/0206080v1">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) <i>Shear-free rotating inflation</i> Phys. Rev. D 66, 043518 (2002) [5 pages]</li> <li><a rel="nofollow" class="external text" href="http://arxiv.org/abs/astro-ph/0008106v1">Yuri N. Obukhov</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20170228080024/http://arxiv.org/abs/astro-ph/0008106v1">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) <i>On physical foundations and observational effects of cosmic rotation</i> (2000)</li> <li><a rel="nofollow" class="external text" href="http://arxiv.org/abs/astro-ph/9703082v1">Li-Xin Li</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20170228085852/http://arxiv.org/abs/astro-ph/9703082v1">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) <i>Effect of the Global Rotation of the Universe on the Formation of Galaxies</i> General Relativity and Gravitation, <b>30</b> (1998) <a href="/wiki/DOI" title="DOI">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1018867011142">10.1023/A:1018867011142</a></li> <li><a rel="nofollow" class="external text" href="http://www.nature.com/nature/journal/v298/n5873/abs/298451a0.html">P Birch</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20160305064307/http://www.nature.com/nature/journal/v298/n5873/abs/298451a0.html">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>) <i>Is the Universe rotating?</i> Nature 298, 451 - 454 (29 July 1982)</li> <li><a rel="nofollow" class="external text" href="http://www.springerlink.com/content/t13ul36l27222351/fulltext.pdf?page=1">Kurt Gödel</a><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<a href="/wiki/Wikipedia:%E5%A4%B1%E6%95%88%E9%93%BE%E6%8E%A5" title="Wikipedia:失效链接"><span title="自2020年2月失效">永久失效連結</span></a>&#93;</span></sup> <i>An example of a new type of cosmological solutions of Einstein’s field equations of gravitation</i> Rev. Mod. Phys., Vol. 21, p.&#160;447, 1949.</li></ul> <div class="mw-heading mw-heading2"><h2 id="外部链接"><span id=".E5.A4.96.E9.83.A8.E9.93.BE.E6.8E.A5"></span>外部链接</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;action=edit&amp;section=16" title="编辑章节:外部链接"><span>编辑</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>《<a href="/wiki/%E6%96%AF%E5%9D%A6%E7%A6%8F%E5%93%B2%E5%AD%A6%E7%99%BE%E7%A7%91%E5%85%A8%E4%B9%A6" class="mw-redirect" title="斯坦福哲学百科全书">斯坦福哲学百科全书</a>》(<i>Stanford Encyclopedia of Philosophy</i>):<a rel="nofollow" class="external text" href="http://plato.stanford.edu/entries/spacetime-iframes/">时空:惯性系</a> (<a rel="nofollow" class="external text" href="//web.archive.org/web/20101204063054/http://plato.stanford.edu/entries/spacetime-iframes/">页面存档备份</a>,存于<a href="/wiki/%E4%BA%92%E8%81%94%E7%BD%91%E6%A1%A3%E6%A1%88%E9%A6%86" title="互联网档案馆">互联网档案馆</a>)</li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=49JwbrXcPjc&amp;t=0h0m0s">YouTube上的展示惯性系与非惯性系对同一事件描述的动画</a></li></ul> <div style="clear: both; height: 1em"></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r84265675">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:" :"}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist-pipe dd::after,.mw-parser-output .hlist-pipe li::after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd::after,.mw-parser-output .hlist-hyphen li::after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd::after,.mw-parser-output .hlist-comma li::after{content:"、";font-weight:normal}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:"("counter(listitem)"\a0 "}.mw-parser-output ul.cslist,.mw-parser-output ul.sslist{margin:0;padding:0;display:inline-block;list-style:none}.mw-parser-output .cslist li,.mw-parser-output .sslist li{margin:0;display:inline-block}.mw-parser-output .cslist li::after{content:","}.mw-parser-output .sslist li::after{content:";"}.mw-parser-output .cslist li:last-child::after,.mw-parser-output .sslist li:last-child::after{content:none}</style><style data-mw-deduplicate="TemplateStyles:r84261037">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{text-align:center;padding-left:1em;padding-right:1em}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf;position:relative}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em;width:auto;padding-left:0.2em;position:absolute;left:1em}.mw-parser-output .navbox .mw-collapsible-toggle{margin-left:0.5em;position:absolute;right:1em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="经典力学" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="collapsible-title navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84265675"><style data-mw-deduplicate="TemplateStyles:r84244141">.mw-parser-output .navbar{display:inline;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:110%;margin:0 8em}.mw-parser-output .navbar-ct-mini{font-size:110%;margin:0 5em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:%E7%B6%93%E5%85%B8%E5%8A%9B%E5%AD%B8" title="Template:經典力學"><abbr title="查看该模板">查</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:%E7%B6%93%E5%85%B8%E5%8A%9B%E5%AD%B8" title="Template talk:經典力學"><abbr title="讨论该模板">论</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:%E7%BC%96%E8%BE%91%E9%A1%B5%E9%9D%A2/Template:%E7%B6%93%E5%85%B8%E5%8A%9B%E5%AD%B8" title="Special:编辑页面/Template:經典力學"><abbr title="编辑该模板">编</abbr></a></li></ul></div><div id="经典力学" style="font-size:110%;margin:0 5em"><a href="/wiki/%E7%BB%8F%E5%85%B8%E5%8A%9B%E5%AD%A6" title="经典力学">经典力学</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">表述形式</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%BB%8F%E5%85%B8%E5%8A%9B%E5%AD%A6" title="经典力学">矢量力学</a></li> <li><a href="/wiki/%E5%88%86%E6%9E%90%E5%8A%9B%E5%AD%A6" title="分析力学">分析力学</a>(<a href="/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E5%8A%9B%E5%AD%A6" title="拉格朗日力学">拉格朗日力学</a></li> <li><a href="/wiki/%E5%93%88%E5%AF%86%E9%A1%BF%E5%8A%9B%E5%AD%A6" title="哈密顿力学">哈密頓力學</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">基础概念</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%A9%BA%E9%96%93" title="空間">空间</a></li> <li><a href="/wiki/%E6%97%B6%E9%97%B4" title="时间">时间</a></li> <li><a href="/wiki/%E9%80%9F%E5%BA%A6" title="速度">速度</a></li> <li><a href="/wiki/%E5%8A%A0%E9%80%9F%E5%BA%A6" title="加速度">加速度</a></li> <li><a href="/wiki/%E8%B4%A8%E9%87%8F" title="质量">质量</a></li> <li><a href="/wiki/%E5%BC%95%E5%8A%9B" title="引力">引力</a></li> <li><a href="/wiki/%E5%8A%9B%E7%9F%A9" title="力矩">力矩</a></li> <li><a href="/wiki/%E5%8F%82%E8%80%83%E7%B3%BB" title="参考系">參考系</a></li> <li><a href="/wiki/%E5%8A%9B" title="力">力</a></li> <li><a href="/wiki/%E5%8A%9B%E5%81%B6" title="力偶">力偶</a></li> <li><a href="/wiki/%E5%86%B2%E9%87%8F" title="冲量">冲量</a></li> <li><a href="/wiki/%E5%8A%A8%E9%87%8F" title="动量">动量</a></li> <li><a href="/wiki/%E5%88%9A%E4%BD%93" title="刚体">刚体</a></li> <li><a href="/wiki/%E8%A7%92%E5%8A%A8%E9%87%8F" title="角动量">角动量</a></li> <li><a href="/wiki/%E6%85%A3%E6%80%A7" title="慣性">慣性</a></li> <li><a href="/wiki/%E8%BD%89%E5%8B%95%E6%85%A3%E9%87%8F" title="轉動慣量">轉動慣量</a></li> <li><a href="/wiki/%E8%83%BD%E9%87%8F" title="能量">能量</a></li> <li><a href="/wiki/%E5%8A%A8%E8%83%BD" title="动能">动能</a></li> <li><a href="/wiki/%E5%8A%BF%E8%83%BD" title="势能">位能</a></li> <li><a href="/wiki/%E8%99%9B%E5%8A%9F" title="虛功">虛功</a></li> <li><a href="/wiki/%E4%BD%9C%E7%94%A8%E9%87%8F" title="作用量">作用量</a></li> <li><a href="/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E9%87%8F" title="拉格朗日量">拉格朗日量</a></li> <li><a href="/wiki/%E5%93%88%E5%AF%86%E9%A1%BF%E5%8A%9B%E5%AD%A6" title="哈密顿力学">哈密頓量</a></li> <li><a href="/wiki/%E5%8A%9F" title="功">功</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">重要理论</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%89%9B%E9%A1%BF%E8%BF%90%E5%8A%A8%E5%AE%9A%E5%BE%8B" title="牛顿运动定律">牛顿运动定律</a></li> <li><a href="/wiki/%E8%83%A1%E5%85%8B%E5%AE%9A%E5%BE%8B" title="胡克定律">胡克定律</a></li> <li><a href="/wiki/%E4%B8%87%E6%9C%89%E5%BC%95%E5%8A%9B%E5%AE%9A%E5%BE%8B" title="万有引力定律">牛顿万有引力定律</a></li> <li><a href="/wiki/%E7%B0%A1%E8%AB%A7%E9%81%8B%E5%8B%95" title="簡諧運動">簡諧運動</a></li> <li><a href="/wiki/%E9%81%94%E6%9C%97%E8%B2%9D%E7%88%BE%E5%8E%9F%E7%90%86" title="達朗貝爾原理">達朗貝爾原理</a></li> <li><a href="/wiki/%E6%AC%A7%E6%8B%89%E6%96%B9%E7%A8%8B_(%E5%88%9A%E4%BD%93%E8%BF%90%E5%8A%A8)" title="欧拉方程 (刚体运动)">歐拉方程式</a></li> <li><a href="/wiki/%E5%93%88%E5%AF%86%E9%A0%93%E5%8E%9F%E7%90%86" title="哈密頓原理">哈密頓原理</a></li> <li><a href="/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5%E6%96%B9%E7%A8%8B%E5%BC%8F" title="拉格朗日方程式">拉格朗日方程式</a></li> <li><a href="/wiki/%E6%9C%80%E5%B0%8F%E4%BD%9C%E7%94%A8%E9%87%8F%E5%8E%9F%E7%90%86" title="最小作用量原理">最小作用量原理</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">应用</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%AE%80%E5%8D%95%E6%9C%BA%E6%A2%B0" title="简单机械">简单机械</a></li> <li><a href="/wiki/%E6%96%9C%E9%9D%A2" title="斜面">斜面</a></li> <li><a href="/wiki/%E6%9D%A0%E6%9D%86" title="杠杆">杠杆</a></li> <li><a href="/wiki/%E6%BB%91%E8%BD%AE" title="滑轮">滑轮</a></li> <li><a href="/wiki/%E8%9E%BA%E6%97%8B_(%E7%B0%A1%E5%96%AE%E6%A9%9F%E6%A2%B0)" title="螺旋 (簡單機械)">螺旋</a></li> <li><a href="/wiki/%E6%A5%94%E5%AD%90" title="楔子">楔子</a></li> <li><a href="/wiki/%E8%BC%AA%E8%BB%B8" title="輪軸">輪軸</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">科学史</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%A6%E5%8F%B2#力学的发展史" title="物理学史">发展史</a></li> <li><a href="/wiki/%E7%BA%A6%E7%BF%B0%E5%86%85%E6%96%AF%C2%B7%E5%BC%80%E6%99%AE%E5%8B%92" title="约翰内斯·开普勒">开普勒</a></li> <li><a href="/wiki/%E8%89%BE%E8%96%A9%E5%85%8B%C2%B7%E7%89%9B%E9%A0%93" class="mw-redirect" title="艾薩克·牛頓">牛頓</a></li> <li><a href="/wiki/%E8%90%8A%E6%98%82%E5%93%88%E5%BE%B7%C2%B7%E6%AD%90%E6%8B%89" title="萊昂哈德·歐拉">歐拉</a></li> <li><a href="/wiki/%E8%AE%A9%C2%B7%E5%8B%92%E6%9C%97%C2%B7%E8%BE%BE%E6%9C%97%E8%B4%9D%E5%B0%94" title="让·勒朗·达朗贝尔">達朗貝爾</a></li> <li><a href="/wiki/%E5%A8%81%E5%BB%89%C2%B7%E5%93%88%E5%AF%86%E9%A0%93" title="威廉·哈密頓">哈密頓</a></li> <li><a href="/wiki/%E6%B5%B7%E5%9B%A0%E9%87%8C%E5%B8%8C%C2%B7%E8%B5%AB%E5%85%B9" title="海因里希·赫兹">赫茲</a></li> <li><a href="/wiki/%E7%BA%A6%E7%91%9F%E5%A4%AB%C2%B7%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5" title="约瑟夫·拉格朗日">拉格朗日</a></li> <li><a href="/wiki/%E7%9A%AE%E5%9F%83%E5%B0%94-%E8%A5%BF%E8%92%99%C2%B7%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF" title="皮埃尔-西蒙·拉普拉斯">拉普拉斯</a></li> <li><a href="/wiki/%E4%BC%BD%E5%88%A9%E7%95%A5%C2%B7%E4%BC%BD%E5%88%A9%E8%8E%B1" title="伽利略·伽利莱">伽利略</a></li> <li><a href="/wiki/%E5%8D%A1%E7%88%BE%C2%B7%E9%9B%85%E5%8F%AF%E6%AF%94" title="卡爾·雅可比">雅可比</a></li> <li><a href="/wiki/%E5%9F%83%E7%B1%B3%C2%B7%E8%AF%BA%E7%89%B9" title="埃米·诺特">諾特</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">分支</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E9%9D%99%E5%8A%9B%E5%AD%A6" title="静力学">静力学</a></li> <li><a href="/wiki/%E5%8B%95%E5%8A%9B%E5%AD%B8" title="動力學">動力學</a></li> <li><a href="/wiki/%E8%BF%90%E5%8A%A8%E5%AD%A6" title="运动学">运动学</a></li> <li><a href="/wiki/%E5%B7%A5%E7%A8%8B%E5%8A%9B%E5%AD%A6" title="工程力学">工程力學</a></li> <li><a href="/wiki/%E5%A4%A9%E9%AB%94%E5%8A%9B%E5%AD%B8" title="天體力學">天體力學</a></li> <li><a href="/wiki/%E9%80%A3%E7%BA%8C%E4%BB%8B%E8%B3%AA%E5%8A%9B%E5%AD%B8" class="mw-redirect" title="連續介質力學">連續介質力學</a></li> <li><a href="/wiki/%E7%B5%B1%E8%A8%88%E5%8A%9B%E5%AD%B8" class="mw-redirect" title="統計力學">統計力學</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84265675"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84261037"></div><div role="navigation" class="navbox" aria-labelledby="相对论" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="collapsible-title navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84265675"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r84244141"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Relativity" title="Template:Relativity"><abbr title="查看该模板">查</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Relativity" title="Template talk:Relativity"><abbr title="讨论该模板">论</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:%E7%BC%96%E8%BE%91%E9%A1%B5%E9%9D%A2/Template:Relativity" title="Special:编辑页面/Template:Relativity"><abbr title="编辑该模板">编</abbr></a></li></ul></div><div id="相对论" style="font-size:110%;margin:0 5em"><a href="/wiki/%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="相对论">相对论</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论">狭义相对论</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">背景</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%9B%B8%E5%AF%B9%E6%80%A7%E5%8E%9F%E7%90%86" title="相对性原理">相对性原理</a></li> <li><a href="/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA%E5%85%A5%E9%97%A8" title="狭义相对论入门">狭义相对论入门</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">基礎</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E8%BF%90%E5%8A%A8%E5%AD%A6" title="运动学">相對運動</a></li> <li><a href="/wiki/%E5%8F%82%E8%80%83%E7%B3%BB" title="参考系">参考系</a></li> <li><a href="/wiki/%E5%85%89%E9%80%9F" title="光速">光速</a></li> <li><a href="/wiki/%E9%A6%AC%E5%85%8B%E5%A3%AB%E5%A8%81%E6%96%B9%E7%A8%8B%E7%B5%84" title="馬克士威方程組">馬克士威方程組</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">公式化</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E4%BC%BD%E5%88%A9%E7%95%A5%E5%8F%98%E6%8D%A2" title="伽利略变换">伽利略变换</a></li> <li><a href="/wiki/%E6%B4%9B%E4%BC%A6%E5%85%B9%E5%8F%98%E6%8D%A2" title="洛伦兹变换">洛伦兹变换</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">結果</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E6%99%82%E9%96%93%E8%86%A8%E8%84%B9" title="時間膨脹">時間膨脹</a></li> <li><a href="/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96%E4%B8%AD%E7%9A%84%E8%B3%AA%E9%87%8F" title="狹義相對論中的質量">狹義相對論中的質量</a></li> <li><a href="/wiki/%E8%B3%AA%E8%83%BD%E7%AD%89%E5%83%B9" title="質能等價">質能等價</a></li> <li><a href="/wiki/%E9%95%BF%E5%BA%A6%E6%94%B6%E7%BC%A9" title="长度收缩">长度收缩</a></li> <li><a href="/wiki/%E7%9B%B8%E5%B0%8D%E5%90%8C%E6%99%82" title="相對同時">相對同時</a></li> <li><a href="/wiki/%E7%9B%B8%E5%B0%8D%E8%AB%96%E6%80%A7%E5%A4%9A%E6%99%AE%E5%8B%92%E6%95%88%E6%87%89" title="相對論性多普勒效應">相對論性多普勒效應</a></li> <li><a href="/wiki/%E6%B9%AF%E7%91%AA%E6%96%AF%E9%80%B2%E5%8B%95" title="湯瑪斯進動">湯馬斯進動</a></li> <li><a href="/wiki/%E7%89%B9%E5%8B%92%E5%B0%94%E6%97%8B%E8%BD%AC" title="特勒尔旋转">特勒尔旋转</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E6%97%B6%E7%A9%BA" title="时空">时空</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E9%96%94%E8%80%83%E6%96%AF%E5%9F%BA%E6%99%82%E7%A9%BA" title="閔考斯基時空">閔可夫斯基時空</a></li> <li><a href="/wiki/%E4%B8%96%E7%95%8C%E7%BA%BF" title="世界线">世界线</a></li> <li><a href="/wiki/%E9%97%B5%E5%8F%AF%E5%A4%AB%E6%96%AF%E5%9F%BA%E5%9B%BE" title="闵可夫斯基图">闵可夫斯基图</a></li> <li><a href="/wiki/%E5%85%89%E9%94%A5" title="光锥">光锥</a></li></ul> </div></td></tr></tbody></table><div></div></td><td class="noviewer navbox-image" rowspan="3" style="width:1px;padding:0px 0px 0px 2px"><div><span typeof="mw:File"><a href="/wiki/File:Spacetime_curvature.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Spacetime_curvature.png/200px-Spacetime_curvature.png" decoding="async" width="200" height="88" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/22/Spacetime_curvature.png/300px-Spacetime_curvature.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/22/Spacetime_curvature.png/400px-Spacetime_curvature.png 2x" data-file-width="660" data-file-height="291" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E5%BB%A3%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="廣義相對論">廣義相對論</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">背景</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%BB%A3%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96%E5%85%A5%E9%96%80" title="廣義相對論入門">廣義相對論入門</a></li> <li><a href="/wiki/%E5%BB%A3%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96%E4%B8%AD%E7%9A%84%E6%95%B8%E5%AD%B8" title="廣義相對論中的數學">廣義相對論中的數學</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">基本概念</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%8B%AD%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="狭义相对论">狭义相对论</a></li> <li><a href="/wiki/%E7%AD%89%E6%95%88%E5%8E%9F%E7%90%86" title="等效原理">等效原理</a></li> <li><a href="/wiki/%E9%A9%AC%E8%B5%AB%E5%8E%9F%E7%90%86" title="马赫原理">马赫原理</a></li> <li><a href="/wiki/%E9%BB%8E%E6%9B%BC%E5%87%A0%E4%BD%95" title="黎曼几何">黎曼几何</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">現象</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%B9%BF%E4%B9%89%E7%9B%B8%E5%AF%B9%E8%AE%BA%E4%B8%AD%E7%9A%84%E5%BC%80%E6%99%AE%E5%8B%92%E9%97%AE%E9%A2%98" title="广义相对论中的开普勒问题">广义相对论中的开普勒问题</a></li> <li><a href="/wiki/%E5%BC%95%E5%8A%9B%E9%80%8F%E9%95%9C%E6%95%88%E5%BA%94" title="引力透镜效应">引力透镜</a></li> <li><a href="/wiki/%E5%8F%82%E8%80%83%E7%B3%BB%E6%8B%96%E6%8B%BD" title="参考系拖拽">参考系拖拽</a></li> <li><a href="/wiki/%E6%B5%8B%E5%9C%B0%E7%BA%BF%E6%95%88%E5%BA%94" title="测地线效应">测地线效应</a></li> <li><a href="/wiki/%E4%BA%8B%E4%BB%B6%E8%A6%96%E7%95%8C" title="事件視界">事件視界</a></li> <li><a href="/wiki/%E5%BC%95%E5%8A%9B%E5%A5%87%E7%82%B9" title="引力奇点">引力奇点</a></li> <li><a href="/wiki/%E9%BB%91%E6%B4%9E" title="黑洞">黑洞</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">方程式</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%B7%9A%E6%80%A7%E5%8C%96%E9%87%8D%E5%8A%9B" title="線性化重力">線性化重力</a></li> <li><a href="/wiki/%E5%BE%8C%E7%89%9B%E9%A0%93%E5%BD%A2%E5%BC%8F%E8%AB%96" title="後牛頓形式論">參數化後牛頓重力形式</a></li> <li><a href="/wiki/%E7%88%B1%E5%9B%A0%E6%96%AF%E5%9D%A6%E5%9C%BA%E6%96%B9%E7%A8%8B" title="爱因斯坦场方程">爱因斯坦场方程</a></li> <li><a href="/wiki/%E6%B5%8B%E5%9C%B0%E7%BA%BF" title="测地线">測地線方程</a></li> <li><a href="/wiki/%E5%BC%97%E9%87%8C%E5%BE%B7%E6%9B%BC%E6%96%B9%E7%A8%8B" title="弗里德曼方程">弗里德曼方程</a></li> <li><a href="/wiki/ADM%E8%B3%AA%E9%87%8F" title="ADM質量">ADM質量</a></li> <li><span class="ilh-all" data-orig-title="BSSN形式" data-lang-code="en" data-lang-name="英语" data-foreign-title="BSSN formalism"><span class="ilh-page"><a href="/w/index.php?title=BSSN%E5%BD%A2%E5%BC%8F&amp;action=edit&amp;redlink=1" class="new" title="BSSN形式(页面不存在)">BSSN形式</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/BSSN_formalism" class="extiw" title="en:BSSN formalism"><span lang="en" dir="auto">BSSN formalism</span></a></span>)</span></span></li> <li><a href="/wiki/%E5%93%88%E5%AF%86%E9%A1%BF-%E9%9B%85%E5%8F%AF%E6%AF%94-%E7%88%B1%E5%9B%A0%E6%96%AF%E5%9D%A6%E6%96%B9%E7%A8%8B" title="哈密顿-雅可比-爱因斯坦方程">哈密顿-雅可比-爱因斯坦方程</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">進階理論</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%8D%A1%E9%AD%AF%E6%89%8E-%E5%85%8B%E8%90%8A%E5%9B%A0%E7%90%86%E8%AB%96" title="卡魯扎-克萊因理論">卡魯扎-克萊因理論</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span class="ilh-all" data-orig-title="廣義相對論的精確解" data-lang-code="en" data-lang-name="英语" data-foreign-title="Exact solutions in general relativity"><span class="ilh-page"><a href="/w/index.php?title=%E5%BB%A3%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96%E7%9A%84%E7%B2%BE%E7%A2%BA%E8%A7%A3&amp;action=edit&amp;redlink=1" class="new" title="廣義相對論的精確解(页面不存在)">特殊解</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Exact_solutions_in_general_relativity" class="extiw" title="en:Exact solutions in general relativity"><span lang="en" dir="auto">Exact solutions in general relativity</span></a></span>)</span></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%8F%B2%E7%93%A6%E8%A5%BF%E5%BA%A6%E8%A6%8F" title="史瓦西度規">史瓦西度規</a></li> <li><span class="ilh-all" data-orig-title="凱斯納度規" data-lang-code="en" data-lang-name="英语" data-foreign-title="Kasner metric"><span class="ilh-page"><a href="/w/index.php?title=%E5%87%B1%E6%96%AF%E7%B4%8D%E5%BA%A6%E8%A6%8F&amp;action=edit&amp;redlink=1" class="new" title="凱斯納度規(页面不存在)">凱斯納度規</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Kasner_metric" class="extiw" title="en:Kasner metric"><span lang="en" dir="auto">Kasner metric</span></a></span>)</span></span></li> <li><a href="/wiki/%E8%90%8A%E6%96%AF%E7%B4%8D-%E8%AB%BE%E5%BE%B7%E6%96%AF%E7%89%B9%E6%B4%9B%E5%A7%86%E5%BA%A6%E8%A6%8F" title="萊斯納-諾德斯特洛姆度規">萊斯納-諾德斯特洛姆度規</a></li> <li><span class="ilh-all" data-orig-title="哥德爾度規" data-lang-code="en" data-lang-name="英语" data-foreign-title="Gödel metric"><span class="ilh-page"><a href="/w/index.php?title=%E5%93%A5%E5%BE%B7%E7%88%BE%E5%BA%A6%E8%A6%8F&amp;action=edit&amp;redlink=1" class="new" title="哥德爾度規(页面不存在)">哥德爾度規</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/G%C3%B6del_metric" class="extiw" title="en:Gödel metric"><span lang="en" dir="auto">Gödel metric</span></a></span>)</span></span><br /><a href="/wiki/%E5%85%8B%E7%88%BE%E5%BA%A6%E8%A6%8F" title="克爾度規">克爾度規</a></li> <li><a href="/wiki/%E5%85%8B%E5%B0%94-%E7%BA%BD%E6%9B%BC%E5%BA%A6%E8%A7%84" title="克尔-纽曼度规">克尔-纽曼度规</a></li> <li><a href="/wiki/%E6%89%98%E5%B8%83-NUT%E5%BA%A6%E8%A6%8F" title="托布-NUT度規">托布-NUT度規</a></li> <li><a href="/wiki/%E7%B1%B3%E5%B0%94%E6%81%A9%E6%A8%A1%E5%9E%8B" title="米尔恩模型">米尔恩模型</a></li> <li><a href="/wiki/%E5%BC%97%E9%87%8C%E5%BE%B7%E6%9B%BC-%E5%8B%92%E6%A2%85%E7%89%B9-%E7%BD%97%E4%BC%AF%E9%80%8A-%E6%B2%83%E5%B0%94%E5%85%8B%E5%BA%A6%E8%A7%84" title="弗里德曼-勒梅特-罗伯逊-沃尔克度规">弗里德曼-勒梅特-罗伯逊-沃尔克度规</a></li> <li><span class="ilh-all" data-orig-title="pp時空波" data-lang-code="en" data-lang-name="英语" data-foreign-title="pp-wave spacetime"><span class="ilh-page"><a href="/w/index.php?title=Pp%E6%99%82%E7%A9%BA%E6%B3%A2&amp;action=edit&amp;redlink=1" class="new" title="Pp時空波(页面不存在)">pp時空波</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/pp-wave_spacetime" class="extiw" title="en:pp-wave spacetime"><span lang="en" dir="auto">pp-wave spacetime</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="凡斯塔格度規" data-lang-code="en" data-lang-name="英语" data-foreign-title="Van Stockum dust"><span class="ilh-page"><a href="/w/index.php?title=%E5%87%A1%E6%96%AF%E5%A1%94%E6%A0%BC%E5%BA%A6%E8%A6%8F&amp;action=edit&amp;redlink=1" class="new" title="凡斯塔格度規(页面不存在)">凡斯塔格度規</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Van_Stockum_dust" class="extiw" title="en:Van Stockum dust"><span lang="en" dir="auto">Van Stockum dust</span></a></span>)</span></span></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">科學家</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E9%98%BF%E5%B0%94%E4%BC%AF%E7%89%B9%C2%B7%E7%88%B1%E5%9B%A0%E6%96%AF%E5%9D%A6" title="阿尔伯特·爱因斯坦">阿尔伯特·爱因斯坦</a></li> <li><a href="/wiki/%E4%BA%A8%E5%BE%B7%E9%87%8C%E5%85%8B%C2%B7%E6%B4%9B%E4%BC%A6%E5%85%B9" title="亨德里克·洛伦兹">亨德里克·洛伦兹</a></li> <li><a href="/wiki/%E5%A4%A7%E5%8D%AB%C2%B7%E5%B8%8C%E5%B0%94%E4%BC%AF%E7%89%B9" title="大卫·希尔伯特">大卫·希尔伯特</a></li> <li><a href="/wiki/%E4%BA%A8%E5%88%A9%C2%B7%E9%BE%90%E5%8A%A0%E8%90%8A" title="亨利·龐加萊">儒勒·昂利·庞加莱</a></li> <li><a href="/wiki/%E5%8D%A1%E7%88%BE%C2%B7%E5%8F%B2%E7%93%A6%E8%A5%BF" title="卡爾·史瓦西">卡爾·史瓦西</a></li> <li><a href="/wiki/%E5%A8%81%E5%BB%89%C2%B7%E5%BE%B7%E8%A5%BF%E7%89%B9" title="威廉·德西特">威廉·德西特</a></li> <li><a href="/wiki/%E6%B1%89%E6%96%AF%C2%B7%E8%B5%96%E6%96%AF%E7%BA%B3" title="汉斯·赖斯纳">汉斯·赖斯纳</a></li> <li><a href="/wiki/%E8%B4%A1%E7%BA%B3%E5%B0%94%C2%B7%E5%8A%AA%E5%BE%B7%E6%96%AF%E7%89%B9%E4%BC%A6" title="贡纳尔·努德斯特伦">贡纳尔·努德斯特伦</a></li> <li><a href="/wiki/%E8%B5%AB%E5%B0%94%E6%9B%BC%C2%B7%E5%A4%96%E5%B0%94" title="赫尔曼·外尔">赫尔曼·魏尔</a></li> <li><a href="/wiki/%E4%BA%9A%E7%91%9F%C2%B7%E7%88%B1%E4%B8%81%E9%A1%BF" title="亚瑟·爱丁顿">亚瑟·爱丁顿</a></li> <li><a href="/wiki/%E4%BA%9E%E6%AD%B7%E5%B1%B1%E5%A4%A7%C2%B7%E5%BC%97%E9%87%8C%E5%BE%B7%E6%9B%BC" title="亞歷山大·弗里德曼">亞歷山大·弗里德曼</a></li> <li><a href="/wiki/%E6%84%9B%E5%BE%B7%E8%8F%AF%C2%B7%E4%BA%9E%E7%91%9F%C2%B7%E7%B1%B3%E7%88%BE%E6%81%A9" title="愛德華·亞瑟·米爾恩">愛德華·亞瑟·米爾恩</a></li> <li><a href="/wiki/%E5%BC%97%E9%87%8C%E8%8C%A8%C2%B7%E8%8C%A8%E7%BB%B4%E5%9F%BA" title="弗里茨·茨维基">弗里茨·兹威基</a></li> <li><a href="/wiki/%E4%B9%94%E6%B2%BB%C2%B7%E5%8B%92%E6%A2%85%E7%89%B9" title="乔治·勒梅特">乔治·勒梅特</a></li> <li><a href="/wiki/%E5%BA%93%E5%B0%94%E7%89%B9%C2%B7%E5%93%A5%E5%BE%B7%E5%B0%94" title="库尔特·哥德尔">库尔特·哥德尔</a></li> <li><a href="/wiki/%E7%B4%84%E7%BF%B0%C2%B7%E6%83%A0%E5%8B%92" title="約翰·惠勒">約翰·惠勒</a></li> <li><a href="/wiki/%E9%9C%8D%E5%8D%8E%E5%BE%B7%C2%B7P%C2%B7%E7%BD%97%E4%BC%AF%E9%80%8A" title="霍华德·P·罗伯逊">霍华德·P·罗伯逊</a></li> <li><a href="/wiki/%E8%A9%B9%E5%A7%86%E6%96%AF%C2%B7M%C2%B7%E5%B7%B4%E4%B8%81" title="詹姆斯·M·巴丁">詹姆斯·麥克斯威·巴丁</a></li> <li><span class="ilh-all" data-orig-title="阿瑟·杰弗裡·沃克" data-lang-code="en" data-lang-name="英语" data-foreign-title="Arthur Geoffrey Walker"><span class="ilh-page"><a href="/w/index.php?title=%E9%98%BF%E7%91%9F%C2%B7%E6%9D%B0%E5%BC%97%E8%A3%A1%C2%B7%E6%B2%83%E5%85%8B&amp;action=edit&amp;redlink=1" class="new" title="阿瑟·杰弗裡·沃克(页面不存在)">阿瑟·杰弗裡·沃克</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Arthur_Geoffrey_Walker" class="extiw" title="en:Arthur Geoffrey Walker"><span lang="en" dir="auto">Arthur Geoffrey Walker</span></a></span>)</span></span></li> <li><a href="/wiki/%E7%BE%85%E4%BC%8A%C2%B7%E5%85%8B%E7%88%BE" title="羅伊·克爾">羅伊·克爾</a></li> <li><a href="/wiki/%E8%8B%8F%E5%B8%83%E6%8B%89%E9%A9%AC%E5%B0%BC%E6%89%AC%C2%B7%E9%92%B1%E5%BE%B7%E6%8B%89%E5%A1%9E%E5%8D%A1" title="苏布拉马尼扬·钱德拉塞卡">苏布拉马尼扬·钱德拉塞卡</a></li> <li><a href="/wiki/%E4%BA%8E%E5%B0%94%E6%A0%B9%C2%B7%E5%9F%83%E5%8B%92%E6%96%AF" title="于尔根·埃勒斯">于尔根·埃勒斯</a></li> <li><a href="/wiki/%E7%BE%85%E5%82%91%C2%B7%E6%BD%98%E6%B4%9B%E6%96%AF" title="羅傑·潘洛斯">羅傑·潘洛斯</a></li> <li><a href="/wiki/%E5%8F%B2%E8%92%82%E8%8A%AC%C2%B7%E9%9C%8D%E9%87%91" title="史蒂芬·霍金">史蒂芬·霍金</a></li> <li><a href="/wiki/%E7%BA%A6%E7%91%9F%E5%A4%AB%C2%B7%E6%B3%B0%E5%8B%92" title="约瑟夫·泰勒">约瑟夫·泰勒</a></li> <li><a href="/wiki/%E6%8B%89%E5%A1%9E%E5%B0%94%C2%B7%E8%B5%AB%E5%B0%94%E6%96%AF" title="拉塞尔·赫尔斯">拉塞尔·赫尔斯</a></li> <li><span class="ilh-all" data-orig-title="威廉·雅各·凡斯塔格" data-lang-code="en" data-lang-name="英语" data-foreign-title="Willem Jacob van Stockum"><span class="ilh-page"><a href="/w/index.php?title=%E5%A8%81%E5%BB%89%C2%B7%E9%9B%85%E5%90%84%C2%B7%E5%87%A1%E6%96%AF%E5%A1%94%E6%A0%BC&amp;action=edit&amp;redlink=1" class="new" title="威廉·雅各·凡斯塔格(页面不存在)">威廉·雅各·凡斯塔格</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Willem_Jacob_van_Stockum" class="extiw" title="en:Willem Jacob van Stockum"><span lang="en" dir="auto">Willem Jacob van Stockum</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="亞伯拉罕·哈斯克爾·托布" data-lang-code="en" data-lang-name="英语" data-foreign-title="Abraham H. Taub"><span class="ilh-page"><a href="/w/index.php?title=%E4%BA%9E%E4%BC%AF%E6%8B%89%E7%BD%95%C2%B7%E5%93%88%E6%96%AF%E5%85%8B%E7%88%BE%C2%B7%E6%89%98%E5%B8%83&amp;action=edit&amp;redlink=1" class="new" title="亞伯拉罕·哈斯克爾·托布(页面不存在)">亞伯拉罕·哈斯克爾·托布</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Abraham_H._Taub" class="extiw" title="en:Abraham H. Taub"><span lang="en" dir="auto">Abraham H. Taub</span></a></span>)</span></span></li> <li><span class="ilh-all" data-orig-title="以斯拉·T·紐曼" data-lang-code="en" data-lang-name="英语" data-foreign-title="Ezra T. Newman"><span class="ilh-page"><a href="/w/index.php?title=%E4%BB%A5%E6%96%AF%E6%8B%89%C2%B7T%C2%B7%E7%B4%90%E6%9B%BC&amp;action=edit&amp;redlink=1" class="new" title="以斯拉·T·紐曼(页面不存在)">以斯拉·T·紐曼</a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Ezra_T._Newman" class="extiw" title="en:Ezra T. Newman"><span lang="en" dir="auto">Ezra T. Newman</span></a></span>)</span></span></li> <li><a href="/wiki/%E4%B8%98%E6%88%90%E6%A1%90" title="丘成桐">丘成桐</a></li> <li><a href="/wiki/%E5%9F%BA%E6%99%AE%C2%B7%E7%B4%A2%E6%81%A9" title="基普·索恩">基普·索恩</a></li> <li><a href="/wiki/%E8%8E%B1%E7%BA%B3%C2%B7%E9%AD%8F%E6%96%AF" title="莱纳·魏斯">莱纳·魏斯</a></li> <li><a href="/wiki/%E8%B5%AB%E7%88%BE%E6%9B%BC%C2%B7%E9%82%A6%E8%BF%AA" title="赫爾曼·邦迪">赫爾曼·邦迪</a></li> <li><a href="/wiki/%E5%94%90%C2%B7%E4%BD%A9%E5%90%89_(%E7%89%A9%E7%90%86%E5%AD%B8%E5%AE%B6)" title="唐·佩吉 (物理學家)">唐·佩奇</a></li> <li><span class="ilh-all" data-orig-title="廣義相對論之貢獻者列表" data-lang-code="en" data-lang-name="英语" data-foreign-title="Contributors to general relativity"><span class="ilh-page"><a href="/w/index.php?title=%E5%BB%A3%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96%E4%B9%8B%E8%B2%A2%E7%8D%BB%E8%80%85%E5%88%97%E8%A1%A8&amp;action=edit&amp;redlink=1" class="new" title="廣義相對論之貢獻者列表(页面不存在)"><i>其他</i></a></span><span class="noprint ilh-comment">(<span class="ilh-lang">英语</span><span class="ilh-colon">:</span><span class="ilh-link"><a href="https://en.wikipedia.org/wiki/Contributors_to_general_relativity" class="extiw" title="en:Contributors to general relativity"><span lang="en" dir="auto">Contributors to general relativity</span></a></span>)</span></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐6d555f5f66‐5xvqz Cached time: 20241202105520 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.881 seconds Real time usage: 1.134 seconds Preprocessor visited node count: 6144/1000000 Post‐expand include size: 226546/2097152 bytes Template argument size: 7428/2097152 bytes Highest expansion depth: 30/100 Expensive parser function count: 22/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 105920/5000000 bytes Lua time usage: 0.494/10.000 seconds Lua memory usage: 17455896/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 881.448 1 -total 33.30% 293.526 1 Template:Reflist 25.00% 220.391 50 Template:Cite_book 11.91% 105.003 2 Template:Navbox 11.79% 103.961 1 Template:Lang-en 8.98% 79.116 1 Template:经典力学 7.14% 62.977 6 Template:Category_handler 6.53% 57.544 10 Template:Quote 6.28% 55.323 19 Template:Le 5.97% 52.590 1 Template:NoteTA --> <!-- Saved in parser cache with key zhwiki:pcache:138325:|#|:idhash:canonical!zh and timestamp 20241202105520 and revision id 78440659. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">检索自“<a dir="ltr" href="https://zh.wikipedia.org/w/index.php?title=惯性参考系&amp;oldid=78440659">https://zh.wikipedia.org/w/index.php?title=惯性参考系&amp;oldid=78440659</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:%E9%A1%B5%E9%9D%A2%E5%88%86%E7%B1%BB" title="Special:页面分类">分类</a>:​<ul><li><a href="/wiki/Category:%E7%BB%8F%E5%85%B8%E5%8A%9B%E5%AD%A6" title="Category:经典力学">经典力学</a></li><li><a href="/wiki/Category:%E5%8F%82%E8%80%83%E7%B3%BB" title="Category:参考系">参考系</a></li><li><a href="/wiki/Category:%E7%9B%B8%E5%AF%B9%E8%AE%BA" title="Category:相对论">相对论</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">隐藏分类:​<ul><li><a href="/wiki/Category:%E8%87%AA2024%E5%B9%B412%E6%9C%88%E5%B8%A6%E6%9C%89%E5%A4%B1%E6%95%88%E9%93%BE%E6%8E%A5%E7%9A%84%E6%9D%A1%E7%9B%AE" title="Category:自2024年12月带有失效链接的条目">自2024年12月带有失效链接的条目</a></li><li><a href="/wiki/Category:%E5%90%AB%E6%9C%89%E8%8B%B1%E8%AA%9E%E7%9A%84%E6%A2%9D%E7%9B%AE" title="Category:含有英語的條目">含有英語的條目</a></li><li><a href="/wiki/Category:%E8%87%AA2020%E5%B9%B42%E6%9C%88%E5%B8%A6%E6%9C%89%E5%A4%B1%E6%95%88%E9%93%BE%E6%8E%A5%E7%9A%84%E6%9D%A1%E7%9B%AE" title="Category:自2020年2月带有失效链接的条目">自2020年2月带有失效链接的条目</a></li><li><a href="/wiki/Category:%E6%9D%A1%E7%9B%AE%E6%9C%89%E6%B0%B8%E4%B9%85%E5%A4%B1%E6%95%88%E7%9A%84%E5%A4%96%E9%83%A8%E9%93%BE%E6%8E%A5" title="Category:条目有永久失效的外部链接">条目有永久失效的外部链接</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 本页面最后修订于2023年8月9日 (星期三) 06:27。</li> <li id="footer-info-copyright">本站的全部文字在<a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.zh">知识共享 署名-相同方式共享 4.0协议</a>之条款下提供,附加条款亦可能应用。(请参阅<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">使用条款</a>)<br /> Wikipedia&#174;和维基百科标志是<a rel="nofollow" class="external text" href="https://wikimediafoundation.org/zh">维基媒体基金会</a>的注册商标;维基&#8482;是维基媒体基金会的商标。<br /> 维基媒体基金会是按美国国內稅收法501(c)(3)登记的<a class="external text" href="https://donate.wikimedia.org/wiki/Special:MyLanguage/Tax_deductibility">非营利慈善机构</a>。<br /></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">隐私政策</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E5%85%B3%E4%BA%8E">关于维基百科</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E5%85%8D%E8%B4%A3%E5%A3%B0%E6%98%8E">免责声明</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行为准则</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">开发者</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/zh.wikipedia.org">统计</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie声明</a></li> <li id="footer-places-mobileview"><a href="//zh.m.wikipedia.org/w/index.php?title=%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">手机版视图</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-6dfcdd5ff5-nhlq4","wgBackendResponseTime":181,"wgPageParseReport":{"limitreport":{"cputime":"0.881","walltime":"1.134","ppvisitednodes":{"value":6144,"limit":1000000},"postexpandincludesize":{"value":226546,"limit":2097152},"templateargumentsize":{"value":7428,"limit":2097152},"expansiondepth":{"value":30,"limit":100},"expensivefunctioncount":{"value":22,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":105920,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 881.448 1 -total"," 33.30% 293.526 1 Template:Reflist"," 25.00% 220.391 50 Template:Cite_book"," 11.91% 105.003 2 Template:Navbox"," 11.79% 103.961 1 Template:Lang-en"," 8.98% 79.116 1 Template:经典力学"," 7.14% 62.977 6 Template:Category_handler"," 6.53% 57.544 10 Template:Quote"," 6.28% 55.323 19 Template:Le"," 5.97% 52.590 1 Template:NoteTA"]},"scribunto":{"limitreport-timeusage":{"value":"0.494","limit":"10.000"},"limitreport-memusage":{"value":17455896,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-6d555f5f66-5xvqz","timestamp":"20241202105520","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u60ef\u6027\u53c2\u8003\u7cfb","url":"https:\/\/zh.wikipedia.org\/wiki\/%E6%83%AF%E6%80%A7%E5%8F%82%E8%80%83%E7%B3%BB","sameAs":"http:\/\/www.wikidata.org\/entity\/Q192735","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q192735","author":{"@type":"Organization","name":"\u7ef4\u57fa\u5a92\u4f53\u9879\u76ee\u8d21\u732e\u8005"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-07-29T07:11:18Z","dateModified":"2023-08-09T06:27:03Z","headline":"\u53ef\u4ee5\u5747\u52fb\u4e14\u5404\u5411\u540c\u6027\u5730\u63cf\u8ff0\u7a7a\u9593\uff0c\u4e26\u4e14\u53ef\u4ee5\u5747\u52fb\u63cf\u8ff0\u6642\u9593\u7684\u53c3\u8003\u7cfb"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10