CINXE.COM

Search results for: wedge diffuser

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: wedge diffuser</title> <meta name="description" content="Search results for: wedge diffuser"> <meta name="keywords" content="wedge diffuser"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="wedge diffuser" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="wedge diffuser"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 90</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: wedge diffuser</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Lightweight High-Pressure Ratio Centrifugal Compressor for Vehicles-Investigation of Pipe Diffuser Designs by Means of CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Ioannou">Eleni Ioannou</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascal%20Nucara"> Pascal Nucara</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Pullen"> Keith Pullen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The subject of this paper is the investigation of the best efficiency design of a compressor diffuser applied in new lightweight, ultra efficient micro-gas turbine engines for vehicles. The Computational Fluid Dynamics (CFD) results are obtained utilizing steady state simulations for a wedge and an &rdquo;oval&rdquo; type pipe diffuser in an effort to identify the beneficial effects of the pipe diffuser design. The basic flow features are presented with particular focus on the optimization of the pipe diffuser leading to higher efficiencies for the compressor stage. The optimised pipe diffuser is designed to exploit the 3D freedom enabled by Selective Laser Melting, hence purposely involves an investigation of geometric characteristics that do not follow the traditional diffuser concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20compressor" title=" centrifugal compressor"> centrifugal compressor</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-gas%20turbine" title=" micro-gas turbine"> micro-gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20diffuser" title=" pipe diffuser"> pipe diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=SLM" title=" SLM"> SLM</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20diffuser" title=" wedge diffuser"> wedge diffuser</a> </p> <a href="https://publications.waset.org/abstracts/39107/lightweight-high-pressure-ratio-centrifugal-compressor-for-vehicles-investigation-of-pipe-diffuser-designs-by-means-of-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Numerical Investigation of the Diffuser: Geometrical Parameters Effect on Flow Characteristics for Diffuser Augmented Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20El%20Said%20Fawaz">Hany El Said Fawaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with numerical simulation using a commercial package 'ANSYS FLUENT 14.5' for flow characteristics of a flanged diffuser wind turbine. Influence of geometrical parameters such as flange height, diffuser length, and expansion angle on the lift and drag performance were investigated. As the angle of expansion increases, a considerable flow acceleration through the diffuser occur at expansion angle ranged from 0° and 12° due to the presence of undisturbed streamlines. after that flow circulation is developed near the diffuser outlet and increase with increasing expansion angle which causes a negligible effect of expansion angle. The effect of diffuser length on flow behavior shows that when the diffuser length ratio is less than 1.25, flow acceleration is observed and increased with diffuser length ratio. After this value, the flow field at diffuser outlet is characterized by a recirculation zone. The diffuser flange has an impact effect of the flow behavior as a low pressure zone is developed behind the flange, while a high pressure zone is generated in front of it. As the flange height increase, the intensity of both low and high pressure regions increase which tend to accelerate the flow inside the diffuser till flange height ratio reaches to 0.75. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=flanged%20diffuser" title=" flanged diffuser"> flanged diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion%20angle" title=" expansion angle"> expansion angle</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser%20length" title=" diffuser length"> diffuser length</a> </p> <a href="https://publications.waset.org/abstracts/76610/numerical-investigation-of-the-diffuser-geometrical-parameters-effect-on-flow-characteristics-for-diffuser-augmented-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Viscous Flow Computations for the Diffuser Section of a Large Cavitation Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Y.%20Gurkan">Ahmet Y. Gurkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cagatay%20S.%20Koksal"> Cagatay S. Koksal</a>, <a href="https://publications.waset.org/abstracts/search?q=Cagri%20Aydin"> Cagri Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Oral%20Unal"> U. Oral Unal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper covers the viscous flow computations for the asymmetric diffuser section of a large, high-speed cavitation tunnel which will be constructed in Istanbul Technical University. The analyses were carried out by using the incompressible Reynold-Averaged-Navier-Stokes equations. While determining the diffuser geometry, a high quality, separation-free flow field with minimum energy loses was particularly aimed. The expansion angle has a critical role on the diffuser hydrodynamic performance. In order obtain a relatively short diffuser length, due to the constructive limitations, and hydrodynamic energy effectiveness, three diffuser sections with varying expansion angles for side and bottom walls were considered. A systematic study was performed to determine the most effective diffuser configuration. The results revealed that the inlet condition of the diffuser greatly affects its flow field. The inclusion of the contraction section in the computations substantially modified the flow topology in the diffuser. The effect of the diffuser flow on the test section flow characteristics was clearly observed. The influence of the introduction of small chamfers at the corners of the diffuser geometry is also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20diffuser" title="asymmetric diffuser">asymmetric diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser%20design" title=" diffuser design"> diffuser design</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation%20tunnel" title=" cavitation tunnel"> cavitation tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20flow" title=" viscous flow"> viscous flow</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=rans" title=" rans"> rans</a> </p> <a href="https://publications.waset.org/abstracts/62078/viscous-flow-computations-for-the-diffuser-section-of-a-large-cavitation-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Temperature Distribution Enhancement in a Conical Diffuser Fitted with Helical Screw-Tape with and without Center-Rod</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehan%20Sabah%20Shukri">Ehan Sabah Shukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wirachman%20Wisnoe"> Wirachman Wisnoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature distribution investigation in a conical diffuser fitted with helical screw-tape with and without center-rod is studied numerically. A helical screw-tape is inserted in the diffuser to create swirl flow that helps to enhance the temperature distribution rate with inlet Reynolds number 4.3 x 104. Three pitch lengths ratios (Y/L = 0.153, 0.23 and 0.307) for the helical screw-tape with and without center-rod are simulated and compared. The geometry of the conical diffuser and the inlet condition for both arrangements are kept constant. Numerical findings show that the helical screw-tape inserts without center-rod perform significantly better than the helical tape inserts with center-rod in the conical diffuser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffuser" title="diffuser">diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=pitch%20ratio" title=" pitch ratio"> pitch ratio</a> </p> <a href="https://publications.waset.org/abstracts/45021/temperature-distribution-enhancement-in-a-conical-diffuser-fitted-with-helical-screw-tape-with-and-without-center-rod" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Lifetime Assessment of Highly Efficient Metal-Based Air-Diffuser through Accelerated Degradation Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Choi">Jinyoung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Ho%20Yoon"> Tae-Ho Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmook%20Lee"> Sunmook Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Degradation of standard oxygen transfer efficiency (SOTE) with time was observed for the assessment of lifetime of metal-based air-diffuser, which displaced a polymer composite-based air-diffuser in order to attain a longer lifetime in the actual field. The degradation of air-diffuser occurred due to the failure of the formation of small and uniform air bubbles since the patterns formed on the disc of air-diffuser deteriorated and/or changed from their initial shapes while they were continuously exposed to the air blowing condition during the operation in the field. Therefore, the lifetime assessment of metal-based air-diffuser was carried out through an accelerated degradation test by accelerating the air-blowing conditions in 200 L/min, 300 L/min, and 400 L/min and the lifetime of normal operating condition at 120 L/min was predicted. It was found that Weibull distribution was the most proper one for describing the lifetime distribution of metal-based air-diffuser in the present study. The shape and scale parameters indicated that the accelerated blowing conditions were all within the acceleration domain. The lifetime was predicted by adopting inverse power model for a stress-life relationship and estimated to be B10=94,004 hrs with CL=95%. Acknowledgement: This work was financially supported by the Ministry of Trade, Industry and Energy (Grant number: N0001475). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20degradation%20test" title="accelerated degradation test">accelerated degradation test</a>, <a href="https://publications.waset.org/abstracts/search?q=air-diffuser" title=" air-diffuser"> air-diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=lifetime%20assessment" title=" lifetime assessment"> lifetime assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=SOTE" title=" SOTE"> SOTE</a> </p> <a href="https://publications.waset.org/abstracts/64857/lifetime-assessment-of-highly-efficient-metal-based-air-diffuser-through-accelerated-degradation-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20S.%20Alsheraida">Othman S. Alsheraida</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20El-Gamal"> Sherif El-Gamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber Reinforced Polymers (FRP) is a composite material with exceptional properties that are capable of replacing conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in the pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars is limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in the pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anchorage" title="anchorage">anchorage</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=frp" title=" frp"> frp</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stressed" title=" pre-stressed"> pre-stressed</a> </p> <a href="https://publications.waset.org/abstracts/31388/performance-of-modified-wedge-anchorage-system-for-pre-stressed-frp-bars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Experimental Characterization and Modelling of Microfluidic Radial Diffusers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Chappel">Eric Chappel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitry%20Dumont-Fillon"> Dimitry Dumont-Fillon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Musard"> Hugo Musard</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20van%20Lintel"> Harald van Lintel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A microfluidic radial diffuser typically comprises a hole in a membrane, a small gap and pillar centred with the hole. The fluid is forced to flow radially in this gap between the membrane and the pillar. Such diffusers are notably used to form flow control valves, wherein several holes are machined into a flexible membrane progressively deflecting against pillars as the pressure increases. The fluidic modelling of such diffuser is made difficult by the presence of a transition region between the hole and the diffuser itself. An experimental investigation has been conducted using SOI wafers to form membranes with only one centred hole and Pyrex wafers for the substrate and pillars, both wafers being anodically bonded after alignment. A simple fluidic model accounting for the specific geometry of the diffuser is proposed and compared to experimental results. A good match is obtained, for Reynolds number in the range 0.5 to 35 using the analytical formula of a radial diffuser in the laminar regime with an effective inner radius that is 40% smaller than the real radius, in order to simulate correctly the flow constriction at the entrance of the diffuser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20diffuser" title="radial diffuser">radial diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control%20valve" title=" flow control valve"> flow control valve</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/84032/experimental-characterization-and-modelling-of-microfluidic-radial-diffusers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> 3D Numerical Simulation on Annular Diffuser Temperature Distribution Enhancement by Different Twist Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehan%20Sabah%20Shukri">Ehan Sabah Shukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wirachman%20Wisnoe"> Wirachman Wisnoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of twist arrangement on the temperature distribution in an annular diffuser fitted with twisted rectangular hub is investigated. Different pitches (Y = 120 mm, 100 mm, 80 mm, and 60 mm) for the twist arrangements are simulated to be compared. The geometry of the annular diffuser and the inlet condition for the hub arrangements are kept constant. The result reveals that using twisted rectangular hub insert with different pitches will force the temperature to distribute in a circular direction. However, temperature distribution will be enhanced with the length pitch increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=twist%20arrangement" title=" twist arrangement"> twist arrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=annular%20diffuser" title=" annular diffuser"> annular diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pitches" title=" pitches"> pitches</a> </p> <a href="https://publications.waset.org/abstracts/12978/3d-numerical-simulation-on-annular-diffuser-temperature-distribution-enhancement-by-different-twist-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Study of Anti-Symmetric Flexural Mode Propagation along Wedge Tip with a Crack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manikanta%20Prasad%20Banda">Manikanta Prasad Banda</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Hua%20Yang"> Che Hua Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anti-symmetric wave propagation along the particle motion of the wedge waves is known as anti-symmetric flexural (ASF) modes which travel along the wedge tips of the mid-plane apex with a small truncation. This paper investigates the characteristics of the ASF modes propagation with the wedge tip crack. The simulation and experimental results obtained by a three-dimensional (3-D) finite element model explained the contact acoustic non-linear (CAN) behavior in explicit dynamics in ABAQUS and the ultrasonic non-destructive testing (NDT) method is used for defect detection. The effect of various parameters on its high and low-level conversion modes are known for complex reflections and transmissions involved with direct reflections and transmissions. The results are used to predict the location of crack through complex transmission and reflection coefficients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASF%20mode" title="ASF mode">ASF mode</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20detection" title=" crack detection"> crack detection</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements%20method" title=" finite elements method"> finite elements method</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20ultrasound%20technique" title=" laser ultrasound technique"> laser ultrasound technique</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20waves" title=" wedge waves"> wedge waves</a> </p> <a href="https://publications.waset.org/abstracts/130975/study-of-anti-symmetric-flexural-mode-propagation-along-wedge-tip-with-a-crack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Prediction of Turbulent Separated Flow in a Wind Tunel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Boukhadia">Karima Boukhadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20diffuser" title="asymmetric diffuser">asymmetric diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=reattachment" title=" reattachment"> reattachment</a>, <a href="https://publications.waset.org/abstracts/search?q=tilt%20angle" title=" tilt angle"> tilt angle</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20zone" title=" separation zone"> separation zone</a> </p> <a href="https://publications.waset.org/abstracts/26379/prediction-of-turbulent-separated-flow-in-a-wind-tunel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Vertebral Transverse Open Wedge Osteotomy in Correction of Thoracolumbar Kyphosis Resulting from Ankylosing Spondylitis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20AliReza%20Mirghasemi">S. AliReza Mirghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Mohamadi"> Amin Mohamadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zameer%20Hussain"> Zameer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Rahimi%20Gabaran"> Narges Rahimi Gabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Mostafa%20Sadat"> Mir Mostafa Sadat</a>, <a href="https://publications.waset.org/abstracts/search?q=Shervin%20Rashidinia"> Shervin Rashidinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In progressive cases of Ankylosing Spondylitis, patients will have high degrees of kyphosis leading to severe disabilities. Several operative techniques have been used in this stage, but little knowledge exists on the indications for and outcome of these methods. In this study, we examined the efficacy of monosegmental transverse open wedge osteotomy of L3 in 11 patients with progressive spinal kyphosis. The average correction was 36̊ (20 to 42) with no loss of correction after operation. The average operating time was 120 minutes (100 to 130) and the mean blood loss was 1500 ml (1100 to 2000). Osteotomy corrected all patients sufficiently to allow them to see ahead and their posture was improved. There were no fatal complications but one patient had paraplegia after the operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankylosing%20spondylitis" title="ankylosing spondylitis">ankylosing spondylitis</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracolumbar%20kyphosis" title=" thoracolumbar kyphosis"> thoracolumbar kyphosis</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20wedge%20osteotomy" title=" open wedge osteotomy"> open wedge osteotomy</a>, <a href="https://publications.waset.org/abstracts/search?q=L3%20transverse%20open%20wedge%20osteotomy" title=" L3 transverse open wedge osteotomy"> L3 transverse open wedge osteotomy</a> </p> <a href="https://publications.waset.org/abstracts/34782/vertebral-transverse-open-wedge-osteotomy-in-correction-of-thoracolumbar-kyphosis-resulting-from-ankylosing-spondylitis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Flow Behavior and Performances of Centrifugal Compressor Stage Vaneless Diffusers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.Galerkin">Y.Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Solovieva"> O. Solovieva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flow parameters are calculated in vaneless diffusers with relative width 0,014 – 0,10 constant along radii. Inlet flow angles and similarity criteria were varied. Information about flow structure is presented – meridian streamlines configuration, information on flow full development, flow separation. Polytrophic efficiency, loss and recovery coefficient are used to compare diffusers’ effectiveness. The sample of narrow diffuser optimization by conical walls application is presented. Three tampered variants of a wide diffuser are compared too. The work is made in the R&D laboratory “Gas dynamics of turbo machines” of the TU SPb. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vaneless%20diffuser" title="vaneless diffuser">vaneless diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20width" title=" relative width"> relative width</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20angle" title=" flow angle"> flow angle</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20separation" title=" flow separation"> flow separation</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20criteria" title=" similarity criteria"> similarity criteria</a> </p> <a href="https://publications.waset.org/abstracts/15996/flow-behavior-and-performances-of-centrifugal-compressor-stage-vaneless-diffusers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Investigate the Movement of Salt-Wedge at Co Chien Estuary, Vietnam in the Context of Climate Change and Reduce Upstream Flow Using 3D Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hieu%20Duy%20Nguyen">Hieu Duy Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chitsan%20Lin%20Jr."> Chitsan Lin Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=Dung%20Duc%20Tran"> Dung Duc Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, drought and salinity intrusion becomes a severe problem in the Lower Mekong region due to climate change, especially in coastal provinces. Freshwater resources are decreased due to sea-level rise and the decline in water flow from upstream in the dry season. The combination of the above issues can lead to many effects on the environment and human health in affected areas such as the pathological of digestive or decreased the immune system. Tidal cycle and upstream flows are the two main factors affecting the saline intrusion process and the former salt-wedge in the estuary. Under suitable conditions, salt-wedge can be going further upstream under the water surface and affected groundwater. In order to have a proper plan for the mitigation of the above adverse effects, we need to understand the characteristics of this process. In this study, 3D model is used to investigate the movement of salt-wedge under different conditions of tidal and flow discharge. The salinity in the vertical profile is also measured in the dry season of 2017 and 2018 for model calibrating. The data has proved that there is the presence of salt-wedge in the study area. The obtained results will help strategic planners to use and preserve water resources more effectively and serve as a basis for new research directions on saline intrusion and human health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt-wedge" title="salt-wedge">salt-wedge</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20intrusion" title=" salinity intrusion"> salinity intrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health" title=" human health"> human health</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title=" 3D model"> 3D model</a> </p> <a href="https://publications.waset.org/abstracts/117482/investigate-the-movement-of-salt-wedge-at-co-chien-estuary-vietnam-in-the-context-of-climate-change-and-reduce-upstream-flow-using-3d-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Liquid Bridges in a Complex Geometry: Microfluidic Drop Manipulation Inside a Wedge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Baratian">D. Baratian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cavalli"> A. Cavalli</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20van%20den%20Ende"> D. van den Ende</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mugele"> F. Mugele </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The morphology of liquid bridges inside complex geometries is the subject of interest for many years. These efforts try to find stable liquid configuration considering the boundary condition and the physical properties of the system. On the other hand precise manipulation of droplets is highly significant in many microfluidic applications. The liquid configuration in a complex geometry can be switched by means of external stimuli. We show manipulation of droplets in a wedge structure. The profile and position of a drop in a wedge geometry has been calculated analytically assuming negligible contact angle hysteresis. The characteristic length of liquid bridge and its interfacial tension inside the surrounding medium along with the geometrical parameters of the system determine the morphology and equilibrium position of drop in the system. We use electrowetting to modify one the governing parameters to manipulate the droplet. Electrowetting provides the capability to have precise control on the drop position through tuning the voltage and consequently changing the contact angle. This technique is employed to tune drop displacement and control its position inside the wedge. Experiments demonstrate precise drop movement to its predefined position inside the wedge geometry. Experimental results show promising consistency as it is compared to our geometrical model predictions. For such a drop manipulation, appealing applications in microfluidics have been considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid%20bridges" title="liquid bridges">liquid bridges</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20manipulation" title=" drop manipulation"> drop manipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting" title=" wetting"> wetting</a>, <a href="https://publications.waset.org/abstracts/search?q=electrowetting" title=" electrowetting"> electrowetting</a>, <a href="https://publications.waset.org/abstracts/search?q=capillarity" title=" capillarity "> capillarity </a> </p> <a href="https://publications.waset.org/abstracts/23905/liquid-bridges-in-a-complex-geometry-microfluidic-drop-manipulation-inside-a-wedge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziya%20Uddin">Ziya Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluids" title="nanofluids">nanofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge%20shaped%20wick" title=" wedge shaped wick"> wedge shaped wick</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pipe" title=" heat pipe"> heat pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title=" numerical modeling"> numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid%20applications" title=" nanofluid applications"> nanofluid applications</a>, <a href="https://publications.waset.org/abstracts/search?q=Heat%20transfer" title=" Heat transfer"> Heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/28316/mhd-boundary-layer-flow-of-a-nanofluid-past-a-wedge-shaped-wick-in-heat-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> CFD Simulation Research on a Double Diffuser for Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Skiba">Krzysztof Skiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Zdzislaw%20Kaminski"> Zdzislaw Kaminski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind power is based on a variety of construction solutions to convert wind energy into electrical energy. These constructions are constrained by the correlation between their energy conversion efficiency and the area they occupy. Their energy conversion efficiency can be improved by wind tunnel tests of a rotor as a diffuser to optimize shapes of aerodynamic elements, to adapt these elements to changing conditions and to increase airflow intensity. This paper discusses the results of computer simulations and aerodynamic analyzes of this innovative diffuser design. The research aims at determining the aerodynamic phenomena triggered by the airflow inside this construction, and developing a design to improve the efficiency of the wind turbine. The research results enable us to design a diffuser with a double Venturi nozzle and specially shaped blades. The design of this type uses Bernoulli’s law on the behavior of the flowing medium in the tunnel of a decreasing diameter. The air flowing along the tunnel changes its velocity so the rotor inside such a decreased tunnel diameter rotates faster in this airflow than does the wind outside this tunnel, which makes the turbine more efficient. Additionally, airflow velocity is improved by applying aerodynamic rings with extended trailing edges to achieve controlled turbulent vortices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=cfd" title=" cfd"> cfd</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/50081/cfd-simulation-research-on-a-double-diffuser-for-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> A Simulation-Based Investigation of the Smooth-Wall, Radial Gravity Problem of Granular Flow through a Wedge-Shaped Hopper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Momin">A. F. Momin</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20V.%20Khakhar"> D. V. Khakhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Granular materials consist of particulate particles found in nature and various industries that, due to gravity flow, behave macroscopically like liquids. A fundamental industrial unit operation is a hopper with inclined walls or a converging channel in which material flows downward under gravity and exits the storage bin through the bottom outlet. The simplest form of the flow corresponds to a wedge-shaped, quasi-two-dimensional geometry with smooth walls and radially directed gravitational force toward the apex of the wedge. These flows were examined using the Mohr-Coulomb criterion in the classic work of Savage (1965), while Ravi Prakash and Rao used the critical state theory (1988). The smooth-wall radial gravity (SWRG) wedge-shaped hopper is simulated using the discrete element method (DEM) to test existing theories. DEM simulations involve the solution of Newton's equations, taking particle-particle interactions into account to compute stress and velocity fields for the flow in the SWRG system. Our computational results are consistent with the predictions of Savage (1965) and Ravi Prakash and Rao (1988), except for the region near the exit, where both viscous and frictional effects are present. To further comprehend this behaviour, a parametric analysis is carried out to analyze the rheology of wedge-shaped hoppers by varying the orifice diameter, wedge angle, friction coefficient, and stiffness. The conclusion is that velocity increases as the flow rate increases but decreases as the wedge angle and friction coefficient increase. We observed no substantial changes in velocity due to varying stiffness. It is anticipated that stresses at the exit result from the transfer of momentum during particle collisions; for this reason, relationships between viscosity and shear rate are shown, and all data are collapsed into a single curve. In addition, it is demonstrated that viscosity and volume fraction exhibit power law correlations with the inertial number and that all the data collapse into a single curve. A continuum model for determining granular flows is presented using empirical correlations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title="discrete element method">discrete element method</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20flow" title=" gravity flow"> gravity flow</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth-wall" title=" smooth-wall"> smooth-wall</a>, <a href="https://publications.waset.org/abstracts/search?q=wedge-shaped%20hoppers" title=" wedge-shaped hoppers"> wedge-shaped hoppers</a> </p> <a href="https://publications.waset.org/abstracts/160087/a-simulation-based-investigation-of-the-smooth-wall-radial-gravity-problem-of-granular-flow-through-a-wedge-shaped-hopper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> An Experimental Study of Diffuser-Enhanced Propeller Hydrokinetic Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matheus%20Nunes">Matheus Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Mendes"> Rafael Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Taygoara%20Felamingo%20Oliveira"> Taygoara Felamingo Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Brasil%20Junior"> Antonio Brasil Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind tunnel experiments of horizontal axis propeller hydrokinetic turbines model were carried out, in order to determine the performance behavior for different configurations and operational range. The present experiments introduce the use of two different geometries of rear diffusers to enhance the performance of the free flow machine. The present paper reports an increase of the power coefficient about 50%-80%. It represents an important feature that has to be taken into account in the design of this kind of machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffuser-enhanced%20turbines" title="diffuser-enhanced turbines">diffuser-enhanced turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrokinetic%20turbine" title=" hydrokinetic turbine"> hydrokinetic turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20experiments" title=" wind tunnel experiments"> wind tunnel experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20hydro" title=" micro hydro"> micro hydro</a> </p> <a href="https://publications.waset.org/abstracts/77392/an-experimental-study-of-diffuser-enhanced-propeller-hydrokinetic-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> The Effect of Swirl on the Flow Distribution in Automotive Exhaust Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piotr%20J.%20Skusiewicz">Piotr J. Skusiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnathan%20Saul"> Johnathan Saul</a>, <a href="https://publications.waset.org/abstracts/search?q=Ijhar%20Rusli"> Ijhar Rusli</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Aleksandrova"> Svetlana Aleksandrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen.%20F.%20Benjamin"> Stephen. F. Benjamin</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslaw%20Gall"> Miroslaw Gall</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20Pierson"> Steve Pierson</a>, <a href="https://publications.waset.org/abstracts/search?q=Carol%20A.%20Roberts"> Carol A. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of turbocharging in automotive engines leads to swirling flow entering the catalyst. The behaviour of this type of flow within the catalyst has yet to be adequately documented. This work discusses the effect of swirling flow on the flow distribution in automotive exhaust catalysts. Compressed air supplied to a moving-block swirl generator allowed for swirling flow with variable intensities to be generated. Swirl intensities were measured at the swirl generator outlet using single-sensor hot-wire probes. The swirling flow was fed into diffusers with total angles of 10°, 30° and 180°. Downstream of the diffusers, a wash-coated diesel oxidation catalyst (DOC) of length 143.8 mm, diameter 76.2 mm and nominal cell density of 400 cpsi was fitted. Velocity profiles were measured at the outlet sleeve about 30 mm downstream of the monolith outlet using single-sensor hot-wire probes. Wall static pressure was recorded using a multi-tube manometer connected to pressure taps positioned along the diffuser walls. The results show that as swirl is increased, more of the flow is directed towards the diffuser walls. The velocity decreases around the centre-line and maximum velocities are observed close to the outer radius of the monolith for all flow rates. At the maximum swirl intensity, reversed flow was recorded near the centre of the monolith. Wall static pressure measurements in the 180° diffuser indicated no pressure recovery as the flow enters the diffuser. This is indicative of flow separation at the inlet to the diffuser. To gain insight into the flow structure, CFD simulations have been performed for the 180° diffuser for a flow rate of 63 g/s. The geometry of the model consists of the complete assembly from the upstream swirl generator to the outlet sleeve. Modelling of the flow in the monolith was achieved using the porous medium approach, where the monolith with parallel flow channels is modelled as a porous medium that resists the flow. A reasonably good agreement was achieved between the experimental and CFD results downstream of the monolith. The CFD simulations allowed visualisation of the separation zones and central toroidal recirculation zones that occur within the expansion region at certain swirl intensities which are highlighted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst" title="catalyst">catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuser" title=" diffuser"> diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-wire%20anemometry" title=" hot-wire anemometry"> hot-wire anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title=" swirling flow"> swirling flow</a> </p> <a href="https://publications.waset.org/abstracts/58060/the-effect-of-swirl-on-the-flow-distribution-in-automotive-exhaust-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Temperature Distribution Simulation of Divergent Fluid Flow with Helical Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehan%20Sabah%20Shukri">Ehan Sabah Shukri</a>, <a href="https://publications.waset.org/abstracts/search?q=Wirachman%20Wisnoe"> Wirachman Wisnoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical study is performed to investigate the temperature distribution in an annular diffuser fitted with helical tape hub. Different pitches (Y = 20 mm, and Y = 30 mm) for the helical tape are studied with different heights (H = 20 mm, 22 mm, and 24 mm) to be compared. The geometry of the annular diffuser and the inlet condition for both hub arrangements are kept constant. The result obtains that using helical tape insert with different pitches and different heights will force the temperature to distribute in a helical direction; however the use of helical tape hub with height (H = 22 mm) for both pitches enhance the temperature distribution in a good manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=helical%20tape" title="helical tape">helical tape</a>, <a href="https://publications.waset.org/abstracts/search?q=divergent%20fluid%20flow" title=" divergent fluid flow"> divergent fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/12774/temperature-distribution-simulation-of-divergent-fluid-flow-with-helical-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Investigation and Perfection of Centrifugal Compressor Stages by CFD Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Galerkin">Y. Galerkin</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Marenina"> L. Marenina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stator elements «Vane diffuser + crossover + return channel» of stages with different specific speed were investigated by CFD calculations. The regime parameter was introduced to present efficiency and loss coefficient performance of all elements together. Flow structure demonstrated advantages and disadvantages of design. Flow separation in crossovers was eliminated by its shape modification. Efficiency increased visibly. Calculated CFD performances are in acceptable correlation with predicted ones by engineering design method. The information obtained is useful for design method better calibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vane%20diffuser" title="vane diffuser">vane diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20channel" title=" return channel"> return channel</a>, <a href="https://publications.waset.org/abstracts/search?q=crossover" title=" crossover"> crossover</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20coefficient" title=" loss coefficient"> loss coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20flow%20angle" title=" inlet flow angle"> inlet flow angle</a> </p> <a href="https://publications.waset.org/abstracts/16297/investigation-and-perfection-of-centrifugal-compressor-stages-by-cfd-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Assessment of Hypersaline Outfalls via Computational Fluid Dynamics Simulations: A Case Study of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitchell%20J.%20Baum">Mitchell J. Baum</a>, <a href="https://publications.waset.org/abstracts/search?q=Badin%20Gibbes"> Badin Gibbes</a>, <a href="https://publications.waset.org/abstracts/search?q=Greg%20Collecutt"> Greg Collecutt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study details a three-dimensional field-scale numerical investigation conducted for the Gold Coast Desalination Plant (GCDP) offshore multiport brine diffuser. Quantitative assessment of diffuser performance with regard to trajectory, dilution and mapping of seafloor concentration distributions was conducted for 100% plant operation. The quasi-steady Computational Fluid Dynamics (CFD) simulations were performed using the Reynolds averaged Navier-Stokes equations with a k-ω shear stress transport turbulence closure scheme. The study compliments a field investigation, which measured brine plume characteristics under similar conditions. CFD models used an iterative mesh in a domain with dimensions 400 m long, 200 m wide and an average depth of 24.2 m. Acoustic Doppler current profiler measurements conducted in the companion field study exhibited considerable variability over the water column. The effect of this vertical variability on simulated discharge outcomes was examined. Seafloor slope was also accommodated into the model. Ambient currents varied predominantly in the longshore direction – perpendicular to the diffuser structure. Under these conditions, the alternating port orientation of the GCDP diffuser resulted in simultaneous subjection to co-propagating and counter-propagating ambient regimes. Results from quiescent ambient simulations suggest broad agreement with empirical scaling arguments traditionally employed in design and regulatory assessments. Simulated dynamic ambient regimes showed the influence of ambient crossflow upon jet trajectory, dilution and seafloor concentration is significant. The effect of ambient flow structure and the subsequent influence on jet dynamics is discussed, along with the implications for using these different simulation approaches to inform regulatory decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=field-scale%20simulation" title=" field-scale simulation"> field-scale simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=multiport%20brine%20diffuser" title=" multiport brine diffuser"> multiport brine diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=negatively%20buoyant%20jet" title=" negatively buoyant jet"> negatively buoyant jet</a> </p> <a href="https://publications.waset.org/abstracts/61222/assessment-of-hypersaline-outfalls-via-computational-fluid-dynamics-simulations-a-case-study-of-the-gold-coast-desalination-plant-offshore-multiport-brine-diffuser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Design and Evaluation on Sierpinski-Triangle Acoustic Diffusers Based on Fractal Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lingge%20Tan">Lingge Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongpeng%20Xu"> Hongpeng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jieun%20Yang"> Jieun Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Maarten%20Hornikx"> Maarten Hornikx</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic diffusers are important components in enhancing the quality of room acoustics. This paper provides a type of modular diffuser based on the Sierpinski Triangle of the plane and combines it with fractal theory to expand the effective frequency range. In numerical calculations and full-scale model experiments, the effect of fractal design elements on normal-incidence diffusion coefficients is examined. It is demonstrated the reasonable times of iteration of modules is three, and the coverage density is 58.4% in the design frequency from 125Hz to 4kHz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20diffuser" title="acoustic diffuser">acoustic diffuser</a>, <a href="https://publications.waset.org/abstracts/search?q=fractal" title=" fractal"> fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sierpinski-triangle" title=" Sierpinski-triangle"> Sierpinski-triangle</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20coefficient" title=" diffusion coefficient"> diffusion coefficient</a> </p> <a href="https://publications.waset.org/abstracts/132869/design-and-evaluation-on-sierpinski-triangle-acoustic-diffusers-based-on-fractal-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Performance Assessment of the Gold Coast Desalination Plant Offshore Multiport Brine Diffuser during ‘Hot Standby’ Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Baum">M. J. Baum</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Gibbes"> B. Gibbes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Grinham"> A. Grinham</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Albert"> S. Albert</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Gale"> D. Gale</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Fisher"> P. Fisher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alongside the rapid expansion of Seawater Reverse Osmosis technologies there is a concurrent increase in the production of hypersaline brine by-products. To minimize environmental impact, these by-products are commonly disposed into open-coastal environments via submerged diffuser systems as inclined dense jet outfalls. Despite the widespread implementation of this process, diffuser designs are typically based on small-scale laboratory experiments under idealistic quiescent conditions. Studies concerning diffuser performance in the field are limited. A set of experiments were conducted to assess the near field characteristics of brine disposal at the Gold Coast Desalination Plant offshore multiport diffuser. The aim of the field experiments was to determine the trajectory and dilution characteristics of the plume under various discharge configurations with production ranging 66 – 100% of plant operative capacity. The field monitoring system employed an unprecedented static array of temperature and electrical conductivity sensors in a three-dimensional grid surrounding a single diffuser port. Complimenting these measurements, Acoustic Doppler Current Profilers were also deployed to record current variability over the depth of the water column and wave characteristics. Recorded data suggested the open-coastal environment was highly active over the experimental duration with ambient velocities ranging 0.0 – 0.5 m∙s<sup>-1</sup>, with considerable variability over the depth of the water column observed. Variations in background electrical conductivity corresponding to salinity fluctuations of ± 1.7 g∙kg<sup>-1</sup> were also observed. Increases in salinity were detected during plant operation and appeared to be most pronounced 10 – 30 m from the diffuser, consistent with trajectory predictions described by existing literature. Plume trajectories and respective dilutions extrapolated from salinity data are compared with empirical scaling arguments. Discharge properties were found to adequately correlate with modelling projections. Temporal and spatial variation of background processes and their subsequent influence upon discharge outcomes are discussed with a view to incorporating the influence of waves and ambient currents in the design of brine outfalls into the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brine%20disposal" title="brine disposal">brine disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20study" title=" field study"> field study</a>, <a href="https://publications.waset.org/abstracts/search?q=negatively%20buoyant%20discharge" title=" negatively buoyant discharge"> negatively buoyant discharge</a> </p> <a href="https://publications.waset.org/abstracts/60323/performance-assessment-of-the-gold-coast-desalination-plant-offshore-multiport-brine-diffuser-during-hot-standby-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Finite Eigenstrains in Nonlinear Elastic Solid Wedges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Golgoon">Ashkan Golgoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhayl%20Sadik"> Souhayl Sadik</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Yavari"> Arash Yavari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20eigenstrains" title="finite eigenstrains">finite eigenstrains</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20mechanics" title=" geometric mechanics"> geometric mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusion" title=" inclusion"> inclusion</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneity" title=" inhomogeneity"> inhomogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20elasticity" title=" nonlinear elasticity"> nonlinear elasticity</a> </p> <a href="https://publications.waset.org/abstracts/58993/finite-eigenstrains-in-nonlinear-elastic-solid-wedges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Calculation of the Supersonic Air Intake with the Optimization of the Shock Wave System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Vinogradova">Elena Vinogradova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksei%20Pleshakov"> Aleksei Pleshakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksei%20Yakovlev"> Aleksei Yakovlev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the flight of a supersonic aircraft under various conditions (altitude, Mach, etc.), it becomes necessary to coordinate the operating modes of the air intake and engine. On the supersonic aircraft, it’s been done by changing various control factors (the angle of rotation of the wedge panels and etc.). This paper investigates the possibility of using modern optimization methods to determine the optimal position of the supersonic air intake wedge panels in order to maximize the total pressure recovery coefficient. Modern software allows us to conduct auto-optimization, which determines the optimal position of the control elements of the investigated product to achieve its maximum efficiency. In this work, the flow in the supersonic aircraft inlet has investigated and optimized the operation of the flaps of the supersonic inlet in an aircraft in a 2-D setting. This work has done using ANSYS CFX software. The supersonic aircraft inlet is a flat adjustable external compression inlet. The braking surface is made in the form of a three-stage wedge. The IOSO NM software package was chosen for optimization. Change in the position of the panels of the input device is carried out by changing the angle between the first and second steps of the three-stage wedge. The position of the rest of the panels is changed automatically. Within the framework of the presented work, the position of the moving air intake panel was optimized under fixed flight conditions of the aircraft under a certain engine operating mode. As a result of the numerical modeling, the distribution of total pressure losses was obtained for various cases of the engine operation, depending on the incoming flow velocity and the flight altitude of the aircraft. The results make it possible to obtain the maximum total pressure recovery coefficient under given conditions. Also, the initial geometry was set with a certain angle between the first and second wedge panels. Having performed all the calculations, as well as the subsequent optimization of the aircraft input device, it can be concluded that the initial angle was set sufficiently close to the optimal angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20angle" title="optimal angle">optimal angle</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20air%20intake" title=" supersonic air intake"> supersonic air intake</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20pressure%20recovery%20coefficient" title=" total pressure recovery coefficient"> total pressure recovery coefficient</a> </p> <a href="https://publications.waset.org/abstracts/135524/calculation-of-the-supersonic-air-intake-with-the-optimization-of-the-shock-wave-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Reflection Performance of Truncated Pyramidal and Truncated Wedge Microwave Absorber Using Sugarcane Bagasse (SCB) </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liyana%20Zahid">Liyana Zahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Fareq%20Abd%20Malek"> Mohd Fareq Abd Malek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ee%20Meng%20Cheng"> Ee Meng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wen%20Liu"> Wei Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeng%20Seng%20Lee"> Yeng Seng Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Nadeem%20Iqbal"> Muhammad Nadeem Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Fwen%20Hoon%20Wee"> Fwen Hoon Wee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the parameters that affect the performance of microwave absorbers is the shape of the absorbers. This paper shows the performance (reflection loss) of truncated pyramidal and truncated wedge microwave absorbers in the range frequency between 8.2 to 12.4 GHz (X-Band) in simulation. The material used is sugarcane bagasse (SCB) which is one of the new materials that used to fabricate the microwave absorber. The complex permittivity was measured using Agilent dielectric probe technique. The designs were simulated using CST Microwave Studio Software. The reflection losses between these two shapes were compared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20absorber" title="microwave absorber">microwave absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=reflection%20loss" title=" reflection loss"> reflection loss</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse%20%28SCB%29" title=" sugarcane bagasse (SCB)"> sugarcane bagasse (SCB)</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Band" title=" X-Band"> X-Band</a> </p> <a href="https://publications.waset.org/abstracts/1457/reflection-performance-of-truncated-pyramidal-and-truncated-wedge-microwave-absorber-using-sugarcane-bagasse-scb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Effects of Radiation on Mixed Convection in Power Law Fluids along Vertical Wedge Embedded in a Saturated Porous Medium under Prescribed Surface Heat Flux Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qaisar%20Ali">Qaisar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Waqar%20A.%20Khan"> Waqar A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafiq%20R.%20Qureshi"> Shafiq R. Qureshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat transfer in Power Law Fluids across cylindrical surfaces has copious engineering applications. These applications comprises of areas such as underwater pollution, bio medical engineering, filtration systems, chemical, petroleum, polymer, food processing, recovery of geothermal energy, crude oil extraction, pharmaceutical and thermal energy storage. The quantum of research work with diversified conditions to study the effects of combined heat transfer and fluid flow across porous media has increased considerably over last few decades. The most non-Newtonian fluids of practical interest are highly viscous and therefore are often processed in the laminar flow regime. Several studies have been performed to investigate the effects of free and mixed convection in Newtonian fluids along vertical and horizontal cylinder embedded in a saturated porous medium, whereas very few analysis have been performed on Power law fluids along wedge. In this study, boundary layer analysis under the effects of radiation-mixed convection in power law fluids along vertical wedge in porous medium have been investigated using an implicit finite difference method (Keller box method). Steady, 2-D laminar flow has been considered under prescribed surface heat flux condition. Darcy, Boussinesq and Roseland approximations are assumed to be valid. Neglecting viscous dissipation effects and the radiate heat flux in the flow direction, the boundary layer equations governing mixed convection flow over a vertical wedge are transformed into dimensionless form. The single mathematical model represents the case for vertical wedge, cone and plate by introducing the geometry parameter. Both similar and Non- similar solutions have been obtained and results for Non similar case have been presented/ plotted. Effects of radiation parameter, variable heat flux parameter, wedge angle parameter ‘m’ and mixed convection parameter have been studied for both Newtonian and Non-Newtonian fluids. The results are also compared with the available data for the analysis of heat transfer in the prescribed range of parameters and found in good agreement. Results for the details of dimensionless local Nusselt number, temperature and velocity fields have also been presented for both Newtonian and Non-Newtonian fluids. Analysis of data revealed that as the radiation parameter or wedge angle is increased, the Nusselt number decreases whereas it increases with increase in the value of heat flux parameter at a given value of mixed convection parameter. Also, it is observed that as viscosity increases, the skin friction co-efficient increases which tends to reduce the velocity. Moreover, pseudo plastic fluids are more heat conductive than Newtonian and dilatant fluids respectively. All fluids behave identically in pure forced convection domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title="porous medium">porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20law%20fluids" title=" power law fluids"> power law fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20heat%20flux" title=" surface heat flux"> surface heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20wedge" title=" vertical wedge"> vertical wedge</a> </p> <a href="https://publications.waset.org/abstracts/43869/effects-of-radiation-on-mixed-convection-in-power-law-fluids-along-vertical-wedge-embedded-in-a-saturated-porous-medium-under-prescribed-surface-heat-flux-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Measurement of Convective Heat Transfer from a Vertical Flat Plate Using Mach-Zehnder Interferometer with Wedge Fringe Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Haridas">Divya Haridas</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20B.%20Sobhan"> C. B. Sobhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser interferometric methods have been utilized for the measurement of natural convection heat transfer from a heated vertical flat plate, in the investigation presented here. The study mainly aims at comparing two different fringe orientations in the wedge fringe setting of Mach-Zehnder interferometer (MZI), used for the measurements. The interference fringes are set in horizontal and vertical orientations with respect to the heated surface, and two different fringe analysis methods, namely the stepping method and the method proposed by Naylor and Duarte, are used to obtain the heat transfer coefficients. The experimental system is benchmarked with theoretical results, thus validating its reliability in heat transfer measurements. The interference fringe patterns are analyzed digitally using MATLAB 7 and MOTIC Plus softwares, which ensure improved efficiency in fringe analysis, hence reducing the errors associated with conventional fringe tracing. The work also discuss the relative merits and limitations of the two methods used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometer%20%28MZI%29" title="Mach-Zehnder interferometer (MZI)">Mach-Zehnder interferometer (MZI)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Naylor%20method" title=" Naylor method"> Naylor method</a>, <a href="https://publications.waset.org/abstracts/search?q=Vertical%20Flat%20Plate" title=" Vertical Flat Plate"> Vertical Flat Plate</a> </p> <a href="https://publications.waset.org/abstracts/2448/measurement-of-convective-heat-transfer-from-a-vertical-flat-plate-using-mach-zehnder-interferometer-with-wedge-fringe-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Improving Anchor Technology for Adapting the Weak Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Hee%20Shin">Sang Hee Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technical improving project is for using the domestic construction technology in the weak soil condition. The improved technology is applied directly under local construction site at OOO, OOO. Existing anchor technology was developed for the case of soft ground as N value 10 or less. In case of soft ground and heavy load, the attachment site per one strand is shortened due to the distributed interval so that the installation site is increased relatively and being economically infeasible. In addition, in case of high tensile load, adhesion phenomenon between wedge and block occurs. To solve these problems, it strengthens the function of the attached strands to treat a ‘bulbing’ on the strands. In the solution for minimizing the internal damage and strengthening the removal function, it induces lubricating action using the film and the attached film, and it makes the buffer structure using wedge lubricating structure and the spring. The technology is performed such as in-house testing and the field testing. The project can improve the reliability of the standardized quality technique. As a result, it intended to give the technical competitiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anchor" title="anchor">anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=improving%20technology" title=" improving technology"> improving technology</a>, <a href="https://publications.waset.org/abstracts/search?q=removal%20anchor" title=" removal anchor"> removal anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20reinforcement" title=" soil reinforcement"> soil reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20soil" title=" weak soil"> weak soil</a> </p> <a href="https://publications.waset.org/abstracts/46616/improving-anchor-technology-for-adapting-the-weak-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wedge%20diffuser&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wedge%20diffuser&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=wedge%20diffuser&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10