CINXE.COM
Search results for: Ajay Kumar Choubey
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Ajay Kumar Choubey</title> <meta name="description" content="Search results for: Ajay Kumar Choubey"> <meta name="keywords" content="Ajay Kumar Choubey"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Ajay Kumar Choubey" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Ajay Kumar Choubey"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1752</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Ajay Kumar Choubey</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1752</span> Optimization of Pressure in Deep Drawing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey">Ajay Kumar Choubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Geeta%20Agnihotri"> Geeta Agnihotri</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sasikumar"> C. Sasikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rashmi%20Dwivedi"> Rashmi Dwivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title="ANSYS">ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20drawing" title=" deep drawing"> deep drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=BHP" title=" BHP"> BHP</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20simulation" title=" finite element simulation"> finite element simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wrinkling" title=" wrinkling"> wrinkling</a> </p> <a href="https://publications.waset.org/abstracts/24550/optimization-of-pressure-in-deep-drawing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1751</span> Android Graphics System: Study of Dual-Software VSync Synchronization Architecture and Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prafulla%20Kumar%20Choubey">Prafulla Kumar Choubey</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Kishor%20Jha"> Krishna Kishor Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20B.%20Vaisakh%20Punnekkattu%20Chirayil"> S. B. Vaisakh Punnekkattu Chirayil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Graphics-display subsystem, frame buffers are shared between producer i.e. content rendering and consumer i.e. display. If a common buffer is operated by both producer and consumer simultaneously, their processing rates mismatch can cause tearing effect in displayed content. Therefore, Android OS employs triple buffered system, taking in to account an additional composition stage. Three stages-rendering, composition and display refresh, operate synchronously on three different buffers, which is achieved by using vsync pulses. This synchronization, however, brings in to the pipeline an additional latency of up to 26ms. The present study details about the existing synchronization mechanism of android graphics-display pipeline and discusses a new adaptive architecture which reduces the wait time to 5ms-16ms in all the use-cases. The proposed method uses two adaptive software vsyncs (PLL) for achieving the same result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Android%20graphics%20system" title="Android graphics system">Android graphics system</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20synchronization" title=" vertical synchronization"> vertical synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=atrace" title=" atrace"> atrace</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20system" title=" adaptive system"> adaptive system</a> </p> <a href="https://publications.waset.org/abstracts/38338/android-graphics-system-study-of-dual-software-vsync-synchronization-architecture-and-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1750</span> Efficient Prediction of Surface Roughness Using Box Behnken Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Sarathe">Ajay Kumar Sarathe</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinay%20Kumar"> Abhinay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of quality products required for specific engineering applications is an important issue. The roughness of the surface plays an important role in the quality of the product by using appropriate machining parameters to eliminate wastage due to over machining. To increase the quality of the surface, the optimum machining parameter setting is crucial during the machining operation. The effect of key machining parameters- spindle speed, feed rate, and depth of cut on surface roughness has been evaluated. Experimental work was carried out using High Speed Steel tool and AlSI 1018 as workpiece material. In this study, the predictive model has been developed using Box-Behnken Design. An experimental investigation has been carried out for this work using BBD for three factors and observed that the predictive model of Ra value is closed to predictive value with a marginal error of 2.8648 %. Developed model establishes a correlation between selected key machining parameters that influence the surface roughness in a AISI 1018. F <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title="ANOVA">ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=BBD" title=" BBD"> BBD</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/90006/efficient-prediction-of-surface-roughness-using-box-behnken-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1749</span> Performance of Non-toxic, Corrosion Resistant, and Lubricious Metalworking Fluids under Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Pratap%20Singh%20Lodhi">Ajay Pratap Singh Lodhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Kumar"> Deepak Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetable oil-based environmentally friendly metalworking fluids (MWFs) are formulated. The tribological performance, cytotoxicity, and corrosion resistance of the formulated fluids (FFs) are evaluated and benchmarked with commercial mineral oil-based MWFs (CF). Results show that FFs exhibited better machining characteristics (roughness, cutting forces, and surface morphology) during machining than CF. MTT assay and Live dead cell assay confirm the cytocompatibility nature of the FFs relative to the toxic CF. Electrochemical analysis shows that FFs and CF exhibited comparable corrosion current density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitors" title="corrosion inhibitors">corrosion inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=machining" title=" machining"> machining</a>, <a href="https://publications.waset.org/abstracts/search?q=MTT%20assay" title=" MTT assay"> MTT assay</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oil" title=" vegetable oil"> vegetable oil</a> </p> <a href="https://publications.waset.org/abstracts/144907/performance-of-non-toxic-corrosion-resistant-and-lubricious-metalworking-fluids-under-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1748</span> Genetic Analysis of Iron, Phosphorus, Potassium and Zinc Concentration in Peanut</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20B.%20C.">Ajay B. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Meena%20H.%20N."> Meena H. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dagla%20M.%20C."> Dagla M. C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Kumar"> Narendra Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Makwana%20%20A.%20D."> Makwana A. D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bera%20S.%20K."> Bera S. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalariya%20K.%20A."> Kalariya K. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Singh%20A.%20L."> Singh A. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-energy value, protein content and minerals makes peanut a rich source of nutrition at comparatively low cost. Basic information on genetics and inheritance of these mineral elements is very scarce. Hence, in the present study inheritance (using additive-dominance model) and association of mineral elements was studied in two peanut crosses. Dominance variance (H) played an important role in the inheritance of P, K, Fe and Zn in peanut pods. Average degree of dominance for most of the traits was greater than unity indicating over dominance for these traits. Significant associations were also observed among mineral elements both in F2 and F3 generations but pod yield had no associations with mineral elements (with few exceptions). Di-allele/bi-parental mating could be followed to identify high yielding and mineral dense segregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=dominance%20variance" title=" dominance variance"> dominance variance</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20elements" title=" mineral elements"> mineral elements</a>, <a href="https://publications.waset.org/abstracts/search?q=peanut" title=" peanut"> peanut</a> </p> <a href="https://publications.waset.org/abstracts/14731/genetic-analysis-of-iron-phosphorus-potassium-and-zinc-concentration-in-peanut" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1747</span> Environmental Aspects in the Job Performed by Supervisors Working in Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahesh%20Chandra%20Paliwal">Mahesh Chandra Paliwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Jain"> Ajay Kumar Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supervisors working in the industries must have the knowledge and skills for performing their job for environmental protection and sustainable development. A survey of thirty industries was conducted to know the roles of supervisors related to environmental protection and sustainable development. A questionnaire was prepared based on the discussion with the environmental experts. The findings of the study show that supervisors must be aware of practices followed for good housekeeping, water management, waste management, maintenance of effluent treatment plants, monitoring pollution control level to perform their job to save the environment. These aspects must be incorporated in diploma curriculum so that the diploma pass outs may use this knowledge and skills in the industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title="environmental protection">environmental protection</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum" title=" curriculum"> curriculum</a> </p> <a href="https://publications.waset.org/abstracts/71784/environmental-aspects-in-the-job-performed-by-supervisors-working-in-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1746</span> Isotherm Study for Phenol Removal onto GAC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lallan%20Singh%20Yadav">Lallan Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijay%20Kumar%20Mishra"> Bijay Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Mahapatra"> Manoj Kumar Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption data for phenol removal onto granular activated carbon were fitted to Langmuir and Freundlich isotherms. The adsorption capacity of phenol was estimated to be 16.12 mg/g at initial pH=5.7. The thermodynamics of adsorption process has also been determined in the present work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20activated%20carbon" title=" granular activated carbon"> granular activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/8892/isotherm-study-for-phenol-removal-onto-gac" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1745</span> Extraction of Cellulose Nanofibrils from Pulp Using Enzymatic Pretreatment and Evaluation of Their Papermaking Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Singh">Ajay Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Singh"> S. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulose nanofibrils (CNF) have shown potential of their extensive use in various fields, including papermaking, due to their unique characteristics. In this study, CNF’s were prepared by fibrillating the pulp obtained from raw materials e.g. bagasse, hardwood and softwood using enzymatic pretreatment followed by mechanical refining. These nanofibrils, when examined under FE-SEM, show that partial fibrillation on fiber surface has resulted in production of nanofibers. Mixing these nanofibers with the unrefined and normally refined fibers show their reinforcing effect. This effect is manifested in observing the improvement in the physical and mechanical properties e.g. tensile index and burst index of paper. Tear index, however, was observed to decrease on blending with nanofibers. The optical properties of paper sheets made from blended fibers showed no significant change in comparison to those made from only mechanically refined pulp. Mixing of normal pulp fibers with nanofibers show increase in ºSR and consequent decrease in drainage rate. These changes observed in mechanical, optical and other physical properties of the paper sheets made from nanofibrils blended pulp have been tried to explain considering the distribution of the nanofibrils alongside microfibrils in the fibrous network. Since usually, paper/boards with higher strength are observed to have diminished optical properties which is a drawback in their quality, the present work has the potential for developing paper/boards having improved strength alongwith undiminished optical properties utilising the concepts of nanoscience and nanotechnology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20pretreatment" title="enzymatic pretreatment">enzymatic pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20refining" title=" mechanical refining"> mechanical refining</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrils" title=" nanofibrils"> nanofibrils</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20properties" title=" paper properties"> paper properties</a> </p> <a href="https://publications.waset.org/abstracts/38650/extraction-of-cellulose-nanofibrils-from-pulp-using-enzymatic-pretreatment-and-evaluation-of-their-papermaking-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1744</span> Solving Crimes through DNA Methylation Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Rana">Ajay Kumar Rana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting human behaviour, discerning monozygotic twins or left over remnant tissues/fluids of a single human source remains a big challenge in forensic science. Recent advances in the field of DNA methylations which are broadly chemical hallmarks in response to environmental factors can certainly help to identify and discriminate various single-source DNA samples collected from the crime scenes. In this review, cytosine methylation of DNA has been methodologically discussed with its broad applications in many challenging forensic issues like body fluid identification, race/ethnicity identification, monozygotic twins dilemma, addiction or behavioural prediction, age prediction, or even authenticity of the human DNA. With the advent of next-generation sequencing techniques, blooming of DNA methylation datasets and together with standard molecular protocols, the prospect of investigating and solving the above issues and extracting the exact nature of the truth for reconstructing the crime scene events would be undoubtedly helpful in defending and solving the critical crime cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20methylation" title="DNA methylation">DNA methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=differentially%20methylated%20regions" title=" differentially methylated regions"> differentially methylated regions</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20identification" title=" human identification"> human identification</a>, <a href="https://publications.waset.org/abstracts/search?q=forensics" title=" forensics"> forensics</a> </p> <a href="https://publications.waset.org/abstracts/52307/solving-crimes-through-dna-methylation-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1743</span> Assessment of Highly Sensitive Dielectric Modulated GaN-FinFET for Label-Free Biosensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar">Ajay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Gupta"> Neha Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the sensitivity assessment of Gallium Nitride (GaN) material-based FinFET by dielectric modulation in the nanocavity gap for label-free biosensing applications. The significant deflection is observed in the electrical characteristics such as drain current (ID), transconductance (gm), surface potential, energy band profile, electric field, sub-threshold slope (SS), and threshold voltage (Vth) in the presence of biomolecules owing to GaN material. Further, the device sensitivity is evaluated to identify the effectiveness of the proposed biosensor and its capability to detect the biomolecules with high precision or accuracy. Higher sensitivity is observed for Gelatin (k=12) in terms of on-current (SION), threshold voltage (SVth), and switching ratio (SSR) by 104.88%, 82.12%, and 119.73%, respectively. This work is performed using a powerful tool 3D Sentaurus TCAD using a well-calibrated structure. All the results pave the way for GaN-FinFET as a viable candidate for label-free dielectric modulated biosensor applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=biomolecules" title=" biomolecules"> biomolecules</a>, <a href="https://publications.waset.org/abstracts/search?q=FinFET" title=" FinFET"> FinFET</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/153336/assessment-of-highly-sensitive-dielectric-modulated-gan-finfet-for-label-free-biosensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1742</span> Simulation Study of the Microwave Heating of the Hematite and Coal Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasenjit%20Singha">Prasenjit Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Yadav"> Sunil Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumya%20Ranjan%20Mohantry"> Soumya Ranjan Mohantry</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Shukla"> Ajay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature distribution in the hematite ore mixed with 7.5% coal was predicted by solving a 1-D heat conduction equation using an implicit finite difference approach. In this work, it was considered a square slab of 20 cm x 20 cm, which assumed the coal to be uniformly mixed with hematite ore. It was solved the equations with the use of MATLAB 2018a software. Heat transfer effects in this 1D dimensional slab convective and the radiative boundary conditions are also considered. Temperature distribution obtained inside hematite slab by considering microwave heating time, thermal conductivity, heat capacity, carbon percentage, sample dimensions, and many other factors such as penetration depth, permittivity, and permeability of coal and hematite ore mixtures. The resulting temperature profile can be used as a guiding tool for optimizing the microwave-assisted carbothermal reduction process of hematite slab was extended to other dimensions as well, viz., 1 cm x 1 cm, 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm. The model predictions are in good agreement with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hematite%20ore" title="hematite ore">hematite ore</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20processing" title=" microwave processing"> microwave processing</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit%20method" title=" implicit method"> implicit method</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a> </p> <a href="https://publications.waset.org/abstracts/148879/simulation-study-of-the-microwave-heating-of-the-hematite-and-coal-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1741</span> Simulation of Photocatalytic Degradation of Rhodamine B in Annular Photocatalytic Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatinder%20Kumar">Jatinder Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Bansal"> Ajay Bansal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Simulation of a photocatalytic reactor helps in understanding the complex behavior of the photocatalytic degradation. Simulation also aids the designing and optimization of the photocatalytic reactor. Lack of simulation strategies is a huge hindrance in the commercialization of the photocatalytic technology. With the increased performance of computational resources, and development of simulation software, computational fluid dynamics (CFD) is becoming an affordable engineering tool to simulate and optimize reactor designs. In the present paper, a CFD (Computational fluid dynamics) model for simulating the performance of an immobilized-titanium dioxide based annular photocatalytic reactor was developed. The computational model integrates hydrodynamics, species mass transport, and chemical reaction kinetics using a commercial CFD code Fluent 6.3.26. The CFD model was based on the intrinsic kinetic parameters determined experimentally in a perfectly mixed batch reactor. Rhodamine B, a complex organic compound, was selected as a test pollutant for photocatalytic degradation. It was observed that CFD could become a valuable tool to understand and improve the photocatalytic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation" title="simulation">simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20photocatalytic%20reactor" title=" annular photocatalytic reactor"> annular photocatalytic reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20dioxide" title=" titanium dioxide"> titanium dioxide</a> </p> <a href="https://publications.waset.org/abstracts/27827/simulation-of-photocatalytic-degradation-of-rhodamine-b-in-annular-photocatalytic-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1740</span> Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasenjit%20Singha">Prasenjit Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Shukla"> Ajay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desulphurization" title="desulphurization">desulphurization</a>, <a href="https://publications.waset.org/abstracts/search?q=degassing" title=" degassing"> degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=factsage" title=" factsage"> factsage</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor" title=" reactor"> reactor</a> </p> <a href="https://publications.waset.org/abstracts/137291/development-of-a-thermodynamic-model-for-ladle-metallurgy-steel-making-processes-using-factsage-and-its-macro-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1739</span> Characterization of Vegetable Wastes and Its Potential Use for Hydrogen and Methane Production via Dark Anaerobic Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Dwivedi">Ajay Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Suresh%20Kumar"> M. Suresh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Vaidya"> A. N. Vaidya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of fruit and vegetable waste management is a grave one and with ever increasing need to feed the exponentially growing population, more and more solid waste in the form of fruit and vegetables waste are generated and its management has become one of the key issues in protection of environment. Energy generation from fruit and vegetables waste by dark anaerobic fermentation is a recent an interesting avenue effective management of solid waste as well as for generating free and cheap energy. In the present study 17 vegetables were characterized for their physical as well as chemical properties, these characteristics were used to determine the hydrogen and methane potentials of vegetable from various models, and also lab scale batch experiments were performed to determine their actual hydrogen and methane production capacity. Lab scale batch experiments proved that vegetable waste can be used as effective substrate for bio hydrogen and methane production, however the expected yield of bio hydrogen and methane was much lower than predicted by models, this was due to the fact that other vital experimental parameters such as pH, total solids content, food to microorganism ratio was not optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vegetable%20waste" title="vegetable waste">vegetable waste</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20characteristics" title=" physico-chemical characteristics"> physico-chemical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a> </p> <a href="https://publications.waset.org/abstracts/37858/characterization-of-vegetable-wastes-and-its-potential-use-for-hydrogen-and-methane-production-via-dark-anaerobic-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1738</span> Robust Fractional Order Controllers for Minimum and Non-Minimum Phase Systems – Studies on Design and Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anand%20Kishore%20Kola">Anand Kishore Kola</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Uday%20Bhaskar%20Babu"> G. Uday Bhaskar Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kotturi%20Ajay%20Kumar"> Kotturi Ajay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modern dynamic systems used in industries are complex in nature and hence the fractional order controllers have been contemplated as a fresh approach to control system design that takes the complexity into account. Traditional integer order controllers use integer derivatives and integrals to control systems, whereas fractional order controllers use fractional derivatives and integrals to regulate memory and non-local behavior. This study provides a method based on the maximumsensitivity (Ms) methodology to discover all resilient fractional filter Internal Model Control - proportional integral derivative (IMC-PID) controllers that stabilize the closed-loop system and deliver the highest performance for a time delay system with a Smith predictor configuration. Additionally, it helps to enhance the range of PID controllers that are used to stabilize the system. This study also evaluates the effectiveness of the suggested controller approach for minimum phase system in comparison to those currently in use which are based on Integral of Absolute Error (IAE) and Total Variation (TV). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modern%20dynamic%20systems" title="modern dynamic systems">modern dynamic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20controllers" title=" fractional order controllers"> fractional order controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum-sensitivity" title=" maximum-sensitivity"> maximum-sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=IMC-PID%20controllers" title=" IMC-PID controllers"> IMC-PID controllers</a>, <a href="https://publications.waset.org/abstracts/search?q=Smith%20predictor" title=" Smith predictor"> Smith predictor</a>, <a href="https://publications.waset.org/abstracts/search?q=IAE%20and%20TV" title=" IAE and TV"> IAE and TV</a> </p> <a href="https://publications.waset.org/abstracts/181141/robust-fractional-order-controllers-for-minimum-and-non-minimum-phase-systems-studies-on-design-and-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1737</span> An Analysis of Fertility Decline in India: Evidences from Tamil Nadu and Uttar Pradesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar">Ajay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using data from census of India, sample registration system and national family health survey (NFHS-3), this paper traces spatial pattern, trends and the factors which have played their role differently in fertility transition in Uttar Pradesh and Tamil Nadu. For the purpose spatial variation analysis, trend line and binary logistic regression analysis has been carried out. There exist considerable regional disparities in terms of fertility decline in northern and southern states. The pace of fertility decline has been faster in southern and coastal regions, and at a slow pace in backward northern state. In Tamil Nadu fertility declined substantially among the women of lower and higher age groups in comparison to Uttar Pradesh characterized by low literacy, low female age at marriage, poor health infrastructure and low status of women. The Study shows that Fertility rates have been higher among the most vulnerable and deprived sections of the society like Illiterate women, women belong to scheduled caste, scheduled tribe and women residing in rural areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20specific%20fertility%20rate" title="age specific fertility rate">age specific fertility rate</a>, <a href="https://publications.waset.org/abstracts/search?q=fertility%20transition" title=" fertility transition"> fertility transition</a>, <a href="https://publications.waset.org/abstracts/search?q=replacement%20level" title=" replacement level"> replacement level</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20fertility%20rate" title=" total fertility rate"> total fertility rate</a> </p> <a href="https://publications.waset.org/abstracts/25186/an-analysis-of-fertility-decline-in-india-evidences-from-tamil-nadu-and-uttar-pradesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1736</span> IoT and Advanced Analytics Integration in Biogas Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Choudhary">Rakesh Choudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar"> Ajay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Sharma"> Deepak Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title="internet of things">internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20monitoring" title=" real-time monitoring"> real-time monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/189359/iot-and-advanced-analytics-integration-in-biogas-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1735</span> Characteristic Study of Polymer Sand as a Potential Substitute for Natural River Sand in Construction Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Khupsare">Abhishek Khupsare</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Parmar"> Ajay Parmar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Agarwal"> Ajay Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Swapnil%20Wanjari"> Swapnil Wanjari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extreme demand for aggregate leads to the exploitation of river-bed for fine aggregates, affecting the environment adversely. Therefore, a suitable alternative to natural river sand is essentially required. This study focuses on preventing environmental impact by developing polymer sand to replace natural river sand (NRS). Development of polymer sand by mixing high volume fly ash, bottom ash, cement, natural river sand, and locally purchased high solid content polycarboxylate ether-based superplasticizer (HS-PCE). All the physical and chemical properties of polymer sand (P-Sand) were observed and satisfied the requirement of the Indian Standard code. P-Sand yields good specific gravity of 2.31 and is classified as zone-I sand with a satisfactory friction angle (37˚) compared to natural river sand (NRS) and Geopolymer fly ash sand (GFS). Though the water absorption (6.83%) and pH (12.18) are slightly more than those of GFS and NRS, the alkali silica reaction and soundness are well within the permissible limit as per Indian Standards. The chemical analysis by X-Ray fluorescence showed the presence of high amounts of SiO2 and Al2O3 with magnitudes of 58.879% 325 and 26.77%, respectively. Finally, the compressive strength of M-25 grade concrete using P-sand and Geopolymer sand (GFS) was observed to be 87.51% and 83.82% with respect to natural river sand (NRS) after 28 days, respectively. The results of this study indicate that P-sand can be a good alternative to NRS for construction work as it not only reduces the environmental effect due to sand mining but also focuses on utilising fly ash and bottom ash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20sand" title="polymer sand">polymer sand</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=bottom%20ash" title=" bottom ash"> bottom ash</a>, <a href="https://publications.waset.org/abstracts/search?q=HSPCE%20plasticizer" title=" HSPCE plasticizer"> HSPCE plasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20sand%20mining" title=" river sand mining"> river sand mining</a> </p> <a href="https://publications.waset.org/abstracts/172622/characteristic-study-of-polymer-sand-as-a-potential-substitute-for-natural-river-sand-in-construction-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1734</span> Fractional Order Differentiator Using Chebyshev Polynomials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushlendra%20Kumar%20Singh">Koushlendra Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Kumar%20Bajpai"> Manish Kumar Bajpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Pandey"> Rajesh Kumar Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A discrete time fractional orderdifferentiator has been modeled for estimating the fractional order derivatives of contaminated signal. The proposed approach is based on Chebyshev’s polynomials. We use the Riemann-Liouville fractional order derivative definition for designing the fractional order SG differentiator. In first step we calculate the window weight corresponding to the required fractional order. Then signal is convoluted with this calculated window’s weight for finding the fractional order derivatives of signals. Several signals are considered for evaluating the accuracy of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20order%20derivative" title="fractional order derivative">fractional order derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=chebyshev%0D%0Apolynomials" title=" chebyshev polynomials"> chebyshev polynomials</a>, <a href="https://publications.waset.org/abstracts/search?q=signals" title=" signals"> signals</a>, <a href="https://publications.waset.org/abstracts/search?q=S-G%20differentiator" title=" S-G differentiator"> S-G differentiator</a> </p> <a href="https://publications.waset.org/abstracts/21346/fractional-order-differentiator-using-chebyshev-polynomials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">648</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1733</span> Supplemental VisCo-friction Damping for Dynamical Structural Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharad%20Singh">Sharad Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Sinha"> Ajay Kumar Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hysteretic%20damping" title="hysteretic damping">hysteretic damping</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20model" title=" Kelvin model"> Kelvin model</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20model" title=" Maxwell model"> Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20coupling" title=" parallel coupling"> parallel coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=series%20coupling" title=" series coupling"> series coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20damping" title=" viscous damping"> viscous damping</a> </p> <a href="https://publications.waset.org/abstracts/142635/supplemental-visco-friction-damping-for-dynamical-structural-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1732</span> ED Machining of Particulate Reinforced Metal Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarabjeet%20Singh%20Sidhu">Sarabjeet Singh Sidhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Batish"> Ajay Batish</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar"> Sanjeev Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the optimal process conditions for machining of three different types of metal matrix composites (MMCs): 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. Metal removal rate (MRR), tool wear rate (TWR), surface roughness (SR) and surface integrity (SI) were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using the technique for order preference by similarity to ideal solution (TOPSIS) and optimal process conditions were identified for each type of MMCS. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composites%20%28MMCS%29" title="metal matrix composites (MMCS)">metal matrix composites (MMCS)</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20removal%20rate%20%28MRR%29" title=" metal removal rate (MRR)"> metal removal rate (MRR)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness%20%28SR%29" title=" surface roughness (SR)"> surface roughness (SR)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20integrity%20%28SI%29" title=" surface integrity (SI)"> surface integrity (SI)</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear%20rate%20%28TWR%29" title=" tool wear rate (TWR)"> tool wear rate (TWR)</a>, <a href="https://publications.waset.org/abstracts/search?q=technique%20for%20order%20preference%20by%20similarity%20to%20ideal%20solution%20%28TOPSIS%29" title=" technique for order preference by similarity to ideal solution (TOPSIS)"> technique for order preference by similarity to ideal solution (TOPSIS)</a> </p> <a href="https://publications.waset.org/abstracts/2329/ed-machining-of-particulate-reinforced-metal-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1731</span> Performance Comparison of Reactive, Proactive and Hybrid Routing Protocols in Wireless Ad Hoc Networks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Manoj">Kumar Manoj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Kumar"> Ramesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumari%20Arti"> Kumari Arti</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Prashant"> Kumar Prashant </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Routing protocols have a central role in any mobile ad hoc network (MANET). There are many routing protocols that exhibit different performance levels in different scenarios. In this paper we compare AODV, DSDV, DSR and ZRP routing protocol in mobile ad hoc networks to determine the best operational conditions for each protocol. We analyses these routing protocols by extensive simulations in OPNET simulator and show that how pause time and the number of nodes affect their performance. In this study, performance is measured in terms of control traffic received, control traffic sent, data traffic received, data traffic sent, throughput, retransmission attempts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MANET" title="MANET">MANET</a>, <a href="https://publications.waset.org/abstracts/search?q=AODV" title=" AODV"> AODV</a>, <a href="https://publications.waset.org/abstracts/search?q=DSDV" title=" DSDV"> DSDV</a>, <a href="https://publications.waset.org/abstracts/search?q=DSR" title=" DSR"> DSR</a>, <a href="https://publications.waset.org/abstracts/search?q=ZRP" title=" ZRP"> ZRP</a> </p> <a href="https://publications.waset.org/abstracts/16614/performance-comparison-of-reactive-proactive-and-hybrid-routing-protocols-in-wireless-ad-hoc-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">678</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1730</span> In silico Designing and Insight into Antimalarial Potential of Chalcone-Quinolinylpyrazole Hybrids by Preclinical Study in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepika%20Saini">Deepika Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Jain"> Sandeep Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20%20Kumar"> Ajay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quinoline scaffold is one of the most widely studied in the discovery of derivatives with various heterocyclic moieties due to its potential antimalarial activities. In the present study, a chalcone series of quinoline derivatives clubbed with pyrazole were synthesized to evaluate their antimalarial property by in vitro schizont maturation inhibition assay against both chloroquine sensitive, 3D7 and chloroquine resistant, RKL9 strain of Plasmodium falciparum. Further, top five compounds were studied for in vivo preclinical study for antimalarial potential against P. berghei in Swiss albino mice. To understand the mechanism of synthesized analogues, they were screened computationally by molecular docking techniques. Compounds were docked into the active site of a protein receptor, Plasmodium falciparum Cysteine Protease Falcipain-2. The compounds were successfully synthesized, and structural confirmation was performed by FTIR, 1H-NMR, mass spectrometry and elemental analysis. In vitro study suggested that the compounds 5b, 5g, 5l, 5s and 5u possessed best antimalarial activity and further tested for in vivo screening. Compound 5u (CH₃ on both rings) with EC₅₀ 0.313 & 0.801 µg/ml against CQ-S & CQ-R strains of P. falciparum respectively and 78.01% suppression of parasitemia. The molecular docking studies of the compounds helped in understanding the mechanism of action against falcipain-2. The present study reveals the binding signatures of the synthesized ligands within the active site of the protein, and it explains the results from in vitro study in their EC₅₀ values and percentage parasitemia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimalarial%20activity" title="antimalarial activity">antimalarial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcone" title=" chalcone"> chalcone</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=quinoline" title=" quinoline"> quinoline</a> </p> <a href="https://publications.waset.org/abstracts/63591/in-silico-designing-and-insight-into-antimalarial-potential-of-chalcone-quinolinylpyrazole-hybrids-by-preclinical-study-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1729</span> Production and Distribution Network Planning Optimization: A Case Study of Large Cement Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lokendra%20Kumar%20Devangan">Lokendra Kumar Devangan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Mishra"> Ajay Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the implementation of a large-scale SAS/OR model with significant pre-processing, scenario analysis, and post-processing work done using SAS. A large cement manufacturer with ten geographically distributed manufacturing plants for two variants of cement, around 400 warehouses serving as transshipment points, and several thousand distributor locations generating demand needed to optimize this multi-echelon, multi-modal transport supply chain separately for planning and allocation purposes. For monthly planning as well as daily allocation, the demand is deterministic. Rail and road networks connect any two points in this supply chain, creating tens of thousands of such connections. Constraints include the plant’s production capacity, transportation capacity, and rail wagon batch size constraints. Each demand point has a minimum and maximum for shipments received. Price varies at demand locations due to local factors. A large mixed integer programming model built using proc OPTMODEL decides production at plants, demand fulfilled at each location, and the shipment route to demand locations to maximize the profit contribution. Using base SAS, we did significant pre-processing of data and created inputs for the optimization. Using outputs generated by OPTMODEL and other processing completed using base SAS, we generated several reports that went into their enterprise system and created tables for easy consumption of the optimization results by operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20planning" title="production planning">production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20integer%20optimization" title=" mixed integer optimization"> mixed integer optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20model" title=" network model"> network model</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20optimization" title=" network optimization"> network optimization</a> </p> <a href="https://publications.waset.org/abstracts/179220/production-and-distribution-network-planning-optimization-a-case-study-of-large-cement-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1728</span> Patients' Understanding of Their Treatment Plans and Diagnosis during Discharge in Emergency Ward at B. P. Koirala Institute of Health Sciences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Yadav">Ajay Kumar Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Masum%20Paudel"> Masum Paudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritesh%20Chaudhary"> Ritesh Chaudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Understanding the diagnosis and the treatment plan is very important for the patient which reflects the effectiveness of the patient care as well as counseling. Large groups of patients do not understand their emergency care plan or their discharge instructions. With only a little more than 2/3ʳᵈ of the adult population is literate and poorly distributed health service institutions in Nepal, exploring the current status of patient understanding of their diagnosis and treatment would help identify interventions to improve patient compliance with the provided care and the treatment outcomes. Objectives: This study was conducted to identify and describe the areas of patients’ understanding and confusion regarding emergency care and discharge instructions at the Emergency ward of B. P. Koirala Institute of Health Sciences teaching hospital, Dharan, Nepal. Methods: A cross-sectional study was conducted among 426 patients discharged from the emergency unit of BPKIHS. Cases who are leaving against medical advice absconded cases and those patients who came just for vaccination are excluded from the study. Patients’ understanding of the treatment plan and diagnosis was measured. Results: There were 60% men in this study. More than half of the participants reported not being able to read English. More than 90% of the respondents reported they could not read their prescription at all. While patient could point out their understanding of their diagnosis at discharge, most of them could not tell the names and the dosage of all the drugs prescribed to them at discharge. More than 95% of the patients could not tell the most common side effects of the drugs that they are prescribed. Conclusions: There is a need to further explore the factors influencing the understanding of the patients regarding their treatment plan. Interventions to understand the health literacy needs and ways to improve the health literacy of the patients are needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20instruction" title="discharge instruction">discharge instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20ward" title=" emergency ward"> emergency ward</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20literacy" title=" health literacy"> health literacy</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment%20plan" title=" treatment plan"> treatment plan</a> </p> <a href="https://publications.waset.org/abstracts/98640/patients-understanding-of-their-treatment-plans-and-diagnosis-during-discharge-in-emergency-ward-at-b-p-koirala-institute-of-health-sciences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1727</span> Technology Adoption Models: A Study on Brick Kiln Firms in Punjab</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar">Ajay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamily%20Jaggi"> Shamily Jaggi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing countries like India development of modern technologies has been a key determinant in accelerating industrialization and urbanization. But in the pursuit of rapid economic growth, development is considered a top priority, while environmental protection is not given the same importance. Thus, a number of industries sited haphazardly have been established, leading to a deterioration of natural resources like water, soil and air. As a result, environmental pollution is tremendously increasing due to industrialization and mechanization that are serving to fulfill the demands of the population. With the increasing population, demand for bricks for construction work is also increasing, establishing the brick industry as a growing industry. Brick production requires two main resources; water as a source of life, and soil, as a living environment. Water and soil conservation is a critical issue in areas facing scarcity of water and soil resources. The purpose of this review paper is to provide a brief overview of the theoretical frameworks used in the analysis of the adoption and/or acceptance of soil and water conservation practices in the brick industry. Different frameworks and models have been used in the analysis of the adoption and/or acceptance of new technologies and practices; these include the technology acceptance model, motivational model, theory of reasoned action, innovation diffusion theory, theory of planned behavior, and the unified theory of acceptance and use of technology. However, every model has some limitations, such as not considering environmental/contextual and economic factors that may affect the individual’s intention to perform a behavior. The paper concludes that in comparing other models, the UTAUT seems a better model for understanding the dynamics of acceptance and adoption of water and soil conservation practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brick%20kiln" title="brick kiln">brick kiln</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20conservation" title=" water conservation"> water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20conservation" title=" soil conservation"> soil conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=unified%20theory%20of%20acceptance%20and%20use%20of%20technology" title=" unified theory of acceptance and use of technology"> unified theory of acceptance and use of technology</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20adoption" title=" technology adoption"> technology adoption</a> </p> <a href="https://publications.waset.org/abstracts/151904/technology-adoption-models-a-study-on-brick-kiln-firms-in-punjab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1726</span> Molecular Modeling a Tool for Postulating the Mechanism of Drug Interaction: Glimepiride Alters the Pharmacokinetics of Sildenafil Citrate in Diabetic Nephropathy Animals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Shiomurti%20Tripathi">Alok Shiomurti Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Timiri"> Ajay Kumar Timiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Papiya%20Mitra%20Mazumder"> Papiya Mitra Mazumder</a>, <a href="https://publications.waset.org/abstracts/search?q=Anil%20Chandewar"> Anil Chandewar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study evaluates the possible drug interaction between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ) induced in diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction by molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg/kg, ip) and confirms it by assessing the blood and urine biochemical parameters on 28th day of its induction. Selected DN animals were used for the drug interaction between GLIM (0.5mg/kg, p.o.) and SIL (2.5 mg/kg, p.o.) after 29th and 70th day of protocol. Drug interaction were assessed by evaluating the plasma drug concentration using HPLC-UV and also determine the change in the biochemical parameter in blood and urine. Mechanism of the interaction was postulated by molecular modeling study using Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in the blood and urine biochemical parameter in STZ treated groups. The concentration of SIL increased significantly (p<0.001) in rat plasma when co administered with GLIM after 70th day of protocol. Molecular modelling study revealed few important interactions with rat serum albumin and CYP2C9.GLIM has strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL. Whereas, for CYP2C9, GLIM has strong hydrogen bond with polar contacts and hydrophobic interactions than SIL. Present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals and mechanism has been supported by molecular modeling studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=glimepiride" title=" glimepiride"> glimepiride</a>, <a href="https://publications.waset.org/abstracts/search?q=sildenafil%20citrate" title=" sildenafil citrate"> sildenafil citrate</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacokinetics" title=" pharmacokinetics"> pharmacokinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modeling" title=" homology modeling"> homology modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=schrodinger" title=" schrodinger"> schrodinger</a> </p> <a href="https://publications.waset.org/abstracts/39956/molecular-modeling-a-tool-for-postulating-the-mechanism-of-drug-interaction-glimepiride-alters-the-pharmacokinetics-of-sildenafil-citrate-in-diabetic-nephropathy-animals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1725</span> Antioxidant, Antibacterial and Functional Group Analysis of Ethanolic Extract of Hylocereus undatus and Garcinia indica by Using Fourier Transform Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Krishnamurthy">Ajay Krishnamurthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariyappan%20Mahesh%20Kumar"> Mariyappan Mahesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sellamuthu%20Periyar%20Selvam"> Sellamuthu Periyar Selvam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fruits are considered as functional foods due to the presence of various bioactive compounds available such as polyphenols, which are beneficial to health when consumed as part of our diet. The primary objective of this study was to analyze the various functional groups present in ethanolic extracts of Hylocereus undatus and Garcinia indica and also measure their antibacterial and antioxidant potential respectively thereby affirming its nutraceutical potential. To fulfill our objective, a Fourier - transform Infrared Spectroscopy (FTIR) was conducted for functional group analysis, Total Phenolic Content and DPPH free radical scavenging activity for measuring it anti-oxidant potential and agar-well diffusion assay for antibacterial potential. On careful observation and analysis of the spectrum it was found that both the fruit extracts contain similar compounds viz. Phenols, Alkanes, Alkenes, Aldehydes, Ketones, Carboxylic Acid and Amines. Total phenolic content of H.undatus and G.indica was estimated to be (26.85 ± 1.84 mg GAE/100g) and (32.84 ± 1.63 mg GAE/100g) respectively which corresponds to an inhibition of 84% and 81% respectively. H.undatus shows an inhibition of (3.4 ± 2.1mm) in gram-positive and (4.2 ± 2.24mm) in gram-negative organism on the other hand G.indica shows (2.1 ± 0.98mm) in gram-positive and (3.1 ± 1.44mm) in gram negative. The presence of such diverse compounds in the fruits helps us to understand the necessity for the inclusion of fruits in our daily diet and also helps the pharmaceutical industry in realizing the importance of exotic fruits as a potential nutraceutical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPPH" title="DPPH">DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier-transform%20infrared%20spectroscopy%20%28FTIR%29" title=" fourier-transform infrared spectroscopy (FTIR)"> fourier-transform infrared spectroscopy (FTIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Hylocereus%20undatus" title=" Hylocereus undatus"> Hylocereus undatus</a>, <a href="https://publications.waset.org/abstracts/search?q=Garcinia%20indica" title=" Garcinia indica"> Garcinia indica</a> </p> <a href="https://publications.waset.org/abstracts/82695/antioxidant-antibacterial-and-functional-group-analysis-of-ethanolic-extract-of-hylocereus-undatus-and-garcinia-indica-by-using-fourier-transform-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1724</span> Apoptosis Inducing Potential of Onosma Bracteata Wall. in Mg-63 Human Osteosarcoma Cells via cdk2/Cyclin E Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar">Ajay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Satwinderjeet%20Kaur"> Satwinderjeet Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Onosma bracteata Wall. (Boraginaceae), is known to be a medicinal plant, useful in the treatment of body swellings, abdominal pain and urinary calculi, etc. The present study focused on the radical scavenging and cancer growth inhibitory properties of isolates from O. bracteata. Obea fraction demonstrated noticeable free radical scavenging ability along with antiproliferative activity in human osteosarcoma MG-63, human neuroblastoma IMR-32, and human lung cancer A549 cell lines using MTT assay with GI50 values of 88.56, 101.61 and 112.7 μg/ml, respectively. The scanning electron and confocal microscopy studies showed morphological alterations including nuclear condensation and formation of apoptotic bodies in osteosarcoma MG-63 cells. Obea fraction in osteosarcoma MG-63 cells augmented the reactive oxygen species (ROS) level and decreased the mitochondrial membrane potential. Flow cytometry analysis revealed the Obea treated cells to be arrested in the G0/G1 phase in a dose dependent manner supported by the observed increase in the early apoptotic cell population. Western blotting analysis showed that the expression of p-NF-kB, COX-2, p-Akt, and Bcl-xL decreased whereas, the expression of GSK-3β, p53, caspase-3 and caspase-9 proteins increased. The downregulation of Bcl-2, Cyclin E, CDK2 and mortalin gene expression and upregulation of p53 genes was unfolded in RT-qPCR studies. The presence of catechin, kaempferol, Onosmin A and epicatechin, as revealed in high-performance liquid chromatography (HPLC) studies, contributes towards the chemopreventive potential of O. bracteata which can be tapped for chemotherapeutic use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=confocal%20microscopy" title=" confocal microscopy"> confocal microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondria%20membrane%20potential" title=" mitochondria membrane potential"> mitochondria membrane potential</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a> </p> <a href="https://publications.waset.org/abstracts/136286/apoptosis-inducing-potential-of-onosma-bracteata-wall-in-mg-63-human-osteosarcoma-cells-via-cdk2cyclin-e-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1723</span> Measurement of Radon Exhalation Rate, Natural Radioactivity, and Radiation Hazard Assessment in Soil Samples from the Surrounding Area of Kasimpur Thermal Power Plant Kasimpur (U. P.), India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Sharma">Anil Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Mahur"> Ajay Kumar Mahur</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Sonkawade"> R. G. Sonkawade</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Sharma"> A. C. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Prasad"> R. Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In coal fired thermal power stations, large amount of fly ash is produced after burning of coal. Fly ash is spread and distributed in the surrounding area by air and may be deposited on the soil of the region surrounding the power plant. Coal contains increased levels of these radionuclides and fly ash may increase the radioactivity in the soil around the power plant. Radon atoms entering into the pore space from the mineral grain are transported by diffusion and advection through this space until they in turn decay or are released into the atmosphere. In the present study, Soil samples were collected from the region around a Kasimpur Thermal Power Plant, Kasimpur, Aligarh (U.P.). Radon activity, radon surface exhalation and mass exhalation rates were measured using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities vary from 92.9 to 556.8 Bq m-3 with mean value of 279.8 Bq m-3. Surface exhalation rates (EX) in these samples are found to vary from 33.4 to 200.2 mBq m-2 h-1 with an average value of 100.5 mBq m-2 h-1 whereas, Mass exhalation rates (EM) vary from 1.2 to 7.7 mBq kg-1 h-1 with an average value of 3.8 mBq kg-1 h-1. Activity concentrations of radionuclides were measured in these samples by using a low level NaI (Tl) based gamma ray spectrometer. Activity concentrations of 226Ra 232Th and 40K vary from 12 to 49 Bq kg-1, 24 to 49 Bq kg-1 and 135 to 546 Bq kg-1 with overall mean values of 30.3 Bq kg-1, 38.5 Bq kg-1 and 317.8 Bq kg-1, respectively. Radium equivalent activity has been found to vary from 80.0 to 143.7 Bq kg-1 with an average value of 109.7 Bq kg-1. Absorbed dose rate varies from 36.1 to 66.4 nGy h-1 with an average value of 50.4 nGy h-1 and corresponding outdoor annual effective dose varies from 0.044 to 0.081 mSv with an average value of 0.061 mSv. Values of external and internal hazard index Hex, Hin in this study vary from 0.21 to 0.38 and 0.27 to 0.50 with an average value of 0.29 and 0.37, Respectively. The results will be discussed in light of various factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20radioactivity" title="natural radioactivity">natural radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radium%20equivalent%20activity" title=" radium equivalent activity"> radium equivalent activity</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose%20rate" title=" absorbed dose rate"> absorbed dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20ray%20spectroscopy" title=" gamma ray spectroscopy "> gamma ray spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/26839/measurement-of-radon-exhalation-rate-natural-radioactivity-and-radiation-hazard-assessment-in-soil-samples-from-the-surrounding-area-of-kasimpur-thermal-power-plant-kasimpur-u-p-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=58">58</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=59">59</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Choubey&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>