CINXE.COM
holomorphic de Rham complex in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> holomorphic de Rham complex in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> holomorphic de Rham complex </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussions/?CategoryID=0" title="Discuss this page on the nForum. It does not yet have a dedicated thread; feel free to create one, giving it the same name as the title of this page" style="color:black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="complex_geometry">Complex geometry</h4> <div class="hide"><div> <p><a class="existingWikiWord" href="/nlab/show/geometry">geometry</a>, <a class="existingWikiWord" href="/nlab/show/complex+numbers">complex numbers</a>, <a class="existingWikiWord" href="/nlab/show/complex+line">complex line</a></p> <p><strong><a class="existingWikiWord" href="/nlab/show/complex+geometry">complex geometry</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+manifold">complex manifold</a>, <a class="existingWikiWord" href="/nlab/show/complex+structure">complex structure</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+analytic+space">complex analytic space</a></p> </li> </ul> <h3 id="variants">Variants</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+complex+geometry">generalized complex geometry</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/complex+supermanifold">complex supermanifold</a></p> </li> </ul> <h3 id="structures">Structures</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Dolbeault+complex">Dolbeault complex</a>, <a class="existingWikiWord" href="/nlab/show/holomorphic+de+Rham+complex">holomorphic de Rham complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+structure">Hodge structure</a>, <a class="existingWikiWord" href="/nlab/show/Hodge+filtration">Hodge filtration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge-filtered+differential+cohomology">Hodge-filtered differential cohomology</a></p> </li> </ul> <h3 id="examples">Examples</h3> <ul> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>dim</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">dim = 1</annotation></semantics></math>: <a class="existingWikiWord" href="/nlab/show/Riemann+surface">Riemann surface</a>, <a class="existingWikiWord" href="/nlab/show/super+Riemann+surface">super Riemann surface</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Calabi-Yau+manifold">Calabi-Yau manifold</a></p> <ul> <li><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>dim</mi><mo>=</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">dim = 2</annotation></semantics></math>: <a class="existingWikiWord" href="/nlab/show/K3+surface">K3 surface</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+Calabi-Yau+manifold">generalized Calabi-Yau manifold</a></p> </li> </ul> </div></div> <h4 id="differential_cohomology">Differential cohomology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/differential+cohomology">differential cohomology</a></strong></p> <h2 id="ingredients">Ingredients</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+geometry">differential geometry</a></p> </li> </ul> <h2 id="connections_on_bundles">Connections on bundles</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+bundle">connection on a bundle</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/parallel+transport">parallel transport</a>, <a class="existingWikiWord" href="/nlab/show/holonomy">holonomy</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/curvature">curvature</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/curvature+characteristic+form">curvature characteristic form</a>, <a class="existingWikiWord" href="/nlab/show/Chern+character">Chern character</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory">Chern-Weil theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+homomorphism">Chern-Weil homomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/secondary+characteristic+class">secondary characteristic class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+characteristic+class">differential characteristic class</a></p> </li> </ul> </li> </ul> <h2 id="higher_abelian_differential_cohomology">Higher abelian differential cohomology</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+function+complex">differential function complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+orientation">differential orientation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ordinary+differential+cohomology">ordinary differential cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+Thom+class">differential Thom class</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+characters">differential characters</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+cohomology">Deligne cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle+n-bundle+with+connection">circle n-bundle with connection</a>,</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bundle+gerbe">bundle gerbe with connection</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+K-theory">differential K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+elliptic+cohomology">differential elliptic cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+cobordism+cohomology">differential cobordism cohomology</a></p> </li> </ul> <h2 id="higher_nonabelian_differential_cohomology">Higher nonabelian differential cohomology</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/principal+2-bundle">principal 2-bundle</a>, <a class="existingWikiWord" href="/nlab/show/principal+%E2%88%9E-bundle">principal ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connection+on+a+2-bundle">connection on a 2-bundle</a>, <a class="existingWikiWord" href="/nlab/show/connection+on+an+%E2%88%9E-bundle">connection on an ∞-bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Chern-Weil+theory+in+Smooth%E2%88%9EGrpd">Chern-Weil theory in Smooth∞Grpd</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Lie+algebra+cohomology">∞-Lie algebra cohomology</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-Chern-Simons+theory">∞-Chern-Simons theory</a></p> </li> </ul> <h2 id="fiber_integration">Fiber integration</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+holonomy">higher holonomy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration+in+differential+cohomology">fiber integration in differential cohomology</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration+in+ordinary+differential+cohomology">fiber integration in ordinary differential cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fiber+integration+in+differential+K-theory">fiber integration in differential K-theory</a></p> </li> </ul> </li> </ul> <h2 id="application_to_gauge_theory">Application to gauge theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/gauge+theory">gauge theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/gauge+field">gauge field</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/electromagnetic+field">electromagnetic field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Yang-Mills+field">Yang-Mills field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kalb-Ramond+field">Kalb-Ramond field</a>/<a class="existingWikiWord" href="/nlab/show/B-field">B-field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/RR-field">RR-field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/supergravity+C-field">supergravity C-field</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/D%27Auria-Fre+formulation+of+supergravity">supergravity</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quantum+anomaly">quantum anomaly</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/differential+cohomology+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#properties'>Properties</a></li> <ul> <li><a href='#RelationToComplexCohomology'>Relation to complex cohomology</a></li> <li><a href='#filtering_and_relation_to_hodge_filtation'>Filtering and Relation to Hodge filtation</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>On a <a class="existingWikiWord" href="/nlab/show/complex+analytic+space">complex analytic space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Σ</mi></mrow><annotation encoding="application/x-tex">\Sigma</annotation></semantics></math>, the <em>holomorphic de Rham complex</em> is the restriction of the <a class="existingWikiWord" href="/nlab/show/de+Rham+complex">de Rham complex</a> to <a class="existingWikiWord" href="/nlab/show/holomorphic+differential+forms">holomorphic differential forms</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Ω</mi> <mi>p</mi></msup></mrow><annotation encoding="application/x-tex">\Omega^p</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msubsup><mi>Ω</mi> <mi>Σ</mi> <mo>•</mo></msubsup><mo>≔</mo><mrow><mo>(</mo><msub><mi>𝒪</mi> <mi>Σ</mi></msub><mover><mo>⟶</mo><mo>∂</mo></mover><msubsup><mi>Ω</mi> <mi>Σ</mi> <mn>1</mn></msubsup><mover><mo>⟶</mo><mo>∂</mo></mover><msubsup><mi>Ω</mi> <mi>Σ</mi> <mn>2</mn></msubsup><mo>⟶</mo><mi>⋯</mi><mo>)</mo></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Omega^\bullet_\Sigma \coloneqq \left( \mathcal{O}_\Sigma \stackrel{\partial}{\longrightarrow} \Omega^1_\Sigma \stackrel{\partial}{\longrightarrow} \Omega^2_\Sigma \longrightarrow \cdots \right) \,. </annotation></semantics></math></div> <p>Notice here that since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Ω</mi> <mi>k</mi></msup></mrow><annotation encoding="application/x-tex">\Omega^k</annotation></semantics></math> denotes the holomorphic forms, this is the <a class="existingWikiWord" href="/nlab/show/kernel">kernel</a> of the <a class="existingWikiWord" href="/nlab/show/Dolbeault+operator">Dolbeault operator</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mover><mo>∂</mo><mo stretchy="false">¯</mo></mover></mrow><annotation encoding="application/x-tex">\bar \partial</annotation></semantics></math> and hence the <a class="existingWikiWord" href="/nlab/show/de+Rham+differential">de Rham differential</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mstyle mathvariant="bold"><mi>d</mi></mstyle><mo>=</mo><mo>∂</mo><mo lspace="verythinmathspace" rspace="0em">+</mo><mover><mo>∂</mo><mo stretchy="false">¯</mo></mover></mrow><annotation encoding="application/x-tex">\mathbf{d} = \partial + \bar \partial</annotation></semantics></math> restricts to the holomorphic component <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>∂</mo></mrow><annotation encoding="application/x-tex">\partial</annotation></semantics></math> as above.</p> <p>Often considered is a version of this with singularities (“logarithmic de Rham complex”) where one consideres instead meromorphic differential forms which are holomorphic in the bulk with logarithmic singularities towards compactification boundaries of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> <h2 id="properties">Properties</h2> <h3 id="RelationToComplexCohomology">Relation to complex cohomology</h3> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Σ</mi></mrow><annotation encoding="application/x-tex">\Sigma</annotation></semantics></math> a <a class="existingWikiWord" href="/nlab/show/complex+manifold">complex manifold</a> then the <a class="existingWikiWord" href="/nlab/show/ordinary+cohomology">ordinary cohomology</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Σ</mi></mrow><annotation encoding="application/x-tex">\Sigma</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/coefficients">coefficients</a> in the <a class="existingWikiWord" href="/nlab/show/complex+numbers">complex numbers</a> is <a class="existingWikiWord" href="/nlab/show/natural+isomorphism">naturally isomorphic</a> to the <a class="existingWikiWord" href="/nlab/show/hypercohomology">hyper</a>-<a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a> with coefficients in the holomorphic de Rham complex:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mi>k</mi></msup><mo stretchy="false">(</mo><mi>Σ</mi><mo>,</mo><mi>ℂ</mi><mo stretchy="false">)</mo><mo>≃</mo><msup><mi>H</mi> <mi>k</mi></msup><mo stretchy="false">(</mo><mi>Σ</mi><mo>,</mo><msubsup><mi>Ω</mi> <mi>Σ</mi> <mo>•</mo></msubsup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> H^k(\Sigma,\mathbb{C}) \simeq H^k(\Sigma, \Omega_\Sigma^\bullet) </annotation></semantics></math></div> <p>(e.g. <a href="#Voisin02">Voisin 02, theorem 8.1</a>).</p> <h3 id="filtering_and_relation_to_hodge_filtation">Filtering and Relation to Hodge filtation</h3> <p>The holomorphic de Rham complex is naturally <a class="existingWikiWord" href="/nlab/show/filtered+object">filtered</a> by degree with the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>th filtering stage being</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>F</mi> <mi>p</mi></msup><msubsup><mi>Ω</mi> <mi>X</mi> <mo>•</mo></msubsup><mo>≔</mo><mo stretchy="false">(</mo><mn>0</mn><mo>→</mo><mi>⋯</mi><mo>→</mo><msubsup><mi>Ω</mi> <mi>X</mi> <mi>p</mi></msubsup><mover><mo>⟶</mo><mo>∂</mo></mover><msup><mi>Ω</mi> <mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mover><mo>⟶</mo><mo>∂</mo></mover><mi>⋯</mi><mo stretchy="false">)</mo><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> F^p \Omega^\bullet_X \coloneqq (0 \to \cdots \to \Omega^p_X \stackrel{\partial}{\longrightarrow} \Omega^{p+1} \stackrel{\partial}{\longrightarrow} \cdots) \,. </annotation></semantics></math></div> <p>Notice that here <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Ω</mi> <mi>p</mi></msup></mrow><annotation encoding="application/x-tex">\Omega^p</annotation></semantics></math> is still regarded as sitting in degree <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo lspace="verythinmathspace" rspace="0em">−</mo><mi>p</mi></mrow><annotation encoding="application/x-tex">-p</annotation></semantics></math>, one just replaces by 0 in the holomorphic de Rham complex the groups of differential forms of degree less than <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>.</p> <p>With this, the <em><a class="existingWikiWord" href="/nlab/show/Hodge+filtration">Hodge filtration</a></em> on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>H</mi> <mo>•</mo></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ℂ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">H^\bullet(X,\mathbb{C})</annotation></semantics></math> is defined to be the <a class="existingWikiWord" href="/nlab/show/filtration">filtration</a> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>th stage the <a class="existingWikiWord" href="/nlab/show/image">image</a> of the <a class="existingWikiWord" href="/nlab/show/hypercohomology">hyper</a>-<a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a> with coefficients in the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math>th filtering stage of the holomorphic de Rham complex inside that with coefficients the full de Rham complex:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msup><mi>F</mi> <mi>p</mi></msup><msup><mi>H</mi> <mi>k</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><mi>ℂ</mi><mo stretchy="false">)</mo><mo>≔</mo><mi>im</mi><mrow><mo>(</mo><msup><mi>H</mi> <mi>k</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msup><mi>F</mi> <mi>p</mi></msup><msubsup><mi>Ω</mi> <mi>X</mi> <mo>•</mo></msubsup><mo stretchy="false">)</mo><mo>→</mo><msup><mi>H</mi> <mi>k</mi></msup><mo stretchy="false">(</mo><mi>X</mi><mo>,</mo><msubsup><mi>Ω</mi> <mi>X</mi> <mo>•</mo></msubsup><mo stretchy="false">)</mo><mo>)</mo></mrow></mrow><annotation encoding="application/x-tex"> F^p H^k(X,\mathbb{C}) \coloneqq im \left( H^k(X, F^p \Omega^\bullet_X) \to H^k(X, \Omega^\bullet_X) \right) </annotation></semantics></math></div> <p>(e.g. <a href="#Voisin02">Voisin 02, def. 8.2</a>).</p> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> happens to be a <a class="existingWikiWord" href="/nlab/show/K%C3%A4hler+manifold">Kähler manifold</a> then the <a class="existingWikiWord" href="/nlab/show/Fr%C3%B6licher+spectral+sequence">Frölicher spectral sequence</a> shows that this coincides with the more traditional definition via <a class="existingWikiWord" href="/nlab/show/harmonic+differential+forms">harmonic differential forms</a> (e.g. <a href="#Voisin02">Voisin 02, remark 8.29</a>).</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/differential+form+with+logarithmic+singularities">differential form with logarithmic singularities</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Dolbeault+cohomology">Dolbeault cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+filtration">Hodge filtration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge+cohomology">Hodge cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hodge-filtered+differential+cohomology">Hodge-filtered differential cohomology</a></p> </li> </ul> <h2 id="references">References</h2> <ul> <li id="Voisin02"> <p><a class="existingWikiWord" href="/nlab/show/Claire+Voisin">Claire Voisin</a>, section 8.2 of <em><a class="existingWikiWord" href="/nlab/show/Hodge+theory+and+Complex+algebraic+geometry">Hodge theory and Complex algebraic geometry</a> I,II</em>, Cambridge Stud. in Adv. Math. <strong>76, 77</strong>, 2002/3</p> </li> <li id="Beilinson85"> <p><a class="existingWikiWord" href="/nlab/show/Alexander+Beilinson">Alexander Beilinson</a>, <em>Higher regulators and values of L-functions</em>, J. Soviet Math. 30 (1985), 2036-2070 (reviewed in <a href="#EsnaultViehweg88">Esnault-Viehweg 88</a>) (<a href="http://dx.doi.org/10.1007/BF02105861">doi</a>)</p> </li> <li id="EsnaultViehweg88"> <p><a class="existingWikiWord" href="/nlab/show/H%C3%A9l%C3%A8ne+Esnault">Hélène Esnault</a>, <a class="existingWikiWord" href="/nlab/show/Eckart+Viehweg">Eckart Viehweg</a>, section 2.5 of: <em>Deligne-Beilinson cohomology</em>, in: <a class="existingWikiWord" href="/nlab/show/Michael+Rapoport">Michael Rapoport</a>, <a class="existingWikiWord" href="/nlab/show/Norbert+Schappacher">Norbert Schappacher</a>, <a class="existingWikiWord" href="/nlab/show/Peter+Schneider">Peter Schneider</a> (eds.), <em><a class="existingWikiWord" href="/nlab/show/Beilinson%27s+Conjectures+on+Special+Values+of+L-Functions">Beilinson's Conjectures on Special Values of L-Functions</a></em>, Perspectives in Mathematics <strong>4</strong>, Academic Press, Inc. (1988) [ISBN:978-0-12-581120-0, <a class="existingWikiWord" href="/nlab/files/EsnaultViehweg-DeligneBeilinsonCohomology.pdf" title="pdf">pdf</a>]</p> </li> </ul> <p>On holomorphic de Rham cohomology of <a class="existingWikiWord" href="/nlab/show/Stein+manifolds">Stein manifolds</a> (where it coincides with ordinary <a class="existingWikiWord" href="/nlab/show/de+Rham+cohomology">de Rham cohomology</a>, see <a href="Stein+manifold#HolomorphicDeRhamCoincidesWithDeRhamOnSteinMfds">there</a>):</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Jean-Pierre+Serre">Jean-Pierre Serre</a>: <em>Quelques problemes globaux relatifs aux varietes de Stein</em>, Colloque sur les fonctions de plusieurs variables (1953) [<a href="https://doi.org/10.1007/978-3-642-39816-2_23">doi:10.1007/978-3-642-39816-2_23</a>]</p> </li> <li id="Serre54"> <p><a class="existingWikiWord" href="/nlab/show/Jean-Pierre+Serre">Jean-Pierre Serre</a>: §2.1 in: <em>Cohomologie et fonctions de variables complexes</em>, Séminaire Bourbaki 2 71 (1954) [<a href="http://www.numdam.org/item/SB_1951-1954__2__213_0">numdam:SB_1951-1954__2__213_0</a>]</p> </li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on October 22, 2023 at 10:09:10. See the <a href="/nlab/history/holomorphic+de+Rham+complex" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/holomorphic+de+Rham+complex" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussions/?CategoryID=0">Discuss</a><span class="backintime"><a href="/nlab/revision/holomorphic+de+Rham+complex/4" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/holomorphic+de+Rham+complex" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/holomorphic+de+Rham+complex" accesskey="S" class="navlink" id="history" rel="nofollow">History (4 revisions)</a> <a href="/nlab/show/holomorphic+de+Rham+complex/cite" style="color: black">Cite</a> <a href="/nlab/print/holomorphic+de+Rham+complex" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/holomorphic+de+Rham+complex" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>