CINXE.COM
Search results for: satellite image
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: satellite image</title> <meta name="description" content="Search results for: satellite image"> <meta name="keywords" content="satellite image"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="satellite image" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="satellite image"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3342</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: satellite image</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3342</span> Towards Update a Road Map Solution: Use of Information Obtained by the Extraction of Road Network and Its Nodes from a Satellite Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Nougrara">Z. Nougrara</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Meunier"> J. Meunier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a new approach for extracting roads, there road network and its nodes from satellite image representing regions in Algeria. Our approach is related to our previous research work. It is founded on the information theory and the mathematical morphology. We therefore have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. The main interest of this study is to solve the problem of the automatic mapping from satellite images. This study is thus applied for that the geographical representation of the images is as near as possible to the reality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nodes" title="nodes">nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20network" title=" road network"> road network</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20image" title=" satellite image"> satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=updating%20a%20road%20map" title=" updating a road map"> updating a road map</a> </p> <a href="https://publications.waset.org/abstracts/25331/towards-update-a-road-map-solution-use-of-information-obtained-by-the-extraction-of-road-network-and-its-nodes-from-a-satellite-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3341</span> Selection of Appropriate Classification Technique for Lithological Mapping of Gali Jagir Area, Pakistan </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khunsa%20Fatima">Khunsa Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Umar%20K.%20Khattak"> Umar K. Khattak</a>, <a href="https://publications.waset.org/abstracts/search?q=Allah%20Bakhsh%20Kausar"> Allah Bakhsh Kausar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite images interpretation and analysis assist geologists by providing valuable information about geology and minerals of an area to be surveyed. A test site in Fatejang of district Attock has been studied using Landsat ETM+ and ASTER satellite images for lithological mapping. Five different supervised image classification techniques namely maximum likelihood, parallelepiped, minimum distance to mean, mahalanobis distance and spectral angle mapper have been performed on both satellite data images to find out the suitable classification technique for lithological mapping in the study area. Results of these five image classification techniques were compared with the geological map produced by Geological Survey of Pakistan. The result of maximum likelihood classification technique applied on ASTER satellite image has the highest correlation of 0.66 with the geological map. Field observations and XRD spectra of field samples also verified the results. A lithological map was then prepared based on the maximum likelihood classification of ASTER satellite image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ASTER" title="ASTER">ASTER</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat-ETM%2B" title=" Landsat-ETM+"> Landsat-ETM+</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite" title=" satellite"> satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a> </p> <a href="https://publications.waset.org/abstracts/3823/selection-of-appropriate-classification-technique-for-lithological-mapping-of-gali-jagir-area-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3340</span> Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Benkraouda">S. Benkraouda</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Djelloul-Khedda"> Z. Djelloul-Khedda</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Yagoubi"> B. Yagoubi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forest%20fire" title="forest fire">forest fire</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20fire%20detection" title=" forest fire detection"> forest fire detection</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20image" title=" satellite image"> satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20distribution" title=" normal distribution"> normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20gaussian%20model" title=" theoretical gaussian model"> theoretical gaussian model</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20infrared%20matrix%20image" title=" thermal infrared matrix image"> thermal infrared matrix image</a> </p> <a href="https://publications.waset.org/abstracts/118320/gaussian-probability-density-for-forest-fire-detection-using-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3339</span> Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Nougrara">Zineb Nougrara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20image" title="satellite image">satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20network" title=" road network"> road network</a>, <a href="https://publications.waset.org/abstracts/search?q=nodes" title=" nodes"> nodes</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis%20and%20processing" title=" image analysis and processing"> image analysis and processing</a> </p> <a href="https://publications.waset.org/abstracts/27882/development-of-algorithms-for-the-study-of-the-image-in-digital-form-for-satellite-applications-extraction-of-a-road-network-and-its-nodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3338</span> Remote Sensing through Deep Neural Networks for Satellite Image Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teja%20Sai%20Puligadda">Teja Sai Puligadda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=loss" title=" loss"> loss</a> </p> <a href="https://publications.waset.org/abstracts/146723/remote-sensing-through-deep-neural-networks-for-satellite-image-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3337</span> Satellite Image Classification Using Firefly Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paramjit%20Kaur">Paramjit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Harish%20Kundra"> Harish Kundra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title="image classification">image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=firefly%20algorithm" title=" firefly algorithm"> firefly algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20image%20classification" title=" satellite image classification"> satellite image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=terrain%20classification" title=" terrain classification"> terrain classification</a> </p> <a href="https://publications.waset.org/abstracts/64829/satellite-image-classification-using-firefly-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3336</span> Using Satellite Images Datasets for Road Intersection Detection in Route Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20El-Zahraa%20El-Taher">Fatma El-Zahraa El-Taher</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Taha"> Ayman Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jane%20Courtney"> Jane Courtney</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Mckeever"> Susan Mckeever</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions, is critical to decisions such as crossing roads or selecting the safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer the state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset is examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of the detection of intersections in satellite images is evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20images" title="satellite images">satellite images</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20images" title=" remote sensing images"> remote sensing images</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20acquisition" title=" data acquisition"> data acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title=" autonomous vehicles"> autonomous vehicles</a> </p> <a href="https://publications.waset.org/abstracts/145141/using-satellite-images-datasets-for-road-intersection-detection-in-route-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3335</span> Facility Detection from Image Using Mathematical Morphology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=In-Geun%20Lim">In-Geun Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Woong%20Ra"> Sung-Woong Ra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As high resolution satellite images can be used, lots of studies are carried out for exploiting these images in various fields. This paper proposes the method based on mathematical morphology for extracting the ‘horse's hoof shaped object’. This proposed method can make an automatic object detection system to track the meaningful object in a large satellite image rapidly. Mathematical morphology process can apply in binary image, so this method is very simple. Therefore this method can easily extract the ‘horse's hoof shaped object’ from any images which have indistinct edges of the tracking object and have different image qualities depending on filming location, filming time, and filming environment. Using the proposed method by which ‘horse's hoof shaped object’ can be rapidly extracted, the performance of the automatic object detection system can be improved dramatically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facility%20detection" title="facility detection">facility detection</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20image" title=" satellite image"> satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=object" title=" object"> object</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20morphology" title=" mathematical morphology"> mathematical morphology</a> </p> <a href="https://publications.waset.org/abstracts/67611/facility-detection-from-image-using-mathematical-morphology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3334</span> Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toufic%20Abd%20El-Latif%20Sadek">Toufic Abd El-Latif Sadek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt" title="asphalt">asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20thermal%20images" title=" satellite thermal images"> satellite thermal images</a>, <a href="https://publications.waset.org/abstracts/search?q=timing" title=" timing"> timing</a> </p> <a href="https://publications.waset.org/abstracts/51827/best-timing-for-capturing-satellite-thermal-images-asphalt-and-concrete-objects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3333</span> A Hybrid Image Fusion Model for Generating High Spatial-Temporal-Spectral Resolution Data Using OLI-MODIS-Hyperion Satellite Imagery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongquan%20Zhao">Yongquan Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Huang"> Bo Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spatial, Temporal, and Spectral Resolution (STSR) are three key characteristics of Earth observation satellite sensors; however, any single satellite sensor cannot provide Earth observations with high STSR simultaneously because of the hardware technology limitations of satellite sensors. On the other hand, a conflicting circumstance is that the demand for high STSR has been growing with the remote sensing application development. Although image fusion technology provides a feasible means to overcome the limitations of the current Earth observation data, the current fusion technologies cannot enhance all STSR simultaneously and provide high enough resolution improvement level. This study proposes a Hybrid Spatial-Temporal-Spectral image Fusion Model (HSTSFM) to generate synthetic satellite data with high STSR simultaneously, which blends the high spatial resolution from the panchromatic image of Landsat-8 Operational Land Imager (OLI), the high temporal resolution from the multi-spectral image of Moderate Resolution Imaging Spectroradiometer (MODIS), and the high spectral resolution from the hyper-spectral image of Hyperion to produce high STSR images. The proposed HSTSFM contains three fusion modules: (1) spatial-spectral image fusion; (2) spatial-temporal image fusion; (3) temporal-spectral image fusion. A set of test data with both phenological and land cover type changes in Beijing suburb area, China is adopted to demonstrate the performance of the proposed method. The experimental results indicate that HSTSFM can produce fused image that has good spatial and spectral fidelity to the reference image, which means it has the potential to generate synthetic data to support the studies that require high STSR satellite imagery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20spatial-temporal-spectral%20fusion" title="hybrid spatial-temporal-spectral fusion">hybrid spatial-temporal-spectral fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20resolution%20synthetic%20imagery" title=" high resolution synthetic imagery"> high resolution synthetic imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=least%20square%20regression" title=" least square regression"> least square regression</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20transformation" title=" spectral transformation"> spectral transformation</a> </p> <a href="https://publications.waset.org/abstracts/74667/a-hybrid-image-fusion-model-for-generating-high-spatial-temporal-spectral-resolution-data-using-oli-modis-hyperion-satellite-imagery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3332</span> Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Paliwal">M. C. Paliwal</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Jain"> A. K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Katiyar"> S. K. Katiyar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resolution" title="resolution">resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy%20assessment" title=" accuracy assessment"> accuracy assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20mapping" title=" land use mapping"> land use mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery" title=" satellite imagery"> satellite imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20truth%20data" title=" ground truth data"> ground truth data</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20matrices" title=" error matrices"> error matrices</a> </p> <a href="https://publications.waset.org/abstracts/13294/comparative-study-of-accuracy-of-land-coverland-use-mapping-using-medium-resolution-satellite-imagery-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3331</span> Mutual Information Based Image Registration of Satellite Images Using PSO-GA Hybrid Algorithm </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dipti%20Patra">Dipti Patra</a>, <a href="https://publications.waset.org/abstracts/search?q=Guguloth%20Uma"> Guguloth Uma</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Pradhan"> Smita Pradhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Registration is a fundamental task in image processing. It is used to transform different sets of data into one coordinate system, where data are acquired from different times, different viewing angles, and/or different sensors. The registration geometrically aligns two images (the reference and target images). Registration techniques are used in satellite images and it is important in order to be able to compare or integrate the data obtained from these different measurements. In this work, mutual information is considered as a similarity metric for registration of satellite images. The transformation is assumed to be a rigid transformation. An attempt has been made here to optimize the transformation function. The proposed image registration technique hybrid PSO-GA incorporates the notion of Particle Swarm Optimization and Genetic Algorithm and is used for finding the best optimum values of transformation parameters. The performance comparision obtained with the experiments on satellite images found that the proposed hybrid PSO-GA algorithm outperforms the other algorithms in terms of mutual information and registration accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20registration" title="image registration">image registration</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20PSO-GA%20algorithm%20and%20mutual%20information" title=" hybrid PSO-GA algorithm and mutual information"> hybrid PSO-GA algorithm and mutual information</a> </p> <a href="https://publications.waset.org/abstracts/9683/mutual-information-based-image-registration-of-satellite-images-using-pso-ga-hybrid-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3330</span> Use of Satellite Imaging to Understand Earth’s Surface Features: A Roadmap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabri%20Serkan%20Gulluoglu">Sabri Serkan Gulluoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is possible with Geographic Information Systems (GIS) that the information about all natural and artificial resources on the earth is obtained taking advantage of satellite images are obtained by remote sensing techniques. However, determination of unknown sources, mapping of the distribution and efficient evaluation of resources are defined may not be possible with the original image. For this reasons, some process steps are needed like transformation, pre-processing, image enhancement and classification to provide the most accurate assessment numerically and visually. Many studies which present the phases of obtaining and processing of the satellite images have examined in the literature study. The research showed that the determination of the process steps may be followed at this subject with the existence of a common whole may provide to progress the process rapidly for the necessary and possible studies which will be. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20imaging" title=" satellite imaging"> satellite imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=gis" title=" gis"> gis</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title=" computer science"> computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=information" title=" information"> information</a> </p> <a href="https://publications.waset.org/abstracts/5599/use-of-satellite-imaging-to-understand-earths-surface-features-a-roadmap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3329</span> Influence of High-Resolution Satellites Attitude Parameters on Image Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20Wahballah">Walid Wahballah</a>, <a href="https://publications.waset.org/abstracts/search?q=Taher%20Bazan"> Taher Bazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawzy%20Eltohamy"> Fawzy Eltohamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important functions of the satellite attitude control system is to provide the required pointing accuracy and attitude stability for optical remote sensing satellites to achieve good image quality. Although offering noise reduction and increased sensitivity, time delay and integration (TDI) charge coupled devices (CCDs) utilized in high-resolution satellites (HRS) are prone to introduce large amounts of pixel smear due to the instability of the line of sight. During on-orbit imaging, as a result of the Earth’s rotation and the satellite platform instability, the moving direction of the TDI-CCD linear array and the imaging direction of the camera become different. The speed of the image moving on the image plane (focal plane) represents the image motion velocity whereas the angle between the two directions is known as the drift angle (β). The drift angle occurs due to the rotation of the earth around its axis during satellite imaging; affecting the geometric accuracy and, consequently, causing image quality degradation. Therefore, the image motion velocity vector and the drift angle are two important factors used in the assessment of the image quality of TDI-CCD based optical remote sensing satellites. A model for estimating the image motion velocity and the drift angle in HRS is derived. The six satellite attitude control parameters represented in the derived model are the (roll angle φ, pitch angle θ, yaw angle ψ, roll angular velocity φ֗, pitch angular velocity θ֗ and yaw angular velocity ψ֗ ). The influence of these attitude parameters on the image quality is analyzed by establishing a relationship between the image motion velocity vector, drift angle and the six satellite attitude parameters. The influence of the satellite attitude parameters on the image quality is assessed by the presented model in terms of modulation transfer function (MTF) in both cross- and along-track directions. Three different cases representing the effect of pointing accuracy (φ, θ, ψ) bias are considered using four different sets of pointing accuracy typical values, while the satellite attitude stability parameters are ideal. In the same manner, the influence of satellite attitude stability (φ֗, θ֗, ψ֗) on image quality is also analysed for ideal pointing accuracy parameters. The results reveal that cross-track image quality is influenced seriously by the yaw angle bias and the roll angular velocity bias, while along-track image quality is influenced only by the pitch angular velocity bias. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-resolution%20satellites" title="high-resolution satellites">high-resolution satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=pointing%20accuracy" title=" pointing accuracy"> pointing accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude%20stability" title=" attitude stability"> attitude stability</a>, <a href="https://publications.waset.org/abstracts/search?q=TDI-CCD" title=" TDI-CCD"> TDI-CCD</a>, <a href="https://publications.waset.org/abstracts/search?q=smear" title=" smear"> smear</a>, <a href="https://publications.waset.org/abstracts/search?q=MTF" title=" MTF"> MTF</a> </p> <a href="https://publications.waset.org/abstracts/79548/influence-of-high-resolution-satellites-attitude-parameters-on-image-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3328</span> Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Gupta">Manoj Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmendra%20Singh%20Bhadauria"> Nirmendra Singh Bhadauria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20fusion" title="image fusion">image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a>, <a href="https://publications.waset.org/abstracts/search?q=DT-CWT" title=" DT-CWT"> DT-CWT</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20image%20fusion" title=" average image fusion"> average image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20image%20fusion" title=" hybrid image fusion"> hybrid image fusion</a> </p> <a href="https://publications.waset.org/abstracts/19207/performance-of-hybrid-image-fusion-implementation-of-dual-tree-complex-wavelet-transform-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3327</span> Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Nadhirah%20Rusyda%20Rosnan">Nur Nadhirah Rusyda Rosnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursuhaili%20Najwa%20Masrol"> Nursuhaili Najwa Masrol</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Fatiha%20MD%20Nor"> Nurul Fatiha MD Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zafrullah%20Mohammad%20Salim"> Mohammad Zafrullah Mohammad Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sim%20Choon%20Cheak"> Sim Choon Cheak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=immature%20palm%20count" title="immature palm count">immature palm count</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20agriculture" title=" precision agriculture"> precision agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/175726/immature-palm-tree-detection-using-morphological-filter-for-palm-counting-with-high-resolution-satellite-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3326</span> Level Set Based Extraction and Update of Lake Contours Using Multi-Temporal Satellite Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yindi%20Zhao">Yindi Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Zhang"> Yun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Silu%20Xia"> Silu Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Wu"> Lixin Wu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contours and areas of water surfaces, especially lakes, often change due to natural disasters and construction activities. It is an effective way to extract and update water contours from satellite images using image processing algorithms. However, to produce optimal water surface contours that are close to true boundaries is still a challenging task. This paper compares the performances of three different level set models, including the Chan-Vese (CV) model, the signed pressure force (SPF) model, and the region-scalable fitting (RSF) energy model for extracting lake contours. After experiment testing, it is indicated that the RSF model, in which a region-scalable fitting (RSF) energy functional is defined and incorporated into a variational level set formulation, is superior to CV and SPF, and it can get desirable contour lines when there are “holes” in the regions of waters, such as the islands in the lake. Therefore, the RSF model is applied to extracting lake contours from Landsat satellite images. Four temporal Landsat satellite images of the years of 2000, 2005, 2010, and 2014 are used in our study. All of them were acquired in May, with the same path/row (121/036) covering Xuzhou City, Jiangsu Province, China. Firstly, the near infrared (NIR) band is selected for water extraction. Image registration is conducted on NIR bands of different temporal images for information update, and linear stretching is also done in order to distinguish water from other land cover types. Then for the first temporal image acquired in 2000, lake contours are extracted via the RSF model with initialization of user-defined rectangles. Afterwards, using the lake contours extracted the previous temporal image as the initialized values, lake contours are updated for the current temporal image by means of the RSF model. Meanwhile, the changed and unchanged lakes are also detected. The results show that great changes have taken place in two lakes, i.e. Dalong Lake and Panan Lake, and RSF can actually extract and effectively update lake contours using multi-temporal satellite image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20set%20model" title="level set model">level set model</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-temporal%20image" title=" multi-temporal image"> multi-temporal image</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20contour%20extraction" title=" lake contour extraction"> lake contour extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=contour%20update" title=" contour update"> contour update</a> </p> <a href="https://publications.waset.org/abstracts/25775/level-set-based-extraction-and-update-of-lake-contours-using-multi-temporal-satellite-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3325</span> Detecting the Edge of Multiple Images in Parallel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakash%20K.%20Aithal">Prakash K. Aithal</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Dinesh%20Acharya"> U. Dinesh Acharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Gopakumar"> Rajesh Gopakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edge is variation of brightness in an image. Edge detection is useful in many application areas such as finding forests, rivers from a satellite image, detecting broken bone in a medical image etc. The paper discusses about finding edge of multiple aerial images in parallel .The proposed work tested on 38 images 37 colored and one monochrome image. The time taken to process N images in parallel is equivalent to time taken to process 1 image in sequential. The proposed method achieves pixel level parallelism as well as image level parallelism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title="edge detection">edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=multicore" title=" multicore"> multicore</a>, <a href="https://publications.waset.org/abstracts/search?q=gpu" title=" gpu"> gpu</a>, <a href="https://publications.waset.org/abstracts/search?q=opencl" title=" opencl"> opencl</a>, <a href="https://publications.waset.org/abstracts/search?q=mpi" title=" mpi"> mpi</a> </p> <a href="https://publications.waset.org/abstracts/30818/detecting-the-edge-of-multiple-images-in-parallel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3324</span> Improved Color-Based K-Mean Algorithm for Clustering of Satellite Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangeeta%20Yadav">Sangeeta Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Mantosh%20Biswas"> Mantosh Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed an improved color based K-mean algorithm for clustering of satellite Image (SAR). Our method comprises of two stages. The first step is an interactive selection process where users are required to input the number of colors (ncolor), number of clusters, and then they are prompted to select the points in each color cluster. In the second step these points are given as input to K-mean clustering algorithm that clusters the image based on color and Minimum Square Euclidean distance. The proposed method reduces the mixed pixel problem to a great extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster" title="cluster">cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=ncolor%20method" title=" ncolor method"> ncolor method</a>, <a href="https://publications.waset.org/abstracts/search?q=K-mean%20method" title=" K-mean method"> K-mean method</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20selection%20process" title=" interactive selection process"> interactive selection process</a> </p> <a href="https://publications.waset.org/abstracts/64532/improved-color-based-k-mean-algorithm-for-clustering-of-satellite-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3323</span> Design and Performance Analysis of Advanced B-Spline Algorithm for Image Resolution Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian">M. Z. Kurian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Chidananda%20Murthy"> M. V. Chidananda Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Guruprasad"> H. S. Guruprasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approach to super-resolve the low-resolution (LR) image is presented in this paper which is very useful in multimedia communication, medical image enhancement and satellite image enhancement to have a clear view of the information in the image. The proposed Advanced B-Spline method generates a high-resolution (HR) image from single LR image and tries to retain the higher frequency components such as edges in the image. This method uses B-Spline technique and Crispening. This work is evaluated qualitatively and quantitatively using Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The method is also suitable for real-time applications. Different combinations of decimation and super-resolution algorithms in the presence of different noise and noise factors are tested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20b-spline" title="advanced b-spline">advanced b-spline</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20super-resolution" title=" image super-resolution"> image super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20square%20error%20%28MSE%29" title=" mean square error (MSE)"> mean square error (MSE)</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20signal%20to%20noise%20ratio%20%28PSNR%29" title=" peak signal to noise ratio (PSNR)"> peak signal to noise ratio (PSNR)</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution%20down%20converter" title=" resolution down converter"> resolution down converter</a> </p> <a href="https://publications.waset.org/abstracts/59499/design-and-performance-analysis-of-advanced-b-spline-algorithm-for-image-resolution-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3322</span> Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zheng%20DianXun">Zheng DianXun</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Bo"> Cheng Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Hetong"> Lin Hetong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the orbit avoidance strategies of optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. There are three ways to protect the CCD camera: closing the camera cover, satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. Thereinto, the avoid maneuvers adopts pulse guidance. And the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20remote%20sensing%20satellite" title="optical remote sensing satellite">optical remote sensing satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20avoidance" title=" satellite avoidance"> satellite avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20satellite" title=" virtual satellite"> virtual satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=avoid%20target-point" title=" avoid target-point"> avoid target-point</a>, <a href="https://publications.waset.org/abstracts/search?q=avoid%20maneuver" title=" avoid maneuver"> avoid maneuver</a> </p> <a href="https://publications.waset.org/abstracts/34217/research-on-the-strategy-of-orbital-avoidance-for-optical-remote-sensing-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3321</span> Source Separation for Global Multispectral Satellite Images Indexing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aymen%20Bouzid">Aymen Bouzid</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihen%20Ben%20Smida"> Jihen Ben Smida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose to prove the importance of the application of blind source separation methods on remote sensing data in order to index multispectral images. The proposed method starts with Gabor Filtering and the application of a Blind Source Separation to get a more effective representation of the information contained on the observation images. After that, a feature vector is extracted from each image in order to index them. Experimental results show the superior performance of this approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blind%20source%20separation" title="blind source separation">blind source separation</a>, <a href="https://publications.waset.org/abstracts/search?q=content%20based%20image%20retrieval" title=" content based image retrieval"> content based image retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction%20multispectral" title=" feature extraction multispectral"> feature extraction multispectral</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20images" title=" satellite images"> satellite images</a> </p> <a href="https://publications.waset.org/abstracts/28585/source-separation-for-global-multispectral-satellite-images-indexing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3320</span> Multi-Temporal Cloud Detection and Removal in Satellite Imagery for Land Resources Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Yin">Feng Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clouds are inevitable contaminants in optical satellite imagery, and prevent the satellite imaging systems from acquiring clear view of the earth surface. The presence of clouds in satellite imagery bring negative influences for remote sensing land resources investigation. As a consequence, detecting the locations of clouds in satellite imagery is an essential preprocessing step, and further remove the existing clouds is crucial for the application of imagery. In this paper, a multi-temporal based satellite imagery cloud detection and removal method is proposed, which will be used for large-scale land resource investigation. The proposed method is mainly composed of four steps. First, cloud masks are generated for cloud contaminated images by single temporal cloud detection based on multiple spectral features. Then, a cloud-free reference image of target areas is synthesized by weighted averaging time-series images in which cloud pixels are ignored. Thirdly, the refined cloud detection results are acquired by multi-temporal analysis based on the reference image. Finally, detected clouds are removed via multi-temporal linear regression. The results of a case application in Hubei province indicate that the proposed multi-temporal cloud detection and removal method is effective and promising for large-scale land resource investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20detection" title="cloud detection">cloud detection</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20remove" title=" cloud remove"> cloud remove</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-temporal%20imagery" title=" multi-temporal imagery"> multi-temporal imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20resources%20investigation" title=" land resources investigation"> land resources investigation</a> </p> <a href="https://publications.waset.org/abstracts/90359/multi-temporal-cloud-detection-and-removal-in-satellite-imagery-for-land-resources-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3319</span> The Strategy of Orbit Avoidance for Optical Remote Sensing Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dianxun%20Zheng">Dianxun Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wuxing%20Jing"> Wuxing Jing</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin%20Hetong"> Lin Hetong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical remote sensing satellite, always running on the Sun-synchronous orbit, equipped laser warning equipment to alert CCD camera from laser attack. There have three ways to protect the CCD camera, closing the camera cover satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes a satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-object avoid maneuvers. On occasions of fulfilling the orbit tasks of the satellite, the orbit can be restored back to virtual satellite through orbit maneuvers. There into, the avoid maneuvers adopts pulse guidance. and the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to avoidance for optical remote sensing satellite when encounter the laser hostile attacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20remote%20sensing%20satellite" title="optical remote sensing satellite">optical remote sensing satellite</a>, <a href="https://publications.waset.org/abstracts/search?q=always%20running%20on%20the%20sun-synchronous" title=" always running on the sun-synchronous"> always running on the sun-synchronous</a> </p> <a href="https://publications.waset.org/abstracts/31188/the-strategy-of-orbit-avoidance-for-optical-remote-sensing-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3318</span> Review on Effective Texture Classification Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujata%20S.%20Kulkarni">Sujata S. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20classification" title=" image classification"> image classification</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20analysis" title=" texture analysis"> texture analysis</a> </p> <a href="https://publications.waset.org/abstracts/24461/review-on-effective-texture-classification-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3317</span> Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neetu%20Manocha">Neetu Manocha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20image" title="satellite image">satellite image</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title=" edge detection"> edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20rate" title=" error rate"> error rate</a>, <a href="https://publications.waset.org/abstracts/search?q=MSE" title=" MSE"> MSE</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=HIST-SI" title=" HIST-SI"> HIST-SI</a>, <a href="https://publications.waset.org/abstracts/search?q=linking" title=" linking"> linking</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering" title=" filtering"> filtering</a>, <a href="https://publications.waset.org/abstracts/search?q=imp_HIST-SI" title=" imp_HIST-SI"> imp_HIST-SI</a> </p> <a href="https://publications.waset.org/abstracts/149905/imp-hist-si-improved-hybrid-image-segmentation-technique-for-satellite-imagery-to-decrease-the-segmentation-error-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3316</span> Routing in IP/LEO Satellite Communication Systems: Past, Present and Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hussein">Mohammed Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Abualseoud%20Hanani"> Abualseoud Hanani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Low Earth Orbit (LEO) satellite constellation system, routing data from the source all the way to the destination constitutes a daunting challenge because LEO satellite constellation resources are spare and the high speed movement of LEO satellites results in a highly dynamic network topology. This situation limits the applicability of traditional routing approaches that rely on exchanging topology information upon change or setup of a connection. Consequently, in recent years, many routing algorithms and implementation strategies for satellite constellation networks with Inter Satellite Links (ISLs) have been proposed. In this article, we summarize and classify some of the most representative solutions according to their objectives, and discuss their advantages and disadvantages. Finally, with a look into the future, we present some of the new challenges and opportunities for LEO satellite constellations in general and routing protocols in particular. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LEO%20satellite%20constellations" title="LEO satellite constellations">LEO satellite constellations</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20topology" title=" dynamic topology"> dynamic topology</a>, <a href="https://publications.waset.org/abstracts/search?q=IP%20routing" title=" IP routing"> IP routing</a>, <a href="https://publications.waset.org/abstracts/search?q=inter-satellite-links" title=" inter-satellite-links"> inter-satellite-links</a> </p> <a href="https://publications.waset.org/abstracts/54344/routing-in-ipleo-satellite-communication-systems-past-present-and-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3315</span> Classification of Land Cover Usage from Satellite Images Using Deep Learning Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Ayesha%20Fathima">Shaik Ayesha Fathima</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaik%20Noor%20Jahan"> Shaik Noor Jahan</a>, <a href="https://publications.waset.org/abstracts/search?q=Duvvada%20Rajeswara%20Rao"> Duvvada Rajeswara Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earth's environment and its evolution can be seen through satellite images in near real-time. Through satellite imagery, remote sensing data provide crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then pre-processed using data pre-processing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN, ANN, Resnet etc. In this project, we are using the DeepLabv3 (Atrous convolution) algorithm for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=area%20calculation" title="area calculation">area calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=atrous%20convolution" title=" atrous convolution"> atrous convolution</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20globe%20land%20cover%20classification" title=" deep globe land cover classification"> deep globe land cover classification</a>, <a href="https://publications.waset.org/abstracts/search?q=deepLabv3" title=" deepLabv3"> deepLabv3</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20classification" title=" land cover classification"> land cover classification</a>, <a href="https://publications.waset.org/abstracts/search?q=resnet%2050" title=" resnet 50"> resnet 50</a> </p> <a href="https://publications.waset.org/abstracts/147677/classification-of-land-cover-usage-from-satellite-images-using-deep-learning-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3314</span> Estimation of PM10 Concentration Using Ground Measurements and Landsat 8 OLI Satellite Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Abdul%20Hameed%20Saleh">Salah Abdul Hameed Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Hasan"> Ghada Hasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to produce an empirical model for the determination of particulate matter (PM10) concentration in the atmosphere using visible bands of Landsat 8 OLI satellite image over Kirkuk city- IRAQ. The suggested algorithm is established on the aerosol optical reflectance model. The reflectance model is a function of the optical properties of the atmosphere, which can be related to its concentrations. The concentration of PM10 measurements was collected using Particle Mass Profiler and Counter in a Single Handheld Unit (Aerocet 531) meter simultaneously by the Landsat 8 OLI satellite image date. The PM10 measurement locations were defined by a handheld global positioning system (GPS). The obtained reflectance values for visible bands (Coastal aerosol, Blue, Green and blue bands) of landsat 8 OLI image were correlated with in-suite measured PM10. The feasibility of the proposed algorithms was investigated based on the correlation coefficient (R) and root-mean-square error (RMSE) compared with the PM10 ground measurement data. A choice of our proposed multispectral model was founded on the highest value correlation coefficient (R) and lowest value of the root mean square error (RMSE) with PM10 ground data. The outcomes of this research showed that visible bands of Landsat 8 OLI were capable of calculating PM10 concentration with an acceptable level of accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title="air pollution">air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=PM10%20concentration" title=" PM10 concentration"> PM10 concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=Lansat8%20OLI%20image" title=" Lansat8 OLI image"> Lansat8 OLI image</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=multispectral%20algorithms" title=" multispectral algorithms"> multispectral algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirkuk%20area" title=" Kirkuk area"> Kirkuk area</a> </p> <a href="https://publications.waset.org/abstracts/19705/estimation-of-pm10-concentration-using-ground-measurements-and-landsat-8-oli-satellite-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3313</span> Performance Evaluation of a Very High-Resolution Satellite Telescope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walid%20A.%20Attia">Walid A. Attia</a>, <a href="https://publications.waset.org/abstracts/search?q=Taher%20M.%20Bazan"> Taher M. Bazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawzy%20Eltohamy"> Fawzy Eltohamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Fathy"> Mahmoud Fathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> System performance evaluation is an essential stage in the design of high-resolution satellite telescopes prior to the development process. In this paper, a system performance evaluation of a very high-resolution satellite telescope is investigated. The evaluated system has a Korsch optical scheme design. This design has been discussed in another paper with respect to three-mirror anastigmat (TMA) scheme design and the former configuration showed better results. The investigated system is based on the Korsch optical design integrated with a time-delay and integration charge coupled device (TDI-CCD) sensor to achieve a ground sampling distance (GSD) of 25 cm. The key performance metrics considered are the spatial resolution, the signal to noise ratio (SNR) and the total modulation transfer function (MTF) of the system. In addition, the national image interpretability rating scale (NIIRS) metric is assessed to predict the image quality according to the modified general image quality equation (GIQE). Based on the orbital, optical and detector parameters, the estimated GSD is found to be 25 cm. The SNR has been analyzed at different illumination conditions of target albedos, sun and sensor angles. The system MTF has been computed including diffraction, aberration, optical manufacturing, smear and detector sampling as the main contributors for evaluation the MTF. Finally, the system performance evaluation results show that the computed MTF value is found to be around 0.08 at the Nyquist frequency, the SNR value was found to be 130 at albedo 0.2 with a nadir viewing angles and the predicted NIIRS is in the order of 6.5 which implies a very good system image quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modulation%20transfer%20function" title="modulation transfer function">modulation transfer function</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20image%20interpretability%20rating%20scale" title=" national image interpretability rating scale"> national image interpretability rating scale</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20to%20noise%20ratio" title=" signal to noise ratio"> signal to noise ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20telescope%20performance%20evaluation" title=" satellite telescope performance evaluation"> satellite telescope performance evaluation</a> </p> <a href="https://publications.waset.org/abstracts/80164/performance-evaluation-of-a-very-high-resolution-satellite-telescope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=111">111</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=112">112</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=satellite%20image&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>