CINXE.COM
Search results for: Nusselt Number
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Nusselt Number</title> <meta name="description" content="Search results for: Nusselt Number"> <meta name="keywords" content="Nusselt Number"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Nusselt Number" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Nusselt Number"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3607</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Nusselt Number</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3607</span> Numerical Investigation of the Effect of Number of Waves on Heat Transfer in a Wavy Wall Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ali%20Reza%20Tahavvor">Ali Reza Tahavvor</a>, <a href="https://publications.waset.org/search?q=Saeed%20Hosseini"> Saeed Hosseini</a>, <a href="https://publications.waset.org/search?q=Afshin%20Karimzadeh%20Fard"> Afshin Karimzadeh Fard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper the effect of wall waviness of side walls in a two-dimensional wavy enclosure is numerically investigated. Two vertical wavy walls and straight top wall are kept isothermal and the bottom wall temperature is higher and spatially varying with cosinusoidal temperature distribution. A computational code based on Finite-volume approach is used to solve governing equations and SIMPLE method is used for pressure velocity coupling. Test is performed for several different numbers of undulations. The Prandtl number was kept constant and the Ra number denotes that the flow is laminar. Temperature and velocity fields are determined. Therefore, according to the obtained results a correlation is proposed for average Nusselt number as a function of number of side wall waves. The results indicate that the Nusselt number is highly affected by number of waves and increasing it decreases the wavy walls Nusselt number; although the Nusselt number is not highly affected by surface waviness when the number of undulations is below one.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cavity" title="Cavity">Cavity</a>, <a href="https://publications.waset.org/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/search?q=wavy%0D%0Awall." title=" wavy wall."> wavy wall.</a> </p> <a href="https://publications.waset.org/9999773/numerical-investigation-of-the-effect-of-number-of-waves-on-heat-transfer-in-a-wavy-wall-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999773/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999773/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999773/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999773/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999773/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999773/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999773/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999773/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999773/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999773/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2358</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3606</span> Numerical Evaluation of Nusselt Number on the Hot Wall in Square Enclosure Filled with Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Ghafouri">A. Ghafouri</a>, <a href="https://publications.waset.org/search?q=A.%20Falavand%20Jozaei"> A. Falavand Jozaei</a>, <a href="https://publications.waset.org/search?q=M.%20Salari"> M. Salari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, effects of using Alumina-water nanofluid on the rate of heat transfer have been investigated numerically. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the Richardson number 0.1 to 10 and the solid volume fraction 0 to 0.04. Results are presented by isotherms lines, average Nusselt number and normalized Nusselt number in different range of φ and Ri for forced, combined and natural convection dominated regime. It is found that higher heat transfer rate is predicted when the effects of nanoparticle is taken into account.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nanofluid" title="Nanofluid">Nanofluid</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer%20Enhancement" title=" Heat Transfer Enhancement"> Heat Transfer Enhancement</a>, <a href="https://publications.waset.org/search?q=Square%0D%0AEnclosure" title=" Square Enclosure"> Square Enclosure</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number." title=" Nusselt number."> Nusselt number.</a> </p> <a href="https://publications.waset.org/10000932/numerical-evaluation-of-nusselt-number-on-the-hot-wall-in-square-enclosure-filled-with-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000932/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000932/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000932/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000932/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000932/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000932/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000932/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000932/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000932/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000932/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2336</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3605</span> Fourth Order Accurate Free Convective Heat Transfer Solutions from a Circular Cylinder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20V.%20S.%20Sekhar">T. V. S. Sekhar</a>, <a href="https://publications.waset.org/search?q=B.%20Hema%20Sundar%20Raju"> B. Hema Sundar Raju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laminar natural-convective heat transfer from a horizontal cylinder is studied by solving the Navier-Stokes and energy equations using higher order compact scheme in cylindrical polar coordinates. Results are obtained for Rayleigh numbers of 1, 10, 100 and 1000 for a Prandtl number of 0.7. The local Nusselt number and mean Nusselt number are calculated and compared with available experimental and theoretical results. Streamlines, vorticity - lines and isotherms are plotted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Higher%20order%20compact%20scheme" title="Higher order compact scheme">Higher order compact scheme</a>, <a href="https://publications.waset.org/search?q=Navier-Stokes%0Aequations" title=" Navier-Stokes equations"> Navier-Stokes equations</a>, <a href="https://publications.waset.org/search?q=Energy%20equation" title=" Energy equation"> Energy equation</a>, <a href="https://publications.waset.org/search?q=Natural%20convection" title=" Natural convection"> Natural convection</a>, <a href="https://publications.waset.org/search?q=Boussinesq%27s%0Aapproximation%20and%20Mean%20Nusselt%20number." title=" Boussinesq's approximation and Mean Nusselt number."> Boussinesq's approximation and Mean Nusselt number.</a> </p> <a href="https://publications.waset.org/13832/fourth-order-accurate-free-convective-heat-transfer-solutions-from-a-circular-cylinder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13832/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13832/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13832/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13832/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13832/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13832/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13832/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13832/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13832/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13832/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1662</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3604</span> Effect of Nanoparticle Diameter of Nano-Fluid on Average Nusselt Number in the Chamber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Ghafouri">A. Ghafouri</a>, <a href="https://publications.waset.org/search?q=N.%20Pourmahmoud"> N. Pourmahmoud</a>, <a href="https://publications.waset.org/search?q=I.%20Mirzaee"> I. Mirzaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this numerical study, effects of using Al2O3-water nanofluid on the rate of heat transfer have been investigated. Physical model is a square enclosure with insulated top and bottom horizontal walls, while the vertical walls are kept at different constant temperatures. Two appropriate models are used to evaluate the viscosity and thermal conductivity of nanofluid. The governing stream-vorticity equations are solved using a second order central finite difference scheme, coupled to the conservation of mass and energy. The study has been carried out for the nanoparticle diameter 30, 60 and 90 nm and the solid volume fraction 0 to 0.04. Results are presented by average Nusselt number and normalized Nusselt number in different range of 蠁 and D for mixed convection dominated regime. It is found that different heat transfer rate is predicted when the effect of nanoparticle diameter is taken into account. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nano-fluid" title="Nano-fluid">Nano-fluid</a>, <a href="https://publications.waset.org/search?q=nanoparticle%20diameter" title=" nanoparticle diameter"> nanoparticle diameter</a>, <a href="https://publications.waset.org/search?q=heat%20transfer%0D%0Aenhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/search?q=square%20enclosure" title=" square enclosure"> square enclosure</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number." title=" Nusselt number."> Nusselt number.</a> </p> <a href="https://publications.waset.org/10002748/effect-of-nanoparticle-diameter-of-nano-fluid-on-average-nusselt-number-in-the-chamber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002748/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002748/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002748/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002748/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002748/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002748/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002748/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002748/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002748/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002748/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1694</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3603</span> Numerical Simulation on Heat Transfer Enhancement in Channel by Triangular Ribs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tuqa%20Abdulrazzaq"> Tuqa Abdulrazzaq</a>, <a href="https://publications.waset.org/search?q=Hussein%20Togun"> Hussein Togun</a>, <a href="https://publications.waset.org/search?q=M.%20K.%20A.%20Ariffin"> M. K. A. Ariffin</a>, <a href="https://publications.waset.org/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/search?q=NM%20Adam"> NM Adam</a>, <a href="https://publications.waset.org/search?q=S.%20Masuri"> S. Masuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Turbulent heat transfer to fluid flow through channel with triangular ribs of different angles are presented in this paper. Ansys 14 ICEM and Ansys 14 Fluent are used for meshing process and solving Navier stokes equations respectively. In this investigation three angles of triangular ribs with the range of Reynolds number varied from 20000 to 60000 at constant surface temperature are considered. The results show that the Nusselt number increases with the increase of Reynolds number for all cases at constant surface temperature. According to the profile of local Nusselt number on ribs walled of channel, the peak is at the midpoint between the two ribs. The maximum value of average Nusselt number is obtained for triangular ribs of angel 60°and at Reynolds number of 60000 compared to the Nusselt number for the ribs of angel 90° and 45° and at same Reynolds number. The recirculation regions generated by the ribs corresponding to the velocity streamline show the largest recirculation region at triangular ribs of angle 60° which also provides the highest enhancement of heat transfer.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ribs%20channel" title=" Ribs channel"> Ribs channel</a>, <a href="https://publications.waset.org/search?q=Turbulent%20flow" title=" Turbulent flow"> Turbulent flow</a>, <a href="https://publications.waset.org/search?q=Heat%20transfer%20enhancement" title=" Heat transfer enhancement"> Heat transfer enhancement</a>, <a href="https://publications.waset.org/search?q=Recirculation%20flow." title=" Recirculation flow."> Recirculation flow.</a> </p> <a href="https://publications.waset.org/16057/numerical-simulation-on-heat-transfer-enhancement-in-channel-by-triangular-ribs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16057/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16057/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16057/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16057/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16057/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16057/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16057/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16057/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16057/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16057/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3208</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3602</span> Numerical and Experimental Investigations on Jet Impingement Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Arun%20Jacob">Arun Jacob</a>, <a href="https://publications.waset.org/search?q=Leena%20R."> Leena R.</a>, <a href="https://publications.waset.org/search?q=Krishnakumar%20T.S."> Krishnakumar T.S.</a>, <a href="https://publications.waset.org/search?q=Jose%20Prakash%20M."> Jose Prakash M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective cooling of electronic equipment has emerged as a challenging and constraining problem of the new century. In the present work the feasibility and effectiveness of jet impingement cooling on electronics were investigated numerically and experimentally. Studies have been conducted to see the effect of the geometrical parameters such as jet diameter (D), jet to target spacing (Z) and ratio of jet spacing to jet diameter (Z/D) on the heat transfer characteristics. The values of Reynolds numbers considered are in the range 7000 to 42000. The results obtained from the numerical studies are validated by conducting experiments. From the studies it is found that the optimum value of Z/D ratio is 5. For a given Reynolds number, the Nusselt number increases by about 28% if the diameter of the nozzle is increased from 1mm to 2mm. Correlations are proposed for Nusselt number in terms of Reynolds number and these are valid for air as the cooling medium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/search?q=heat%20transfer%20coefficient" title=" heat transfer coefficient"> heat transfer coefficient</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/search?q=ratio%20of%20jet%20diameter%20to%20jet%20spacing%20%28Z%2FD%29" title=" ratio of jet diameter to jet spacing (Z/D)"> ratio of jet diameter to jet spacing (Z/D)</a>, <a href="https://publications.waset.org/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/search?q=turbulence%20model." title=" turbulence model."> turbulence model.</a> </p> <a href="https://publications.waset.org/5090/numerical-and-experimental-investigations-on-jet-impingement-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5090/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5090/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5090/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5090/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5090/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5090/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5090/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5090/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5090/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5090/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2701</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3601</span> Heat Transfer to Laminar Flow over a Double Backward-Facing Step </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hussein%20Togun">Hussein Togun</a>, <a href="https://publications.waset.org/search?q=Tuqa%20Abdulrazzaq"> Tuqa Abdulrazzaq</a>, <a href="https://publications.waset.org/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/search?q=A.%20Badarudin"> A. Badarudin</a>, <a href="https://publications.waset.org/search?q=M.%20K.%20A.%20Ariffin"> M. K. A. Ariffin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-蓻 standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream are insulated with bottom of downstream is heated. The results show increase in Nusselt number with increases of Reynolds number for all cases and the maximum of Nusselt number happens at the first step in compared to the second step. Due to increase of cross section area of downstream to generate sudden expansion then Nusselt number decrease but the profile of Nusselt number keep same trend for all cases where increase after the first and second steps. Recirculation region after the first and second steps are denoted by contour of streamline velocity. The higher augmentation of heat transfer rate observed for case 1 at Reynolds number of 512 and heat flux q=2000 W/m<sup>2</sup>.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Laminar%20flow" title="Laminar flow">Laminar flow</a>, <a href="https://publications.waset.org/search?q=Double%20backward" title=" Double backward"> Double backward</a>, <a href="https://publications.waset.org/search?q=Separation%20flow" title=" Separation flow"> Separation flow</a>, <a href="https://publications.waset.org/search?q=Recirculation%20flow." title=" Recirculation flow."> Recirculation flow.</a> </p> <a href="https://publications.waset.org/16835/heat-transfer-to-laminar-flow-over-a-double-backward-facing-step" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16835/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16835/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16835/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16835/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16835/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16835/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16835/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16835/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16835/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16835/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3508</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3600</span> Fluid Flow and Heat Transfer Structures of Oscillating Pipe Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yan%20Su">Yan Su</a>, <a href="https://publications.waset.org/search?q=Jane%20H.%20Davidson"> Jane H. Davidson</a>, <a href="https://publications.waset.org/search?q=F.%20A.%20Kulacki"> F. A. Kulacki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The RANS method with Saffman-s turbulence model was employed to solve the time-dependent turbulent Navier-Stokes and energy equations for oscillating pipe flows. The method of partial sums of the Fourier series is used to analyze the harmonic velocity and temperature results. The complete structures of the oscillating pipe flows and the averaged Nusselt numbers on the tube wall are provided by numerical simulation over wide ranges of ReA and ReR. Present numerical code is validated by comparing the laminar flow results to analytic solutions and turbulence flow results to published experimental data at lower and higher Reynolds numbers respectively. The effects of ReA and ReR on the velocity, temperature and Nusselt number distributions have been di scussed. The enhancement of the heat transfer due to oscillating flows has also been presented. By the way of analyzing the overall Nusselt number over wide ranges of the Reynolds number Re and Keulegan- Carpenter number KC, the optimal ratio of the tube diameter over the oscillation amplitude is obtained based on the existence of a nearly constant optimal KC number. The potential application of the present results in sea water cooling has also been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Keulegan-Carpenter%20number" title="Keulegan-Carpenter number">Keulegan-Carpenter number</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/search?q=Oscillating%20pipe%20flows" title="Oscillating pipe flows">Oscillating pipe flows</a>, <a href="https://publications.waset.org/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a> </p> <a href="https://publications.waset.org/12011/fluid-flow-and-heat-transfer-structures-of-oscillating-pipe-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12011/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12011/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12011/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12011/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12011/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12011/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12011/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12011/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12011/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12011/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2475</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3599</span> Natural Convection Heat Transfer from Inclined Cylinders: A Unified Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Neetu%20Rani">Neetu Rani</a>, <a href="https://publications.waset.org/search?q=Hema%20Setia"> Hema Setia</a>, <a href="https://publications.waset.org/search?q=Marut%20Dutt.%20R.K.%20Wanchoo"> Marut Dutt. R.K. Wanchoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>An empirical correlation for predicting the heat transfer coefficient for a cylinder under free convection, inclined at any arbitrary angle with the horizontal has been developed in terms of Nusselt number, Prandtl number and Grashof number. Available experimental data was used to determine the parameters for the proposed correlation. The proposed correlation predicts the available data well within ±10%, for Prandtl number in the range 0.68-0.72 and Grashof number in the range 1.4×10<sup>4</sup>–1.2×10<sup>10</sup>.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer" title="Heat transfer">Heat transfer</a>, <a href="https://publications.waset.org/search?q=inclined%20cylinders" title=" inclined cylinders"> inclined cylinders</a>, <a href="https://publications.waset.org/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/search?q=Prandtl%20number" title=" Prandtl number"> Prandtl number</a>, <a href="https://publications.waset.org/search?q=Grashof%20number." title=" Grashof number. "> Grashof number. </a> </p> <a href="https://publications.waset.org/9997332/natural-convection-heat-transfer-from-inclined-cylinders-a-unified-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997332/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997332/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997332/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997332/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997332/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997332/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997332/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997332/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997332/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997332/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5953</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3598</span> Simulation of Natural Convection Flow in an Inclined open Cavity using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Sajjadi">H. Sajjadi</a>, <a href="https://publications.waset.org/search?q=M.%20Gorji"> M. Gorji</a>, <a href="https://publications.waset.org/search?q=GH.R.%20Kefayati"> GH.R. Kefayati</a>, <a href="https://publications.waset.org/search?q=D.%20D.%20Ganji"> D. D. Ganji</a>, <a href="https://publications.waset.org/search?q=M.%20Shayan%20nia"> M. Shayan nia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper effects of inclination angle on natural convection flow in an open cavity has been analyzed with Lattice Boltzmann Method (LBM).The angle of inclination varied from 胃= - 45掳 to 45掳 with 15掳 intervals. Study has been conducted for Rayleigh numbers (Ra) 104 to 106. The comparisons show that the average Nusselt number increases with growth of Rayleigh number and the average Nusselt number increase as inclination angles increases at Ra=104.At Ra=105 and Ra=106 the average Nusselt number enhance as inclination angels varied from 胃= -45掳 to 胃= 0掳 and decrease as inclination angels increase in 胃= 0掳 to 胃= 45掳. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lattice%20Boltzmann%20Method" title="Lattice Boltzmann Method">Lattice Boltzmann Method</a>, <a href="https://publications.waset.org/search?q=Inclination%20angle" title=" Inclination angle"> Inclination angle</a>, <a href="https://publications.waset.org/search?q=Opencavity" title=" Opencavity"> Opencavity</a>, <a href="https://publications.waset.org/search?q=Natural%20convection" title=" Natural convection"> Natural convection</a> </p> <a href="https://publications.waset.org/15562/simulation-of-natural-convection-flow-in-an-inclined-open-cavity-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15562/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15562/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15562/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15562/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15562/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15562/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15562/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15562/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15562/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15562/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2007</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3597</span> Numerical Study of Mixed Convection Coupled to Radiation in a Square Cavity with a Lid-Driven</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohamed%20Amine%20Belmiloud">Mohamed Amine Belmiloud</a>, <a href="https://publications.waset.org/search?q=Nord%20Eddine%20Sad%20Chemloul"> Nord Eddine Sad Chemloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we investigated numerically heat transfer by mixed convection coupled to radiation in a square cavity; the upper horizontal wall is movable. The purpose of this study is to see the influence of the emissivity 蔚 and the varying of the Richardson number Ri on the variation of average Nusselt number Nu. The vertical walls of the cavity are differentially heated, the left wall is maintained at a uniform temperature higher than the right wall, and the two horizontal walls are adiabatic. The finite volume method is used for solving the dimensionless Governing Equations. Emissivity values used in this study are ranged between 0 and 1, the Richardson number in the range 0.1 to 10. The Rayleigh number is fixed to Ra=104 and the Prandtl number is maintained constant Pr=0.71. Streamlines, isothermal lines and the average Nusselt number are presented according to the surface emissivity. The results of this study show that the Richardson number Ri and emissivity 蔚 affect the average Nusselt number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Numerical%20study" title="Numerical study">Numerical study</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=square%20cavity" title=" square cavity"> square cavity</a>, <a href="https://publications.waset.org/search?q=wall%20emissivity" title=" wall emissivity"> wall emissivity</a>, <a href="https://publications.waset.org/search?q=lid-driven." title=" lid-driven."> lid-driven.</a> </p> <a href="https://publications.waset.org/10002854/numerical-study-of-mixed-convection-coupled-to-radiation-in-a-square-cavity-with-a-lid-driven" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002854/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002854/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002854/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002854/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002854/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002854/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002854/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002854/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002854/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002854/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2241</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3596</span> Simulation of Fluid Flow and Heat Transfer in the Inclined Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Karimipour">A. Karimipour</a>, <a href="https://publications.waset.org/search?q=M.%20Afrand"> M. Afrand</a>, <a href="https://publications.waset.org/search?q=M.%20Akbari"> M. Akbari</a>, <a href="https://publications.waset.org/search?q=M.R.%20Safaei"> M.R. Safaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Mixed convection in two-dimensional shallow rectangular enclosure is considered. The top hot wall moves with constant velocity while the cold bottom wall has no motion. Simulations are performed for Richardson number ranging from Ri = 0.001 to 100 and for Reynolds number keeping fixed at Re = 408.21. Under these conditions cavity encompasses three regimes: dominating forced, mixed and free convection flow. The Prandtl number is set to 6 and the effects of cavity inclination on the flow and heat transfer are studied for different Richardson number. With increasing the inclination angle, interesting behavior of the flow and thermal fields are observed. The streamlines and isotherm plots and the variation of the Nusselt numbers on the hot wall are presented. The average Nusselt number is found to increase with cavity inclination for Ri ³ 1 . Also it is shown that the average Nusselt number changes mildly with the cavity inclination in the dominant forced convection regime but it increases considerably in the regime with dominant natural convection.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mixed%20convection" title="Mixed convection">Mixed convection</a>, <a href="https://publications.waset.org/search?q=inclined%20driven%20cavity" title=" inclined driven cavity"> inclined driven cavity</a>, <a href="https://publications.waset.org/search?q=Richardson%20number." title=" Richardson number."> Richardson number.</a> </p> <a href="https://publications.waset.org/14867/simulation-of-fluid-flow-and-heat-transfer-in-the-inclined-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14867/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14867/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14867/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14867/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14867/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14867/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14867/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14867/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14867/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14867/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1871</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3595</span> Numerical Investigation of Heat Transfer in a Channel with Delta Winglet Vortex Generators at Different Reynolds Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20K.%20Singh">N. K. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study the augmentation of heat transfer in a rectangular channel with triangular vortex generators is evaluated. The span wise averaged Nusselt number, mean temperature and total heat flux are compared with and without vortex generators in the channel at a blade angle of 30° for Reynolds numbers 800, 1200, 1600, and 2000. The use of vortex generators increases the span wise averaged Nusselt number compared to the case without vortex generators considerably. At a particular blade angle, increasing the Reynolds number results in an enhancement in the overall performance and span wise averaged Nusselt number was found to be greater at particular location for larger Reynolds number. The total heat flux from the bottom wall with vortex generators was found to be greater than that without vortex generators and the difference increases with increase in Reynolds number.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer" title="Heat transfer">Heat transfer</a>, <a href="https://publications.waset.org/search?q=channel%20with%20vortex%20generators" title=" channel with vortex generators"> channel with vortex generators</a>, <a href="https://publications.waset.org/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/search?q=effect%20of%20Reynolds%20number%20on%20heat%20transfer." title=" effect of Reynolds number on heat transfer."> effect of Reynolds number on heat transfer.</a> </p> <a href="https://publications.waset.org/9997368/numerical-investigation-of-heat-transfer-in-a-channel-with-delta-winglet-vortex-generators-at-different-reynolds-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997368/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997368/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997368/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997368/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997368/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997368/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997368/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997368/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997368/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997368/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2438</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3594</span> Effects of Roughness Elements on Heat Transfer during Natural Convection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Yousaf">M. Yousaf</a>, <a href="https://publications.waset.org/search?q=S.%20Usman"> S. Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study focused on the investigation of the effects of roughness elements on heat transfer during natural convection in a rectangular cavity using numerical technique. Roughness elements were introduced on the bottom hot wall with a normalized amplitude (A*/H) of 0.1. Thermal and hydrodynamic behaviors were studied using computational method based on Lattice Boltzmann method (LBM). Numerical studies were performed for a laminar flow in the range of Rayleigh number (Ra) from 103 to 106 for a rectangular cavity of aspect ratio (L/H) 2.0 with a fluid of Prandtl number (Pr) 1.0. The presence of the sinusoidal roughness elements caused a minimum to maximum decrease in the heat transfer as 7% to 17% respectively compared to smooth enclosure. The results are presented for mean Nusselt number (Nu), isotherms and streamlines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20convection" title="Natural convection">Natural convection</a>, <a href="https://publications.waset.org/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a>, <a href="https://publications.waset.org/search?q=surface%0D%0Aroughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/search?q=Lattice%20Boltzmann%20Method." title=" Lattice Boltzmann Method."> Lattice Boltzmann Method.</a> </p> <a href="https://publications.waset.org/10002713/effects-of-roughness-elements-on-heat-transfer-during-natural-convection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002713/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002713/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002713/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002713/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002713/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002713/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002713/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002713/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002713/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002713/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1717</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3593</span> Study of Heat Transfer of Nanofluids in a Circular Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20Amoura">M. Amoura</a>, <a href="https://publications.waset.org/search?q=M.%20Alloti"> M. Alloti</a>, <a href="https://publications.waset.org/search?q=A.%20Mouassi"> A. Mouassi</a>, <a href="https://publications.waset.org/search?q=N.%20Zeraibi"> N. Zeraibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al<sub>2</sub>O<sub>3</sub>-water, CuO-water and TiO<sub>2</sub>-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al<sub>2</sub>O<sub>3</sub> nanoparticules give the best results in term of thermal-hydrolic properties.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer" title="Heat transfer">Heat transfer</a>, <a href="https://publications.waset.org/search?q=Laminar%20flow" title=" Laminar flow"> Laminar flow</a>, <a href="https://publications.waset.org/search?q=Nanofluid" title=" Nanofluid"> Nanofluid</a>, <a href="https://publications.waset.org/search?q=Numerical%20study." title=" Numerical study. "> Numerical study. </a> </p> <a href="https://publications.waset.org/16896/study-of-heat-transfer-of-nanofluids-in-a-circular-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16896/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16896/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16896/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16896/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16896/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16896/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16896/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16896/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16896/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16896/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3067</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3592</span> Investigation of Heat Transfer by Natural Convection in an Open Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mahmoud%20S.%20Ahmed">Mahmoud S. Ahmed</a>, <a href="https://publications.waset.org/search?q=Hany%20A.%20Mohamed"> Hany A. Mohamed</a>, <a href="https://publications.waset.org/search?q=Mohamed%20A.%20Omara"> Mohamed A. Omara</a>, <a href="https://publications.waset.org/search?q=Mohamed%20F.%20Abdeen"> Mohamed F. Abdeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Experimental study of natural convection heat transfer inside smooth and rough surfaces of vertical and inclined equilateral triangular channels of different inclination angles with a uniformly heated surface are performed. The inclination angle is changed from 15º to 90º. Smooth and rough surface of average roughness (0.02mm) are used and their effect on the heat transfer characteristics are studied. The local and average heat transfer coefficients and Nusselt number are obtained for smooth and rough channels at different heat flux values, different inclination angles and different Rayleigh numbers (Ra) 6.48 × 105 ≤ Ra ≤ 4.78 × 106. The results show that the local Nusselt number decreases with increase of axial distance from the lower end of the triangular channel to a point near the upper end of channel, and then, it slightly increases. Higher values of local Nusselt number for rough channel along the axial distance compared with the smooth channel. The average Nusselt number of rough channel is higher than that of smooth channel by about 8.1% for inclined case at θ = 45o and 10% for vertical case. The results obtained are correlated using dimensionless groups for both rough and smooth surfaces of the inclined and vertical triangular channels.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Natural%20heat%20transfer%20convection" title="Natural heat transfer convection">Natural heat transfer convection</a>, <a href="https://publications.waset.org/search?q=constant%20heat%20flux" title=" constant heat flux"> constant heat flux</a>, <a href="https://publications.waset.org/search?q=open%20channels" title=" open channels"> open channels</a>, <a href="https://publications.waset.org/search?q=heat%20transfer." title=" heat transfer."> heat transfer.</a> </p> <a href="https://publications.waset.org/10001190/investigation-of-heat-transfer-by-natural-convection-in-an-open-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001190/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001190/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001190/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001190/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001190/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001190/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001190/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001190/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001190/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001190/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2363</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3591</span> Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=O.%20Afshar">O. Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Receiver%20tube" title="Receiver tube">Receiver tube</a>, <a href="https://publications.waset.org/search?q=heat%20convection" title=" heat convection"> heat convection</a>, <a href="https://publications.waset.org/search?q=heat%20conduction" title=" heat conduction"> heat conduction</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number." title=" Nusselt number."> Nusselt number.</a> </p> <a href="https://publications.waset.org/10002934/numerical-investigation-of-hot-oil-velocity-effect-on-force-heat-convection-and-impact-of-wind-velocity-on-convection-heat-transfer-in-receiver-tube-of-parabolic-trough-collector-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002934/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002934/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002934/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002934/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002934/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002934/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002934/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002934/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002934/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002934/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1896</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3590</span> Effect of Gravity Modulation on Weakly Non-Linear Stability of Stationary Convection in a Dielectric Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20G.%20Siddheshwar">P. G. Siddheshwar</a>, <a href="https://publications.waset.org/search?q=B.%20R.%20Revathi"> B. R. Revathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The effect of time-periodic oscillations of the Rayleigh- Benard system on the heat transport in dielectric liquids is investigated by weakly nonlinear analysis. We focus on stationary convection using the slow time scale and arrive at the real Ginzburg- Landau equation. Classical fourth order Runge-kutta method is used to solve the Ginzburg-Landau equation which gives the amplitude of convection and this helps in quantifying the heat transfer in dielectric liquids in terms of the Nusselt number. The effect of electrical Rayleigh number and the amplitude of modulation on heat transport is studied.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dielectric%20liquid" title="Dielectric liquid">Dielectric liquid</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/search?q=amplitude%20equation." title=" amplitude equation."> amplitude equation.</a> </p> <a href="https://publications.waset.org/9929/effect-of-gravity-modulation-on-weakly-non-linear-stability-of-stationary-convection-in-a-dielectric-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9929/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9929/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9929/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9929/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9929/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9929/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9929/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9929/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9929/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9929/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2216</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3589</span> Thermal Analysis of Circular Pin-fin with Rectangular Slot at the Center by Forced Convection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kavita%20H.%20Dhanawade">Kavita H. Dhanawade</a>, <a href="https://publications.waset.org/search?q=Hanamant%20S.%20Dhanawade"> Hanamant S. Dhanawade</a>, <a href="https://publications.waset.org/search?q=Ajay%20Kashikar"> Ajay Kashikar</a>, <a href="https://publications.waset.org/search?q=Shweta%20Matey"> Shweta Matey</a>, <a href="https://publications.waset.org/search?q=Mahesh%20Bhadane"> Mahesh Bhadane</a>, <a href="https://publications.waset.org/search?q=Sunny%20Sarraf"> Sunny Sarraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extended surfaces are commonly used in practice to enhance heat transfer. Most of the engineering problems require high performance heat transfer components with light weight, volumes, accommodating shapes, costs and reliability depending on industrial applications. This paper reports an experimental analysis to investigate heat transfer enhancement by forced convection using different sizes of pin-fin with rectangular slots at the center. The cross sectional area of the oblong duct was 200 mm x 80 mm. The info utilized in performance analysis was obtained experimentally for material, aluminum at 200 Watts heat input varying velocity 1 m/s to 5 m/s. Using the Taguchi experimental design method, optimum design parameters and their levels were analysed. Nusselt number and friction factor were considered as a performance characteristic parameter. An An L<sub>9</sub> (3<sup>3</sup>) orthogonal array was designated as an experimental proposal. Optimum results were found by experimenting. It is observed that pin-fins with different slots sizes have a better impact on Nusselt Number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer%20coefficient" title="Heat transfer coefficient">Heat transfer coefficient</a>, <a href="https://publications.waset.org/search?q=Nusselt%20Number" title=" Nusselt Number"> Nusselt Number</a>, <a href="https://publications.waset.org/search?q=pin-fin" title=" pin-fin"> pin-fin</a>, <a href="https://publications.waset.org/search?q=forced%20convection." title=" forced convection. "> forced convection. </a> </p> <a href="https://publications.waset.org/10011581/thermal-analysis-of-circular-pin-fin-with-rectangular-slot-at-the-center-by-forced-convection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011581/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011581/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011581/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011581/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011581/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011581/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011581/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011581/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011581/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011581/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">805</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3588</span> Laminar Impinging Jet Heat Transfer for Curved Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20M.%20Tahsini">A. M. Tahsini</a>, <a href="https://publications.waset.org/search?q=S.%20Tadayon%20Mousavi"> S. Tadayon Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study is to analyze the effect of the target plate-s curvature on the heat transfer in laminar confined impinging jet flows. Numerical results from two dimensional compressible finite volume solver are compared between three different shapes of impinging plates: Flat, Concave and Convex plates. The remarkable result of this study proves that the stagnation Nusselt number in laminar range of Reynolds number based on the slot width is maximum in convex surface and is minimum in concave plate. These results refuse the previous data in literature stating the amount of the stagnation Nusselt number is greater in concave surface related to flat plate configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Concave" title="Concave">Concave</a>, <a href="https://publications.waset.org/search?q=Convex" title=" Convex"> Convex</a>, <a href="https://publications.waset.org/search?q=Heat%20transfer" title=" Heat transfer"> Heat transfer</a>, <a href="https://publications.waset.org/search?q=Impinging%20jet" title=" Impinging jet"> Impinging jet</a>, <a href="https://publications.waset.org/search?q=Laminar%20flow." title=" Laminar flow."> Laminar flow.</a> </p> <a href="https://publications.waset.org/2230/laminar-impinging-jet-heat-transfer-for-curved-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2230/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2230/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2230/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2230/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2230/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2230/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2230/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2230/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2230/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2230/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3011</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3587</span> CFD Investigation of Turbulent Mixed Convection Heat Transfer in a Closed Lid-Driven Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Khaleel">A. Khaleel</a>, <a href="https://publications.waset.org/search?q=S.%20Gao"> S. Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Both steady and unsteady turbulent mixed convection heat transfer in a 3D lid-driven enclosure, which has constant heat flux on the middle of bottom wall and with isothermal moving sidewalls, is reported in this paper for working fluid with Prandtl number Pr = 0.71. The other walls are adiabatic and stationary. The dimensionless parameters used in this research are Reynolds number, Re = 5000, 10000 and 15000, and Richardson number, Ri = 1 and 10. The simulations have been done by using different turbulent methods such as RANS, URANS, and LES. The effects of using different k-蔚 models such as standard, RNG and Realizable k-蔚 model are investigated. Interesting behaviours of the thermal and flow fields with changing the Re or Ri numbers are observed. Isotherm and turbulent kinetic energy distributions and variation of local Nusselt number at the hot bottom wall are studied as well. The local Nusselt number is found increasing with increasing either Re or Ri number. In addition, the turbulent kinetic energy is discernibly affected by increasing Re number. Moreover, the LES results have shown good ability of this method in predicting more detailed flow structures in the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mixed%20convection" title="Mixed convection">Mixed convection</a>, <a href="https://publications.waset.org/search?q=Lid-driven%20cavity" title=" Lid-driven cavity"> Lid-driven cavity</a>, <a href="https://publications.waset.org/search?q=Turbulent%0D%0Aflow" title=" Turbulent flow"> Turbulent flow</a>, <a href="https://publications.waset.org/search?q=RANS%20model" title=" RANS model"> RANS model</a>, <a href="https://publications.waset.org/search?q=URANS%20model" title=" URANS model"> URANS model</a>, <a href="https://publications.waset.org/search?q=Large%20eddy%20simulation." title=" Large eddy simulation."> Large eddy simulation.</a> </p> <a href="https://publications.waset.org/10003119/cfd-investigation-of-turbulent-mixed-convection-heat-transfer-in-a-closed-lid-driven-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003119/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003119/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003119/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003119/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003119/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003119/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003119/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003119/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003119/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003119/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2275</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3586</span> Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20T.%20Naas">T. T. Naas</a>, <a href="https://publications.waset.org/search?q=Y.%20Lasbet"> Y. Lasbet</a>, <a href="https://publications.waset.org/search?q=C.%20Kezrane"> C. Kezrane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Inclined%20enclosure" title="Inclined enclosure">Inclined enclosure</a>, <a href="https://publications.waset.org/search?q=natural%20convection%20in%20enclosure" title=" natural convection in enclosure"> natural convection in enclosure</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number." title=" Nusselt number."> Nusselt number.</a> </p> <a href="https://publications.waset.org/10001025/entropy-generation-analyze-due-to-the-steady-natural-convection-of-newtonian-fluid-in-a-square-enclosure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001025/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001025/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001025/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001025/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001025/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001025/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001025/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001025/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001025/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001025/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2228</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3585</span> Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20Bhowmik">H. Bhowmik</a>, <a href="https://publications.waset.org/search?q=A.%20Faisal"> A. Faisal</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Al%20Yaarubi"> Ahmed Al Yaarubi</a>, <a href="https://publications.waset.org/search?q=Nabil%20Al%20Alawi"> Nabil Al Alawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m<sup>2</sup> to 2426 W/m<sup>2</sup> and the Rayleigh number ranges from 1×10<sup>4</sup> to 4.35×10<sup>4</sup>. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0<sup>o</sup>, 90<sup>o</sup>, 180<sup>o</sup>) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90<sup>o</sup> and 180<sup>o</sup> are higher than that of stagnation point (0<sup>o</sup>). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Steady-state" title="Steady-state">Steady-state</a>, <a href="https://publications.waset.org/search?q=transient" title=" transient"> transient</a>, <a href="https://publications.waset.org/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/search?q=Rayleigh%20number" title=" Rayleigh number"> Rayleigh number</a>, <a href="https://publications.waset.org/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/search?q=Fourier%20Number." title=" Fourier Number."> Fourier Number.</a> </p> <a href="https://publications.waset.org/10008611/analyses-of-natural-convection-heat-transfer-from-a-heated-cylinder-mounted-in-vertical-duct" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008611/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008611/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008611/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008611/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008611/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008611/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008611/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008611/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008611/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008611/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1220</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3584</span> Behavior of Ice Melting in Natural Convention</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Dizadji">N. Dizadji</a>, <a href="https://publications.waset.org/search?q=P.%20Entezar"> P. Entezar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the ice melting in rectangular, cylindrical and conical forms, which are erected vertically against air flow, are experimentally studied in the free convection regime.The results obtained are: Nusslet Number, heat transfer coefficient andGrashof Number, and the variations of the said numbers in relation to the time. The variations of ice slab area and volume are measured, too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Nusselt%20Number" title="Nusselt Number">Nusselt Number</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/search?q=Grashof%20Number" title=" Grashof Number"> Grashof Number</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer%20Coefficient." title=" Heat Transfer Coefficient."> Heat Transfer Coefficient.</a> </p> <a href="https://publications.waset.org/13974/behavior-of-ice-melting-in-natural-convention" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13974/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13974/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13974/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13974/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13974/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13974/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13974/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13974/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13974/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13974/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2458</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3583</span> Numerical Analysis of Roughness Effect on Mini and Microchannels: Hydrodynamics and Heat Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=El-Ghalia%20Filali">El-Ghalia Filali</a>, <a href="https://publications.waset.org/search?q=Cherif%20Gadouche"> Cherif Gadouche</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Tahar"> Mohamed Tahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A three-dimensional numerical simulation of flow through mini and microchannels with designed roughness is conducted here. The effect of the roughness height (surface roughness), geometry, Reynolds number on the friction factor, and Nusselt number is investigated. The study is carried out by employing CFD software, CFX. Our work focuses on a water flow inside a circular mini-channel of 1 mm and microchannels of 500 and 100 飦璵 in diameter. The speed entry varies from 0.1 m/s to 20 m/s. The general trend can be observed that bigger sizes of roughness element lead to higher flow resistance. It is found that the friction factor increases in a nonlinear fashion with the increase in obstruction height. Particularly, the effect of roughness can no longer be ignored at relative roughness height higher than 3%. A significant increase in Poiseuille number is detected for all configurations considered. The same observation can be done for Nusselt number. The transition zone between laminar and turbulent flow depends on the channel diameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer" title="Heat transfer">Heat transfer</a>, <a href="https://publications.waset.org/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/search?q=micro-channel" title=" micro-channel"> micro-channel</a>, <a href="https://publications.waset.org/search?q=roughness." title=" roughness."> roughness.</a> </p> <a href="https://publications.waset.org/10003087/numerical-analysis-of-roughness-effect-on-mini-and-microchannels-hydrodynamics-and-heat-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003087/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003087/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003087/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003087/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003087/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003087/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003087/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003087/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003087/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003087/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1768</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3582</span> Study on Mixed Convection Heat Transfer in Vertical Ducts with Radiation Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=G.%20Rajamohan">G. Rajamohan</a>, <a href="https://publications.waset.org/search?q=N.%20Ramesh"> N. Ramesh</a>, <a href="https://publications.waset.org/search?q=P.%20Kumar"> P. Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Experiments have been performed to investigate the radiation effects on mixed convection heat transfer for thermally developing airflow in vertical ducts with two differentially heated isothermal walls and two adiabatic walls. The investigation covers the Reynolds number Re = 800 to Re = 2900, heat flux varied from 256 W/m2 to 863 W/m2, hot wall temperature ranges from 27°C to 100 °C, aspect ratios 1 & 0.5 and the emissivity of internal walls are 0.05 and 0.85. In the present study, combined flow visualization was conducted to observe the flow patterns. The effect of surface temperature along the walls was studied to investigate the local Nusselt number variation within the duct. The result shows that flow condition and radiation significantly affect the total Nusselt number and tends to reduce the buoyancy condition.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Mixed%20convection" title="Mixed convection">Mixed convection</a>, <a href="https://publications.waset.org/search?q=vertical%20duct" title=" vertical duct"> vertical duct</a>, <a href="https://publications.waset.org/search?q=thermally%20developing%20and%20radiation%20effects." title=" thermally developing and radiation effects."> thermally developing and radiation effects.</a> </p> <a href="https://publications.waset.org/6360/study-on-mixed-convection-heat-transfer-in-vertical-ducts-with-radiation-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6360/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6360/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6360/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6360/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6360/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6360/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6360/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6360/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6360/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6360/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2757</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3581</span> Numerical Study of Developing Laminar Forced Convection Flow of Water/CuO Nanofluid in a Circular Tube with a 180 Degrees Curve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hamed%20K.%20Arzani">Hamed K. Arzani</a>, <a href="https://publications.waset.org/search?q=Hamid%20K.%20Arzani"> Hamid K. Arzani</a>, <a href="https://publications.waset.org/search?q=S.N.%20Kazi"> S.N. Kazi</a>, <a href="https://publications.waset.org/search?q=A.%20Badarudin"> A. Badarudin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical investigation into convective heat transfer of CuO-Water based nanofluid in a pipe with return bend under laminar flow conditions has been done. The impacts of Reynolds number and the volume concentration of nanoparticles on the flow and the convective heat transfer behaviour are investigated. The results indicate that the increase in Reynolds number leads to the enhancement of average Nusselt number, and the increase in specific heat in the presence of the nanofluid results in improvement in heat transfer. Also, the presence of the secondary flow in the curve plays a key role in increasing the average Nusselt number and it appears higher than the inlet and outlet tubes. However, the pressure drop curve increases significantly in the tubes with the increase in nanoparticles concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Laminar%20forced%20convection" title="Laminar forced convection">Laminar forced convection</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=curve" title=" curve"> curve</a>, <a href="https://publications.waset.org/search?q=return%20bend" title=" return bend"> return bend</a>, <a href="https://publications.waset.org/search?q=CFD." title=" CFD."> CFD.</a> </p> <a href="https://publications.waset.org/10004941/numerical-study-of-developing-laminar-forced-convection-flow-of-watercuo-nanofluid-in-a-circular-tube-with-a-180-degrees-curve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004941/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004941/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004941/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004941/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004941/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004941/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004941/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004941/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004941/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004941/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1286</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3580</span> A Computational Study of Very High Turbulent Flow and Heat Transfer Characteristics in Circular Duct with Hemispherical Inline Baffles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dipak%20Sen">Dipak Sen</a>, <a href="https://publications.waset.org/search?q=Rajdeep%20Ghosh"> Rajdeep Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a computational study of steady state three dimensional very high turbulent flow and heat transfer characteristics in a constant temperature-surfaced circular duct fitted with 900 hemispherical inline baffles. The computations are based on realizable k-蓻 model with standard wall function considering the finite volume method, and the SIMPLE algorithm has been implemented. Computational Study are carried out for Reynolds number, Re ranging from 80000 to 120000, Prandtl Number, Pr of 0.73, Pitch Ratios, PR of 1,2,3,4,5 based on the hydraulic diameter of the channel, hydrodynamic entry length, thermal entry length and the test section. Ansys Fluent 15.0 software has been used to solve the flow field. Study reveals that circular pipe having baffles has a higher Nusselt number and friction factor compared to the smooth circular pipe without baffles. Maximum Nusselt number and friction factor are obtained for the PR=5 and PR=1 respectively. Nusselt number increases while pitch ratio increases in the range of study; however, friction factor also decreases up to PR 3 and after which it becomes almost constant up to PR 5. Thermal enhancement factor increases with increasing pitch ratio but with slightly decreasing Reynolds number in the range of study and becomes almost constant at higher Reynolds number. The computational results reveal that optimum thermal enhancement factor of 900 inline hemispherical baffle is about 1.23 for pitch ratio 5 at Reynolds number 120000.It also shows that the optimum pitch ratio for which the baffles can be installed in such very high turbulent flows should be 5. Results show that pitch ratio and Reynolds number play an important role on both fluid flow and heat transfer characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Friction%20factor" title="Friction factor">Friction factor</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a>, <a href="https://publications.waset.org/search?q=circular%0D%0Aduct" title=" circular duct"> circular duct</a>, <a href="https://publications.waset.org/search?q=baffle" title=" baffle"> baffle</a>, <a href="https://publications.waset.org/search?q=pitch%20ratio." title=" pitch ratio."> pitch ratio.</a> </p> <a href="https://publications.waset.org/10001772/a-computational-study-of-very-high-turbulent-flow-and-heat-transfer-characteristics-in-circular-duct-with-hemispherical-inline-baffles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001772/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001772/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001772/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001772/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001772/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001772/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001772/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001772/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001772/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001772/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2129</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3579</span> Natural Convection in Wavy-Wall Cavities Filled with Power-Law Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Cha%E2%80%99o-Kuang%20Chen">Cha鈥檕-Kuang Chen</a>, <a href="https://publications.waset.org/search?q=Ching-Chang%20Cho"> Ching-Chang Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper investigates the natural convection heat transfer performance in a complex-wavy-wall cavity filled with power-law fluid. In performing the simulations, the continuity, Cauchy momentum and energy equations are solved subject to the Boussinesq approximation using a finite volume method. The simulations focus specifically on the effects of the flow behavior index in the power-law model and the Rayleigh number on the flow streamlines, isothermal contours and mean Nusselt number within the cavity. The results show that pseudoplastic fluids have a better heat transfer performance than Newtonian or dilatant fluids. Moreover, it is shown that for Rayleigh numbers greater than <em>Ra</em>=10<sup>3</sup>, the mean Nusselt number has a significantly increase as the flow behavior index is decreased.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Non-Newtonian%20fluid" title="Non-Newtonian fluid">Non-Newtonian fluid</a>, <a href="https://publications.waset.org/search?q=Power-law%20fluid" title=" Power-law fluid"> Power-law fluid</a>, <a href="https://publications.waset.org/search?q=Natural%20convection" title=" Natural convection"> Natural convection</a>, <a href="https://publications.waset.org/search?q=Heat%20transfer%20enhancement" title=" Heat transfer enhancement"> Heat transfer enhancement</a>, <a href="https://publications.waset.org/search?q=Cavity" title=" Cavity"> Cavity</a>, <a href="https://publications.waset.org/search?q=Wavy%20wall." title=" Wavy wall."> Wavy wall.</a> </p> <a href="https://publications.waset.org/9999018/natural-convection-in-wavy-wall-cavities-filled-with-power-law-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999018/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999018/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999018/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999018/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999018/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999018/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999018/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999018/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999018/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999018/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1992</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3578</span> Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Bachok">N. Bachok</a>, <a href="https://publications.waset.org/search?q=N.%20L.%20Aleng"> N. L. Aleng</a>, <a href="https://publications.waset.org/search?q=N.%20M.%20Arifin"> N. M. Arifin</a>, <a href="https://publications.waset.org/search?q=A.%20Ishak"> A. Ishak</a>, <a href="https://publications.waset.org/search?q=N.%20Senu"> N. Senu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter <em>S</em>, Prandtl number <em>Pr</em>, Lewis number <em>Le</em>, Brownian motion number <em>Nb</em> and thermophoresis number <em>Nt</em>. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Boundary%20layer" title="Boundary layer">Boundary layer</a>, <a href="https://publications.waset.org/search?q=Nanofluid" title=" Nanofluid"> Nanofluid</a>, <a href="https://publications.waset.org/search?q=Shrinking%20sheet" title=" Shrinking sheet"> Shrinking sheet</a>, <a href="https://publications.waset.org/search?q=Brownian%20motion" title=" Brownian motion"> Brownian motion</a>, <a href="https://publications.waset.org/search?q=Thermophoresis" title=" Thermophoresis"> Thermophoresis</a>, <a href="https://publications.waset.org/search?q=Similarity%20solution." title=" Similarity solution."> Similarity solution.</a> </p> <a href="https://publications.waset.org/9999424/flow-and-heat-transfer-of-a-nanofluid-over-a-shrinking-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999424/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999424/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999424/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999424/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999424/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999424/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999424/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999424/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999424/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999424/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2807</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=121">121</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Nusselt%20Number&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>