CINXE.COM
Search results for: mechanics
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: mechanics</title> <meta name="description" content="Search results for: mechanics"> <meta name="keywords" content="mechanics"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="mechanics" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="mechanics"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 432</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: mechanics</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">432</span> Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elvira%20S.%20Castillo">Elvira S. Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Surupa%20Shaw"> Surupa Shaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20mechanics" title="fluid mechanics">fluid mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20energy" title=" sustainable energy"> sustainable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20energy" title=" green energy"> green energy</a> </p> <a href="https://publications.waset.org/abstracts/185372/exploring-unexplored-horizons-advanced-fluid-mechanics-solutions-for-sustainable-energy-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">431</span> Continuum-Based Modelling Approaches for Cell Mechanics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogesh%20D.%20Bansod">Yogesh D. Bansod</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Bursa"> Jiri Bursa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quantitative study of cell mechanics is of paramount interest since it regulates the behavior of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as a combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20mechanics" title="cell mechanics">cell mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20models" title=" computational models"> computational models</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20approach" title=" continuum approach"> continuum approach</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20models" title=" mechanical models"> mechanical models</a> </p> <a href="https://publications.waset.org/abstracts/29027/continuum-based-modelling-approaches-for-cell-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">430</span> Investigation of Damage in Glass Subjected to Static Indentation Using Continuum Damage Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Ismail">J. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Za%C3%AFri"> F. Zaïri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Na%C3%AFt-Abdelaziz"> M. Naït-Abdelaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Azari"> Z. Azari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a combined approach of continuum damage mechanics (CDM) and fracture mechanics is applied to model a glass plate behavior under static indentation. A spherical indenter is used and a CDM based constitutive model with an anisotropic damage tensor was selected and implemented into a finite element code to study the damage of glass. Various regions with critical damage values were predicted in good agreement with the experimental observations in the literature. In these regions, the directions of crack propagation, including both cracks initiating on the surface as well as in the bulk, were predicted using the strain energy density factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20modeling" title="finite element modeling">finite element modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20damage%20mechanics" title=" continuum damage mechanics"> continuum damage mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=indentation" title=" indentation"> indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=cracks" title=" cracks"> cracks</a> </p> <a href="https://publications.waset.org/abstracts/13462/investigation-of-damage-in-glass-subjected-to-static-indentation-using-continuum-damage-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">429</span> Use of EPR in Experimental Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Siko%C5%84">M. Sikoń</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bidzi%C5%84ska"> E. Bidzińska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An attempt to apply EPR (Electron Paramagnetic Resonance) spectroscopy to experimental analysis of the mechanical state of the loaded material is considered in this work. Theory concerns the participation of electrons in transfer of mechanical action. The model of measurement is shown by applying classical mechanics and quantum mechanics. Theoretical analysis is verified using EPR spectroscopy twice, once for the free spacemen and once for the mechanical loaded spacemen. Positive results in the form of different spectra for free and loaded materials are used to describe the mechanical state in continuum based on statistical mechanics. Perturbation of the optical electrons in the field of the mechanical interactions inspires us to propose new optical properties of the materials with mechanical stresses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cosserat%20medium" title="Cosserat medium">Cosserat medium</a>, <a href="https://publications.waset.org/abstracts/search?q=EPR%20spectroscopy" title=" EPR spectroscopy"> EPR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20active%20electrons" title=" optical active electrons"> optical active electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20activity" title=" optical activity"> optical activity</a> </p> <a href="https://publications.waset.org/abstracts/39245/use-of-epr-in-experimental-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">428</span> Meditation, Mental States, Quantum Mechanics and Enlightenment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ven.%20Bhikkhu%20Ananda">Ven. Bhikkhu Ananda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mind emerged from the quantum field. The practice of mediation can take one to the state of enlightenment. During meditation, the change in the very behaviour of electrons, protons, and photons and their fields, known to be quantum fields, create mental states. This could well be expressed in the mathematical language of quantum mechanics. This paper qualifies and quantifies mental states created during meditation and is explained by quantum mechanics. In meditation, phenomenology can be seen as the process of enlightenment. In this process, the emptiness shown in Buddhist philosophy and the emptiness of quantum fields is compared. The methodologies used here are mindfulness meditation and metta mediation (compassion meditation ). The research findings suggest not only quantumness and change are consciousness, but well-founded behaviour of an individual in the society, which can amplify the positive behaviour caused by mental states, and that emptiness and impermanence of phenomenon are based on dependent arisings. The presence of quantum coherence indicates that quantum mechanics has a role in the evolution of the pure mind and the phenomenology created thereof in mediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meditation" title="meditation">meditation</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20states" title=" mental states"> mental states</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=enlightenment" title=" enlightenment"> enlightenment</a> </p> <a href="https://publications.waset.org/abstracts/146962/meditation-mental-states-quantum-mechanics-and-enlightenment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">427</span> Gravity and Geometric String Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joe%20Price%20LeClair">Joe Price LeClair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the geometry of the universe using hydrogen as a representation of a balance point between energy and matter in motion while using the neutron to explain the stability in threes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity" title="gravity">gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics" title=" geometric string mechanics"> geometric string mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20physics" title=" theoretical physics"> theoretical physics</a> </p> <a href="https://publications.waset.org/abstracts/194933/gravity-and-geometric-string-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">426</span> Finite Element Method as a Solution Procedure for Problems in Tissue Biomechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Momoh%20Omeiza%20Sheidu">Momoh Omeiza Sheidu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite element method as a method of providing solutions to problems in computational bio mechanics provides a framework for modeling the function of tissues that integrates structurally from cell to organ system and functionally across the physiological processes that affect tissue mechanics or are regulated by mechanical forces. In this paper, we present an integrative finite element strategy for solution to problems in tissue bio mechanics as a case study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title="finite element">finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title=" biomechanics"> biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20biomechanics" title=" computational biomechanics"> computational biomechanics</a> </p> <a href="https://publications.waset.org/abstracts/19233/finite-element-method-as-a-solution-procedure-for-problems-in-tissue-biomechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">425</span> Quantum Mechanics as A Limiting Case of Relativistic Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Almajid">Ahmad Almajid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of unifying quantum mechanics with general relativity is still a dream for many researchers, as physics has only two paths, no more. Einstein's path, which is mainly based on particle mechanics, and the path of Paul Dirac and others, which is based on wave mechanics, the incompatibility of the two approaches is due to the radical difference in the initial assumptions and the mathematical nature of each approach. Logical thinking in modern physics leads us to two problems: - In quantum mechanics, despite its success, the problem of measurement and the problem of wave function interpretation is still obscure. - In special relativity, despite the success of the equivalence of rest-mass and energy, but at the speed of light, the fact that the energy becomes infinite is contrary to logic because the speed of light is not infinite, and the mass of the particle is not infinite too. These contradictions arise from the overlap of relativistic and quantum mechanics in the neighborhood of the speed of light, and in order to solve these problems, one must understand well how to move from relativistic mechanics to quantum mechanics, or rather, to unify them in a way different from Dirac's method, in order to go along with God or Nature, since, as Einstein said, "God doesn't play dice." From De Broglie's hypothesis about wave-particle duality, Léon Brillouin's definition of the new proper time was deduced, and thus the quantum Lorentz factor was obtained. Finally, using the Euler-Lagrange equation, we come up with new equations in quantum mechanics. In this paper, the two problems in modern physics mentioned above are solved; it can be said that this new approach to quantum mechanics will enable us to unify it with general relativity quite simply. If the experiments prove the validity of the results of this research, we will be able in the future to transport the matter at speed close to the speed of light. Finally, this research yielded three important results: 1- Lorentz quantum factor. 2- Planck energy is a limited case of Einstein energy. 3- Real quantum mechanics, in which new equations for quantum mechanics match and exceed Dirac's equations, these equations have been reached in a completely different way from Dirac's method. These equations show that quantum mechanics is a limited case of relativistic mechanics. At the Solvay Conference in 1927, the debate about quantum mechanics between Bohr, Einstein, and others reached its climax, while Bohr suggested that if particles are not observed, they are in a probabilistic state, then Einstein said his famous claim ("God does not play dice"). Thus, Einstein was right, especially when he didn't accept the principle of indeterminacy in quantum theory, although experiments support quantum mechanics. However, the results of our research indicate that God really does not play dice; when the electron disappears, it turns into amicable particles or an elastic medium, according to the above obvious equations. Likewise, Bohr was right also, when he indicated that there must be a science like quantum mechanics to monitor and study the motion of subatomic particles, but the picture in front of him was blurry and not clear, so he resorted to the probabilistic interpretation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lorentz%20quantum%20factor" title="lorentz quantum factor">lorentz quantum factor</a>, <a href="https://publications.waset.org/abstracts/search?q=new" title=" new"> new</a>, <a href="https://publications.waset.org/abstracts/search?q=planck%E2%80%99s%20energy%20as%20a%20limiting%20case%20of%20einstein%E2%80%99s%20energy" title=" planck’s energy as a limiting case of einstein’s energy"> planck’s energy as a limiting case of einstein’s energy</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20quantum%20mechanics" title=" real quantum mechanics"> real quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20equations%20for%20quantum%20mechanics" title=" new equations for quantum mechanics"> new equations for quantum mechanics</a> </p> <a href="https://publications.waset.org/abstracts/159579/quantum-mechanics-as-a-limiting-case-of-relativistic-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">424</span> Quantum Algebra from Generalized Q-Algebra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Tabuni">Muna Tabuni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper contains an investigation of the notion of Q algebras. A brief introduction to quantum mechanics is given, in that systems the state defined by a vector in a complex vector space H which have Hermitian inner product property. H may be finite or infinite-dimensional. In quantum mechanics, operators must be hermitian. These facts are saved by Lie algebra operators but not by those of quantum algebras. A Hilbert space H consists of a set of vectors and a set of scalars. Lie group is a differentiable topological space with group laws given by differentiable maps. A Lie algebra has been introduced. Q-algebra has been defined. A brief introduction to BCI-algebra is given. A BCI sub algebra is introduced. A brief introduction to BCK=BCH-algebra is given. Every BCI-algebra is a BCH-algebra. Homomorphism maps meanings are introduced. Homomorphism maps between two BCK algebras are defined. The mathematical formulations of quantum mechanics can be expressed using the theory of unitary group representations. A generalization of Q algebras has been introduced, and their properties have been considered. The Q- quantum algebra has been studied, and various examples have been given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Q-algebras" title="Q-algebras">Q-algebras</a>, <a href="https://publications.waset.org/abstracts/search?q=BCI" title=" BCI"> BCI</a>, <a href="https://publications.waset.org/abstracts/search?q=BCK" title=" BCK"> BCK</a>, <a href="https://publications.waset.org/abstracts/search?q=BCH-algebra" title=" BCH-algebra"> BCH-algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a> </p> <a href="https://publications.waset.org/abstracts/138379/quantum-algebra-from-generalized-q-algebra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">423</span> Combining Laws of Mechanics and Hydrostatics in Non Inertial Reference Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Blokh">M. Blokh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title="hydrodynamics">hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanics" title=" mechanics"> mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=non-inertial%20reference%20frames" title=" non-inertial reference frames"> non-inertial reference frames</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching" title=" teaching "> teaching </a> </p> <a href="https://publications.waset.org/abstracts/28610/combining-laws-of-mechanics-and-hydrostatics-in-non-inertial-reference-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28610.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">422</span> The Introduction of Modern Diagnostic Techniques and It Impact on Local Garages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Majid">Mustapha Majid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gone were the days when technicians/mechanics will have to spend too much time trying to identify a mechanical fault and rectify the problem. Now the emphasis is on the use of Automobile diagnosing Equipment through the use of computers and special software. An investigation conducted at Tamale Metropolis and Accra in the Northern and Greater Accra regions of Ghana, respectively. Methodology for data gathering were; questionnaires, physical observation, interviews, and newspaper. The study revealed that majority of mechanics lack computer skills which can enable them use diagnosis tools such as Exhaust Gas Analyzer, Scan Tools, Electronic Wheel Balancing machine, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagnosing" title="diagnosing">diagnosing</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20garages%20and%20modern%20garages" title=" local garages and modern garages"> local garages and modern garages</a>, <a href="https://publications.waset.org/abstracts/search?q=lack%20of%20knowledge%20of%20diagnosing%20posing%20an%20existential%20threat" title=" lack of knowledge of diagnosing posing an existential threat"> lack of knowledge of diagnosing posing an existential threat</a>, <a href="https://publications.waset.org/abstracts/search?q=training%20of%20local%20mechanics" title=" training of local mechanics"> training of local mechanics</a> </p> <a href="https://publications.waset.org/abstracts/147100/the-introduction-of-modern-diagnostic-techniques-and-it-impact-on-local-garages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">421</span> Quantum Mechanics Approach for Ruin Probability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Kaya">Ahmet Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Incoming cash flows and outgoing claims play an important role to determine how is companies’ profit or loss. In this matter, ruin probability provides to describe vulnerability of the companies against ruin. Quantum mechanism is one of the significant approaches to model ruin probability as stochastically. Using the Hamiltonian method, we have performed formalisation of quantum mechanics < x|e-ᵗᴴ|x' > and obtained the transition probability of 2x2 and 3x3 matrix as traditional and eigenvector basis where A is a ruin operator and H|x' > is a Schroedinger equation. This operator A and Schroedinger equation are defined by a Hamiltonian matrix H. As a result, probability of not to be in ruin can be simulated and calculated as stochastically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ruin%20probability" title="ruin probability">ruin probability</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20technique" title=" Hamiltonian technique"> Hamiltonian technique</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20approach" title=" operator approach"> operator approach</a> </p> <a href="https://publications.waset.org/abstracts/53562/quantum-mechanics-approach-for-ruin-probability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">420</span> Using Wavelet Uncertainty Relations in Quantum Mechanics: From Trajectories Foam to Newtonian Determinism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paulo%20Castro">Paulo Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Croca"> J. R. Croca</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gatta"> M. Gatta</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Moreira"> R. Moreira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to the development of quantum mechanics, we will contextualize the foundations of the theory on the Fourier analysis framework, thus stating the unavoidable philosophical conclusions drawn by Niels Bohr. We will then introduce an alternative way of describing the undulatory aspects of quantum entities by using gaussian Morlet wavelets. The description has its roots in de Broglie's realistic program for quantum physics. It so happens that using wavelets it is possible to formulate a more general set of uncertainty relations. A set from which it is possible to theoretically describe both ends of the behavioral spectrum in reality: the indeterministic quantum trajectorial foam and the perfectly drawn Newtonian trajectories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=philosophy%20of%20quantum%20mechanics" title="philosophy of quantum mechanics">philosophy of quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20realism" title=" quantum realism"> quantum realism</a>, <a href="https://publications.waset.org/abstracts/search?q=morlet%20wavelets" title=" morlet wavelets"> morlet wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20relations" title=" uncertainty relations"> uncertainty relations</a>, <a href="https://publications.waset.org/abstracts/search?q=determinism" title=" determinism"> determinism</a> </p> <a href="https://publications.waset.org/abstracts/144113/using-wavelet-uncertainty-relations-in-quantum-mechanics-from-trajectories-foam-to-newtonian-determinism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">419</span> Integrating Historical Narratives with Merge Games as Tools for Pedagogy In Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aathira%20H.">Aathira H.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital games can act as catalysts for educational transformation in the current scenario. Children and adolescence acquire this digital knowledge quickly and hence digital games can act as one of the most effective media for technology-mediated learning. Mobile gaming industries have seen the rise of a new trending genre of games, i.e., “Merge games” which is currently thriving in the market. This paper analysis on how gamifying historic and cultural narratives with merge mechanics can be an effective way to educate school children. Through the study of how merge mechanics in games have currently emerged as a trend., this paper argues how it can be integrated with a strong narrative which can convey history in an engaging way for education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game-based%20learning" title="game-based learning">game-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=merge%20mechanics" title=" merge mechanics"> merge mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20narratives" title=" historical narratives"> historical narratives</a>, <a href="https://publications.waset.org/abstracts/search?q=gaming%20innovations" title=" gaming innovations"> gaming innovations</a> </p> <a href="https://publications.waset.org/abstracts/177670/integrating-historical-narratives-with-merge-games-as-tools-for-pedagogy-in-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">418</span> The Study on Mechanical Properties of Graphene Using Molecular Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I-Ling%20Chang">I-Ling Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jer-An%20Chen"> Jer-An Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20minimization" title="energy minimization">energy minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20mechanics" title=" molecular mechanics"> molecular mechanics</a> </p> <a href="https://publications.waset.org/abstracts/25956/the-study-on-mechanical-properties-of-graphene-using-molecular-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">417</span> Analysis of Delamination in Drilling of Composite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navid%20Zarif%20Karimi">Navid Zarif Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Heidary"> Hossein Heidary</a>, <a href="https://publications.waset.org/abstracts/search?q=Giangiacomo%20Minak"> Giangiacomo Minak</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ahmadi"> Mehdi Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper analytical model based on the mechanics of oblique cutting, linear elastic fracture mechanics (LEFM) and bending plate theory has been presented to determine the critical feed rate causing delamination in drilling of composite materials. Most of the models in this area used LEFM and bending plate theory; hence, they can only determine the critical thrust force which is an incorporable parameter. In this model by adding cutting oblique mechanics to previous models, critical feed rate has been determined. Also instead of simplification in loading condition, actual thrust force induced by chisel edge and cutting lips on composite plate is modeled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling" title=" drilling"> drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20force" title=" thrust force"> thrust force</a> </p> <a href="https://publications.waset.org/abstracts/35552/analysis-of-delamination-in-drilling-of-composite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">416</span> Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Shahbazpanahi">Shahriar Shahbazpanahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaleh%20Kamgar"> Alaleh Kamgar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack" title="crack">crack</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP" title=" FRP"> FRP</a>, <a href="https://publications.waset.org/abstracts/search?q=shear" title=" shear"> shear</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a> </p> <a href="https://publications.waset.org/abstracts/25999/fracture-mechanics-modeling-of-a-shear-cracked-rc-beams-shear-strengthened-with-frp-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">415</span> Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamal%20M.%20Shah">M. Kamal M. Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Noorhifiantylaily%20Ahmad"> Noorhifiantylaily Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Irma%20Wani"> O. Irma Wani</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Sahari"> J. Sahari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20loading" title="axial loading">axial loading</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20mechanics" title=" computational mechanics"> computational mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption%20performance" title=" energy absorption performance"> energy absorption performance</a>, <a href="https://publications.waset.org/abstracts/search?q=crashworthiness%20behavior" title=" crashworthiness behavior"> crashworthiness behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20mode" title=" deformation mode"> deformation mode</a> </p> <a href="https://publications.waset.org/abstracts/50994/study-of-crashworthiness-behavior-of-thin-walled-tube-under-axial-loading-by-using-computational-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">414</span> An Integrated Modular Approach Based Simulation of Cold Heavy Oil Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Sahaleh">Hamidreza Sahaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the authors display an incorporated secluded way to deal with quantitatively foresee volumetric sand generation and improved oil recuperation. This model is in light of blend hypothesis with erosion mechanics, in which multiphase hydrodynamics and geo-mechanics are coupled in a predictable way by means of principal unknowns, for example, saturation, pressure, porosity, and formation displacements. Foamy oil is demonstrated as a scattering of gas bubbles caught in the oil, where these gas air bubbles keep up a higher repository weight. A secluded methodology is then received to adequately exploit the current propelled standard supply and stress-strain codes. The model is actualized into three coordinated computational modules, i.e. erosion module, store module, and geo-mechanics module. The stress, stream and erosion mathematical statements are understood independently for every time addition, and the coupling terms (porosity, penetrability, plastic shear strain, and so on) are gone among them and iterated until certain union is accomplished on a period step premise. The framework is capable regarding its abilities, yet practical in terms of computer requirements and maintenance. Numerical results of field studies are displayed to show the capacities of the model. The impacts of foamy oil stream and sand generation are additionally inspected to exhibit their effect on the upgraded hydrocarbon recuperation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20recuperation" title="oil recuperation">oil recuperation</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20mechanics" title=" erosion mechanics"> erosion mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=foamy%20oil" title=" foamy oil"> foamy oil</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20module." title=" erosion module."> erosion module.</a> </p> <a href="https://publications.waset.org/abstracts/33285/an-integrated-modular-approach-based-simulation-of-cold-heavy-oil-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">413</span> Bubbling in Gas Solids Fluidization at a Strouhal Number Tuned for Low Energy Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chenxi%20Zhang">Chenxi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weizhong%20Qian"> Weizhong Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Fei%20Wei"> Fei Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas solids multiphase flow is common in many engineering and environmental applications. Turbulence and multiphase flows are two of the most challenging topics in fluid mechanics, and when combined they pose a formidable challenge, even in the dilute dispersed regime. Dimensionless numbers are important in mechanics because their constancy can imply dynamic similarity between systems, despite possible differences in medium or scale. In the fluid mechanics literature, the Strouhal number is usually associated with the dimensionless shedding frequency of a von Karman wake; here we introduce this dimensionless number to investigate bubbling in gas solids fluidization. St=fA/U, which divides stroke frequency (f) and amplitude (A) by forward speed (U). The bubble behavior in a large two-dimensional bubbling fluidized bed (500mm×30mm×6000mm) is investigated. Our result indicates that propulsive efficiency is high and energy dissipation is low over a narrow range of St and usually within the interval 0.2<St<0.4. Due to least-action principle, we expect it to constrain the range of St that bubbles use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubbles" title="bubbles">bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=Strouhal%20number" title=" Strouhal number"> Strouhal number</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a> </p> <a href="https://publications.waset.org/abstracts/45222/bubbling-in-gas-solids-fluidization-at-a-strouhal-number-tuned-for-low-energy-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">412</span> Nonlocal Phenomena in Quantum Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazim%20G.%20Atman">Kazim G. Atman</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Sirin"> Hüseyin Sirin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In theoretical physics, nonlocal phenomena has always been subject of debate. However, in the conventional mathematical approach where the developments of the physical systems are investigated by using the standard mathematical tools, nonlocal effects are not taken into account. In order to investigate the nonlocality in quantum mechanics and fractal property of space, fractional derivative operators are employed in this study. In this manner, fractional creation and annihilation operators are introduced and Einstein coefficients are taken into account as an application of concomitant formalism in quantum field theory. Therefore, each energy mode of photons are considered as fractional quantized harmonic oscillator hereby Einstein coefficients are obtained. Nevertheless, wave function and energy eigenvalues of fractional quantum mechanical harmonic oscillator are obtained via the fractional derivative order α which is a measure of the influence of nonlocal effects. In the case α = 1, where space becomes homogeneous and continuous, standard physical conclusions are recovered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Einstein%E2%80%99s%20Coefficients" title="Einstein’s Coefficients">Einstein’s Coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractional%20Calculus" title=" Fractional Calculus"> Fractional Calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=Fractional%20Quantum%20Mechanics" title=" Fractional Quantum Mechanics"> Fractional Quantum Mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlocal%20Theories" title=" Nonlocal Theories"> Nonlocal Theories</a> </p> <a href="https://publications.waset.org/abstracts/124566/nonlocal-phenomena-in-quantum-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">411</span> Optimization of the Numerical Fracture Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hentati">H. Hentati</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Abdelmoula"> R. Abdelmoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Jia"> Li Jia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maalej"> A. Maalej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present numerical simulations of the quasi-static crack propagation based on the variation approach. We perform numerical simulations of a piece of brittle material without initial crack. An alternate minimization algorithm is used. Based on these numerical results, we determine the influence of numerical parameters on the location of crack. We show the importance of trying to optimize the time of numerical computation and we present the first attempt to develop a simple numerical method to optimize this time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20mechanics" title="fracture mechanics">fracture mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=variation%20approach" title=" variation approach"> variation approach</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic" title=" mechanic"> mechanic</a> </p> <a href="https://publications.waset.org/abstracts/5187/optimization-of-the-numerical-fracture-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">410</span> Prediction of Crack Propagation in Bonded Joints Using Fracture Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hedayati">Reza Hedayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Jahanbakhshi"> Meysam Jahanbakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Fracture Mechanics is used to predict crack propagation in the adhesive jointing aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture" title="fracture">fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive%20joint" title=" adhesive joint"> adhesive joint</a>, <a href="https://publications.waset.org/abstracts/search?q=debonding" title=" debonding"> debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=APDL" title=" APDL"> APDL</a>, <a href="https://publications.waset.org/abstracts/search?q=LEFM" title=" LEFM"> LEFM</a> </p> <a href="https://publications.waset.org/abstracts/23770/prediction-of-crack-propagation-in-bonded-joints-using-fracture-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">409</span> Probing Neuron Mechanics with a Micropipette Force Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madeleine%20Anthonisen">Madeleine Anthonisen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hussain%20Sangji"> M. Hussain Sangji</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Monserratt%20Lopez-Ayon"> G. Monserratt Lopez-Ayon</a>, <a href="https://publications.waset.org/abstracts/search?q=Margaret%20Magdesian"> Margaret Magdesian</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Grutter"> Peter Grutter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in micromanipulation techniques and real-time particle tracking with nanometer resolution have enabled biological force measurements at scales relevant to neuron mechanics. An approach to precisely control and maneuver neurite-tethered polystyrene beads is presented. Analogous to an Atomic Force Microscope (AFM), this multi-purpose platform is a force sensor with imaging acquisition and manipulation capabilities. A mechanical probe composed of a micropipette with its tip fixed to a functionalized bead is used to incite the formation of a neurite in a sample of rat hippocampal neurons while simultaneously measuring the tension in said neurite as the sample is pulled away from the beaded tip. With optical imaging methods, a force resolution of 12 pN is achieved. Moreover, the advantages of this technique over alternatives such as AFM, namely ease of manipulation which ultimately allows higher throughput investigation of the mechanical properties of neurons, is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axonal%20growth" title="axonal growth">axonal growth</a>, <a href="https://publications.waset.org/abstracts/search?q=axonal%20guidance" title=" axonal guidance"> axonal guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20probe" title=" force probe"> force probe</a>, <a href="https://publications.waset.org/abstracts/search?q=pipette%20micromanipulation" title=" pipette micromanipulation"> pipette micromanipulation</a>, <a href="https://publications.waset.org/abstracts/search?q=neurite%20tension" title=" neurite tension"> neurite tension</a>, <a href="https://publications.waset.org/abstracts/search?q=neuron%20mechanics" title=" neuron mechanics"> neuron mechanics</a> </p> <a href="https://publications.waset.org/abstracts/62618/probing-neuron-mechanics-with-a-micropipette-force-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Guided Energy Theory of a Particle: Answered Questions Arise from Quantum Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desmond%20Agbolade%20Ademola">Desmond Agbolade Ademola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aimed to introduce a theory, called Guided Energy Theory of a particle that answered questions that arise from quantum foundation, quantum mechanics theory, and interpretation such as: what is nature of wavefunction? Is mathematical formalism of wavefunction correct? Does wavefunction collapse during measurement? Do quantum physical entanglement and many world interpretations really exist? In addition, is there uncertainty in the physical reality of our nature as being concluded in the Quantum theory? We have been able to show by the fundamental analysis presented in this work that the way quantum mechanics theory, and interpretation describes nature is not correlated with physical reality. Because, we discovered amongst others that, (1) Guided energy theory of a particle fundamentally provides complete physical observable series of quantized measurement of a particle momentum, force, energy e.t.c. in a given distance and time.In contrast, quantum mechanics wavefunction describes that nature has inherited probabilistic and indeterministic physical quantities, resulting in unobservable physical quantities that lead to many worldinterpretation.(2) Guided energy theory of a particle fundamentally predicts that it is mathematically possible to determine precise quantized measurementof position and momentum of a particle simultaneously. Because, there is no uncertainty in nature; nature however naturally guides itself against uncertainty. Contrary to the conclusion in quantum mechanics theory that, it is mathematically impossible to determine the position and the momentum of a particle simultaneously. Furthermore, we have been able to show by this theory that, it is mathematically possible to determine quantized measurement of force acting on a particle simultaneously, which is not possible on the premise of quantum mechanics theory. (3) It is evidently shown by our theory that, guided energy does not collapse, only describes the lopsided nature of a particle behavior in motion. This pretty offers us insight on gradual process of engagement - convergence and disengagement – divergence of guided energy holders which further highlight the picture how wave – like behavior return to particle-like behavior and how particle – like behavior return to wave – like behavior respectively. This further proves that the particles’ behavior in motion is oscillatory in nature. The mathematical formalism of Guided energy theory shows that nature is certainty whereas the mathematical formalism of Quantum mechanics theory shows that nature is absolutely probabilistics. In addition, the nature of wavefunction is the guided energy of the wave. In conclusion, the fundamental mathematical formalism of Quantum mechanics theory is wrong. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=momentum" title="momentum">momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20entanglement" title=" physical entanglement"> physical entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=wavefunction" title=" wavefunction"> wavefunction</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/72416/guided-energy-theory-of-a-particle-answered-questions-arise-from-quantum-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> Concept of the Active Flipped Learning in Engineering Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lin%20Li">Lin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshad%20Amini"> Farshad Amini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flipped classroom has been introduced to promote collaborative learning and higher-order learning objectives. In contrast to the traditional classroom, the flipped classroom has students watch prerecorded lecture videos before coming to class and then “class becomes the place to work through problems, advance concepts, and engage in collaborative learning”. In this paper, the active flipped learning combines flipped classroom with active learning that is to establish an active flipped learning (AFL) model, aiming to promote active learning, stress deep learning, encourage student engagement and highlight data-driven personalized learning. Because students have watched the lecture prior to class, contact hours can be devoted to problem-solving and gain a deeper understanding of the subject matter. The instructor is able to provide students with a wide range of learner-centered opportunities in class for greater mentoring and collaboration, increasing the possibility to engage students. Currently, little is known about the extent to which AFL improves engineering students’ performance. This paper presents the preliminary study on the core course of sophomore students in Engineering Mechanics. A series of survey and interviews have been conducted to compare students’ learning engagement, empowerment, self-efficacy, and satisfaction with the AFL. It was found that the AFL model taking advantage of advanced technology is a convenient and professional avenue for engineering students to strengthen their academic confidence and self-efficacy in the Engineering Mechanics by actively participating in learning and fostering their deep understanding of engineering statics and dynamics <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20learning" title="active learning">active learning</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20mechanics" title=" engineering mechanics"> engineering mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=flipped%20%20classroom" title=" flipped classroom"> flipped classroom</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/75040/concept-of-the-active-flipped-learning-in-engineering-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Loumi-Fergane">H. Loumi-Fergane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belaidi"> A. Belaidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used. In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in q<sup>i</sup>, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20laws" title="conservation laws">conservation laws</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20theories" title=" field theories"> field theories</a>, <a href="https://publications.waset.org/abstracts/search?q=multisymplectic%20geometry" title=" multisymplectic geometry"> multisymplectic geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=relativistic%20mechanics" title=" relativistic mechanics"> relativistic mechanics</a> </p> <a href="https://publications.waset.org/abstracts/74108/multisymplectic-geometry-and-noether-symmetries-for-the-field-theories-and-the-relativistic-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> The Application of FSI Techniques in Modeling of Realist Pulmonary Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdurrahim%20Bolukbasi">Abdurrahim Bolukbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Athari"> Hassan Athari</a>, <a href="https://publications.waset.org/abstracts/search?q=Dogan%20Ciloglu"> Dogan Ciloglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modeling lung respiratory system which has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the lung pulmonary system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically-relevant three dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue which produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue visco-elasticity and tidal breathing period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lung%20deformation%20and%20mechanics%3B%20Tissue%20mechanics%3B%20Viscoelasticity%3B%20Fluid-structure%20interactions%3B%20ANSYS" title="lung deformation and mechanics; Tissue mechanics; Viscoelasticity; Fluid-structure interactions; ANSYS">lung deformation and mechanics; Tissue mechanics; Viscoelasticity; Fluid-structure interactions; ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/31166/the-application-of-fsi-techniques-in-modeling-of-realist-pulmonary-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Axiomatic Systems as an Alternative to Teach Physics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liliana%20M.%20Marinelli">Liliana M. Marinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20T.%20Varanese"> Cristina T. Varanese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last few years, students from higher education have difficulties in grasping mathematical concepts which support physical matters, especially those in the first years of this education. Classical Physics teaching turns to be complex when students are not able to make use of mathematical tools which lead to the conceptual structure of Physics. When derivation and integration rules are not used or developed in parallel with other disciplines, the physical meaning that we attempt to convey turns to be complicated. Due to this fact, it could be of great use to see the Classical Mechanics from an axiomatic approach, where the correspondence rules give physical meaning, if we expect students to understand concepts clearly and accurately. Using the Minkowski point of view adapted to a two-dimensional space and time where vectors, matrices, and straight lines (worked from an affine space) give mathematical and physical rigorosity even when it is more abstract. An interesting option would be to develop the disciplinary contents from an axiomatic version which embraces the Classical Mechanics as a particular case of Relativistic Mechanics. The observation about the increase in the difficulties stated by students in the first years of education allows this idea to grow as a possible option to improve performance and understanding of the concepts of this subject. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axioms" title="axioms">axioms</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20physics" title=" classical physics"> classical physics</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20concepts" title=" physical concepts"> physical concepts</a>, <a href="https://publications.waset.org/abstracts/search?q=relativity" title=" relativity"> relativity</a> </p> <a href="https://publications.waset.org/abstracts/46849/axiomatic-systems-as-an-alternative-to-teach-physics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Hydrogen Storage in Salt Caverns: Rock Mechanical Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Zapf">Dirk Zapf</a>, <a href="https://publications.waset.org/abstracts/search?q=Bastian%20Leuger"> Bastian Leuger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For several years, natural gas and crude oil have been stored in salt caverns in Germany and also worldwide. The dimensioning concepts have been continuously developed from a rock mechanics point of view. In addition to the possibilities of realizing large numerical calculation models based on real survey data nowadays, especially the consideration of mechanical processes such as damage and healing played a role in the development of adequate material laws. In addition, thermodynamic aspects have had to be considered for some years in the operation of a gas storage cavern since temperature changes have a significant influence on the stress states in the vicinity of a storage cavern. The possibility of thermally induced fracturing processes is also investigated in the context of rock mechanics dimensioning. In recent years, the energy crisis and the finite nature of fossil fuel use have led to increased discussion of the use of salt caverns for hydrogen storage. In this paper, state of the art is presented, the current research work is described, and an outlook is given as to which questions still need to be answered from a rock mechanics point of view in connection with large-scale storage of hydrogen in salt caverns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavern%20design" title="cavern design">cavern design</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20salt" title=" rock salt"> rock salt</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical%20coupled%20calculations" title=" thermomechanical coupled calculations"> thermomechanical coupled calculations</a> </p> <a href="https://publications.waset.org/abstracts/160090/hydrogen-storage-in-salt-caverns-rock-mechanical-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=15">15</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=mechanics&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>