CINXE.COM
Search results for: thermochromic
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: thermochromic</title> <meta name="description" content="Search results for: thermochromic"> <meta name="keywords" content="thermochromic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="thermochromic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="thermochromic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: thermochromic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Microstructural Investigations of Metal Oxides Encapsulated Thermochromic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Emirov">Yusuf Emirov</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullatif%20Hakami"> Abdullatif Hakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20K%20Biswas"> Prasanta K Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20K%20Stefanakos"> Elias K Stefanakos</a>, <a href="https://publications.waset.org/abstracts/search?q=Sesha%20S%20Srinivasan"> Sesha S Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to develop microencapsulated thermochromic materials and the analysis of core-shell formation using high resolution electron microscopy. The candidate metal oxides (e.g., titanium oxide and silicon oxide) used for the microencapsulation of thermochromic materials are based on the microemulsion route that involves the micelle formation using different surfactants. The effectiveness of the core-shell microstructure formationrevealed the influence of surfactants and the metal oxide precursor concentrations. Additionally, a detailed thermal and color chromic behavior of these core-shell microcapsules are evaluated with the pristine thermochromic dye particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core-shell%20thermochromic%20materials" title="core-shell thermochromic materials">core-shell thermochromic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell%20microstructure%20formation" title=" core-shell microstructure formation"> core-shell microstructure formation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20color%20chromic%20behavior%20of%20core-shell%20microcapsules" title=" thermal and color chromic behavior of core-shell microcapsules"> thermal and color chromic behavior of core-shell microcapsules</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20micro-capsulated%20thermochromic%20materials" title=" development micro-capsulated thermochromic materials"> development micro-capsulated thermochromic materials</a> </p> <a href="https://publications.waset.org/abstracts/147686/microstructural-investigations-of-metal-oxides-encapsulated-thermochromic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Development of a Porous Porcelain Frape with Thermochromic Visualization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Gois">Jose Gois</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the development of a porous porcelain frappe with thermochromic visualization for port wines, having as a partner the Institute of Vinhos do Douro and Porto. This ceramic frappe is intended to promote the cooling and maintenance of the temperature of port wines through porous ceramic materials, consisting of a porcelain composite with sawdust addition, so as to contain, on the one hand, the similar cooling properties of the terracotta and, on the other, the resistance of materials such as porcelain. The application of the thermochromic element makes it possible to see if the wine is at optimal service temperatures, allowing users to drink the wine in the ideal conditions and contributing to more efficient maintenance of the service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=frappe" title=" frappe"> frappe</a>, <a href="https://publications.waset.org/abstracts/search?q=porcelain" title=" porcelain"> porcelain</a>, <a href="https://publications.waset.org/abstracts/search?q=porous" title=" porous"> porous</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochromic" title=" thermochromic"> thermochromic</a> </p> <a href="https://publications.waset.org/abstracts/105744/development-of-a-porous-porcelain-frape-with-thermochromic-visualization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> A Calibration Method for Temperature Distribution Measurement of Thermochromic Liquid Crystal Based on Mathematical Morphology of Hue Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Risti%20Suryantari">Risti Suryantari</a>, <a href="https://publications.waset.org/abstracts/search?q=Flaviana"> Flaviana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to design calibration method of Thermochromic Liquid Crystal for temperature distribution measurement based on mathematical morphology of hue image A glass of water is placed on the surface of sample TLC R25C5W at certain temperature. We use scanner for image acquisition. The true images in RGB format is converted to HSV (hue, saturation, value) by taking of hue without saturation and value. Then the hue images is processed based on mathematical morphology using Matlab2013a software to get better images. There are differences on the final images after processing at each temperature variation based on visualization observation and the statistic value. The value of maximum and mean increase with rising temperature. It could be parameter to identify the temperature of the human body surface like hand or foot surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermochromic%20liquid%20crystal" title="thermochromic liquid crystal">thermochromic liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=TLC" title=" TLC"> TLC</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20morphology" title=" mathematical morphology"> mathematical morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=hue%20image" title=" hue image"> hue image</a> </p> <a href="https://publications.waset.org/abstracts/28961/a-calibration-method-for-temperature-distribution-measurement-of-thermochromic-liquid-crystal-based-on-mathematical-morphology-of-hue-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Thermochromic Behavior of Fluoran-Based Mixtures Containing Liquid-Crystalline 4-n-Alkylbenzoic Acids as Color Developers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Wilk-Kozubek">Magdalena Wilk-Kozubek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Paw%C5%82%C3%B3w"> Jakub Pawłów</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Czajkowski"> Maciej Czajkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Zdo%C5%84czyk"> Maria Zdończyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20%C5%9Alepokura"> Katarzyna Ślepokura</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Cybi%C5%84ska"> Joanna Cybińska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermochromic materials belong to the family of intelligent materials that change their color in response to temperature changes; this ability is called thermochromism. Thermochromic behavior can be displayed by both isolated compounds and multicomponent mixtures. Fluoran leuco dye-based mixtures are well-known thermochromic systems used, for example, in heat-sensitive FAX paper. Weak acids often serve as color developers for such systems. As the temperature increases, the acids melt, and the mixtures become colored. The objective of this research is to determine the influence of acids showing a liquid crystalline nematic phase on the development of the fluoran dye. For this purpose, fluoran-based mixtures with 4-n-alkylbenzoic acids were prepared. The mixtures are colored at room temperature, but they become colorless upon the melting of the acids. The melting of acids is associated not only with a change in the color of the mixtures but also with a change in their emission color. Phase transitions were investigated by temperature-dependent powder X-ray diffraction and differential scanning calorimetry; nematic phases were visualized by polarized optical microscopy, and color and emission changes were studied by UV-Vis diffuse reflectance and photoluminescence spectroscopies, respectively. When 4-n-alkylbenzoic acids are used as color developers, the fluoran-based mixtures become colorless after the melting of the acids. This is because the melting of acids is accompanied by the transition from the crystalline phase to the nematic phase, in which the molecular arrangement of the acids does not allow the fluoran dye to be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20developer" title="color developer">color developer</a>, <a href="https://publications.waset.org/abstracts/search?q=leuco%20dye" title=" leuco dye"> leuco dye</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20crystal" title=" liquid crystal"> liquid crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochromism" title=" thermochromism"> thermochromism</a> </p> <a href="https://publications.waset.org/abstracts/150281/thermochromic-behavior-of-fluoran-based-mixtures-containing-liquid-crystalline-4-n-alkylbenzoic-acids-as-color-developers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Leuco Dye-Based Thermochromic Systems for Application in Temperature Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Wilk-Kozubek">Magdalena Wilk-Kozubek</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Rowi%C5%84ska"> Magdalena Rowińska</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Rola"> Krzysztof Rola</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Cybi%C5%84ska"> Joanna Cybińska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leuco dye-based thermochromic systems are classified as intelligent materials because they exhibit thermally induced color changes. Thanks to this feature, they are mainly used as temperature sensors in many industrial sectors. For example, placing a thermochromic material on a chemical reactor may warn about exceeding the maximum permitted temperature for a chemical process. Usually two components, a color former and a developer are needed to produce a system with irreversible color change. The color former is an electron donating (proton accepting) compound such as fluoran leuco dye. The developer is an electron accepting (proton donating) compound such as organic carboxylic acid. When the developer melts, the color former - developer complex is created and the termochromic system becomes colored. Typically, the melting point of the applied developer determines the temperature at which the color change occurs. When the lactone ring of the color former is closed, then the dye is in its colorless state. The ring opening, induced by the addition of a proton, causes the dye to turn into its colored state. Since the color former and the developer are often solid, they can be incorporated into polymer films to facilitate their practical use in industry. The objective of this research was to fabricate a leuco dye-based termochromic system that will irreversibly change color after reaching the temperature of 100°C. For this purpose, benzofluoran leuco dye (as color former) and phenoxyacetic acid (as developer with a melting point of 100°C) were introduced into the polymer films during the drop casting process. The film preparation process was optimized in order to obtain thin films with appropriate properties such as transparency, flexibility and homogeneity. Among the optimized factors were the concentration of benzofluoran leuco dye and phenoxyacetic acid, the type, average molecular weight and concentration of the polymer, and the type and concentration of the surfactant. The selected films, containing benzofluoran leuco dye and phenoxyacetic acid, were combined by mild heat treatment. Structural characterization of single and combined films was carried out by FTIR spectroscopy, morphological analysis was performed by optical microscopy and SEM, phase transitions were examined by DSC, color changes were investigated by digital photography and UV-Vis spectroscopy, while emission changes were studied by photoluminescence spectroscopy. The resulting thermochromic system is colorless at room temperature, but after reaching 100°C the developer melts and it turns irreversibly pink. Therefore, it could be used as an additional sensor to warn against boiling of water in power plants using water cooling. Currently used electronic temperature indicators are prone to faults and unwanted third-party actions. The sensor constructed in this work is transparent, thanks to which it can be unnoticed by an outsider and constitute a reliable reference for the person responsible for the apparatus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color%20developer" title="color developer">color developer</a>, <a href="https://publications.waset.org/abstracts/search?q=leuco%20dye" title=" leuco dye"> leuco dye</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochromism" title=" thermochromism"> thermochromism</a> </p> <a href="https://publications.waset.org/abstracts/155239/leuco-dye-based-thermochromic-systems-for-application-in-temperature-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Syntheses in Polyol Medium of Inorganic Oxides with Various Smart Optical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shian%20Guan">Shian Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Bourdin"> Marie Bourdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabelle%20Trenque"> Isabelle Trenque</a>, <a href="https://publications.waset.org/abstracts/search?q=Younes%20Messaddeq"> Younes Messaddeq</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Cardinal"> Thierry Cardinal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Penin"> Nicolas Penin</a>, <a href="https://publications.waset.org/abstracts/search?q=Issam%20Mjejri"> Issam Mjejri</a>, <a href="https://publications.waset.org/abstracts/search?q=Aline%20Rougier"> Aline Rougier</a>, <a href="https://publications.waset.org/abstracts/search?q=Etienne%20Duguet"> Etienne Duguet</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20Mornet"> Stephane Mornet</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Gaudon"> Manuel Gaudon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At the interface of the studies performed by 3 Ph.D. students: Shian Guan (2017-2020), Marie Bourdin (2016-2019) and Isabelle Trenque (2012-2015), a single synthesis route: polyol-mediated process, was used with success for the preparation of different inorganic oxides. Both of these inorganic oxides were elaborated for their potential application as smart optical compounds. This synthesis route has allowed us to develop nanoparticles of zinc oxide, vanadium oxide or tungsten oxide. This route is with easy implementation, inexpensive and with large-scale production potentialities and leads to materials of high purity. The obtaining by this route of nanometric particles, however perfectly crystalline, has notably led to the possibility of doping these matrix materials with high doping ion concentrations (high solubility limits). Thus, Al3+ or Ga3+ doped-ZnO powder, with high doping rate in comparison with the literature, exhibits remarkable infrared absorption properties thanks to their high free carrier density. Note also that due to the narrow particle size distribution of the as-prepared nanometric doped-ZnO powder, the original correlation between crystallite size and unit-cell parameters have been established. Also, depending on the annealing atmosphere use to treat vanadium precursors, VO2, V2O3 or V2O5 oxides with thermochromic or electrochromic properties can be obtained without any impurity, despite the versatility of the oxidation state of vanadium. This is of more particular interest on vanadium dioxide, a relatively difficult-to-prepare oxide, whose first-order metal-insulator phase transition is widely explored in the literature for its thermochromic behavior (in smart windows with optimal thermal insulation). Finally, the reducing nature of the polyol solvents ensures the production of oxygen-deficient tungsten oxide, thus conferring to the nano-powders exotic colorimetric properties, as well as optimized photochromic and electrochromic behaviors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inorganic%20oxides" title="inorganic oxides">inorganic oxides</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochromic" title=" electrochromic"> electrochromic</a>, <a href="https://publications.waset.org/abstracts/search?q=photochromic" title=" photochromic"> photochromic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermochromic" title=" thermochromic"> thermochromic</a> </p> <a href="https://publications.waset.org/abstracts/97918/syntheses-in-polyol-medium-of-inorganic-oxides-with-various-smart-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> User-Controlled Color-Changing Textiles: From Prototype to Mass Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Kaufman">Joshua Kaufman</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Tan"> Felix Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20Monroe"> Morgan Monroe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Abouraddy"> Ayman Abouraddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textiles and clothing have been a staple of human existence for millennia, yet the basic structure and functionality of textile fibers and yarns has remained unchanged. While color and appearance are essential characteristics of a textile, an advancement in the fabrication of yarns that allows for user-controlled dynamic changes to the color or appearance of a garment has been lacking. Touch-activated and photosensitive pigments have been used in textiles, but these technologies are passive and cannot be controlled by the user. The technology described here allows the owner to control both when and in what pattern the fabric color-change takes place. In addition, the manufacturing process is compatible with mass-producing the user-controlled, color-changing yarns. The yarn fabrication utilizes a fiber spinning system that can produce either monofilament or multifilament yarns. For products requiring a more robust fabric (backpacks, purses, upholstery, etc.), larger-diameter monofilament yarns with a coarser weave are suitable. Such yarns are produced using a thread-coater attachment to encapsulate a 38-40 AWG metal wire inside a polymer sheath impregnated with thermochromic pigment. Conversely, products such as shirts and pants requiring yarns that are more flexible and soft against the skin comprise multifilament yarns of much smaller-diameter individual fibers. Embedding a metal wire in a multifilament fiber spinning process has not been realized to date. This research has required collaboration with Hills, Inc., to design a liquid metal-injection system to be combined with fiber spinning. The new system injects molten tin into each of 19 filaments being spun simultaneously into a single yarn. The resulting yarn contains 19 filaments, each with a tin core surrounded by a polymer sheath impregnated with thermochromic pigment. The color change we demonstrate is distinct from garments containing LEDs that emit light in various colors. The pigment itself changes its optical absorption spectrum to appear a different color. The thermochromic color-change is induced by a temperature change in the inner metal wire within each filament when current is applied from a small battery pack. The temperature necessary to induce the color change is near body temperature and not noticeable by touch. The prototypes already developed either use a simple push button to activate the battery pack or are wirelessly activated via a smart-phone app over Wi-Fi. The app allows the user to choose from different activation patterns of stripes that appear in the fabric continuously. The power requirements are mitigated by a large hysteresis in the activation temperature of the pigment and the temperature at which there is full color return. This was made possible by a collaboration with Chameleon International to develop a new, customized pigment. This technology enables a never-before seen capability: user-controlled, dynamic color and pattern change in large-area woven and sewn textiles and fabrics with wide-ranging applications from clothing and accessories to furniture and fixed-installation housing and business décor. The ability to activate through Wi-Fi opens up possibilities for the textiles to be part of the ‘Internet of Things.’ Furthermore, this technology is scalable to mass-production levels for wide-scale market adoption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation" title="activation">activation</a>, <a href="https://publications.waset.org/abstracts/search?q=appearance" title=" appearance"> appearance</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/83592/user-controlled-color-changing-textiles-from-prototype-to-mass-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Keto-Enol Tautomerism of Salicylideneaniline Substituted</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rihana%20Hadjeb">Rihana Hadjeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamel%20Barkat"> Djamel Barkat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Schiff bases derived from o-hydroxybenzaldehyde has attracted a great interest not only for its promising applications towards linear and non-linear optical properties, biological activity and technological applications but also used as model compounds for the theory of hydrogen bonding. Due to its intramolecular hydrogen bonding, depending on the position of proton in the hydrogen bond o-hydroxy salicylidene Schiff bases exhibit two tautomeric forms, enol-imine (E-form) and keto-enamine (K-form) both in solution and in crystalline state. A zwitterionic structure also appears due to a proton transfer in enol – imine and keto – amine tautomer. These classes of compounds also exhibit thermochromic and photochromic behavior. We undertook in this study the synthesis of ten compounds of hydroxy Schiff bases from the condensation of salicylic aldehyde and aniline substituted in the ortho, meta and para by the methyl, chloro and nitro groups. To study the keto-enol equilibrium of the compounds; UV-VIS spectra were studied in different polarity solvents. The compounds were in tautomeric equilibrium (enol imine O–H•••N, keto-amine O•••H–N forms). For some derivatives of salicylideneanilines the keto-amine form was observed in both ethanol and dioxane. IR results showed that all Schiff bases studied favor the enol-imine form over the keto form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salicylideneaniline" title="salicylideneaniline">salicylideneaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=tautomerism" title=" tautomerism"> tautomerism</a>, <a href="https://publications.waset.org/abstracts/search?q=keto-enol%20equilibrium" title=" keto-enol equilibrium"> keto-enol equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-VIS%20spectroscopy" title=" UV-VIS spectroscopy"> UV-VIS spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20effect" title=" solvent effect"> solvent effect</a> </p> <a href="https://publications.waset.org/abstracts/15613/keto-enol-tautomerism-of-salicylideneaniline-substituted" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Recycling of Spent Mo-Co Catalyst for the Recovery of Molybdenum Using Cyphos IL 104</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harshit%20Mahandra">Harshit Mahandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Singh"> Rashmi Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bina%20Gupta"> Bina Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molybdenum is widely used in thermocouples, anticathode of X-ray tubes and in the production of alloys of steels. Molybdenum compounds are extensively used as a catalyst in petroleum-refining industries for hydrodesulphurization. Activity of the catalysts decreases gradually with time and are dumped as hazardous waste due to contamination with toxic materials during the process. These spent catalysts can serve as a secondary source for metal recovery and help to sort out environmental and economical issues. In present study, extraction and separation of molybdenum from a Mo-Co spent catalyst leach liquor containing 0.870 g L⁻¹ Mo, 0.341 g L⁻¹ Co, 0.422 ×10⁻¹ g L⁻¹ Fe and 0.508 g L⁻¹ Al in 3 mol L⁻¹ HCl has been investigated using solvent extraction technique. The extracted molybdenum has been finally recovered as molybdenum trioxide. Leaching conditions used were- 3 mol L⁻¹ HCl, 90°C temperature, solid to liquid ratio (w/v) of 1.25% and reaction time of 60 minutes. 96.45% molybdenum was leached under these conditions. For the extraction of molybdenum from leach liquor, Cyphos IL 104 [trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate] in toluene was used as an extractant. Around 91% molybdenum was extracted with 0.02 mol L⁻¹ Cyphos IL 104, and 75% of molybdenum was stripped from the loaded organic phase with 2 mol L⁻¹ HNO₃ at A/O=1/1. McCabe Thiele diagrams were drawn to determine the number of stages required for the extraction and stripping of molybdenum. According to McCabe Thiele plots, two stages are required for both extraction and stripping of molybdenum at A/O=1/1 which were also confirmed by countercurrent simulation studies. Around 98% molybdenum was extracted in two countercurrent extraction stages with no co-extraction of cobalt and aluminum. Iron was removed from the loaded organic phase by scrubbing with 0.01 mol L⁻¹ HCl. Quantitative recovery of molybdenum is achieved in three countercurrent stripping stages at A/O=1/1. Trioxide of molybdenum was obtained from strip solution and was characterized by XRD, FE-SEM and EDX techniques. Molybdenum trioxide due to its distinctive electrochromic, thermochromic and photochromic properties is used as a smart material for sensors, lubricants, and Li-ion batteries. Molybdenum trioxide finds application in various processes such as methanol oxidation, metathesis, propane oxidation and in hydrodesulphurization. It can also be used as a precursor for the synthesis of MoS₂ and MoSe₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cyphos%20IL%20104" title="Cyphos IL 104">Cyphos IL 104</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum" title=" molybdenum"> molybdenum</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20Mo-Co%20catalyst" title=" spent Mo-Co catalyst"> spent Mo-Co catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=recovery" title=" recovery"> recovery</a> </p> <a href="https://publications.waset.org/abstracts/84371/recycling-of-spent-mo-co-catalyst-for-the-recovery-of-molybdenum-using-cyphos-il-104" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>