CINXE.COM

(infinity,1)-pullback in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> (infinity,1)-pullback in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> (infinity,1)-pullback </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/3963/#Item_1" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="category_theory"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-Category theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a></strong></p> <p><strong>Background</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+category+theory">higher category theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28n%2Cr%29-category">(n,r)-category</a></p> </li> </ul> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hom-object+in+a+quasi-category">hom-objects</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/equivalence+in+a+quasi-category">equivalences in</a>/<a class="existingWikiWord" href="/nlab/show/equivalence+of+quasi-categories">of</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categories</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sub-quasi-category">sub-(∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/reflective+sub-%28%E2%88%9E%2C1%29-category">reflective sub-(∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localization+of+an+%28%E2%88%9E%2C1%29-category">reflective localization</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/opposite+quasi-category">opposite (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/over+quasi-category">over (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/join+of+quasi-categories">join of quasi-categories</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-functor">(∞,1)-functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/exact+%28%E2%88%9E%2C1%29-functor">exact (∞,1)-functor</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-functors">(∞,1)-category of (∞,1)-functors</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+of+%28%E2%88%9E%2C1%29-presheaves">(∞,1)-category of (∞,1)-presheaves</a></p> </li> </ul> </li> <li> <p><strong><a class="existingWikiWord" href="/nlab/show/fibrations+of+quasi-categories">fibrations</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/inner+fibration">inner fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/left+fibration">left/right fibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cartesian+fibration">Cartesian fibration</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Cartesian+morphism">Cartesian morphism</a></li> </ul> </li> </ul> </li> </ul> <p><strong>Universal constructions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/limit+in+quasi-categories">limit</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/terminal+object+in+a+quasi-category">terminal object</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor">adjoint functors</a></p> </li> </ul> <p><strong>Local presentation</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+presentable+%28%E2%88%9E%2C1%29-category">locally presentable</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/essentially+small+%28%E2%88%9E%2C1%29-category">essentially small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+small+%28%E2%88%9E%2C1%29-category">locally small</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/accessible+%28%E2%88%9E%2C1%29-category">accessible</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/idempotent-complete+%28%E2%88%9E%2C1%29-category">idempotent-complete</a></p> </li> </ul> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Yoneda+lemma">(∞,1)-Yoneda lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-Grothendieck+construction">(∞,1)-Grothendieck construction</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/adjoint+%28%E2%88%9E%2C1%29-functor+theorem">adjoint (∞,1)-functor theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monadicity+theorem">(∞,1)-monadicity theorem</a></p> </li> </ul> <p><strong>Extra stuff, structure, properties</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/stable+%28%E2%88%9E%2C1%29-category">stable (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></p> </li> </ul> <p><strong>Models</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+with+weak+equivalences">category with weak equivalences</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derivator">derivator</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+quasi-categories">model structure for quasi-categories</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+for+Cartesian+fibrations">model structure for Cartesian fibrations</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/relation+between+quasi-categories+and+simplicial+categories">relation to simplicial categories</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+nerve">homotopy coherent nerve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simplicial+model+category">simplicial model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/presentable+%28%E2%88%9E%2C1%29-category">presentable quasi-category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kan+complex">Kan complex</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+sets">model structure for Kan complexes</a></li> </ul> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#incarnations'>Incarnations</a></li> <ul> <li><a href='#in_quasicategories'>In quasi-categories</a></li> <ul> <li><a href='#QuasiCatPastingLaw'>Pasting law</a></li> </ul> <li><a href='#in_model_categories'>In model categories</a></li> <li><a href='#in_derivators'>In derivators</a></li> </ul> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#fiber_sequence'>Fiber sequence</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> <ul> <li><a href='#in_homotopy_type_theory'>In homotopy type theory</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>An <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-pullback</strong> is a <a class="existingWikiWord" href="/nlab/show/limit+in+an+%28%E2%88%9E%2C1%29-category">limit in an (∞,1)-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> over a <a class="existingWikiWord" href="/nlab/show/diagram">diagram</a> of the shape</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>a</mi><mo>→</mo><mi>c</mi><mo>←</mo><mi>b</mi><mo stretchy="false">}</mo><mo>→</mo><mi>𝒞</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \{a \to c \leftarrow b\} \to \mathcal{C} \,. </annotation></semantics></math></div> <p>In other words it is a <a class="existingWikiWord" href="/nlab/show/cone">cone</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>A</mi><msub><mo>×</mo> <mi>C</mi></msub><mi>B</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>B</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>≅</mo><mo>⇙</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>A</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>C</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ A \times_C B &amp;\to&amp; B \\ \downarrow &amp;\cong\swArrow&amp; \downarrow \\ A &amp;\to&amp; C } </annotation></semantics></math></div> <p>which is <a class="existingWikiWord" href="/nlab/show/universal+property">universal</a> among all such cones in the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-categorical sense.</p> <p>This is the analog in <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a> of the notion of <a class="existingWikiWord" href="/nlab/show/pullback">pullback</a> in <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>.</p> <h2 id="incarnations">Incarnations</h2> <h3 id="in_quasicategories">In quasi-categories</h3> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> be a <a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a>. Recall the notion of <a class="existingWikiWord" href="/nlab/show/limit+in+a+quasi-category">limit in a quasi-category</a>.</p> <p>The non-degenerate cells of the <a class="existingWikiWord" href="/nlab/show/simplicial+set">simplicial set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>×</mo><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">\Delta[1] \times \Delta[1]</annotation></semantics></math> obtained as the <a class="existingWikiWord" href="/nlab/show/cartesian+product">cartesian product</a> of the simplicial 1-<a class="existingWikiWord" href="/nlab/show/simplex">simplex</a> with itself look like</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>↘</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mo stretchy="false">(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ (0,0) &amp;\to&amp; (1,0) \\ \downarrow &amp;\searrow&amp; \downarrow \\ (0,1) &amp;\to&amp; (1,1) } </annotation></semantics></math></div> <p>A <strong>square</strong> in a <a class="existingWikiWord" href="/nlab/show/quasi-category">quasi-category</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> is an image of this in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math>, i.e. a morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>s</mi><mo>:</mo><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>×</mo><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>→</mo><mi>C</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> s : \Delta[1] \times \Delta[1] \to C \,. </annotation></semantics></math></div> <p>The simplicial square <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><msup><mo stretchy="false">]</mo> <mrow><mo>×</mo><mn>2</mn></mrow></msup></mrow><annotation encoding="application/x-tex">\Delta[1]^{\times 2}</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/isomorphism">isomorphic</a>, as a <a class="existingWikiWord" href="/nlab/show/simplicial+set">simplicial set</a>, to the <a class="existingWikiWord" href="/nlab/show/join+of+simplicial+sets">join of simplicial sets</a> of a 2-<a class="existingWikiWord" href="/nlab/show/horn">horn</a> with the point:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>×</mo><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>≃</mo><mo stretchy="false">{</mo><mi>v</mi><mo stretchy="false">}</mo><mo>⋆</mo><mi>Λ</mi><mo stretchy="false">[</mo><mn>2</mn><msub><mo stretchy="false">]</mo> <mn>2</mn></msub><mo>=</mo><mrow><mo>(</mo><mrow><mtable><mtr><mtd><mi>v</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mn>1</mn></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>↘</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mn>0</mn></mtd> <mtd><mo>→</mo></mtd> <mtd><mn>2</mn></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding="application/x-tex"> \Delta[1] \times \Delta[1] \simeq \{v\} \star \Lambda[2]_2 = \left( \array{ v &amp;\to&amp; 1 \\ \downarrow &amp;\searrow&amp; \downarrow \\ 0 &amp;\to&amp; 2 } \right) </annotation></semantics></math></div> <p>and</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>×</mo><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>≃</mo><mi>Λ</mi><mo stretchy="false">[</mo><mn>2</mn><msub><mo stretchy="false">]</mo> <mn>0</mn></msub><mo>⋆</mo><mo stretchy="false">{</mo><mi>v</mi><mo stretchy="false">}</mo><mo>=</mo><mrow><mo>(</mo><mrow><mtable><mtr><mtd><mn>0</mn></mtd> <mtd><mo>→</mo></mtd> <mtd><mn>1</mn></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>↘</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mn>2</mn></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>v</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \Delta[1] \times \Delta[1] \simeq \Lambda[2]_0 \star \{v\} = \left( \array{ 0&amp;\to&amp; 1 \\ \downarrow &amp;\searrow&amp; \downarrow \\ 2 &amp;\to&amp; v } \right) \,. </annotation></semantics></math></div> <p>If a square <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>×</mo><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>≃</mo><mi>Λ</mi><mo stretchy="false">[</mo><mn>2</mn><msub><mo stretchy="false">]</mo> <mn>0</mn></msub><mo>⋆</mo><mo stretchy="false">{</mo><mi>v</mi><mo stretchy="false">}</mo><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">\Delta[1] \times \Delta[1] \simeq \Lambda[2]_0 \star \{v\} \to C</annotation></semantics></math> exhibits <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>v</mi><mo stretchy="false">}</mo><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">\{v\} \to C</annotation></semantics></math> as a <a class="existingWikiWord" href="/nlab/show/limit+in+a+quasi-category">quasi-categorical limit</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>:</mo><mi>Λ</mi><mo stretchy="false">[</mo><mn>2</mn><msub><mo stretchy="false">]</mo> <mn>0</mn></msub><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">F : \Lambda[2]_0 \to C</annotation></semantics></math>, we say the limit</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>v</mi><mo>:</mo><mo>=</mo><munder><mi>lim</mi> <mo>←</mo></munder><mi>F</mi><mo>:</mo><mo>=</mo><mi>F</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo><munder><mo lspace="thinmathspace" rspace="thinmathspace">∏</mo> <mrow><mi>F</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></mrow></munder><mi>F</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> v := \lim_\leftarrow F := F(1) \prod_{F(0)} F(2) </annotation></semantics></math></div> <p>is <a class="existingWikiWord" href="/nlab/show/generalized+the">the</a> <strong>quasi-categorical pullback</strong> of the diagram <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math>.</p> <h4 id="QuasiCatPastingLaw">Pasting law</h4> <p>We have the following quasi-categorical analog of the familiar <a href="http://ncatlab.org/nlab/show/pullback#Pasting">pasting law of pullbacks</a> in ordinary <a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a>:</p> <p>A <a class="existingWikiWord" href="/nlab/show/pasting">pasting</a> diagram of two squares is a morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>σ</mi><mo>:</mo><mi>Δ</mi><mo stretchy="false">[</mo><mn>2</mn><mo stretchy="false">]</mo><mo>×</mo><mi>Δ</mi><mo stretchy="false">[</mo><mn>1</mn><mo stretchy="false">]</mo><mo>→</mo><mi>𝒸</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \sigma : \Delta[2] \times \Delta[1] \to \mathcal{c} \,. </annotation></semantics></math></div> <p>Schematically this looks like</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>a</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>b</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ a &amp;\to&amp; b &amp;\to&amp; c \\ \downarrow &amp;&amp; \downarrow &amp;&amp; \downarrow \\ d &amp;\to&amp; e &amp;\to&amp; f } </annotation></semantics></math></div> <p>in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>.</p> <div class="un_prop"> <h6 id="proposition">Proposition</h6> <p><strong>(pasting law for quasi-categorical pullbacks)</strong></p> <p>If the right square is a pullback diagram in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>, then the left square is precisely if the outer square is.</p> </div> <p>This is <a class="existingWikiWord" href="/nlab/show/Higher+Topos+Theory">HTT, lemma 4.4.2.1</a></p> <div class="proof"> <h6 id="proof">Proof</h6> <p>Consider the diagram inclusions</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>→</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>←</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding="application/x-tex"> \left( \array{ &amp;&amp; &amp;&amp; c \\ &amp;&amp; &amp;&amp; \downarrow \\ d &amp;\to&amp; e &amp;\to&amp; f } \right) \;\;\to\;\; \left( \array{ &amp;&amp; b &amp;\to&amp; c \\ &amp;&amp; \downarrow &amp;&amp; \downarrow \\ d &amp;\to&amp; e &amp;\to&amp; f } \right) \;\;\leftarrow\;\; \left( \array{ &amp;&amp; b \\ &amp;&amp; \downarrow \\ d &amp;\to&amp; e } \right) </annotation></semantics></math></div> <p>and the induced diagram of <a class="existingWikiWord" href="/nlab/show/over+quasi-categories">over quasi-categories</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub><mover><mo>←</mo><mi>ϕ</mi></mover><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub><mover><mo>→</mo><mi>ψ</mi></mover><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo stretchy="false">)</mo></mrow></msub><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \mathcal{C}_{/\sigma(c,d,f)} \stackrel{\phi}{\leftarrow} \mathcal{C}_{/\sigma(b,c,d,e,f)} \stackrel{\psi}{\to} \mathcal{C}_{/\sigma(b,d,e)} \,. </annotation></semantics></math></div> <p>Notice that by definition of <a class="existingWikiWord" href="/nlab/show/limit+in+a+quasi-category">limit in a quasi-category</a> the quasi-categorical pullback <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo><msub><mo>×</mo> <mrow><mi>σ</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub><mi>σ</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\sigma(c) \times_{\sigma(f)} \sigma(d)</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/generalized+the">the</a> <a class="existingWikiWord" href="/nlab/show/terminal+object+in+a+quasi-category">terminal object</a> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\mathcal{C}_{/\sigma(c,d,f)}</annotation></semantics></math>, while <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi><mo stretchy="false">(</mo><mi>d</mi><mo stretchy="false">)</mo><msub><mo>×</mo> <mrow><mi>σ</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></mrow></msub><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">\sigma(d) \times_{\sigma(e)} \sigma(b)</annotation></semantics></math> is the terminal object in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\mathcal{C}_{/\sigma(b,d,e)}</annotation></semantics></math>.</p> <p>The strategy now is to show that both these morphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ψ</mi></mrow><annotation encoding="application/x-tex">\psi</annotation></semantics></math> are acyclic <a class="existingWikiWord" href="/nlab/show/Kan+fibration">Kan fibration</a>s. That will imply that these terminal objects coincide as objects of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>.</p> <p>First notice that the inclusion</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>→</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mrow><annotation encoding="application/x-tex"> \left( \array{ &amp;&amp; b \\ &amp;&amp; \downarrow \\ d &amp;\to&amp; e } \right) \;\; \to \;\; \left( \array{ &amp;&amp; b &amp;\to&amp; c \\ &amp;&amp; \downarrow &amp;&amp; \downarrow \\ d &amp;\to&amp; e &amp;\to&amp; f } \right) </annotation></semantics></math></div> <p>is a <a class="existingWikiWord" href="/nlab/show/left+anodyne+morphism">left anodyne morphism</a>, being the composite of <a class="existingWikiWord" href="/nlab/show/pushout">pushout</a>s of left <a class="existingWikiWord" href="/nlab/show/horn">horn</a> inclusions</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable displaystyle="true" columnalign="right left right left right left right left right left" columnspacing="0em"><mtr><mtd><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mtd> <mtd><mo>→</mo><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>→</mo><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd> <mtd></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>→</mo><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>↘</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd> <mtd></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mtd></mtr> <mtr><mtd></mtd> <mtd><mo>→</mo><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>b</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd> <mtd><mo>↘</mo></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \begin{aligned} \left( \array{ &amp;&amp; b \\ &amp;&amp; \downarrow \\ d &amp;\to&amp; e } \right) &amp; \to \left( \array{ &amp;&amp; b &amp;\to&amp; c \\ &amp;&amp; \downarrow &amp;&amp; \\ d &amp;\to&amp; e } \right) \\ &amp; \to \left( \array{ &amp;&amp; b &amp;\to&amp; c \\ &amp;&amp; \downarrow &amp;&amp; \downarrow \\ d &amp;\to&amp; e &amp;&amp; f } \right) \\ &amp; \to \left( \array{ &amp;&amp; b &amp;\to&amp; c \\ &amp;&amp; \downarrow &amp;\searrow&amp; \downarrow \\ d &amp;\to&amp; e &amp;&amp; f } \right) \\ &amp; \to \left( \array{ &amp;&amp; b &amp;\to&amp; c \\ &amp;&amp; \downarrow &amp;\searrow&amp; \downarrow \\ d &amp;\to&amp; e &amp;\to&amp; f } \right) \end{aligned} \,. </annotation></semantics></math></div> <p>We could also prove this by showing that this functor is <a class="existingWikiWord" href="/nlab/show/homotopy+final+functor">homotopy initial</a> using the characterization in terms of slice categories, and then invoking the theorem of <a class="existingWikiWord" href="/nlab/show/HTT">HTT</a> 4.1.1.3(4) which says (in dual form) that an inclusion of simplicial sets is homotopy initial if and only if it is left anodyne.</p> <p>One of the <a href="http://ncatlab.org/nlab/show/right%2Fleft+Kan+fibration#PropRightAnodyne">properties of left anodyne morphisms</a> is that restriction of <a class="existingWikiWord" href="/nlab/show/over+quasi-categories">over quasi-categories</a> along left anodyne morphisms produces an acyclic <a class="existingWikiWord" href="/nlab/show/Kan+fibration">Kan fibration</a>. This shows the desired statement for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ψ</mi></mrow><annotation encoding="application/x-tex">\psi</annotation></semantics></math>.</p> <p>To see that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> is also an acyclic fibration observe that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> can be factored as</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub><mo>←</mo><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub><mo>←</mo><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex"> \mathcal{C}_{/\sigma(c,d,f)} \leftarrow \mathcal{C}_{/\sigma(c,d,e,f)} \leftarrow \mathcal{C}_{/\sigma(b,c,d,e,f)} </annotation></semantics></math></div> <p>Observe that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub><mo>←</mo><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\mathcal{C}_{/\sigma(c,d,e,f)}\leftarrow\mathcal{C}_{/\sigma(b,c,d,e,f)}</annotation></semantics></math> fits into a pullback diagram</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mtd> <mtd><mo>←</mo></mtd> <mtd><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mtd> <mtd><mo>←</mo></mtd> <mtd><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \mathcal{C}_{/\sigma(c,d,e,f)} &amp; \leftarrow &amp; \mathcal{C}_{/\sigma(b,c,d,e,f)} \\ \downarrow &amp; &amp; \downarrow \\ \mathcal{C}_{/\sigma(c,e,f)} &amp; \leftarrow &amp; \mathcal{C}_{/\sigma(b,c,e,f)} } </annotation></semantics></math></div> <p>and hence is an acyclic Kan fibration since <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub><mo>←</mo><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\mathcal{C}_{/\sigma(c,e,f)} \leftarrow \mathcal{C}_{/\sigma(b,c,e,f)}</annotation></semantics></math> is one, on account of the fact that the square</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>σ</mi><mo stretchy="false">(</mo><mi>b</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo stretchy="false">)</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>σ</mi><mo stretchy="false">(</mo><mi>e</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>σ</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \sigma(b) &amp; \to &amp; \sigma(c) \\ \downarrow &amp; &amp; \downarrow \\ \sigma(e) &amp; \to &amp; \sigma(f) } </annotation></semantics></math></div> <p>is a pullback in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math>. Finally, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub><mo>←</mo><msub><mi>𝒞</mi> <mrow><mo stretchy="false">/</mo><mi>σ</mi><mo stretchy="false">(</mo><mi>c</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>e</mi><mo>,</mo><mi>f</mi><mo stretchy="false">)</mo></mrow></msub></mrow><annotation encoding="application/x-tex">\mathcal{C}_{/\sigma(c,d,f)} \leftarrow \mathcal{C}_{/\sigma(c,d,e,f)}</annotation></semantics></math> is a trivial fibration since</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mtd> <mtd><mo>→</mo></mtd> <mtd><mrow><mo>(</mo><mrow><mtable><mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mi>c</mi></mtd></mtr> <mtr><mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>e</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>f</mi></mtd></mtr></mtable></mrow><mo>)</mo></mrow></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ \left( \array{ &amp; &amp; c \\ &amp; &amp; \downarrow \\ d &amp; \to &amp; f } \right) &amp; \to &amp; \left( \array{ &amp; &amp; &amp; &amp; c \\ &amp; &amp; &amp; &amp; \downarrow \\ d &amp; \to &amp; e &amp; \to &amp; f } \right) } </annotation></semantics></math></div> <p>is left anodyne; clearly this is a pushout of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>d</mi><mo>→</mo><mi>f</mi><mo stretchy="false">)</mo><mo>→</mo><mo stretchy="false">(</mo><mi>d</mi><mo>→</mo><mi>e</mi><mo>→</mo><mi>f</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(d\to f)\to (d\to e\to f)</annotation></semantics></math> and so it suffices to show that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">}</mo></mrow></msup><mo>→</mo><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy="false">}</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\Delta^{\{0,2\}}\to \Delta^{\{0,1,2\}}</annotation></semantics></math> is left anodyne. But this map factors as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">}</mo></mrow></msup><mo>→</mo><msubsup><mi>Λ</mi> <mn>0</mn> <mn>2</mn></msubsup><mo>→</mo><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo stretchy="false">}</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\Delta^{\{0,2\}}\to \Lambda^2_0 \to \Delta^{\{0,1,2\}}</annotation></semantics></math> and clearly <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo stretchy="false">}</mo></mrow></msup><mo>→</mo><msubsup><mi>Λ</mi> <mn>0</mn> <mn>2</mn></msubsup></mrow><annotation encoding="application/x-tex">\Delta^{\{0,2\}}\to \Lambda^2_0</annotation></semantics></math> is left anodyne since it is a pushout of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mn>0</mn><mo stretchy="false">}</mo></mrow></msup><mo>→</mo><msup><mi>Δ</mi> <mrow><mo stretchy="false">{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy="false">}</mo></mrow></msup></mrow><annotation encoding="application/x-tex">\Delta^{\{0\}}\to \Delta^{\{0,1\}}</annotation></semantics></math>.</p> </div> <h3 id="in_model_categories">In model categories</h3> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a></li> </ul> <h3 id="in_derivators">In derivators</h3> <ul> <li><a class="existingWikiWord" href="/nlab/show/pullback+in+a+derivator">pullback in a derivator</a></li> </ul> <h2 id="examples">Examples</h2> <h3 id="fiber_sequence">Fiber sequence</h3> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">\mathcal{C}</annotation></semantics></math> has a <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo>*</mo><mo>→</mo><mi>C</mi><mo>∈</mo><mi>𝒞</mi></mrow><annotation encoding="application/x-tex">* \to C \in \mathcal{C}</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/pointed+object">pointed object</a>, then the <strong>fiber</strong> or <strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-kernel</strong> of a morphisms <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>B</mi><mo>→</mo><mi>C</mi></mrow><annotation encoding="application/x-tex">f : B \to C</annotation></semantics></math> is the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mn>∞</mn><mo>,</mo><mn>1</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(\infty,1)</annotation></semantics></math>-pullback</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>ker</mi><mo stretchy="false">(</mo><mi>f</mi><mo stretchy="false">)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><mo>*</mo></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><mi>B</mi></mtd> <mtd><mover><mo>→</mo><mi>f</mi></mover></mtd> <mtd><mi>C</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ ker(f) &amp;\to&amp; * \\ \downarrow &amp;&amp; \downarrow \\ B &amp;\stackrel{f}{\to}&amp; C } \,. </annotation></semantics></math></div> <p>For more on this see <a class="existingWikiWord" href="/nlab/show/fiber+sequence">fiber sequence</a>.</p> <h2 id="related_concepts">Related concepts</h2> <div> <p><strong>Notions of pullback:</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/pullback">pullback</a>, <a class="existingWikiWord" href="/nlab/show/fiber+product">fiber product</a> (<a class="existingWikiWord" href="/nlab/show/limit">limit</a> over a <a class="existingWikiWord" href="/nlab/show/cospan">cospan</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/wide+pullback">wide pullback</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/lax+pullback">lax pullback</a>, <a class="existingWikiWord" href="/nlab/show/comma+object">comma object</a> (<a class="existingWikiWord" href="/nlab/show/lax+limit">lax limit</a> over a cospan)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-pullback">(∞,1)-pullback</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+pullback">homotopy pullback</a>, (<a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-limit">(∞,1)-limit</a> over a cospan)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+change">base change</a>, <a class="existingWikiWord" href="/nlab/show/context+extension">context extension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pullback+bundle">pullback bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/contravariant+functor">contravariant functor</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/pullback+in+cohomology">pullback in cohomology</a>, <a class="existingWikiWord" href="/nlab/show/d-invariant">d-invariant</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pullback+of+differential+forms">pullback of differential forms</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pullback+of+a+distribution">pullback of a distribution</a></p> </li> </ul> </li> </ul> </div> <h2 id="references">References</h2> <h3 id="in_homotopy_type_theory">In homotopy type theory</h3> <p>A formalization of homotopy pullbacks in <a class="existingWikiWord" href="/nlab/show/homotopy+type+theory">homotopy type theory</a> is <a class="existingWikiWord" href="/nlab/show/Coq">Coq</a>-coded in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Guillaume+Brunerie">Guillaume Brunerie</a>, <em><a href="https://github.com/guillaumebrunerie/HoTT/blob/master/Coq/Limits/Pullbacks.v">Hott/Coq/Limits/Pullbacks.v</a></em></li> </ul> </body></html> </div> <div class="revisedby"> <p> Last revised on December 2, 2020 at 17:34:02. See the <a href="/nlab/history/%28infinity%2C1%29-pullback" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/%28infinity%2C1%29-pullback" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/3963/#Item_1">Discuss</a><span class="backintime"><a href="/nlab/revision/%28infinity%2C1%29-pullback/10" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/%28infinity%2C1%29-pullback" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/%28infinity%2C1%29-pullback" accesskey="S" class="navlink" id="history" rel="nofollow">History (10 revisions)</a> <a href="/nlab/show/%28infinity%2C1%29-pullback/cite" style="color: black">Cite</a> <a href="/nlab/print/%28infinity%2C1%29-pullback" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/%28infinity%2C1%29-pullback" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10