CINXE.COM

Search results for: Mariko Nishikawa

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Mariko Nishikawa</title> <meta name="description" content="Search results for: Mariko Nishikawa"> <meta name="keywords" content="Mariko Nishikawa"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Mariko Nishikawa" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Mariko Nishikawa"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Mariko Nishikawa</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Providing Health Promotion Information by Digital Animation to International Visitors in Japan: A Factorial Design View of Nurses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Nishikawa">Mariko Nishikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Masaaki%20Yamanaka"> Masaaki Yamanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayami%20Kondo"> Ayami Kondo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: International visitors to Japan are at a risk of travel-related illnesses or injury that could result in hospitalization in a country where the language and customs are unique. Over twelve million international visitors came to Japan in 2015, and more are expected leading up to the Tokyo Olympics. One aspect of this is the potentially greater demand on healthcare services by foreign visitors. Nurses who take care of them have anxieties and concerns of their knowledge of the Japanese health system. Objectives: An effective distribution of travel-health information is vital for facilitating care for international visitors. Our research investigates whether a four-minute digital animation (Mari Info Japan), designed and developed by the authors and applied to a survey of 513 nurses who take care of foreigners daily, could clarify travel health procedures, reduce anxieties, while making it enjoyable to learn. Methodology: Respondents to a survey were divided into two groups. The intervention group watched Mari Info Japan. The control group read a standard guidebook. The participants were requested to fill a two-page questionnaire called Mari Meter-X, STAI-Y in English and mark a face scale, before and after the interventions. The questions dealt with knowledge of health promotion, the Japanese healthcare system, cultural concerns, anxieties, and attitudes in Japan. Data were collected from an intervention group (n=83) and control group (n=83) of nurses in a hospital, Japan for foreigners from February to March, 2016. We analyzed the data using Text Mining Studio for open-ended questions and JMP for statistical significance. Results: We found that the intervention group displayed more confidence and less anxiety to take care of foreign patients compared to the control group. The intervention group indicated a greater comfort after watching the animation. However, both groups were most likely to be concerned about language, the cost of medical expenses, informed consent, and choice of hospital. Conclusions: From the viewpoint of nurses, the provision of travel-health information by digital animation to international visitors to Japan was more effective than traditional methods as it helped them be better prepared to treat travel-related diseases and injury among international visitors. This study was registered number UMIN000020867. Funding: Grant–in-Aid for Challenging Exploratory Research 2010-2012 & 2014-16, Japanese Government. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20animation" title="digital animation">digital animation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20promotion" title=" health promotion"> health promotion</a>, <a href="https://publications.waset.org/abstracts/search?q=international%20visitor" title=" international visitor"> international visitor</a>, <a href="https://publications.waset.org/abstracts/search?q=Japan" title=" Japan"> Japan</a>, <a href="https://publications.waset.org/abstracts/search?q=nurse" title=" nurse"> nurse</a> </p> <a href="https://publications.waset.org/abstracts/50419/providing-health-promotion-information-by-digital-animation-to-international-visitors-in-japan-a-factorial-design-view-of-nurses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Absence of Developmental Change in Epenthetic Vowel Duration in Japanese Speakers’ English</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takayuki%20Konishi">Takayuki Konishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kakeru%20Yazawa"> Kakeru Yazawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Kondo"> Mariko Kondo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines developmental change in the production of epenthetic vowels by Japanese learners of English in relation to acquisition of L2 English speech rhythm. Seventy-two Japanese learners of English in the <em>J-AESOP</em> corpus were divided into lower- and higher-level learners according to their proficiency score and the frequency of vowel epenthesis. Three learners were excluded because no vowel epenthesis was observed in their utterances. The analysis of their read English speech data showed no statistical difference between lower- and higher-level learners, implying the absence of any developmental change in durations of epenthetic vowels. This result, together with the findings of previous studies, will be discussed in relation to the transfer of L1 phonology and manifestation of L2 English rhythm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vowel%20epenthesis" title="vowel epenthesis">vowel epenthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Japanese%20learners%20of%20English" title=" Japanese learners of English"> Japanese learners of English</a>, <a href="https://publications.waset.org/abstracts/search?q=L2%20speech%20corpus" title=" L2 speech corpus"> L2 speech corpus</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20rhythm" title=" speech rhythm"> speech rhythm</a> </p> <a href="https://publications.waset.org/abstracts/61343/absence-of-developmental-change-in-epenthetic-vowel-duration-in-japanese-speakers-english" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Second Language Perception of Japanese /Cju/ and /Cjo/ Sequences by Mandarin-Speaking Learners of Japanese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yili%20Liu">Yili Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Honghao%20Ren"> Honghao Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Kondo"> Mariko Kondo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of second language (L2) speech learning, it is well-known that that learner’s first language (L1) phonetic and phonological characteristics will be transferred into their L2 production and perception, which lead to foreign accent. For L1 Mandarin learners of Japanese, the confusion of /u/ and /o/ in /CjV/ sequences has been observed in their utterance frequently. L1 transfer is considered to be the cause of this issue, however, other factors which influence the identification of /Cju/ and /Cjo/ sequences still under investigation. This study investigates the perception of Japanese /Cju/ and /Cjo/ units by L1 Mandarin learners of Japanese. It further examined whether learners’ proficiency, syllable position, phonetic features of preceding consonants and background noise affect learners’ performance in perception. Fifty-two Mandarin-speaking learners of Japanese and nine native Japanese speakers were recruited to participate in an identification task. Learners were divided into beginner, intermediate and advanced level according to their Japanese proficiency. The average correct rate was used to evaluate learners’ perceptual performance. Furthermore, the comparison of the correct rate between learners’ groups and the control group was conducted as well to examine learners’ nativelikeness. Results showed that background noise tends to pose an adverse effect on distinguishing /u/ and /o/ in /CjV/ sequences. Secondly, Japanese proficiency has no influence on learners’ perceptual performance in the quiet and in background noise. Then all learners did not reach a native-like level without the distraction of noise. Beginner level learners performed less native-like, although higher level learners appeared to have achieved nativelikeness in the multi-talker babble noise. Finally, syllable position tends to affect distinguishing /Cju/ and /Cjo/ only under the noisy condition. Phonetic features of preceding consonants did not impact learners’ perception in any listening conditions. Findings in this study can give an insight into a further understanding of Japanese vowel acquisition by L1 Mandarin learners of Japanese. In addition, this study indicates that L1 transfer is not the only explanation for the confusion of /u/ and /o/ in /CjV/ sequences, factors such as listening condition and syllable position are also needed to take into consideration in future research. It also suggests the importance of perceiving speech in a noisy environment, which is close to the actual conversation required more attention to pedagogy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=background%20noise" title="background noise">background noise</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20learners%20of%20Japanese" title=" Chinese learners of Japanese"> Chinese learners of Japanese</a>, <a href="https://publications.waset.org/abstracts/search?q=%2FCju%2F%20and%20%2FCjo%2F%20sequences" title=" /Cju/ and /Cjo/ sequences"> /Cju/ and /Cjo/ sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20language%20perception" title=" second language perception"> second language perception</a> </p> <a href="https://publications.waset.org/abstracts/99626/second-language-perception-of-japanese-cju-and-cjo-sequences-by-mandarin-speaking-learners-of-japanese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Inhibitory Action of Fatty Acid Salts against Cladosporium cladosporioides and Dermatophagoides farinae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yui%20Okuno">Yui Okuno</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Fungus and mite are known as allergens that cause an allergic disease for example asthma bronchiale and allergic rhinitis. Cladosporium cladosporioides is one of the most often detected fungi in the indoor environment and causes pollution and deterioration. Dermatophagoides farinae is major mite allergens indoors. Therefore, the creation of antifungal agents with high safety and the antifungal effect is required. Fatty acid salts are known that have antibacterial activities. This report describes the effects of fatty acid salts against Cladosporium cladosporioides NBRC 30314 and Dermatophagoides farinae. Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. The antifungal method, the spore suspension (3.0×104 spores/mL) was mixed with a sample of fatty acid potassium (final concentration of 175 mM). Samples were counted at 0, 10, 60, 180 min by plating (100 µL) on PDA. Fungal colonies were counted after incubation for 3 days at 30 °C. The MIC (minimum inhibitory concentration) against the fungi was determined by the two-fold dilution method. Each fatty acid salts were inoculated separately with 400 µL of C. cladosporioides at 3.0 × 104 spores/mL. The mixtures were incubated at the respective temperature for each organism for 10 min. The tubes were then contacted with the fungi incubated at 30 °C for 7 days and examined for growth of spores on PDA. The acaricidal method, twenty D. farinae adult females were used and each adult was covered completely with 2 µL fatty acid potassium for 1 min. The adults were then dried with filter paper. The filter paper was folded and fixed by two clips and kept at 25 °C and 64 % RH. Mortalities were determained 48 h after treatment under the microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that C8K, C10K, C12K, C14K was effective to decrease survival rate (4 log unit) of the fatty acids potassium incubated time for 10 min against C. cladosporioides. C18:3K was effective to decrease 4 log unit of the fatty acids potassium incubated time for 60 min. Especially, C12K was the highest antifungal activity and the MIC of C12K was 0.7 mM. On the other hand, the fatty acids potassium showed no acaricidal effects against D. farinae. The activity of D. farinae was not adversely affected after 48 hours. These results indicate that C12K has high antifungal activity against C. cladosporioides and suggest the fatty acid potassium will be used as an antifungal agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title="fatty acid salts">fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20effects" title=" antifungal effects"> antifungal effects</a>, <a href="https://publications.waset.org/abstracts/search?q=acaricidal%20effects" title=" acaricidal effects"> acaricidal effects</a>, <a href="https://publications.waset.org/abstracts/search?q=Cladosporium%20cladosporioides" title=" Cladosporium cladosporioides"> Cladosporium cladosporioides</a>, <a href="https://publications.waset.org/abstracts/search?q=Dermatophagoides%20farinae" title=" Dermatophagoides farinae "> Dermatophagoides farinae </a> </p> <a href="https://publications.waset.org/abstracts/33500/inhibitory-action-of-fatty-acid-salts-against-cladosporium-cladosporioides-and-dermatophagoides-farinae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Anti-Acanthamoeba Activities of Fatty Acid Salts and Fatty Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manami%20Masuda">Manami Masuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Fatty acid salts are a type of anionic surfactant and are produced from fatty acids and alkali. Moreover, fatty acid salts are known to have potent antibacterial activities. Acanthamoeba is ubiquitously distributed in the environment including sea water, fresh water, soil and even from the air. Although generally free-living, Acanthamoeba can be an opportunistic pathogen, which could cause a potentially blinding corneal infection known as Acanthamoeba keratitis. So, in this study, we evaluated the anti-amoeba activity of fatty acid salts and fatty acids to Acanthamoeba castellanii ATCC 30010. Materials and Methods: The antibacterial activity of 9 fatty acid salts (potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K), linolenate (C18:3K)) tested on cells of Acanthamoeba castellanii ATCC 30010. Fatty acid salts (concentration of 175 mM and pH 10.5) were prepared by mixing the fatty acid with the appropriate amount of KOH. The amoeba suspension mixed with KOH with a pH adjusted solution was used as the control. Fatty acids (concentration of 175 mM) were prepared by mixing the fatty acid with Tween 80 (20 %). The amoeba suspension mixed with Tween 80 (20 %) was used as the control. The anti-amoeba method, the amoeba suspension (3.0 × 104 cells/ml trophozoites) was mixed with the sample of fatty acid potassium (final concentration of 175 mM). Samples were incubated at 30°C, for 10 min, 60 min, and 180 min and then the viability of A. castellanii was evaluated using plankton counting chamber and trypan blue stainings. The minimum inhibitory concentration (MIC) against Acanthamoeba was determined using the two-fold dilution method. The MIC was defined as the minimal anti-amoeba concentration that inhibited visible amoeba growth following incubation (180 min). Results: C8K, C10K, and C12K were the anti-amoeba effect of 4 log-unit (99.99 % growth suppression of A. castellanii) incubated time for 180 min against A. castellanii at 175mM. After the amoeba, the suspension was mixed with C10K or C12K, destroying the cell membrane had been observed. Whereas, the pH adjusted control solution did not exhibit any effect even after 180 min of incubation with A. castellanii. Moreover, C6, C8, and C18:3 were the anti-amoeba effect of 4 log-unit incubated time for 60 min. C4 and C18:2 exhibited a 4-log reduction after 180 min incubation. Furthermore, the minimum inhibitory concentration (MIC) was determined. The MIC of C10K, C12K and C4 were 2.7 mM. These results indicate that C10K, C12K and C4 have high anti-amoeba activity against A. castellanii and suggest C10K, C12K and C4 have great potential for antimi-amoeba agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatty%20acid%20salts" title="Fatty acid salts">Fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-amoeba%20activities" title=" anti-amoeba activities"> anti-amoeba activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Acanthamoeba" title=" Acanthamoeba"> Acanthamoeba</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/33499/anti-acanthamoeba-activities-of-fatty-acid-salts-and-fatty-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Effects of Fatty Acid Salts and Spices on Dermatophagoides farinae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yumeho%20Obata">Yumeho Obata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dermatophagoides farinae is major mite allergens in indoors. D. farinae is often swarm over powder products (e.g. wheat flour), because it feeds on starch or protein that are included in them. Eating powder products which are mixed D.farinae causes various allergic symptoms. Therefore, the creation of food additive agents with high safety and control of mite effect is required. Fatty acid salts and spices are known that have pesticidal activities. This study describes the effects of fatty acid salts and spices against Dermatophagoides farinae. Materials and Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. C12Cu and C12Zn were selected as other fatty acid salts. Cayenne pepper, habanero, Japanese pepper, mustard, jalapeno pepper, curry aroma and cinnamon were selected as spices. D. farina, have been cultured in laboratory. To rear the mites, double-soled dishes containing of sterilized food were put on the big plastic container (30.0 × 20.0 × 20.0cm) which had 100% ammonium nitrate solution in the bottom. Plastic container was placed on incubator at 25 °C and 64 % relative humidity (RH) under dark condition. Sterilized food composed of dried bonito flakes and dried yeast (Ebios), 1:1 by weight. The antiproliferative method, sample and medium culture were mixed in double-soled dish and kept at 25 °C and 64 % RH. Decrease rates were determined 1 week and 4 week after treatment under microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that the fatty acids potassium showed no antiproliferative effects against D. farinae. On the other hand, Japanese pepper, mustard, curry aroma and cinnamon were effective to decrease propagative rate (over 80 %) after treatment for 1 week against D. farina. Japanese pepper, curry aroma and cinnamon were effective to decrease propagative rate (approximately 100 %) after treatment for 4 weeks against D. farina. Especially, Japanese pepper and cinnamon showed the fasted and the most consecutive antiproliferative effects. These results indicate that Japanese pepper and cinnamon have high antiproliferative effects against D. farina and suggest spices will be used as a food additive agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title="fatty acid salts">fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=spices" title=" spices"> spices</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20effects" title=" antiproliferative effects"> antiproliferative effects</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatophagoides%20farinae" title=" dermatophagoides farinae"> dermatophagoides farinae</a> </p> <a href="https://publications.waset.org/abstracts/49384/effects-of-fatty-acid-salts-and-spices-on-dermatophagoides-farinae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Application of Fatty Acid Salts for Antimicrobial Agents in Koji-Muro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aya%20Tanaka">Aya Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiho%20Sakai"> Shiho Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Aspergillus niger and Aspergillus oryzae are used as koji fungi in the spot of the brewing. Since koji-muro (room for making koji) was a low level of airtightness, microbial contamination has long been a concern to the alcoholic beverage production. Therefore, we focused on the fatty acid salt which is the main component of soap. Fatty acid salts have been reported to show some antibacterial and antifungal activity. So this study examined antimicrobial activities against Aspergillus and Bacillus spp. This study aimed to find the effectiveness of the fatty acid salt in koji-muro as antimicrobial agents. Materials & Methods: A. niger NBRC 31628, A. oryzae NBRC 5238, A. oryzae (Akita Konno store) and Bacillus subtilis NBRC 3335 were chosen as tested. Nine fatty acid salts including potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K) and linolenate (C18:3K) at 350 mM and pH 10.5 were used as antimicrobial activity. FASs and spore suspension were prepared in plastic tubes. The spore suspension of each fungus (3.0×104 spores/mL) or the bacterial suspension (3.0×105 CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). The mixtures were incubated at 25 ℃. Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 ℃. The MIC (minimum inhibitory concentration) is defined as the lowest concentration of drug sufficient for inhibiting visible growth of spore after 10 min of incubation. MICs against fungi and bacteria were determined using the two-fold dilution method. Each fatty acid salt was separately inoculated with 400 µL of Aspergillus spp. or B. subtilis NBRC 3335 at 3.0 × 104 spores/mL or 3.0 × 105 CFU/mL. Results: No obvious change was observed in tested fatty acid salts against A. niger and A. oryzae. However, C12K was the antibacterial effect of 5 log-unit incubated time for 10 min against B. subtilis. Thus, C12K suppressed 99.999 % of bacterial growth. Besides, C10K was the antibacterial effect of 5 log-unit incubated time for 180 min against B. subtilis. C18:1K, C18:2K and C18:3K was the antibacterial effect of 5 log-unit incubated time for 10 min against B. subtilis. However, compared to saturated fatty acid salts to unsaturated fatty acid salts, saturated fatty acid salts are lower cost. These results suggest C12K has potential in the field of koji-muro. It is necessary to evaluate the antimicrobial activity against other fungi and bacteria, in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspergillus" title="Aspergillus">Aspergillus</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title=" fatty acid salts"> fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=koji-muro" title=" koji-muro"> koji-muro</a> </p> <a href="https://publications.waset.org/abstracts/33537/application-of-fatty-acid-salts-for-antimicrobial-agents-in-koji-muro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Antimicrobial Activity of Fatty Acid Salts against Microbes for Food Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aya%20Tanaka">Aya Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Manami%20Masuda"> Manami Masuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Yui%20Okuno"> Yui Okuno</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives— Fungi and bacteria are present in a wide range of natural environments. They are breed in the foods such as vegetables and fruit, causing corruption and deterioration of these foods in some cases. Furthermore, some species of fungi and bacteria are known to cause food intoxication or allergic reactions in some individuals. To prevent fungal and bacterial contamination, various fungicides and bactericidal have been developed that inhibit fungal and bacterial growth. Fungicides and bactericides must show high antifungal and antibacterial activity, sustainable activity, and a high degree of safety. Therefore, we focused on the fatty acid salt which is the main component of soap. We focused on especially C10K and C12K. This study aimed to find the effectiveness of the fatty acid salt as antimicrobial agents for food safety. Materials and Methods— Cladosporium cladosporioides NBRC 30314, Penicillium pinophilum NBRC 6345, Aspergillus oryzae (Akita Konno store), Rhizopus oryzae NBRC 4716, Fusarium oxysporum NBRC 31631, Escherichia coli NBRC 3972, Bacillus subtilis NBRC 3335, Staphylococcus aureus NBRC 12732, Pseudomonas aenuginosa NBRC 13275 and Serratia marcescens NBRC 102204 were chosen as tested fungi and bacteria. Hartmannella vermiformis NBRC 50599 and Acanthamoeba castellanii NBRC 30010 were chosen as tested amoeba. Nine fatty acid salts including potassium caprate (C10K) and laurate (C12K) at 350 mM and pH 10.5 were used as antifungal activity. The spore suspension of each fungus (3.0×10⁴ spores/mL) or the bacterial suspension (3.0×10⁵ or 3.0×10⁶ or 3.0×10⁷ CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar or nutrient agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 °C. Results— C10K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than A. oryzae. C12K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than P. pinophilum and A. oryzae. C10K and C12K did not show high anti-yeast activity. C10K was antibacterial activity of 6 or 7 log-unit incubated time for 10 min against bacteria other than B. subtilis. C12K was antibacterial activity of 5 to 7 log-unit incubated time for 10 min against bacteria other than S. marcescens. C12K was anti-amoeba activity of 4 log-unit incubated time for 10 min against H. vermiformis. These results suggest C10K and C12K have potential in the field of food safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title="food safety">food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=microbes" title=" microbes"> microbes</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title=" fatty acid salts"> fatty acid salts</a> </p> <a href="https://publications.waset.org/abstracts/49376/antimicrobial-activity-of-fatty-acid-salts-against-microbes-for-food-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Antimicrobial Activity of Igusa and the Application to Foam Materials for Food Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Nanako">I. Nanako</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Japanese uses TATAMI rather than flooring at home. Igusa ( Juncus effuses var. decipiens ), which is commonly known in the forms of TATAMI. Juncus spp. grow at a relatively high humidity area (Japan, China and Southeast Asia ). Yatsushiro region in the southern part of Kumamoto prefecture is major produing area of Igusa. Igusa found to have honeycomb structure and was also shown to have the ability to control humidity. And Igusa has been used as a medicinal herb for diuretic and antiphlogistic agent. In previous study, we investigated antimicrobial effects of Igusa, and showed high antimicrobial activity against food poisoning bacteria. Therefore, the food trays blended Igusa can be kept clean by antimicrobial activity of Igusa. We focus on ‘Igusa foam materials’. In this study, we investigated the antibacterial and antifungal activity of Igusa, and new application to foam materials for food industry. Materials and method: We used Igusa foam materials (3 × 3 × 3 cm) as a sample. We set about fifteen types of samples combined with a commercial antibacterial agent A, a commercial antibacterial agent B, potassium laurate (C12K) and a commercial antifungal agent C, a commercial antifungal agent D and a commercial antifungal agent E. We selected four bacteria strains (Escherichia coli NBRC 3972, Staphylococus aureus NBRC 12732, Salmonella typhimurium NBRC 13245, Bacillus subtilis NBRC 3335 ) and three fungus strains (Penicillium pinophilum NBRC 6345, Cladosporium cladosporioides NBRC 30314, Aspergillus oryzae NBRC 5238 ). The fungus was cultured at 30 °C on Igusa foam materials after inoculation of the fungus for fourteen days. The bacteria was cultured at 30 °C on Igusa foam materials after inoculation of the bacteria for three days. And the Igusa foam materials were washed with 10 mL normal saline after three days. The normal saline washed Igusa foam materials plated the NA medium. After, It was cultured at 30 °C and used colony counting method. Result and Conclusion: The fifteen types of sample of Igusa foam materials had antifungal activity against C. cladosporioides, A. oryzae and P. pinophilum for fourteen days. The four types of sample contained potassium laurate and antibacterial agent A, sample contained antibacterial agent B and antifungal agent D, sample contained A and antifungal agent E, sample contained B and E had antibacterial activity against B. subtilis. The three types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E had antibacterial activity against S. typhimurium. The five types of sample contained potassium laurate and A, sample contained B and D, sample contained A and E, sample contained B and E, sample contained B and antifungal agent C had antibacterial activity against E. coli and S. aureus. These results indicate that Igusa of Igusa foam materials had high antifungal activity. In addition, Igusa foam materials combined with a commercial antibacterial agent had antibacterial activity. In the future, we consider that use of Igusa foam materials may be spread from food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal" title=" antifungal"> antifungal</a>, <a href="https://publications.waset.org/abstracts/search?q=foam%20materials" title=" foam materials"> foam materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Igusa" title=" Igusa"> Igusa</a> </p> <a href="https://publications.waset.org/abstracts/49379/antimicrobial-activity-of-igusa-and-the-application-to-foam-materials-for-food-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Bactericidal Efficacy of Quaternary Ammonium Compound on Carriers with Food Additive Grade Calcium Hydroxide against Salmonella Infantis and Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahin%20Alam">M. Shahin Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Satoru%20Takahashi"> Satoru Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Itoh"> Mariko Itoh</a>, <a href="https://publications.waset.org/abstracts/search?q=Miyuki%20Komura"> Miyuki Komura</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayuko%20Suzuki"> Mayuko Suzuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Natthanan%20%20Sangsriratanakul"> Natthanan Sangsriratanakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuaki%20Takehara"> Kazuaki Takehara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cleaning and disinfection are key components of routine biosecurity in livestock farming and food processing industry. The usage of suitable disinfectants and their proper concentration are important factors for a successful biosecurity program. Disinfectants have optimum bactericidal and virucidal efficacies at temperatures above 20°C, but very few studies on application and effectiveness of disinfectants at low temperatures have been done. In the present study, the bactericidal efficacies of food additive grade calcium hydroxide (FdCa(OH)), quaternary ammonium compound (QAC) and their mixture, were investigated under different conditions, including time, organic materials (fetal bovine serum: FBS) and temperature, either in suspension or in carrier test. Salmonella Infantis and Escherichia coli, which are the most prevalent gram negative bacteria in commercial poultry housing and food processing industry, were used in this study. Initially, we evaluated these disinfectants at two different temperatures (4°C and room temperature (RT) (25°C ± 2°C)) and 7 contact times (0, 5 and 30 sec, 1, 3, 20 and 30 min), with suspension tests either in the presence or absence of 5% FBS. Secondly, we investigated the bactericidal efficacies of these disinfectants by carrier tests (rubber, stainless steel and plastic) at same temperatures and 4 contact times (30 sec, 1, 3, and 5 min). Then, we compared the bactericidal efficacies of each disinfectant within their mixtures, as follows. When QAC was diluted with redistilled water (dW2) at 1: 500 (QACx500) to obtain the final concentration of didecyl-dimethylammonium chloride (DDAC) of 200 ppm, it could inactivate Salmonella Infantis within 5 sec at RT either with or without 5% FBS in suspension test; however, at 4°C it required 30 min in presence of 5% FBS. FdCa(OH)2 solution alone could inactivate bacteria within 1 min both at RT and 4°C even with 5% FBS. While FdCa(OH)2 powder was added at final concentration 0.2% to QACx500 (Mix500), the mixture could inactivate bacteria within 30 sec and 5 sec, respectively, with or without 5% FBS at 4°C. The findings from the suspension test indicated that low temperature inhibited the bactericidal efficacy of QAC, whereas Mix500 was effective, regardless of short contact time and low temperature, even with 5% FBS. In the carrier test, single disinfectant required bit more time to inactivate bacteria on rubber and plastic surfaces than on stainless steel. However, Mix500 could inactivate S. Infantis on rubber, stainless steel and plastic surfaces within 30 sec and 1 min, respectively, at RT and 4°C; but, for E. coli, it required only 30 sec at both temperatures. So, synergistic effects were observed on different carriers at both temperatures. For a successful enhancement of biosecurity during winter, the disinfectants should be selected that could have short contact times with optimum efficacy against the target pathogen. The present study findings help farmers to make proper strategies for application of disinfectants in their livestock farming and food processing industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carrier" title="carrier">carrier</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20additive%20grade%20calcium%20hydroxide%20%28FdCa%28OH%29%E2%82%82%29" title=" food additive grade calcium hydroxide (FdCa(OH)₂)"> food additive grade calcium hydroxide (FdCa(OH)₂)</a>, <a href="https://publications.waset.org/abstracts/search?q=quaternary%20ammonium%20compound" title=" quaternary ammonium compound"> quaternary ammonium compound</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic%20effects" title=" synergistic effects"> synergistic effects</a> </p> <a href="https://publications.waset.org/abstracts/81553/bactericidal-efficacy-of-quaternary-ammonium-compound-on-carriers-with-food-additive-grade-calcium-hydroxide-against-salmonella-infantis-and-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Reflections on the Trajectory of an Online Literature Cafe through Its Music and Arts Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Hara">Mariko Hara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mari%20Aoki"> Mari Aoki</a>, <a href="https://publications.waset.org/abstracts/search?q=Takako%20Ito"> Takako Ito</a>, <a href="https://publications.waset.org/abstracts/search?q=Masao%20Sugita"> Masao Sugita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social distancing measures due to the COVID-19 crisis had a severe impact on music and art practices based in community settings. They had to re-think how to connect with their dispersed community using online tools. As the social distancing continues, there is an urgent need to investigate the possibilities of online community music and art practices. Are they sustainable actions that can have positive impacts on the community and the quality of lives of people over time? The Online Lindgren Café (hereafter ‘OLC’) is a monthly online literature event which started in June 2020. In the OLC, up to 14 members meet online to discuss the works of Astrid Lindgren and similar authors. Members come from various places in Japan and Norway, with a variety of expertise from music therapy, music education, psychotherapy, music sociology, storytelling, and theatre, and their family members join them. In these meetings, music and arts activities emerged in response to interests among the members. The resources and experiences of the members helped to develop these activities further. This paper first introduces one of the music and art activities in one specific event, a collaborative picture book-making with music, which was initiated and led by the second author. The third author chose the music, and the activity itself was recorded. This is followed by the description of a reflecting event, where the recording of the collaborative picture book-making activity was shared to facilitate further creations (drawings, haiku, and fabric weaving) as well as group reflections on the trajectories of the Online Lindgren Café. Finally, we will discuss the preliminary findings using the data collected at the reflecting event. Key findings suggest that the resource-driven approach of the OLC leveled the relationships among the intergenerational, multi-cultural, and interdisciplinary members. This enabled the members to set aside their professional and/or predominant identities, which allowed them to discover their own and others’ resources. The relaxed, unstructured, and liminal phenomenon at OLC can be regarded as a form of communitas, where members gain a sense of liberation and belonging in a different way from in-person communications. Participation from one’s home, as well as a video conferencing function that allowed the members to position themselves among the other participants in equal-sized windows, seems to have enabled members to feel safe to express themselves openly at the same time feel a sense of belonging. Furthermore, in the OLC, music and arts activities acted to inclusively connect and re-connect dispersed, intergenerational members with each other. For instance, in a music and drawing activity, music acted as a means for each member to engage in their own ‘drawing space’ while still feeling connected with the others. The positive experiences from these activities inspired the members to use similar approaches outside of the OLC. The finding suggests that, because of its resource-driven approach supported by the music and arts activities, the OLC could be developed further as a permeable and sustainable action even after any current social distancing measures are lifted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communitas" title="communitas">communitas</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title=" COVID-19"> COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=musical%20affordances" title=" musical affordances"> musical affordances</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20community%20of%20practices" title=" online community of practices"> online community of practices</a>, <a href="https://publications.waset.org/abstracts/search?q=resource-driven%20approach" title=" resource-driven approach"> resource-driven approach</a> </p> <a href="https://publications.waset.org/abstracts/135021/reflections-on-the-trajectory-of-an-online-literature-cafe-through-its-music-and-arts-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10