CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 146 results for author: <span class="mathjax">Xie, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Xie%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xie, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xie%2C+Z&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xie, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Xie%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Xie%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Xie%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Xie%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10721">arXiv:2411.10721</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10721">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High-gain optical parametric amplification with continuous-wave pump using domain-engineered thin film lithium niobate waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+M">Mengwen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+K">Kunpeng Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+X">Xiao-Hui Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Jie Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+C">Chunxi Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+X">Xiaowen Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zexing Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zikang Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Z">Zhilin Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+J">Ji Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Z">Zhong Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+G">Guang Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+B">Biaobing Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Z">Zhenlin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-Ning Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenda Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10721v1-abstract-short" style="display: inline;"> While thin film lithium niobate (TFLN) is known for efficient signal generation, on-chip signal amplification remains challenging from fully integrated optical communication circuits. Here we demonstrate the first continuous-wave-pump optical parametric amplification (OPA) using an x-cut domain-engineered TFLN waveguide, with high gain over the telecom band up to 13.9 dB, and test it for high sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10721v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10721v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10721v1-abstract-full" style="display: none;"> While thin film lithium niobate (TFLN) is known for efficient signal generation, on-chip signal amplification remains challenging from fully integrated optical communication circuits. Here we demonstrate the first continuous-wave-pump optical parametric amplification (OPA) using an x-cut domain-engineered TFLN waveguide, with high gain over the telecom band up to 13.9 dB, and test it for high signal-to-noise ratio signal amplification using a commercial optical communication module pair. Fabricated in wafer scale using common process as devices including modulators, this OPA device marks an important step in TFLN photonic integration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10721v1-abstract-full').style.display = 'none'; document.getElementById('2411.10721v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01401">arXiv:2411.01401</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.01401">pdf</a>, <a href="https://arxiv.org/format/2411.01401">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Pre-trained Molecular Language Models with Random Functional Group Masking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Peng%2C+T">Tianhao Peng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Y">Yuchen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+X">Xuhong Li</a>, <a href="/search/physics?searchtype=author&amp;query=Bian%2C+J">Jiang Bian</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zeke Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Sui%2C+N">Ning Sui</a>, <a href="/search/physics?searchtype=author&amp;query=Mumtaz%2C+S">Shahid Mumtaz</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+Y">Yanwu Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Kong%2C+L">Linghe Kong</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+H">Haoyi Xiong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01401v1-abstract-short" style="display: inline;"> Recent advancements in computational chemistry have leveraged the power of trans-former-based language models, such as MoLFormer, pre-trained using a vast amount of simplified molecular-input line-entry system (SMILES) sequences, to understand and predict molecular properties and activities, a critical step in fields like drug discovery and materials science. To further improve performance, resear&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01401v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01401v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01401v1-abstract-full" style="display: none;"> Recent advancements in computational chemistry have leveraged the power of trans-former-based language models, such as MoLFormer, pre-trained using a vast amount of simplified molecular-input line-entry system (SMILES) sequences, to understand and predict molecular properties and activities, a critical step in fields like drug discovery and materials science. To further improve performance, researchers have introduced graph neural networks with graph-based molecular representations, such as GEM, incorporating the topology, geometry, 2D or even 3D structures of molecules into pre-training. While most of molecular graphs in existing studies were automatically converted from SMILES sequences, it is to assume that transformer-based language models might be able to implicitly learn structure-aware representations from SMILES sequences. In this paper, we propose \ours{} -- a SMILES-based \underline{\em M}olecular \underline{\em L}anguage \underline{\em M}odel, which randomly masking SMILES subsequences corresponding to specific molecular \underline{\em F}unctional \underline{\em G}roups to incorporate structure information of atoms during the pre-training phase. This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities. Extensive experimental evaluations across 11 benchmark classification and regression tasks in the chemical domain demonstrate the robustness and superiority of \ours{}. Our findings reveal that \ours{} outperforms existing pre-training models, either based on SMILES or graphs, in 9 out of the 11 downstream tasks, ranking as a close second in the remaining ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01401v1-abstract-full').style.display = 'none'; document.getElementById('2411.01401v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16989">arXiv:2410.16989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.16989">pdf</a>, <a href="https://arxiv.org/format/2410.16989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Synthetic gain for electron-beam spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yongliang Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zeng%2C+K">Kebo Zeng</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zetao Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Sha%2C+Y">Yixin Sha</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zeling Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xudong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+S">Shimeng Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Y">Yiqin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Duan%2C+H">Huigao Duan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+S">Shuang Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16989v2-abstract-short" style="display: inline;"> Electron-beam microscopy and spectroscopy featuring atomic-scale spatial resolution have become essential tools used daily in almost all branches of nanoscale science and technology. As a natural supercontinuum source of light, free electrons couple with phonons, plasmons, electron-hole pairs, inter- and intra-band transitions, and inner-shell ionization. The multiple excitations, intertwined with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16989v2-abstract-full').style.display = 'inline'; document.getElementById('2410.16989v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16989v2-abstract-full" style="display: none;"> Electron-beam microscopy and spectroscopy featuring atomic-scale spatial resolution have become essential tools used daily in almost all branches of nanoscale science and technology. As a natural supercontinuum source of light, free electrons couple with phonons, plasmons, electron-hole pairs, inter- and intra-band transitions, and inner-shell ionization. The multiple excitations, intertwined with the intricate nature of nanostructured samples, present significant challenges in isolating specific spectral characteristics amidst complex experimental backgrounds. Here we introduce the approach of synthetic complex frequency waves to mitigate these challenges in free-electron--light interaction. The complex frequency waves, created through causality-informed coherent superposition of real-frequency waves induced by free electrons, offer virtual gain to offset material losses. This amplifies and enhances spectral features, as confirmed by our electron energy loss and cathodoluminescence measurements on multi-layer membranes, suspended nanoparticles, and film-coupled nanostructures. Strikingly, we reveal that our approach can retrieve resonance excitation completely buried underneath the zero-loss peak, substantially enhance the quality of hyperspectral imaging, and resolve entangled multiple-photon-electron events in their quantum interaction. Our findings indicate the versatile utility of complex frequency waves in various electron-beam spectroscopy and their promising diagnostic capabilities in free-electron quantum optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16989v2-abstract-full').style.display = 'none'; document.getElementById('2410.16989v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07644">arXiv:2410.07644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07644">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Mechanics of soft-body rolling motion without external torque </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liang%2C+X">Xudong Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Yimiao Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+Z">Zihao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+J">Junqi Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zongling Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Fei%2C+P">Peng Fei</a>, <a href="/search/physics?searchtype=author&amp;query=Sun%2C+Y">Yixuan Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+G">Guoying Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhong%2C+Z">Zheng Zhong</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+F">Feifei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+G">Guangwei Si</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Z">Zhefeng Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07644v1-abstract-short" style="display: inline;"> The Drosophila larva, a soft-body animal, can bend its body and roll efficiently to escape danger. However, contrary to common belief, this rolling motion is not driven by the imbalance of gravity and ground reaction forces. Through functional imaging and ablation experiments, we demonstrate that the sequential actuation of axial muscles within an appropriate range of angles is critical for genera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07644v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07644v1-abstract-full" style="display: none;"> The Drosophila larva, a soft-body animal, can bend its body and roll efficiently to escape danger. However, contrary to common belief, this rolling motion is not driven by the imbalance of gravity and ground reaction forces. Through functional imaging and ablation experiments, we demonstrate that the sequential actuation of axial muscles within an appropriate range of angles is critical for generating rolling. We model the interplay between muscle contraction, hydrostatic skeleton deformation, and body-environment interactions, and systematically explain how sequential muscle actuation generates the rolling motion. Additionally, we constructed a pneumatic soft robot to mimic the larval rolling strategy, successfully validating our model. This mechanics model of soft-body rolling motion not only advances the study of related neural circuits, but also holds potential for applications in soft robotics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07644v1-abstract-full').style.display = 'none'; document.getElementById('2410.07644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02413">arXiv:2410.02413</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02413">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultrathin BIC metasurfaces based on ultralow-loss Sb2Se3 phase-change material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhaoyang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Murali%2C+K">Krishna Murali</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Haoyi Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Changxu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Y">Yiqing Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Maier%2C+S+A">Stefan A. Maier</a>, <a href="/search/physics?searchtype=author&amp;query=Bhaskaran%2C+M">Madhu Bhaskaran</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+H">Haoran Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02413v1-abstract-short" style="display: inline;"> Phase-change materials (PCMs) are increasingly recognised as promising platforms for tunable photonic devices due to their ability to modulate optical properties through solid-state phase transitions. Ultrathin and low-loss PCMs are highly valued for their fast and more effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photoni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02413v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02413v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02413v1-abstract-full" style="display: none;"> Phase-change materials (PCMs) are increasingly recognised as promising platforms for tunable photonic devices due to their ability to modulate optical properties through solid-state phase transitions. Ultrathin and low-loss PCMs are highly valued for their fast and more effective phase transitions and applications in reconfigurable photonic chips, metasurfaces, optical modulators, sensors, photonic memories, and neuromorphic computing. However, conventional PCMs such as GST, GSST, VO2, and In3SbTe2, despite optimisation for tunable meta-optics, suffer from high intrinsic losses in the near-infrared (NIR) region, limiting their potential for high quality factor (Q-factor) resonant metasurfaces. Here we present the design and fabrication of tunable bound states in the continuum (BIC) metasurfaces using the ultralow-loss PCM Sb2Se3. Our BIC metasurfaces, only 25 nm thick, achieve high modulation depth and broad resonance tuning in the NIR with high Q-factors up to 130, without the need for additional materials. Experimentally, we employ these BIC metasurfaces to modulate photoluminescence in rare earth-doped upconversion nanoparticles, reducing the excitation power for multiphoton photoluminescence and enabling emission polarisation manipulation. This work offers a promising platform for developing active resonant metasurfaces in the NIR region, with broad applications including super resolution imaging, optical modulation, ultrafast switches, harmonic generation, colour filtering, and optical sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02413v1-abstract-full').style.display = 'none'; document.getElementById('2410.02413v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17390">arXiv:2409.17390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.17390">pdf</a>, <a href="https://arxiv.org/format/2409.17390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Generalized Skyrmions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+A+A">An Aloysius Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zimo Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+Y">Yifei Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+Y">Yuxi Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Morris%2C+S">Stephen Morris</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+H">Honghui He</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+L">Lin Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenwei Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Shi%2C+P">Peng Shi</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yijie Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Zayats%2C+A">Anatoly Zayats</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+X">Xiaocong Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+C">Chao He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17390v1-abstract-short" style="display: inline;"> Skyrmions are important topologically non-trivial fields characteristic of models spanning scales from the microscopic to the cosmological. However, the Skyrmion number can only be defined for fields with specific boundary conditions, limiting its use in broader contexts. Here, we address this issue through a generalized notion of the Skyrmion derived from the De Rham cohomology of compactly suppo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17390v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17390v1-abstract-full" style="display: none;"> Skyrmions are important topologically non-trivial fields characteristic of models spanning scales from the microscopic to the cosmological. However, the Skyrmion number can only be defined for fields with specific boundary conditions, limiting its use in broader contexts. Here, we address this issue through a generalized notion of the Skyrmion derived from the De Rham cohomology of compactly supported forms. This allows for the definition of an entirely new $\coprod_{i=1}^\infty \mathbb{Z}^i$-valued topological number that assigns a tuple of integers $(a_1, \ldots, a_k)\in \mathbb{Z}^k$ to a field instead of a single number, with no restrictions to its boundary. The notion of the generalized Skyrmion presented in this paper is completely abstract and can be applied to vector fields in any discipline, not unlike index theory within dynamical systems. To demonstrate the power of our new formalism, we focus on the propagation of optical polarization fields and show that our newly defined generalized Skyrmion number significantly increases the dimension of data that can be stored within the field while also demonstrating strong robustness. Our work represents a fundamental paradigm shift away from the study of fields with natural topological character to engineered fields that can be artificially embedded with topological structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17390v1-abstract-full').style.display = 'none'; document.getElementById('2409.17390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16616">arXiv:2409.16616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16616">pdf</a>, <a href="https://arxiv.org/format/2409.16616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Broadband measurement of Feibelman&#39;s quantum surface response functions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zeling Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+S">Shu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zetao Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xudong Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xia%2C+Y">Yipu Xia</a>, <a href="/search/physics?searchtype=author&amp;query=Shen%2C+Y">Yonggen Shen</a>, <a href="/search/physics?searchtype=author&amp;query=Su%2C+H">Huirong Su</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+M">Maohai Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Christensen%2C+T">Thomas Christensen</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16616v1-abstract-short" style="display: inline;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16616v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16616v1-abstract-full" style="display: none;"> The Feibelman $d$-parameter, a mesoscopic complement to the local bulk permittivity, describes quantum optical surface responses for interfaces, including nonlocality, spill-in and-out, and surface-enabled Landau damping. It has been incorporated into the macroscopic Maxwellian framework for convenient modeling and understanding of nanoscale electromagnetic phenomena, calling for the compilation of a $d$-parameter database for interfaces of interest in nano-optics. However, accurate first-principles calculations of $d$-parameters face computational challenges, whereas existing measurements of $d$-parameters are scarce and restricted to narrow spectral windows. We demonstrate a general broadband ellipsometric approach to measure $d$-parameters at a gold--air interface across the visible--ultraviolet regimes. Gold is found to spill in and spill out at different frequencies. We also observe gold&#39;s Bennett mode, a surface-dipole resonance associated with a pole of the $d$-parameter, around 2.5 eV. Our measurements give rise to and are further validated by the passivity and Kramers--Kronig causality analysis of $d$-parameters. Our work advances the understanding of quantum surface response and may enable applications like enhanced electron field emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16616v1-abstract-full').style.display = 'none'; document.getElementById('2409.16616v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09037">arXiv:2407.09037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09037">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Photonic quasicrystal of spin angular momentum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+M">Min Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Gou%2C+X">Xinxin Gou</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenwei Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+A">Aiping Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Du%2C+L">Luping Du</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+X">Xiaocong Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09037v1-abstract-short" style="display: inline;"> Quasicrystals,characterized by long-range order without translational symmetry,have catalyzed transformative advances in various fields,including optics in terms of field quasicrystals.Here,we present the first demonstration of photonic quasicrystals formed by spin angular momentum, unveiling novel spin-orbit coupling effects absent in traditional field quasicrystals.A de Bruijn tiling like theore&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09037v1-abstract-full').style.display = 'inline'; document.getElementById('2407.09037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09037v1-abstract-full" style="display: none;"> Quasicrystals,characterized by long-range order without translational symmetry,have catalyzed transformative advances in various fields,including optics in terms of field quasicrystals.Here,we present the first demonstration of photonic quasicrystals formed by spin angular momentum, unveiling novel spin-orbit coupling effects absent in traditional field quasicrystals.A de Bruijn tiling like theoretical framework was built elucidating the formation mechanism of spin quasicrystals for diverse symmetries.Moreover,the configurations of these spin textures can be manipulated through the adjustments of the wavefronts,among which phason-like discontinuous dynamics is observed and quantitatively measured. Unlike optical quasicrystals shaped by electromagnetic fields,these spin-governed quasicrystals exhibit quasi-periodic properties of kinematic parameters,extending their potential applications to other physical systems. These findings hold promise for novel advancements in optical trapping,quasicrystal fabrication,and optical encryption systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09037v1-abstract-full').style.display = 'none'; document.getElementById('2407.09037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07651">arXiv:2407.07651</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07651">pdf</a>, <a href="https://arxiv.org/format/2407.07651">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> Study of the decay and production properties of $D_{s1}(2536)$ and $D_{s2}^*(2573)$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ablikim%2C+M">M. Ablikim</a>, <a href="/search/physics?searchtype=author&amp;query=Achasov%2C+M+N">M. N. Achasov</a>, <a href="/search/physics?searchtype=author&amp;query=Adlarson%2C+P">P. Adlarson</a>, <a href="/search/physics?searchtype=author&amp;query=Afedulidis%2C+O">O. Afedulidis</a>, <a href="/search/physics?searchtype=author&amp;query=Ai%2C+X+C">X. C. Ai</a>, <a href="/search/physics?searchtype=author&amp;query=Aliberti%2C+R">R. Aliberti</a>, <a href="/search/physics?searchtype=author&amp;query=Amoroso%2C+A">A. Amoroso</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Q. An</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+Y">Y. Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Bakina%2C+O">O. Bakina</a>, <a href="/search/physics?searchtype=author&amp;query=Balossino%2C+I">I. Balossino</a>, <a href="/search/physics?searchtype=author&amp;query=Ban%2C+Y">Y. Ban</a>, <a href="/search/physics?searchtype=author&amp;query=Bao%2C+H+-">H. -R. Bao</a>, <a href="/search/physics?searchtype=author&amp;query=Batozskaya%2C+V">V. Batozskaya</a>, <a href="/search/physics?searchtype=author&amp;query=Begzsuren%2C+K">K. Begzsuren</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+N">N. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Berlowski%2C+M">M. Berlowski</a>, <a href="/search/physics?searchtype=author&amp;query=Bertani%2C+M">M. Bertani</a>, <a href="/search/physics?searchtype=author&amp;query=Bettoni%2C+D">D. Bettoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bianchi%2C+F">F. Bianchi</a>, <a href="/search/physics?searchtype=author&amp;query=Bianco%2C+E">E. Bianco</a>, <a href="/search/physics?searchtype=author&amp;query=Bortone%2C+A">A. Bortone</a>, <a href="/search/physics?searchtype=author&amp;query=Boyko%2C+I">I. Boyko</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+R+A">R. A. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brueggemann%2C+A">A. Brueggemann</a> , et al. (645 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07651v1-abstract-short" style="display: inline;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07651v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07651v1-abstract-full" style="display: none;"> The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ processes are studied using data samples collected with the BESIII detector at center-of-mass energies from 4.530 to 4.946~GeV. The absolute branching fractions of $D_{s1}(2536)^- \rightarrow \bar{D}^{*0}K^-$ and $D_{s2}^*(2573)^- \rightarrow \bar{D}^0K^-$ are measured for the first time to be $(35.9\pm 4.8\pm 3.5)\%$ and $(37.4\pm 3.1\pm 4.6)\%$, respectively. The measurements are in tension with predictions based on the assumption that the $D_{s1}(2536)$ and $D_{s2}^*(2573)$ are dominated by a bare $c\bar{s}$ component. The $e^+e^-\rightarrow D_s^+D_{s1}(2536)^-$ and $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ cross sections are measured, and a resonant structure at around 4.6~GeV with a width of 50~MeV is observed for the first time with a statistical significance of $15蟽$ in the $e^+e^-\rightarrow D_s^+D^*_{s2}(2573)^-$ process. It could be the $Y(4626)$ found by the Belle collaboration in the $D_s^+D_{s1}(2536)^{-}$ final state, since they have similar masses and widths. There is also evidence for a structure at around 4.75~GeV in both processes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07651v1-abstract-full').style.display = 'none'; document.getElementById('2407.07651v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12577">arXiv:2404.12577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12577">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J">Jianxin Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+T">Tianle Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenming Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+W">Wu Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Ho%2C+H">Ho-Pui Ho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12577v1-abstract-short" style="display: inline;"> Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the first use of inertial-kinetic translocation&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12577v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12577v1-abstract-full" style="display: none;"> Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the first use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12577v1-abstract-full').style.display = 'none'; document.getElementById('2404.12577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09920">arXiv:2404.09920</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.09920">pdf</a>, <a href="https://arxiv.org/format/2404.09920">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad5fee">10.3847/1538-4357/ad5fee <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined Pre-Supernova Alert System with Kamland and Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=KamLAND"> KamLAND</a>, <a href="/search/physics?searchtype=author&amp;query=Collaborations%2C+S">Super-Kamiokande Collaborations</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+S">Seisho Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Eizuka%2C+M">Minori Eizuka</a>, <a href="/search/physics?searchtype=author&amp;query=Futagi%2C+S">Sawako Futagi</a>, <a href="/search/physics?searchtype=author&amp;query=Gando%2C+A">Azusa Gando</a>, <a href="/search/physics?searchtype=author&amp;query=Gando%2C+Y">Yoshihito Gando</a>, <a href="/search/physics?searchtype=author&amp;query=Goto%2C+S">Shun Goto</a>, <a href="/search/physics?searchtype=author&amp;query=Hachiya%2C+T">Takahiko Hachiya</a>, <a href="/search/physics?searchtype=author&amp;query=Hata%2C+K">Kazumi Hata</a>, <a href="/search/physics?searchtype=author&amp;query=Ichimura%2C+K">Koichi Ichimura</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+S">Sei Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+H">Haruo Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Inoue%2C+K">Kunio Inoue</a>, <a href="/search/physics?searchtype=author&amp;query=Ishidoshiro%2C+K">Koji Ishidoshiro</a>, <a href="/search/physics?searchtype=author&amp;query=Kamei%2C+Y">Yuto Kamei</a>, <a href="/search/physics?searchtype=author&amp;query=Kawada%2C+N">Nanami Kawada</a>, <a href="/search/physics?searchtype=author&amp;query=Kishimoto%2C+Y">Yasuhiro Kishimoto</a>, <a href="/search/physics?searchtype=author&amp;query=Koga%2C+M">Masayuki Koga</a>, <a href="/search/physics?searchtype=author&amp;query=Kurasawa%2C+M">Maho Kurasawa</a>, <a href="/search/physics?searchtype=author&amp;query=Mitsui%2C+T">Tadao Mitsui</a>, <a href="/search/physics?searchtype=author&amp;query=Miyake%2C+H">Haruhiko Miyake</a>, <a href="/search/physics?searchtype=author&amp;query=Morita%2C+D">Daisuke Morita</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+T">Takeshi Nakahata</a> , et al. (290 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09920v3-abstract-short" style="display: inline;"> Preceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09920v3-abstract-full').style.display = 'inline'; document.getElementById('2404.09920v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09920v3-abstract-full" style="display: none;"> Preceding a core-collapse supernova, various processes produce an increasing amount of neutrinos of all flavors characterized by mounting energies from the interior of massive stars. Among them, the electron antineutrinos are potentially detectable by terrestrial neutrino experiments such as KamLAND and Super-Kamiokande via inverse beta decay interactions. Once these pre-supernova neutrinos are observed, an early warning of the upcoming core-collapse supernova can be provided. In light of this, KamLAND and Super-Kamiokande, both located in the Kamioka mine in Japan, have been monitoring pre-supernova neutrinos since 2015 and 2021, respectively. Recently, we performed a joint study between KamLAND and Super-Kamiokande on pre-supernova neutrino detection. A pre-supernova alert system combining the KamLAND detector and the Super-Kamiokande detector was developed and put into operation, which can provide a supernova alert to the astrophysics community. Fully leveraging the complementary properties of these two detectors, the combined alert is expected to resolve a pre-supernova neutrino signal from a 15 M$_{\odot}$ star within 510 pc of the Earth, at a significance level corresponding to a false alarm rate of no more than 1 per century. For a Betelgeuse-like model with optimistic parameters, it can provide early warnings up to 12 hours in advance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09920v3-abstract-full').style.display = 'none'; document.getElementById('2404.09920v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resubmitted to ApJ. 22 pages, 16 figures, for more information about the combined pre-supernova alert system, see https://www.lowbg.org/presnalarm/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08648">arXiv:2404.08648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08648">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Software-defined optical networking applications enabled by programmable integrated photonics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenyun Xie</a>, <a href="/search/physics?searchtype=author&amp;query=S%C3%A1nchez-J%C3%A1come%2C+D">David S谩nchez-J谩come</a>, <a href="/search/physics?searchtype=author&amp;query=Torrijos-Mor%C3%A1n%2C+L">Luis Torrijos-Mor谩n</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%A9rez-L%C3%B3pez%2C+D">Daniel P茅rez-L贸pez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08648v1-abstract-short" style="display: inline;"> Data center networks are experiencing unprecedented exponential growth, mostly driven by the continuous computing demands in machine learning and artificial intelligence algorithms. Within this realm, optical networking offers numerous advantages, including low latency, energy efficiency, and bandwidth transparency, positioning it as a compelling alternative to its electronic counterparts. In this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08648v1-abstract-full').style.display = 'inline'; document.getElementById('2404.08648v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08648v1-abstract-full" style="display: none;"> Data center networks are experiencing unprecedented exponential growth, mostly driven by the continuous computing demands in machine learning and artificial intelligence algorithms. Within this realm, optical networking offers numerous advantages, including low latency, energy efficiency, and bandwidth transparency, positioning it as a compelling alternative to its electronic counterparts. In this work, we showcase a range of software-defined optical networking applications deployed on a general-purpose programmable integrated photonic processor. Leveraging graph-based theory, we experimentally demonstrate dynamic optical interconnects, circuit switching, and multicasting on the same photonic platform, yielding remarkable results in terms of crosstalk and reconfiguration speed. Our approach harnesses the benefits of reconfigurability and reliability, paving the way for a new generation of high-performance optical devices tailored for data center and computing clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08648v1-abstract-full').style.display = 'none'; document.getElementById('2404.08648v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06716">arXiv:2404.06716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.06716">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Disentanglement of mixed interference fringes in optical interferometers: theory and applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yang%2C+K">Kaiyuan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+W">Weilong Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xiafei Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+B">Botao Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+J">Junqiu Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xinling Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+Y">Yuhua Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+H">Hu Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Haotong Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+B">Bo Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zongliang Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06716v1-abstract-short" style="display: inline;"> Optical interferometric imaging enables astronomical observation at extremely high angular resolution. The necessary optical information for imaging, such as the optical path differences and visibilities, is easy to extract from fringes generated by the combination of two beams. With more than two apertures, the image-plane interference pattern becomes an increasingly indistinguishable mixture of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06716v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06716v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06716v1-abstract-full" style="display: none;"> Optical interferometric imaging enables astronomical observation at extremely high angular resolution. The necessary optical information for imaging, such as the optical path differences and visibilities, is easy to extract from fringes generated by the combination of two beams. With more than two apertures, the image-plane interference pattern becomes an increasingly indistinguishable mixture of fringe spacings and directions. For decades, the state-of-the-art approaches for obtaining two-aperture fringes from an interferometer array composed of many apertures are limited to pairwise combinations using bulk optics. Here, we derive and demonstrate a fringe disentanglement theory that can digitally transform the interference pattern of N apertures to N(N-1)/2 pairwise fringes without any optics, thus providing straightforward methods of information acquisition for interferometers. We demonstrate applications of our technique by both simulation and experiment, showing that this theory can be used for simultaneously sensing pistons and determining the individual visibilities of all combining apertures. Furthermore, we use the proposed theory to phase a 1.5-meter segmented flat telescope, demonstrating its validity for engineering implementation. This theory may not only benefit optical imaging but also interferometry-based measurements, by providing an exceptional capability to simplify the interferometric output generated by a system of many apertures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06716v1-abstract-full').style.display = 'none'; document.getElementById('2404.06716v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04259">arXiv:2404.04259</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.04259">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> The prominent and heterogeneous gender disparities in scientific novelty: evidence from biomedical doctoral theses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+M">Meijun Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zihan Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+A+J">Alex Jie Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chao Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jian Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Ding%2C+Y">Ying Ding</a>, <a href="/search/physics?searchtype=author&amp;query=Bu%2C+Y">Yi Bu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04259v1-abstract-short" style="display: inline;"> Scientific novelty is the essential driving force for research breakthroughs and innovation. However, little is known about how early-career scientists pursue novel research paths, and the gender disparities in this process. To address this research gap, this study investigates a comprehensive dataset of 279,424 doctoral theses in biomedical sciences authored by US Ph.D. graduates. Spanning from 1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04259v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04259v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04259v1-abstract-full" style="display: none;"> Scientific novelty is the essential driving force for research breakthroughs and innovation. However, little is known about how early-career scientists pursue novel research paths, and the gender disparities in this process. To address this research gap, this study investigates a comprehensive dataset of 279,424 doctoral theses in biomedical sciences authored by US Ph.D. graduates. Spanning from 1980 to 2016, the data originates from the ProQuest Dissertations &amp; Theses Database. This study aims to shed light on Ph.D. students&#39; pursuit of scientific novelty in their doctoral theses and assess gender-related differences in this process. Using a combinatorial approach and a pre-trained Bio-BERT model, we quantify the scientific novelty of doctoral theses based on bio-entities. Applying fractional logistic and quantile regression models, this study reveals a decreasing trend in scientific novelty over time and heterogeneous gender disparities in doctoral theses. Specifically, female students consistently exhibited lower scientific novelty levels than their male peers. When supervised by female advisors, students&#39; theses are found to be less novel than those under male advisors. The significant interaction effect of female students and female advisors suggests that female advisors may amplify the gender disparity in scientific novelty. Moreover, heterogeneous gender disparities in scientific novelty are identified, with non-top-tier universities displaying more pronounced disparities, while the differences at higher percentile ranges were comparatively more minor. These findings indicate a potential underrepresentation of female scientists pursuing novel research during the early stages of their careers. Notably, the outcomes of this study hold significant policy implications for advancing the careers of female scientists. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04259v1-abstract-full').style.display = 'none'; document.getElementById('2404.04259v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.00377">arXiv:2404.00377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.00377">pdf</a>, <a href="https://arxiv.org/format/2404.00377">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Maximal quantum interaction between free electrons and photons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zetao Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Z">Zeling Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+Q">Qinghui Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+H">Hongsheng Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+X">Xiao Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Kaminer%2C+I">Ido Kaminer</a>, <a href="/search/physics?searchtype=author&amp;query=Miller%2C+O+D">Owen D. Miller</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.00377v2-abstract-short" style="display: inline;"> The emerging field of free-electron quantum optics enables electron-photon entanglement and holds the potential for generating nontrivial photon states for quantum information processing. Although recent experimental studies have entered the quantum regime, rapid theoretical developments predict that qualitatively unique phenomena only emerge beyond a certain interaction strength. It is thus perti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00377v2-abstract-full').style.display = 'inline'; document.getElementById('2404.00377v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.00377v2-abstract-full" style="display: none;"> The emerging field of free-electron quantum optics enables electron-photon entanglement and holds the potential for generating nontrivial photon states for quantum information processing. Although recent experimental studies have entered the quantum regime, rapid theoretical developments predict that qualitatively unique phenomena only emerge beyond a certain interaction strength. It is thus pertinent to identify the maximal electron-photon interaction strength and the materials, geometries, and particle energies that enable one to approach it. We derive an upper limit to the quantum vacuum interaction strength between free electrons and single-mode photons, which illuminates the conditions for the strongest interaction. Crucially, we obtain an explicit energy selection recipe for electrons and photons to achieve maximal interaction at arbitrary separations and identify two optimal regimes favoring either fast or slow electrons over those with intermediate velocities. We validate the limit by analytical and numerical calculations on canonical geometries and provide near-optimal designs indicating the feasibility of strong quantum interactions. Our findings offer fundamental intuition for maximizing the quantum interaction between free electrons and photons and provide practical design rules for future experiments on electron-photon and electron-mediated photon-photon entanglement. They should also enable the evaluation of key metrics for applications such as the maximum power of free-electron radiation sources and the maximum acceleration gradient of dielectric laser accelerators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.00377v2-abstract-full').style.display = 'none'; document.getElementById('2404.00377v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07796">arXiv:2403.07796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07796">pdf</a>, <a href="https://arxiv.org/format/2403.07796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169480">10.1016/j.nima.2024.169480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Second gadolinium loading to Super-Kamiokande </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a>, <a href="/search/physics?searchtype=author&amp;query=Shimizu%2C+K">K. Shimizu</a>, <a href="/search/physics?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a> , et al. (225 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07796v3-abstract-short" style="display: inline;"> The first loading of gadolinium (Gd) into Super-Kamiokande in 2020 was successful, and the neutron capture efficiency on Gd reached 50\%. To further increase the Gd neutron capture efficiency to 75\%, 26.1 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was additionally loaded into Super-Kamiokande (SK) from May 31 to July 4, 2022. As the amount of loaded $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was do&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07796v3-abstract-full').style.display = 'inline'; document.getElementById('2403.07796v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07796v3-abstract-full" style="display: none;"> The first loading of gadolinium (Gd) into Super-Kamiokande in 2020 was successful, and the neutron capture efficiency on Gd reached 50\%. To further increase the Gd neutron capture efficiency to 75\%, 26.1 tons of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was additionally loaded into Super-Kamiokande (SK) from May 31 to July 4, 2022. As the amount of loaded $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ was doubled compared to the first loading, the capacity of the powder dissolving system was doubled. We also developed new batches of gadolinium sulfate with even further reduced radioactive impurities. In addition, a more efficient screening method was devised and implemented to evaluate these new batches of $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$. Following the second loading, the Gd concentration in SK was measured to be $333.5\pm2.5$ ppm via an Atomic Absorption Spectrometer (AAS). From the mean neutron capture time constant of neutrons from an Am/Be calibration source, the Gd concentration was independently measured to be 332.7 $\pm$ 6.8(sys.) $\pm$ 1.1(stat.) ppm, consistent with the AAS result. Furthermore, during the loading the Gd concentration was monitored continually using the capture time constant of each spallation neutron produced by cosmic-ray muons,and the final neutron capture efficiency was shown to become 1.5 times higher than that of the first loaded phase, as expected. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07796v3-abstract-full').style.display = 'none'; document.getElementById('2403.07796v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 13 figures, submitted to Nuclear Inst. and Methods in Physics Research, A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1065 (2024) 169480 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06163">arXiv:2403.06163</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06163">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Miniature narrow-linewidth 1 渭m Laser </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaofan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+K">Kunpeng Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yunfeng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=shi%2C+H">Haosen shi</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yanyi Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xiaoshun Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+L">Longsheng Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+W">Wei Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenda Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-ning Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06163v1-abstract-short" style="display: inline;"> Self-injection locking scheme has the potential to narrow the linewidth of lasers in a compact setup. Here, we report a narrow linewidth laser source near 1 渭m by self-injection locking scheme using a Fabry-Perot (FP) hollow resonator with a high-quality factor (Q&gt;10^8). The measured fundamental linewidth of the laser is 41 Hz, and a coarse tuning range over 5.5 nm is achieved by changing the driv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06163v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06163v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06163v1-abstract-full" style="display: none;"> Self-injection locking scheme has the potential to narrow the linewidth of lasers in a compact setup. Here, we report a narrow linewidth laser source near 1 渭m by self-injection locking scheme using a Fabry-Perot (FP) hollow resonator with a high-quality factor (Q&gt;10^8). The measured fundamental linewidth of the laser is 41 Hz, and a coarse tuning range over 5.5 nm is achieved by changing the driving current of the laser source. Meanwhile, a fine-tuning range of 373 MHz is achieved without mode hops by changing the voltage applied to the PZT on the resonator. More importantly, benefiting from the low thermal refractive noise and low thermal expansion of the FP hollow resonator, the beat-note linewidth and the frequency Allan deviation are measured to be 510.3 Hz in and 10^-11 (1s averaging time), respectively, by using a fully stabilized frequency comb as reference. Such a high-performance laser is fully integrated with a palm-sized package (52.3 mL) for field-deployable applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06163v1-abstract-full').style.display = 'none'; document.getElementById('2403.06163v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02091">arXiv:2402.02091</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02091">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Feasibility of PET-enabled dual-energy CT imaging: First physical phantom and initial patient results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+Y">Yansong Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+S">Siqi Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhaoheng Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Leung%2C+E+K">Edwin K. Leung</a>, <a href="/search/physics?searchtype=author&amp;query=Bayerlein%2C+R">Reimund Bayerlein</a>, <a href="/search/physics?searchtype=author&amp;query=Omidvari%2C+N">Negar Omidvari</a>, <a href="/search/physics?searchtype=author&amp;query=Abdelhafez%2C+Y+G">Yasser G. Abdelhafez</a>, <a href="/search/physics?searchtype=author&amp;query=Cherry%2C+S+R">Simon R. Cherry</a>, <a href="/search/physics?searchtype=author&amp;query=Qi%2C+J">Jinyi Qi</a>, <a href="/search/physics?searchtype=author&amp;query=Badawi%2C+R+D">Ramsey D. Badawi</a>, <a href="/search/physics?searchtype=author&amp;query=Spencer%2C+B+A">Benjamin A. Spencer</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guobao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02091v3-abstract-short" style="display: inline;"> X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the adde&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02091v3-abstract-full').style.display = 'inline'; document.getElementById('2402.02091v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02091v3-abstract-full" style="display: none;"> X-ray computed tomography (CT) in PET/CT is commonly operated with a single energy, resulting in a limitation of lacking tissue composition information. Dual-energy (DE) spectral CT enables material decomposition by using two different x-ray energies and may be combined with PET for improved multimodality imaging, but would either require hardware upgrade or increase radiation dose due to the added second x-ray CT scan. Recently proposed PET-enabled DECT method allows dual-energy spectral imaging using a conventional PET/CT scanner without the need for a second x-ray CT scan. A gamma-ray CT (gCT) image at 511 keV can be generated from the existing time-of-flight PET data with the maximum-likelihood attenuation and activity (MLAA) approach and is then combined with the low-energy x-ray CT image to form dual-energy spectral imaging. To improve the image quality of gCT, a kernel MLAA method was further proposed by incorporating x-ray CT as a priori information. The concept of this PET-enabled DECT has been validated using simulation studies, but not yet with 3D real data. In this work, we developed a general open-source implementation for gCT reconstruction from PET data and use this implementation for the first real data validation with both a physical phantom study and a human subject study on a uEXPLORER total-body PET/CT system. These results have demonstrated the feasibility of this method for spectral imaging and material decomposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02091v3-abstract-full').style.display = 'none'; document.getElementById('2402.02091v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12760">arXiv:2401.12760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12760">pdf</a>, <a href="https://arxiv.org/format/2401.12760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Microresonator-referenced soliton microcombs with zeptosecond-level timing noise </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jin%2C+X">Xing Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenyu Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiangpeng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hou%2C+H">Hanfei Hou</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+F">Fangxing Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xuanyi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+L">Lin Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Q">Qihuang Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Q">Qi-Fan Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12760v1-abstract-short" style="display: inline;"> Optical frequency division relies on optical frequency combs to coherently translate ultra-stable optical frequency references to the microwave domain. This technology has enabled microwave synthesis with ultralow timing noise, but the required instruments are too bulky for real-world applications. Here, we develop a compact optical frequency division system using microresonator-based frequency re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12760v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12760v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12760v1-abstract-full" style="display: none;"> Optical frequency division relies on optical frequency combs to coherently translate ultra-stable optical frequency references to the microwave domain. This technology has enabled microwave synthesis with ultralow timing noise, but the required instruments are too bulky for real-world applications. Here, we develop a compact optical frequency division system using microresonator-based frequency references and comb generators. The soliton microcomb formed in an integrated Si$_3$N$_4$ microresonator is stabilized to two lasers referenced to an ultrahigh-$Q$ MgF$_2$ microresonator. Photodetection of the soliton pulse train produces 25 GHz microwaves with absolute phase noise of -141 dBc/Hz (547 zs Hz$^{-1/2}$) at 10 kHz offset frequency. The synthesized microwaves are tested as local oscillators in jammed communication channels, resulting in improved fidelity compared with those derived from electronic oscillators. Our work demonstrates unprecedented coherence in miniature microwave oscillators, providing key building blocks for next-generation timekeeping, navigation, and satellite communication systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12760v1-abstract-full').style.display = 'none'; document.getElementById('2401.12760v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures and tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02432">arXiv:2401.02432</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02432">pdf</a>, <a href="https://arxiv.org/format/2401.02432">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Partial Coherence for Object Recognition and Depth Sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zichen Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+K+X">Ken Xingze Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02432v1-abstract-short" style="display: inline;"> We show a monotonic relationship between performances of various computer vision tasks versus degrees of coherence of illumination. We simulate partially coherent illumination using computational methods, propagate the lightwave to form images, and subsequently employ a deep neural network to perform object recognition and depth sensing tasks. In each controlled experiment, we discover that, incre&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02432v1-abstract-full').style.display = 'inline'; document.getElementById('2401.02432v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02432v1-abstract-full" style="display: none;"> We show a monotonic relationship between performances of various computer vision tasks versus degrees of coherence of illumination. We simulate partially coherent illumination using computational methods, propagate the lightwave to form images, and subsequently employ a deep neural network to perform object recognition and depth sensing tasks. In each controlled experiment, we discover that, increased coherent length leads to improved image entropy, as well as enhanced object recognition and depth sensing performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02432v1-abstract-full').style.display = 'none'; document.getElementById('2401.02432v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00499">arXiv:2401.00499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00499">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Generating High-Precision Force Fields for Molecular Dynamics Simulations to Study Chemical Reaction Mechanisms using Molecular Configuration Transformer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+S">Sihao Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+X">Xu Han</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhaoxin Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+C">Cheng Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+Y">Yunlong Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Y+Q">Yi Qin Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y+I">Yi Isaac Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00499v3-abstract-short" style="display: inline;"> Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we prop&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00499v3-abstract-full').style.display = 'inline'; document.getElementById('2401.00499v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00499v3-abstract-full" style="display: none;"> Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that uses enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limits the use of high-precision potential energy functions for simulations. To address this issue, we present a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allows for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a Carbonyl insertion reaction catalyzed by Manganese. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00499v3-abstract-full').style.display = 'none'; document.getElementById('2401.00499v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.12901">arXiv:2312.12901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.12901">pdf</a>, <a href="https://arxiv.org/format/2312.12901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Study of Silicon Photomultiplier External Cross-Talk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Guan%2C+Y">Y. Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">N. Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G">G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Z. Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+Q">Q. Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Fedoseev%2C+D">D. Fedoseev</a>, <a href="/search/physics?searchtype=author&amp;query=Kuznetsova%2C+K">K. Kuznetsova</a>, <a href="/search/physics?searchtype=author&amp;query=Rybnikov%2C+A">A. Rybnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Selyunin%2C+A">A. Selyunin</a>, <a href="/search/physics?searchtype=author&amp;query=Sotnikov%2C+A">A. Sotnikov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.12901v1-abstract-short" style="display: inline;"> Optical cross-talk is a critical characteristic of Silicon Photomultipliers (SiPMs) and represents a significant source of the excess noise factor, exerting a substantial influence on detector performance. During the avalanche process of SiPMs, photons generated can give rise to both internal cross-talk within the same SiPM and external cross-talk when photons escape from one SiPM and trigger aval&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12901v1-abstract-full').style.display = 'inline'; document.getElementById('2312.12901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.12901v1-abstract-full" style="display: none;"> Optical cross-talk is a critical characteristic of Silicon Photomultipliers (SiPMs) and represents a significant source of the excess noise factor, exerting a substantial influence on detector performance. During the avalanche process of SiPMs, photons generated can give rise to both internal cross-talk within the same SiPM and external cross-talk when photons escape from one SiPM and trigger avalanches in others. In scenarios where SiPMs are arranged in a compact configuration and positioned facing each other, the external cross-talk could even dominate the cross-talk phenomenon. This paper investigates two distinct methods for measuring external cross-talk: the counting method, which involves operating SiPMs face-to-face and measuring their coincident signals, and the reflection method, which employs a highly reflective film attached to the surface of the SiPMs. External cross-talk measurements have been conducted on several types of SiPMs, including Vacuum Ultra-Violet (VUV) sensitive SiPMs that Fondazione Bruno Kessler (FBK) and Hamamatsu Photonics Inc (HPK) produced for nEXO as well as visible-sensitive SiPMs provided by FBK, HPK and SensL Technologies Ltd (SenSL) for JUNO-TAO. The results reveal a significant presence of external cross-talk in all tested SiPMs, with HPK&#39;s SiPMs exhibiting a dominant external cross-talk component due to the implementation of optical trenches that effectively suppress internal cross-talk. Furthermore, we found that the number of fired pixels resulting from internal cross-talk can be described by combining Geometric and Borel models for all tested SiPMs, while the external cross-talk can be predicted using a pure Borel model. These distinct probability distributions lead to different excess noise factors, thereby impacting the detector performance in varying ways. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.12901v1-abstract-full').style.display = 'none'; document.getElementById('2312.12901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.14568">arXiv:2311.14568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.14568">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Passively stable 0.7-octave microcombs in thin-film lithium niobate microresonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Zexing Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+C">Chenyu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+J">Jingyuan Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+Z">Zhilin Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Zhijun Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+K">Kunpeng Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+X">Xiaohui Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenda Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-Ning Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.14568v1-abstract-short" style="display: inline;"> Optical frequency comb based on microresonator (microcomb) is an integrated coherent light source and has the potential to promise a high-precision frequency standard, and self-reference and long-term stable microcomb is the key to this realization. Here, we demonstrated a 0.7-octave spectrum Kerr comb via dispersion engineering in a thin film lithium niobate microresonator, and the single soliton&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14568v1-abstract-full').style.display = 'inline'; document.getElementById('2311.14568v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.14568v1-abstract-full" style="display: none;"> Optical frequency comb based on microresonator (microcomb) is an integrated coherent light source and has the potential to promise a high-precision frequency standard, and self-reference and long-term stable microcomb is the key to this realization. Here, we demonstrated a 0.7-octave spectrum Kerr comb via dispersion engineering in a thin film lithium niobate microresonator, and the single soliton state can be accessed passively with long-term stability over 3 hours. With such a robust broadband coherent comb source using thin film lithium niobate, fully stabilized microcomb can be expected for massive practical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.14568v1-abstract-full').style.display = 'none'; document.getElementById('2311.14568v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09417">arXiv:2311.09417</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.09417">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Preliminary Design of CSNS-II Linac SRF LLRF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhexin Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+K">Kai Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Mu%2C+Z">Zhencheng Mu</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xinpeng Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Gan%2C+N">Nan Gan</a>, <a href="/search/physics?searchtype=author&amp;query=Wan%2C+M">Maliang Wan</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+B">Bo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Rong%2C+L">Linyan Rong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+H">Hui Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+H">Hexin Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09417v1-abstract-short" style="display: inline;"> China Spallation Neutron Source(CSNS) target power will upgrade to 500 kW(CSNS-II) from 300kW, energy gain of H-Linac will up to 300 MeV from 80 MeV using about 50 superconductor cavities. LLRF is an important device for controlling the amplitude and phase of the SRF cavity field to be less than 0.6% and 0.6 deg. The parameters and requirements for CSNS-II Linac LLRF are presented here. The prelim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09417v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09417v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09417v1-abstract-full" style="display: none;"> China Spallation Neutron Source(CSNS) target power will upgrade to 500 kW(CSNS-II) from 300kW, energy gain of H-Linac will up to 300 MeV from 80 MeV using about 50 superconductor cavities. LLRF is an important device for controlling the amplitude and phase of the SRF cavity field to be less than 0.6% and 0.6 deg. The parameters and requirements for CSNS-II Linac LLRF are presented here. The preliminary design work and algorithm verification progress and results at C-ADS Injector-I are introduced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09417v1-abstract-full').style.display = 'none'; document.getElementById('2311.09417v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Talk presented at LLRF Workshop 2023(LLRF2023, arXiv:2310.03199)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLRF2023/11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16414">arXiv:2310.16414</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16414">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> V2C MXene-modified g-C3N4 for enhanced visible-light photocatalytic activity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xu%2C+R">Ruizheng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+G">Guiyu Wei</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhemin Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Diao%2C+S">Sijie Diao</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+J">Jianfeng Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+T">Tao Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+L">Li Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Guanghui Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16414v1-abstract-short" style="display: inline;"> Increasing the efficiency of charge transfer and separation efficiency of photogenerated carriers are still the main challenges in the field of semiconductor-based photocatalysts. Herein, we synthesized g-C3N4@V2C MXene photocatalyst by modifying g-C3N4 using V2C MXene. The prepared photocatalyst exhibited outstanding photocatalytic performance under visible light. The degradation efficiency of me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16414v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16414v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16414v1-abstract-full" style="display: none;"> Increasing the efficiency of charge transfer and separation efficiency of photogenerated carriers are still the main challenges in the field of semiconductor-based photocatalysts. Herein, we synthesized g-C3N4@V2C MXene photocatalyst by modifying g-C3N4 using V2C MXene. The prepared photocatalyst exhibited outstanding photocatalytic performance under visible light. The degradation efficiency of methyl orange by g-C3N4@V2C MXene photocatalyst was as high as 94.5%, which is 1.56 times higher than that by g-C3N4. This was attributed to the V2C MXene inhibiting the rapid recombination of photogenerated carriers and facilitating rapid transfer of photogenerated electrons (e) from g-C3N4 to MXene. Moreover, g-C3N4@V2C MXene photocatalyst showed good cycling stability. The photocatalytic performance was higher than 85% after three cycles. Experiments to capture free radicals revealed that superoxide radicals (02) are the main contributors to the photocatalytic activity. Thus, the proposed g-C3N4@V2C MXene photocatalyst is a promising visible-light catalyst. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16414v1-abstract-full').style.display = 'none'; document.getElementById('2310.16414v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06876">arXiv:2307.06876</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06876">pdf</a>, <a href="https://arxiv.org/format/2307.06876">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsphotonics.4c00291">10.1021/acsphotonics.4c00291 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Light Emission and Conductance Fluctuations in Electrically Driven and Plasmonically Enhanced Molecular Junctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Amirtharaj%2C+S+P">Sakthi Priya Amirtharaj</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhiyuan Xie</a>, <a href="/search/physics?searchtype=author&amp;query=See%2C+J+S+Y">Josephine Si Yu See</a>, <a href="/search/physics?searchtype=author&amp;query=Rolleri%2C+G">Gabriele Rolleri</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+W">Wen Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Malchow%2C+K">Konstantin Malchow</a>, <a href="/search/physics?searchtype=author&amp;query=Bouhelier%2C+A">Alexandre Bouhelier</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%B6rtscher%2C+E">Emanuel L枚rtscher</a>, <a href="/search/physics?searchtype=author&amp;query=Galland%2C+C">Christophe Galland</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06876v2-abstract-short" style="display: inline;"> Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities of molecular transport. Such combined optical and electrical probes have proven useful for the fundamental understanding of metal-molecule contac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06876v2-abstract-full').style.display = 'inline'; document.getElementById('2307.06876v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06876v2-abstract-full" style="display: none;"> Electrically connected and plasmonically enhanced molecular junctions combine the optical functionalities of high field confinement and enhancement (cavity function), and of high radiative efficiency (antenna function) with the electrical functionalities of molecular transport. Such combined optical and electrical probes have proven useful for the fundamental understanding of metal-molecule contacts and contribute to the development of nanoscale optoelectronic devices including ultrafast electronics and nanosensors. Here, we employ a self-assembled metal-molecule-metal junction with a nanoparticle bridge to investigate correlated fluctuations in conductance and tunneling-induced light emission at room temperature. Despite the presence of hundreds of molecules in the junction, the electrical conductance and light emission are both highly sensitive to atomic-scale fluctuations -- a phenomenology reminiscent of picocavities observed in Raman scattering and of luminescence blinking from photo-excited plasmonic junctions. Discrete steps in conductance associated with fluctuating emission intensities through the multiple plasmonic modes of the junction are consistent with a finite number of randomly localized, point-like sources dominating the optoelectronic response. Contrasting with these microscopic fluctuations, the overall plasmonic and electronic functionalities of our devices feature long-term survival at room temperature and under an electrical bias of a few volts, allowing for measurements over several months. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06876v2-abstract-full').style.display = 'none'; document.getElementById('2307.06876v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Photonics 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05138">arXiv:2307.05138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.05138">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Super-resolution imaging through a multimode fiber: the physical upsampling of speckle-driven </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chuncheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tingting Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhihua Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yu Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+T">Tong Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q">Qian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Sui%2C+X">Xiubao Sui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05138v1-abstract-short" style="display: inline;"> Following recent advancements in multimode fiber (MMF), miniaturization of imaging endoscopes has proven crucial for minimally invasive surgery in vivo. Recent progress enabled by super-resolution imaging methods with a data-driven deep learning (DL) framework has balanced the relationship between the core size and resolution. However, most of the DL approaches lack attention to the physical prope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05138v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05138v1-abstract-full" style="display: none;"> Following recent advancements in multimode fiber (MMF), miniaturization of imaging endoscopes has proven crucial for minimally invasive surgery in vivo. Recent progress enabled by super-resolution imaging methods with a data-driven deep learning (DL) framework has balanced the relationship between the core size and resolution. However, most of the DL approaches lack attention to the physical properties of the speckle, which is crucial for reconciling the relationship between the magnification of super-resolution imaging and the quality of reconstruction quality. In the paper, we find that the interferometric process of speckle formation is an essential basis for creating DL models with super-resolution imaging. It physically realizes the upsampling of low-resolution (LR) images and enhances the perceptual capabilities of the models. The finding experimentally validates the role played by the physical upsampling of speckle-driven, effectively complementing the lack of information in data-driven. Experimentally, we break the restriction of the poor reconstruction quality at great magnification by inputting the same size of the speckle with the size of the high-resolution (HR) image to the model. The guidance of our research for endoscopic imaging may accelerate the further development of minimally invasive surgery. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05138v1-abstract-full').style.display = 'none'; document.getElementById('2307.05138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14146">arXiv:2306.14146</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.14146">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Nanometer displacement measurement based on metrological self-mixing grating interferometer traceable to the pitch standard of one-dimension chromium self-traceable grating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Z">Zhenjie Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhangning Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Chang%2C+Z">Zhikun Chang</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+G">Guangxu Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Zhijun Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Zichao Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T">Tong Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+L">Lihua Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+T">Tao Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+D">Dongbai Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+X">Xiao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xinbin Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tongbao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14146v1-abstract-short" style="display: inline;"> Traceability of precision instrument and measuring method is the core issue in metrology science. In the field of nanometer length measurement, the laser interferometers are usually used to trace the measurement value to the laser wavelength, but the laser wavelength is sensitive to the environment disturbance. Chromium self-traceable grating is an ideal nanometer length reference grating with pit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14146v1-abstract-full').style.display = 'inline'; document.getElementById('2306.14146v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14146v1-abstract-full" style="display: none;"> Traceability of precision instrument and measuring method is the core issue in metrology science. In the field of nanometer length measurement, the laser interferometers are usually used to trace the measurement value to the laser wavelength, but the laser wavelength is sensitive to the environment disturbance. Chromium self-traceable grating is an ideal nanometer length reference grating with pitch traceability, fabricated by the atomic lithography technique. The new nanometer length traceability chain can be established based on the pitch traceability of chromium self-traceable grating, which is often used to calibrate the systematic error of the atomic force microscope. In this paper, the metrological self-mixing grating interferometer based on the chromium self-traceable grating (SMGI-Cr) is firstly established, whose interfere phase is traceable to the pitch of the chromium self-traceable grating directly and traceable to the chromium atomic transition frequency of energy level 7 S 3 to 7 P 4 indirectly. The nanometer displacement measurement is also achieved by the SMGI-Cr. The measurement error is no more than 0.2366%, compared to a commercial interferometer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14146v1-abstract-full').style.display = 'none'; document.getElementById('2306.14146v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14083">arXiv:2306.14083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.14083">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Chromium Self-Traceable Length Standard: Investigating Geometry and Diffraction for Length Traceability Chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Zichao Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+Y">Yulin Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhangning Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+D">Dongbai Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Zhou%2C+T">Tong Zhou</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Z">Zhaohui Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+L">Lihua Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+T">Tao Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Dun%2C+X">Xiong Dun</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+X">Xiao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+X">Xinbin Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tongbao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14083v1-abstract-short" style="display: inline;"> Natural constant-based metrology methods offer an effective approach to achieving traceability in nanometric measurements. The Cr grating, fabricated by atom lithography and featuring a pitch of $d=212.7705\pm0.0049~{\rm nm}$ traceable to the Cr transition frequency $^{7}S_{3}$ $\rightarrow$ $^{7}P_{4}^{0}$, demonstrates potential as a self-traceable length standard in nano-length metrology by gra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14083v1-abstract-full').style.display = 'inline'; document.getElementById('2306.14083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14083v1-abstract-full" style="display: none;"> Natural constant-based metrology methods offer an effective approach to achieving traceability in nanometric measurements. The Cr grating, fabricated by atom lithography and featuring a pitch of $d=212.7705\pm0.0049~{\rm nm}$ traceable to the Cr transition frequency $^{7}S_{3}$ $\rightarrow$ $^{7}P_{4}^{0}$, demonstrates potential as a self-traceable length standard in nano-length metrology by grating interferometer. This research aims to analyze and engineer the diffraction characteristics that enhance the Cr grating as a self-traceable length standard within the length traceability chain based on the Cr transition frequency. Accordingly, we investigate the geometric morphology and diffraction characteristics of the Cr grating, analyzes the influence of the grating&#39;s polarization-sensitive characteristics on the Littrow configuration grating interferometer, and establishes the criteria for Cr grating fabrication. Experimentally, we fabricate an expanded Cr grating by scanning atom lithography, characterize its diffraction performance, and conduct preliminary verification of length measurement in a self-traceable grating interferometer. This work adheres to the international trend of flattened metrology development, offering a valuable reference for advancing subsequent metrological technologies throughout the new traceability chain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14083v1-abstract-full').style.display = 'none'; document.getElementById('2306.14083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.12053">arXiv:2305.12053</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.12053">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Reciprocal polarization imaging of complex media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhineng Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+G">Guowu Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+W">Weihao Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+X">Xin Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Y">Yifan Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+Y">Yansen Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Qian%2C+X">Xiafei Qian</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+M">Min Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.12053v3-abstract-short" style="display: inline;"> The vectorial evolution of polarized light interaction with a medium can reveal its microstructure and anisotropy beyond what can be obtained from scalar light interaction. Anisotropic properties (diattenuation, retardance, and depolarization) of a complex medium can be quantified by polarization imaging by measuring the Mueller matrix. However, polarization imaging in the reflection geometry, ubi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12053v3-abstract-full').style.display = 'inline'; document.getElementById('2305.12053v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.12053v3-abstract-full" style="display: none;"> The vectorial evolution of polarized light interaction with a medium can reveal its microstructure and anisotropy beyond what can be obtained from scalar light interaction. Anisotropic properties (diattenuation, retardance, and depolarization) of a complex medium can be quantified by polarization imaging by measuring the Mueller matrix. However, polarization imaging in the reflection geometry, ubiquitous and often preferred in diverse applications, has suffered a poor recovery of the medium&#39;s anisotropic properties due to the lack of suitable decomposition of the Mueller matrices measured inside a backward geometry. Here, we present reciprocal polarization imaging of complex media after introducing reciprocal polar decomposition for backscattering Mueller matrices. Based on the reciprocity of the optical wave in its forward and backward scattering paths, the anisotropic diattenuation, retardance, and depolarization of a complex medium are determined by measuring the backscattering Mueller matrix. We demonstrate reciprocal polarization imaging in various applications for quantifying complex non-chiral and chiral media (birefringence resolution target, tissue sections, and glucose suspension), uncovering their anisotropic microstructures with remarkable clarity and accuracy. We also highlight types of complex media that Lu-Chipman and differential decompositions of backscattering Mueller matrices lead to erroneous medium polarization properties, whereas reciprocal polar decomposition recovers properly. Reciprocal polarization imaging will be instrumental in imaging complex media from remote sensing to biomedicine and will open new applications of polarization optics in reflection geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.12053v3-abstract-full').style.display = 'none'; document.getElementById('2305.12053v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.07867">arXiv:2305.07867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.07867">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/jacs.3c03271">10.1021/jacs.3c03271 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An integrated system built for small-molecule semiconductors via high-throughput approaches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wu%2C+J">Jianchang Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+J">Jiyun Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+M">Manman Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Reiser%2C+P">Patrick Reiser</a>, <a href="/search/physics?searchtype=author&amp;query=Torresi%2C+L">Luca Torresi</a>, <a href="/search/physics?searchtype=author&amp;query=Friederich%2C+P">Pascal Friederich</a>, <a href="/search/physics?searchtype=author&amp;query=Lahn%2C+L">Leopold Lahn</a>, <a href="/search/physics?searchtype=author&amp;query=Kasian%2C+O">Olga Kasian</a>, <a href="/search/physics?searchtype=author&amp;query=Guldi%2C+D+M">Dirk M. Guldi</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%A9rez-Ojeda%2C+M+E">M. Eugenia P茅rez-Ojeda</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A">Anastasia Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Rocha-Ortiz%2C+J+S">Juan S. Rocha-Ortiz</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yicheng Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhiqiang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+J">Junsheng Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yunuo Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Seok%2C+S+I">Sang Il Seok</a>, <a href="/search/physics?searchtype=author&amp;query=Hauch%2C+J+A">Jens A. Hauch</a>, <a href="/search/physics?searchtype=author&amp;query=Brabec%2C+C+J">Christoph J. Brabec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.07867v1-abstract-short" style="display: inline;"> High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of molecular structure leads to the complexity of molecular properties, such as solubility, polarit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07867v1-abstract-full').style.display = 'inline'; document.getElementById('2305.07867v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.07867v1-abstract-full" style="display: none;"> High-throughput synthesis of solution-processable structurally variable small-molecule semiconductors is both an opportunity and a challenge. A large number of diverse molecules provide a possibility for quick material discovery and machine learning based on experimental data. However, the diversity of molecular structure leads to the complexity of molecular properties, such as solubility, polarity, and crystallinity, which poses great challenges to solution processing and purification. Here, we first report an integrated system for the high-throughput synthesis, purification, and characterization of molecules with a large variety. Based on the principle of Like dissolves like, we combine theoretical calculations and a robotic platform to accelerate the purification of those molecules. With this platform, a material library containing 125 molecules and their optical-electric properties was built within a timeframe of weeks. More importantly, the high repeatability of recrystallization we design is a reliable approach to further upgrading and industrial production. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.07867v1-abstract-full').style.display = 'none'; document.getElementById('2305.07867v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Am. Chem. Soc. 2023, 145, 30, 1651-16525 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05135">arXiv:2305.05135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05135">pdf</a>, <a href="https://arxiv.org/format/2305.05135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acdc9e">10.3847/2041-8213/acdc9e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for astrophysical electron antineutrinos in Super-Kamiokande with 0.01wt% gadolinium-loaded water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Harada%2C+M">M. Harada</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Bronner%2C+C">C. Bronner</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneshima%2C+R">R. Kaneshima</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shiba%2C+H">H. Shiba</a> , et al. (216 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05135v2-abstract-short" style="display: inline;"> We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05135v2-abstract-full').style.display = 'inline'; document.getElementById('2305.05135v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05135v2-abstract-full" style="display: none;"> We report the first search result for the flux of astrophysical electron antineutrinos for energies O(10) MeV in the gadolinium-loaded Super-Kamiokande (SK) detector. In June 2020, gadolinium was introduced to the ultra-pure water of the SK detector in order to detect neutrons more efficiently. In this new experimental phase, SK-Gd, we can search for electron antineutrinos via inverse beta decay with efficient background rejection and higher signal efficiency thanks to the high efficiency of the neutron tagging technique. In this paper, we report the result for the initial stage of SK-Gd with a $22.5\times552$ $\rm kton\cdot day$ exposure at 0.01% Gd mass concentration. No significant excess over the expected background in the observed events is found for the neutrino energies below 31.3 MeV. Thus, the flux upper limits are placed at the 90% confidence level. The limits and sensitivities are already comparable with the previous SK result with pure-water ($22.5 \times 2970 \rm kton\cdot day$) owing to the enhanced neutron tagging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05135v2-abstract-full').style.display = 'none'; document.getElementById('2305.05135v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.09065">arXiv:2304.09065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.09065">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> High quality and wafer-scale cubic silicon carbide single crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+G">Guobin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Sheng%2C+D">Da Sheng</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+Y">Yunfan Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+H">Hui Li</a>, <a href="/search/physics?searchtype=author&amp;query=Chai%2C+C">Congcong Chai</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenkai Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+W">Wenjun Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+J">Jian-gang Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+X">Xiaolong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.09065v1-abstract-short" style="display: inline;"> Silicon carbide (SiC) is an important semiconductor material for fabricating power electronic devices that exhibit higher switch frequency, lower energy loss and substantial reduction both in size and weight in comparison with its Si-based counterparts1-4. Currently, most devices, such as metal-oxide-semiconductor field effect transistors, which are core devices used in electric vehicles, photovol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09065v1-abstract-full').style.display = 'inline'; document.getElementById('2304.09065v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.09065v1-abstract-full" style="display: none;"> Silicon carbide (SiC) is an important semiconductor material for fabricating power electronic devices that exhibit higher switch frequency, lower energy loss and substantial reduction both in size and weight in comparison with its Si-based counterparts1-4. Currently, most devices, such as metal-oxide-semiconductor field effect transistors, which are core devices used in electric vehicles, photovoltaic industry and other applications, are fabricated on a hexagonal polytype 4H-SiC because of its commercial availability5. Cubic silicon carbide (3C-SiC), the only cubic polytype, has a moderate band gap of 2.36 eV at room-temperature, but a superior mobility and thermal conduction than 4H-SiC4,6-11. Moreover, the much lower concentration of interfacial traps between insulating oxide gate and 3C-SiC helps fabricate reliable and long-life devices7-10,12-14. The growth of 3C-SiC crystals, however, has remained a challenge up to now despite of decades-long efforts by researchers because of its easy transformation into other polytypes during growth15-19, limiting the 3C-SiC based devices. Here, we report that 3C-SiC can be made thermodynamically favored from nucleation to growth on a 4H-SiC substrate by top-seeded solution growth technique(TSSG), beyond what&#39;s expected by classic nucleation theory. This enables the steady growth of quality and large sized 3C-SiC crystals (2~4-inch in diameter and 4.0~10.0 mm in thickness) sustainable. Our findings broaden the mechanism of hetero-seed crystal growth and provide a feasible route to mass production of 3C-SiC crystals,offering new opportunities to develop power electronic devices potentially with better performances than those based on 4H-SiC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.09065v1-abstract-full').style.display = 'none'; document.getElementById('2304.09065v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08175">arXiv:2304.08175</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.08175">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Gate Electrostatic Controllability Enhancement in Nanotube Gate all Around Field Effect Transistor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Qin%2C+L">Laixiang Qin</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+C">Chunlai Li</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Ziang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Wei%2C+Y">Yiqun Wei</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+J">Jin He</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08175v1-abstract-short" style="display: inline;"> Recently, short channel effects (SCE) and power consumption dissipation problems pose big challenges which need imperative actions to be taken to deal with for field effect transistor to further scale down as semiconductor technology enters into sub-10nm technology node. From 3nm technology node and beyond, gate all around field effect transistor steps onto the history stage attributed to its impr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08175v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08175v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08175v1-abstract-full" style="display: none;"> Recently, short channel effects (SCE) and power consumption dissipation problems pose big challenges which need imperative actions to be taken to deal with for field effect transistor to further scale down as semiconductor technology enters into sub-10nm technology node. From 3nm technology node and beyond, gate all around field effect transistor steps onto the history stage attributed to its improved SCE suppressing ability thanks to surrounding gate structure. Herein, we demonstrate the super electrostatic control ability of a double-gated nanotube gate all around field effect transistor (DG NT GAAFET) in comparison with nanotube (NT GAAFET) and nanowire gate all around field effect transistor (NW GAAFET) with the same device parameters designed. Ion boosts of 62% and 57% have been obtained in DG NT GAAFET in comparison with those of NT GAAFET and NW GAAFET. Besides, substantially suppressed SCEs have been obtained in DG NT GAAFET due to enhanced electrostatic control, which are certificated by improved Ioff, SS, and Ion/Ioff ratio obtained. On the other hand, the Ion of NT GAAFET is comparable with that of NW GAA-FET. Whereas, its Ioff is 1 order smaller, and SS is almost 2 times smaller compared with those of NW GAA-FET, manifesting the meliority of nanotube channel structure. In the end, the robustness of nanotube channel structure, especially double gated one, against Lg scaling has been verified with TCAD simulation study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08175v1-abstract-full').style.display = 'none'; document.getElementById('2304.08175v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In order to suppress short channel effect and decrease power consumption of field effect transistor, double-gated nanotube FET has been comprehensively studied by TCAD simulation. Inspiring results have been obtained</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.18067">arXiv:2303.18067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.18067">pdf</a>, <a href="https://arxiv.org/format/2303.18067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Rediscover Climate Change during Global Warming Slowdown via Wasserstein Stability Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhiang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+D">Dongwei Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+P">Puxi Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.18067v2-abstract-short" style="display: inline;"> Climate change is one of the key topics in climate science. However, previous research has predominantly concentrated on changes in mean values, and few research examines changes in Probability Distribution Function (PDF). In this study, a novel method called Wasserstein Stability Analysis (WSA) is developed to identify PDF changes, especially the extreme event shift and non-linear physical value&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18067v2-abstract-full').style.display = 'inline'; document.getElementById('2303.18067v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.18067v2-abstract-full" style="display: none;"> Climate change is one of the key topics in climate science. However, previous research has predominantly concentrated on changes in mean values, and few research examines changes in Probability Distribution Function (PDF). In this study, a novel method called Wasserstein Stability Analysis (WSA) is developed to identify PDF changes, especially the extreme event shift and non-linear physical value constraint variation in climate change. WSA is applied to 21st-century warming slowdown period and is compared with traditional mean-value trend analysis. The result indicates that despite no significant trend, the central-eastern Pacific experienced a decline in hot extremes and an increase in cold extremes, indicating a La Nina-like temperature shift. Further analysis at two Arctic locations suggests sea ice severely restricts the hot extremes of surface air temperature. This impact is diminishing as sea ice melts. Overall, based on detecting PDF changes, WSA is a useful method for re-discovering climate change. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.18067v2-abstract-full').style.display = 'none'; document.getElementById('2303.18067v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 figures, 1 Algorithm, and 3-page supplementary materials</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05172">arXiv:2303.05172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.05172">pdf</a>, <a href="https://arxiv.org/format/2303.05172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168680">10.1016/j.nima.2023.168680 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The JUNO experiment Top Tracker </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=JUNO+Collaboration"> JUNO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05172v1-abstract-short" style="display: inline;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05172v1-abstract-full" style="display: none;"> The main task of the Top Tracker detector of the neutrino reactor experiment Jiangmen Underground Neutrino Observatory (JUNO) is to reconstruct and extrapolate atmospheric muon tracks down to the central detector. This muon tracker will help to evaluate the contribution of the cosmogenic background to the signal. The Top Tracker is located above JUNO&#39;s water Cherenkov Detector and Central Detector, covering about 60% of the surface above them. The JUNO Top Tracker is constituted by the decommissioned OPERA experiment Target Tracker modules. The technology used consists in walls of two planes of plastic scintillator strips, one per transverse direction. Wavelength shifting fibres collect the light signal emitted by the scintillator strips and guide it to both ends where it is read by multianode photomultiplier tubes. Compared to the OPERA Target Tracker, the JUNO Top Tracker uses new electronics able to cope with the high rate produced by the high rock radioactivity compared to the one in Gran Sasso underground laboratory. This paper will present the new electronics and mechanical structure developed for the Top Tracker of JUNO along with its expected performance based on the current detector simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05172v1-abstract-full').style.display = 'none'; document.getElementById('2303.05172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1057 (2023) 168680 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03910">arXiv:2303.03910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03910">pdf</a>, <a href="https://arxiv.org/format/2303.03910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> JUNO sensitivity to $^7$Be, $pep$, and CNO solar neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Abusleme%2C+A">Angel Abusleme</a>, <a href="/search/physics?searchtype=author&amp;query=Adam%2C+T">Thomas Adam</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmad%2C+S">Shakeel Ahmad</a>, <a href="/search/physics?searchtype=author&amp;query=Ahmed%2C+R">Rizwan Ahmed</a>, <a href="/search/physics?searchtype=author&amp;query=Aiello%2C+S">Sebastiano Aiello</a>, <a href="/search/physics?searchtype=author&amp;query=Akram%2C+M">Muhammad Akram</a>, <a href="/search/physics?searchtype=author&amp;query=Aleem%2C+A">Abid Aleem</a>, <a href="/search/physics?searchtype=author&amp;query=Alexandros%2C+T">Tsagkarakis Alexandros</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+F">Fengpeng An</a>, <a href="/search/physics?searchtype=author&amp;query=An%2C+Q">Qi An</a>, <a href="/search/physics?searchtype=author&amp;query=Andronico%2C+G">Giuseppe Andronico</a>, <a href="/search/physics?searchtype=author&amp;query=Anfimov%2C+N">Nikolay Anfimov</a>, <a href="/search/physics?searchtype=author&amp;query=Antonelli%2C+V">Vito Antonelli</a>, <a href="/search/physics?searchtype=author&amp;query=Antoshkina%2C+T">Tatiana Antoshkina</a>, <a href="/search/physics?searchtype=author&amp;query=Asavapibhop%2C+B">Burin Asavapibhop</a>, <a href="/search/physics?searchtype=author&amp;query=de+Andr%C3%A9%2C+J+P+A+M">Jo茫o Pedro Athayde Marcondes de Andr茅</a>, <a href="/search/physics?searchtype=author&amp;query=Auguste%2C+D">Didier Auguste</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+W">Weidong Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Balashov%2C+N">Nikita Balashov</a>, <a href="/search/physics?searchtype=author&amp;query=Baldini%2C+W">Wander Baldini</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">Andrea Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Basilico%2C+D">Davide Basilico</a>, <a href="/search/physics?searchtype=author&amp;query=Baussan%2C+E">Eric Baussan</a>, <a href="/search/physics?searchtype=author&amp;query=Bellato%2C+M">Marco Bellato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">Marco Beretta</a> , et al. (592 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03910v1-abstract-short" style="display: inline;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03910v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03910v1-abstract-full" style="display: none;"> The Jiangmen Underground Neutrino Observatory (JUNO), the first multi-kton liquid scintillator detector, which is under construction in China, will have a unique potential to perform a real-time measurement of solar neutrinos well below the few MeV threshold typical for Water Cherenkov detectors. JUNO&#39;s large target mass and excellent energy resolution are prerequisites for reaching unprecedented levels of precision. In this paper, we provide estimation of the JUNO sensitivity to 7Be, pep, and CNO solar neutrinos that can be obtained via a spectral analysis above the 0.45 MeV threshold. This study is performed assuming different scenarios of the liquid scintillator radiopurity, ranging from the most opti mistic one corresponding to the radiopurity levels obtained by the Borexino experiment, up to the minimum requirements needed to perform the neutrino mass ordering determination with reactor antineutrinos - the main goal of JUNO. Our study shows that in most scenarios, JUNO will be able to improve the current best measurements on 7Be, pep, and CNO solar neutrino fluxes. We also perform a study on the JUNO capability to detect periodical time variations in the solar neutrino flux, such as the day-night modulation induced by neutrino flavor regeneration in Earth, and the modulations induced by temperature changes driven by helioseismic waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03910v1-abstract-full').style.display = 'none'; document.getElementById('2303.03910v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14751">arXiv:2302.14751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14751">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> High speed free-space optical communication using standard fiber communication component without optical amplification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yao Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+H">Hua-Ying Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+X">Xiaoyi Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+P">Peng Xu</a>, <a href="/search/physics?searchtype=author&amp;query=Dong%2C+X">Xiang Dong</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+P">Pengfei Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Tian%2C+X">Xiaohui Tian</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+H">Hua Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Pan%2C+D">Dong Pan</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Zhijun Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Long%2C+G">Guilu Long</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-Ning Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenda Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14751v2-abstract-short" style="display: inline;"> Free-space optical communication (FSO) can achieve fast, secure and license-free communication without need for physical cables, making it a cost-effective, energy-efficient and flexible solution when the fiber connection is unavailable. To establish FSO connection on-demand, it is essential to build portable FSO devices with compact structure and light weight. Here, we develop a miniaturized FSO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14751v2-abstract-full').style.display = 'inline'; document.getElementById('2302.14751v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14751v2-abstract-full" style="display: none;"> Free-space optical communication (FSO) can achieve fast, secure and license-free communication without need for physical cables, making it a cost-effective, energy-efficient and flexible solution when the fiber connection is unavailable. To establish FSO connection on-demand, it is essential to build portable FSO devices with compact structure and light weight. Here, we develop a miniaturized FSO system and realize 9.16 Gbps FSO between two nodes that is 1 km apart, using a commercial single-mode-fiber-coupled optical transceiver module without optical amplification. Using our 4-stage acquisition, pointing and tracking (APT) systems, the tracking error is within 3 渭rad and results an average link loss of 13.7 dB, which is the key for this high-bandwidth FSO demonstration without optical amplification. Our FSO link has been tested up to 4 km, with link loss of 18 dB that is limited by the foggy weather during the test. Longer FSO distances can be expected with better weather condition and optical amplification. With single FSO device weight of only 9.5 kg, this result arouses massive applications of field-deployable high-speed wireless communication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14751v2-abstract-full').style.display = 'none'; document.getElementById('2302.14751v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14633">arXiv:2302.14633</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14633">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Length traceability chain based on chromium atom transition frequency </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Deng%2C+X">Xiao Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Lin%2C+Z">Zichao Lin</a>, <a href="/search/physics?searchtype=author&amp;query=Dai%2C+G">Gaoliang Dai</a>, <a href="/search/physics?searchtype=author&amp;query=Tang%2C+Z">Zhaohui Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhangning Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Xiao%2C+G">Guangxu Xiao</a>, <a href="/search/physics?searchtype=author&amp;query=Yin%2C+Z">Zhijun Yin</a>, <a href="/search/physics?searchtype=author&amp;query=Lei%2C+L">Lihua Lei</a>, <a href="/search/physics?searchtype=author&amp;query=Jin%2C+T">Tao Jin</a>, <a href="/search/physics?searchtype=author&amp;query=Xue%2C+D">Dongbai Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+Z">Zhenjie Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Cheng%2C+X">Xinbin Cheng</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+T">Tongbao Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14633v1-abstract-short" style="display: inline;"> Precise positioning measurement plays an important role in in today advanced manufacturing industry, and length traceability chain has been optimizing and enriching to fulfill the developing and various precise positioning requirement. In this paper, we propose a new length traceability chain based on chromium atom transition frequency, which is a combining utilization of fundamental physical cons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14633v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14633v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14633v1-abstract-full" style="display: none;"> Precise positioning measurement plays an important role in in today advanced manufacturing industry, and length traceability chain has been optimizing and enriching to fulfill the developing and various precise positioning requirement. In this paper, we propose a new length traceability chain based on chromium atom transition frequency, which is a combining utilization of fundamental physical constant accuracy and grating interferometer environmental robustness. The selftraceable grating pitch standard, the selftraceable angle standard and the selftraceable grating interferometer are promising to improve the measurement accuracy, consistency and selfcalibration ability in situ for precise positioning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14633v1-abstract-full').style.display = 'none'; document.getElementById('2302.14633v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.14122">arXiv:2212.14122</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.14122">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Noise-squeezed forward Brillouin lasers in multimode fiber microresonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nie%2C+M">Mingming Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+K">Kunpeng Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenda Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Shu-Wei Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.14122v1-abstract-short" style="display: inline;"> Stimulated Brillouin scattering (SBS) in low-power and compact microresonators has created a new field in cavity nonlinear photonics due to the marriage between acoustic and optical signal processing. Considering the fundamental differences between backward SBS and forward SBS processes, it is challenging to observe the coexistence of both processes in the same microresonator, as well as the photo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14122v1-abstract-full').style.display = 'inline'; document.getElementById('2212.14122v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.14122v1-abstract-full" style="display: none;"> Stimulated Brillouin scattering (SBS) in low-power and compact microresonators has created a new field in cavity nonlinear photonics due to the marriage between acoustic and optical signal processing. Considering the fundamental differences between backward SBS and forward SBS processes, it is challenging to observe the coexistence of both processes in the same microresonator, as well as the photon noise suppression for the forward stimulated Brillouin laser (FSBL). In this paper, we demonstrate the first 20-dB-noise-squeezed FSBL generation excited by the coexisting backward SBL (BSBL) in an ultrahigh-quality-factor Fabry-Perot (FP) microresonator based on multimode fiber (MMF). Multiple FSBLs and BSBLs are cascaded by multiple intermodal SBS processes in the multimode microresonator, where the cascaded process between backward SBS and forward SBS process (pump-BSBL-FSBL) provides a route towards additional noise squeezing, rendering the FSBL phase noise to be -120 dBc/Hz at 1 MHz offset frequency. Furthermore, we demonstrate the first Brillouin-Kerr soliton from a high-order BSBL, which also coexists with FSBLs. Our experimental results show the potential of MMF FP microresonator as an ideal testbed for high-dimensional nonlinear cavity dynamics and laser source with ultrahigh coherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14122v1-abstract-full').style.display = 'none'; document.getElementById('2212.14122v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.14120">arXiv:2212.14120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.14120">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Turnkey photonic flywheel in a Chimera cavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nie%2C+M">Mingming Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+K">Kunpeng Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Bartos%2C+J">Jan Bartos</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenda Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Shu-Wei Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.14120v1-abstract-short" style="display: inline;"> Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-opticalcycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14120v1-abstract-full').style.display = 'inline'; document.getElementById('2212.14120v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.14120v1-abstract-full" style="display: none;"> Dissipative Kerr soliton (DKS) microcomb has emerged as an enabling technology that revolutionizes a wide range of applications in both basic science and technological innovation. Reliable turnkey operation with sub-opticalcycle and sub-femtosecond timing jitter is key to the success of many intriguing microcomb applications at the intersection of ultrafast optics and microwave electronics. Here we propose a novel approach to demonstrate the first turnkey Brillouin-DKS frequency comb. Our approach with a Chimera cavity offers essential benefits that are not attainable previously, including phase insensitivity, self-healing capability, deterministic selection of DKS state, and access to the ultralow noise comb state. The demonstrated turnkey Brillouin-DKS frequency comb achieves a fundamental comb linewidth of 100 mHz and DKS timing jitter of 1 femtosecond for averaging times up to 56 渭s. The approach is universal and generalizable to various device platforms for user-friendly and field-deployable comb devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14120v1-abstract-full').style.display = 'none'; document.getElementById('2212.14120v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07801">arXiv:2212.07801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07801">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> </div> <p class="title is-5 mathjax"> Dynamic mutation enhanced greedy strategy for wavefront shaping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+C">Chuncheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Sui%2C+X">Xiubao Sui</a>, <a href="/search/physics?searchtype=author&amp;query=Yao%2C+Z">Zheyi Yao</a>, <a href="/search/physics?searchtype=author&amp;query=Gu%2C+G">Guohua Gu</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+Q">Qian Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhihua Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+Z">Zhihua Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+G">Guodong Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07801v1-abstract-short" style="display: inline;"> Optical focusing through scattering media has important implications for optical applications in medicine, communications, and detection. In recent years, many wavefront shaping methods have been successfully applied to the field, among which the population optimization algorithm has achieved remarkable results. However, the current population optimization algorithm has some drawbacks: 1. the offs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07801v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07801v1-abstract-full" style="display: none;"> Optical focusing through scattering media has important implications for optical applications in medicine, communications, and detection. In recent years, many wavefront shaping methods have been successfully applied to the field, among which the population optimization algorithm has achieved remarkable results. However, the current population optimization algorithm has some drawbacks: 1. the offspring do not fully inherit the good genes from the parent. 2. more efforts are needed to tune the parameters. In this paper, we propose the mutate greedy algorithm. It combines greedy strategies and real-time feedback of mutation rates to generate offspring. In wavefront shaping, people can realize high enhancement and fast convergence without a parameter-tuning process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07801v1-abstract-full').style.display = 'none'; document.getElementById('2212.07801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07009">arXiv:2212.07009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07009">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Piston sensing for sparse aperture systems via all-optical diffractive neural network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xiafei Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zongliang Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+H">Haotong Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+G">Ge Ren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07009v2-abstract-short" style="display: inline;"> It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper introduces an optical diffractive neural network-based piston sensing method, which can achieve light-speed sensing. By using detectable intensity to represent pistons, the proposed method is capable of converting complex amplitude distribution of the imaging optical field into piston va&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07009v2-abstract-full').style.display = 'inline'; document.getElementById('2212.07009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07009v2-abstract-full" style="display: none;"> It is a crucial issue to realize real-time piston correction in the area of sparse aperture imaging. This paper introduces an optical diffractive neural network-based piston sensing method, which can achieve light-speed sensing. By using detectable intensity to represent pistons, the proposed method is capable of converting complex amplitude distribution of the imaging optical field into piston values directly. Differing from the electrical neural network, the way of intensity representation enables the method to obtain the predicted pistons without imaging acquisition and electrical processing process. The simulations demonstrate the feasibility of the method for point source, and high accuracies are achieved for both monochromatic light and broadband light. This method can greatly improve the real-time performance of piston sensing and contribute to the development of the sparse aperture system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07009v2-abstract-full').style.display = 'none'; document.getElementById('2212.07009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06230">arXiv:2212.06230</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06230">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-35989-0">10.1038/s41467-023-35989-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong Room-Temperature Bulk Nonlinear Hall Effect in a Spin-Valley Locked Dirac Material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Min%2C+L">Lujin Min</a>, <a href="/search/physics?searchtype=author&amp;query=Tan%2C+H">Hengxin Tan</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhijian Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Miao%2C+L">Leixin Miao</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+R">Ruoxi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+S+H">Seng Huat Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Gopalan%2C+V">Venkatraman Gopalan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+C">Chaoxing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Alem%2C+N">Nasim Alem</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+B">Binghai Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Mao%2C+Z">Zhiqiang Mao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06230v1-abstract-short" style="display: inline;"> Nonlinear Hall effect (NLHE) is a new type of Hall effect with wide application prospects. Practical device applications require strong NLHE at room temperature (RT). However, previously reported NLHEs are all low-temperature phenomena except for the surface NLHE of TaIrTe4. Bulk RT NLHE is highly desired due to its ability to generate large photocurrent. Here, we show the spin-valley locked Dirac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06230v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06230v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06230v1-abstract-full" style="display: none;"> Nonlinear Hall effect (NLHE) is a new type of Hall effect with wide application prospects. Practical device applications require strong NLHE at room temperature (RT). However, previously reported NLHEs are all low-temperature phenomena except for the surface NLHE of TaIrTe4. Bulk RT NLHE is highly desired due to its ability to generate large photocurrent. Here, we show the spin-valley locked Dirac state in BaMnSb2 can generate a strong bulk NLHE at RT. In the microscale devices, we observe the typical signature of an intrinsic NLHE, i.e. the transverse Hall voltage quadratically scales with the longitudinal current as the current is applied to the Berry curvature dipole direction. Furthermore, we also demonstrate our nonlinear Hall device&#39;s functionality in wireless microwave detection and frequency doubling. These findings broaden the coupled spin and valley physics from 2D systems into a 3D system and lay a foundation for exploring bulk NLHE&#39;s applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06230v1-abstract-full').style.display = 'none'; document.getElementById('2212.06230v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.14772">arXiv:2211.14772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.14772">pdf</a>, <a href="https://arxiv.org/ps/2211.14772">ps</a>, <a href="https://arxiv.org/format/2211.14772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1674-1056/acae7b">10.1088/1674-1056/acae7b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-temperature ferromagnetism and strong $蟺$-conjugation feature in two-dimensional manganese tetranitride </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+M">Ming Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z+Y">Z. Y. Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+M">Miao Gao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.14772v1-abstract-short" style="display: inline;"> Two-dimensional (2D) magnetic materials have attracted tremendous research interest because of the promising application in the next-generation microelectronic devices. Here, by the first-principles calculations, we propose a two-dimensional ferromagnetic material with high Curie temperature, manganese tetranitride MnN$_4$ monolayer, which is a square-planar lattice made up of only one layer of at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14772v1-abstract-full').style.display = 'inline'; document.getElementById('2211.14772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.14772v1-abstract-full" style="display: none;"> Two-dimensional (2D) magnetic materials have attracted tremendous research interest because of the promising application in the next-generation microelectronic devices. Here, by the first-principles calculations, we propose a two-dimensional ferromagnetic material with high Curie temperature, manganese tetranitride MnN$_4$ monolayer, which is a square-planar lattice made up of only one layer of atoms. The structure is demonstrated to be stable by the phonon spectra and the molecular dynamic simulations, and the stability is ascribed to the $蟺$-d conjugation between $蟺$ orbital of N=N bond and Mn $d$ orbital. More interestingly, the MnN$_4$ monolayer displays robust 2D ferromagnetism, which originates from the strong exchange couplings between Mn atoms due to the $蟺$-d conjugation. The high critical temperature of 247 K is determined by solving the Heisenberg model with the Monte Carlo method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14772v1-abstract-full').style.display = 'none'; document.getElementById('2211.14772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. B 32, 037104 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10031">arXiv:2211.10031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10031">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Automated turnkey microcomb for low-noise microwave synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jia%2C+K">Kunpeng Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Yi%2C+X">Xinwei Yi</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiaohan Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yunfeng Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Shu-Wei Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+X">Xiaoshun Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Liang%2C+W">Wei Liang</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenda Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shi-ning Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10031v2-abstract-short" style="display: inline;"> Microresonator-based optical frequency comb (microcomb) has the potential to revolutionize the accuracy of frequency synthesizer in radar and communication applications. However, fundamental limit exists for low noise microcomb generation, especially in low size, weight, power and cost (SWaP-C) package. Here we resolve this limit, by the demonstration of an automated turnkey microcomb, operating c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10031v2-abstract-full').style.display = 'inline'; document.getElementById('2211.10031v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10031v2-abstract-full" style="display: none;"> Microresonator-based optical frequency comb (microcomb) has the potential to revolutionize the accuracy of frequency synthesizer in radar and communication applications. However, fundamental limit exists for low noise microcomb generation, especially in low size, weight, power and cost (SWaP-C) package. Here we resolve this limit, by the demonstration of an automated turnkey microcomb, operating close to its low quantum-limited phase noise, within a compact setup size of 85 mm * 90 mm * 25 mm. High quality factor fiber Fabry-Perot resonator (FFPR), with Q up to 4.0 * 10^9, is the key for both low quantum noise and pump noise limit, in the diode-pump case in a self-injection locking scheme. Low phase noise of -80 and -105 dBc/Hz at 100 Hz, -106 and -125 dBc/Hz at 1 kHz, -133 and -148 dBc/Hz at 10 kHz is achieved at 10.1 GHz and 1.7 GHz repetition frequencies, respectively. With the simultaneous automated turnkey, low-noise and direct-diode-pump capability, our microcomb is ready to be used as a low-noise frequency synthesizer with low SWaP-C and thus field deployability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10031v2-abstract-full').style.display = 'none'; document.getElementById('2211.10031v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06852">arXiv:2211.06852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.06852">pdf</a>, <a href="https://arxiv.org/format/2211.06852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L041106">10.1103/PhysRevB.107.L041106 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-range spin-orbital order in the spin-orbital SU(2)$\times$SU(2)$\times$U(1) model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+Y">Yang Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z+Y">Z. Y. Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Luo%2C+H">Hong-Gang Luo</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jize Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06852v1-abstract-short" style="display: inline;"> By using the tensor-network state algorithm, we study a spin-orbital model with SU(2)$\times$SU(2)$\times$U(1) symmetry on the triangular lattice. This model was proposed to describe some triangular $d^1$ materials and was argued to host a spin-orbital liquid ground state. In our work the trial wavefunction of its ground state is approximated by an infinite projected entangled simplex state and op&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06852v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06852v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06852v1-abstract-full" style="display: none;"> By using the tensor-network state algorithm, we study a spin-orbital model with SU(2)$\times$SU(2)$\times$U(1) symmetry on the triangular lattice. This model was proposed to describe some triangular $d^1$ materials and was argued to host a spin-orbital liquid ground state. In our work the trial wavefunction of its ground state is approximated by an infinite projected entangled simplex state and optimized by the imaginary-time evolution. Contrary to the previous conjecture, we find that the two SU(2) symmetries are broken, resulting in a stripe spin-orbital order with the same magnitude $m=0.085(10)$. This value is about half of that in the spin-1/2 triangular Heisenberg antiferromagnet. Our result demonstrates that although the long-sought spin-orbital liquid is absent in this model the spin-orbital order is significantly reduced due to the enhanced quantum fluctuation. This suggests that high-symmetry spin-orbital models are promising in searching for exotic states of matter in condensed-matter physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06852v1-abstract-full').style.display = 'none'; document.getElementById('2211.06852v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, L041106 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.03090">arXiv:2211.03090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.03090">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Laboratory observation of ion acceleration via reflection off laser-produced magnetized collisionless shocks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tang%2C+H">Hui-bo Tang</a>, <a href="/search/physics?searchtype=author&amp;query=Yu-fei"> Yu-fei</a>, <a href="/search/physics?searchtype=author&amp;query=Hao"> Hao</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+G">Guang-yue Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Lu%2C+Q">Quan-ming Lu</a>, <a href="/search/physics?searchtype=author&amp;query=Ren%2C+C">Chuang Ren</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Guo%2C+A">Ao Guo</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+P">Peng Hu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yu-lin Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+X">Xiang-bing Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhen-chi Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+P">Peng Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wei Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Si%2C+H">Hua-chong Si</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Chun-kai Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+J">Jia-yi Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+J">Jin-can Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Z">Zhe Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+X">Xiao-hui Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Yuan%2C+D">Da-wei Yuan</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhi-yong Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Xiong%2C+J">Jun Xiong</a>, <a href="/search/physics?searchtype=author&amp;query=Fang%2C+Z">Zhi-heng Fang</a>, <a href="/search/physics?searchtype=author&amp;query=Xu%2C+J">Jian-cai Xu</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.03090v2-abstract-short" style="display: inline;"> Fermi acceleration by collisionless shocks is believed to be the primary mechanism to produce high energy charged particles in the Universe,where charged particles gain energy successively from multiple reflections off the shock front.Here,we present the first direct experimental evidence of ion energization from reflection off a supercritical quasi perpendicular collisionless shock,an essential c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03090v2-abstract-full').style.display = 'inline'; document.getElementById('2211.03090v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.03090v2-abstract-full" style="display: none;"> Fermi acceleration by collisionless shocks is believed to be the primary mechanism to produce high energy charged particles in the Universe,where charged particles gain energy successively from multiple reflections off the shock front.Here,we present the first direct experimental evidence of ion energization from reflection off a supercritical quasi perpendicular collisionless shock,an essential component of Fermi acceleration in a laser produced magnetized plasma. We observed a quasi monoenergetic ion beam with 2,4 times the shock velocity in the upstream flow using time of flight method. Our related kinetic simulations reproduced the energy gain and showed that these ions were first reflected and then accelerated mainly by the motional electric field associated with the shock. This mechanism can also explain the quasi monoenergetic fast ion component observed in the Earth&#39;s bow shock. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03090v2-abstract-full').style.display = 'none'; document.getElementById('2211.03090v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12948">arXiv:2210.12948</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12948">pdf</a>, <a href="https://arxiv.org/format/2210.12948">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Searching for neutrinos from solar flares across solar cycles 23 and 24 with the Super-Kamiokande detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Okamoto%2C+K">K. Okamoto</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Hayato%2C+Y">Y. Hayato</a>, <a href="/search/physics?searchtype=author&amp;query=Hiraide%2C+K">K. Hiraide</a>, <a href="/search/physics?searchtype=author&amp;query=Hosokawa%2C+K">K. Hosokawa</a>, <a href="/search/physics?searchtype=author&amp;query=Ieki%2C+K">K. Ieki</a>, <a href="/search/physics?searchtype=author&amp;query=Ikeda%2C+M">M. Ikeda</a>, <a href="/search/physics?searchtype=author&amp;query=Kameda%2C+J">J. Kameda</a>, <a href="/search/physics?searchtype=author&amp;query=Kanemura%2C+Y">Y. Kanemura</a>, <a href="/search/physics?searchtype=author&amp;query=Kaneshima%2C+Y">Y. Kaneshima</a>, <a href="/search/physics?searchtype=author&amp;query=Kataoka%2C+Y">Y. Kataoka</a>, <a href="/search/physics?searchtype=author&amp;query=Kashiwagi%2C+Y">Y. Kashiwagi</a>, <a href="/search/physics?searchtype=author&amp;query=Miki%2C+S">S. Miki</a>, <a href="/search/physics?searchtype=author&amp;query=Mine%2C+S">S. Mine</a>, <a href="/search/physics?searchtype=author&amp;query=Miura%2C+M">M. Miura</a>, <a href="/search/physics?searchtype=author&amp;query=Moriyama%2C+S">S. Moriyama</a>, <a href="/search/physics?searchtype=author&amp;query=Nagao%2C+Y">Y. Nagao</a>, <a href="/search/physics?searchtype=author&amp;query=Nakahata%2C+M">M. Nakahata</a>, <a href="/search/physics?searchtype=author&amp;query=Nakano%2C+Y">Y. Nakano</a>, <a href="/search/physics?searchtype=author&amp;query=Nakayama%2C+S">S. Nakayama</a>, <a href="/search/physics?searchtype=author&amp;query=Noguchi%2C+Y">Y. Noguchi</a>, <a href="/search/physics?searchtype=author&amp;query=Sato%2C+K">K. Sato</a>, <a href="/search/physics?searchtype=author&amp;query=Sekiya%2C+H">H. Sekiya</a>, <a href="/search/physics?searchtype=author&amp;query=Shimizu%2C+K">K. Shimizu</a>, <a href="/search/physics?searchtype=author&amp;query=Shiozawa%2C+M">M. Shiozawa</a> , et al. (220 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12948v2-abstract-short" style="display: inline;"> Neutrinos associated with solar flares (solar-flare neutrinos) provide information on particle acceleration mechanisms during the impulsive phase of solar flares. We searched using the Super-Kamiokande detector for neutrinos from solar flares that occurred during solar cycles $23$ and $24$, including the largest solar flare (X28.0) on November 4th, 2003. In order to minimize the background rate we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12948v2-abstract-full').style.display = 'inline'; document.getElementById('2210.12948v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12948v2-abstract-full" style="display: none;"> Neutrinos associated with solar flares (solar-flare neutrinos) provide information on particle acceleration mechanisms during the impulsive phase of solar flares. We searched using the Super-Kamiokande detector for neutrinos from solar flares that occurred during solar cycles $23$ and $24$, including the largest solar flare (X28.0) on November 4th, 2003. In order to minimize the background rate we searched for neutrino interactions within narrow time windows coincident with $纬$-rays and soft X-rays recorded by satellites. In addition, we performed the first attempt to search for solar-flare neutrinos from solar flares on the invisible side of the Sun by using the emission time of coronal mass ejections (CMEs). By selecting twenty powerful solar flares above X5.0 on the visible side and eight CMEs whose emission speed exceeds $2000$ $\mathrm{km \, s^{-1}}$ on the invisible side from 1996 to 2018, we found two (six) neutrino events coincident with solar flares occurring on the visible (invisible) side of the Sun, with a typical background rate of $0.10$ ($0.62$) events per flare in the MeV-GeV energy range. No significant solar-flare neutrino signal above the estimated background rate was observed. As a result we set the following upper limit on neutrino fluence at the Earth $\mathit桅&lt;1.1\times10^{6}$ $\mathrm{cm^{-2}}$ at the $90\%$ confidence level for the largest solar flare. The resulting fluence limits allow us to constrain some of the theoretical models for solar-flare neutrino emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12948v2-abstract-full').style.display = 'none'; document.getElementById('2210.12948v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 18 figures, 9 tables (Figure 12 was replaced because it was incorrect in version 1.)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.08541">arXiv:2208.08541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.08541">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nie%2C+M">Mingming Nie</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+B">Bowen Li</a>, <a href="/search/physics?searchtype=author&amp;query=Jia%2C+K">Kunpeng Jia</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Y">Yijun Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Yan%2C+J">Jingjie Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Zhu%2C+S">Shining Zhu</a>, <a href="/search/physics?searchtype=author&amp;query=Xie%2C+Z">Zhenda Xie</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+S">Shu-Wei Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.08541v1-abstract-short" style="display: inline;"> Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08541v1-abstract-full').style.display = 'inline'; document.getElementById('2208.08541v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.08541v1-abstract-full" style="display: none;"> Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we comprehensively study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We first bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally infeasible for externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton&#39;s cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.08541v1-abstract-full').style.display = 'none'; document.getElementById('2208.08541v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Xie%2C+Z&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Xie%2C+Z&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Xie%2C+Z&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Xie%2C+Z&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10