CINXE.COM

Search results for: ECAP

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ECAP</title> <meta name="description" content="Search results for: ECAP"> <meta name="keywords" content="ECAP"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ECAP" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ECAP"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ECAP</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20G.%20F.%20Siqueira">P. G. F. Siqueira</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20S.%20Almeida"> N. G. S. Almeida</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20A.%20Stemler"> P. M. A. Stemler</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Cetlin"> P. R. Cetlin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20P.%20Aguilar"> M. T. P. Aguilar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECAP" title="ECAP">ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20design" title=" mechanical design"> mechanical design</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20methods" title=" numerical methods"> numerical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=SPD" title=" SPD"> SPD</a> </p> <a href="https://publications.waset.org/abstracts/112287/the-design-of-a-die-for-the-processing-of-aluminum-through-equal-channel-angular-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Enhancement of Mechanical Properties for Al-Mg-Si Alloy Using Equal Channel Angular Pressing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20H.%20El%20Garaihy">W. H. El Garaihy</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nassef"> A. Nassef</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Samy"> S. Samy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Equal channel angular pressing (ECAP) of commercial Al-Mg-Si alloy was conducted using two strain rates. The ECAP processing was conducted at room temperature and at 250 °C. Route A was adopted up to a total number of four passes in the present work. Structural evolution of the aluminum alloy discs was investigated before and after ECAP processing using optical microscopy (OM). Following ECAP, simple compression tests and Vicker’s hardness were performed. OM micrographs showed that, the average grain size of the as-received Al-Mg-Si disc tends to be larger than the size of the ECAP processed discs. Moreover, significant difference in the grain morphologies of the as-received and processed discs was observed. Intensity of deformation was observed via the alignment of the Al-Mg-Si consolidated particles (grains) in the direction of shear, which increased with increasing the number of passes via ECAP. Increasing the number of passes up to 4 resulted in increasing the grains aspect ratio up to ~5. It was found that the pressing temperature has a significant influence on the microstructure, Hv-values, and compressive strength of the processed discs. Hardness measurements demonstrated that 1-pass resulted in increase of Hv-value by 42% compared to that of the as-received alloy. 4-passes of ECAP processing resulted in additional increase in the Hv-value. A similar trend was observed for the yield and compressive strength. Experimental data of the Hv-values demonstrated that there is a lack of any significant dependence on the processing strain rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg-Si%20alloy" title="Al-Mg-Si alloy">Al-Mg-Si alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=equal%20channel%20angular%20pressing" title=" equal channel angular pressing"> equal channel angular pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation "> severe plastic deformation </a> </p> <a href="https://publications.waset.org/abstracts/23250/enhancement-of-mechanical-properties-for-al-mg-si-alloy-using-equal-channel-angular-pressing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Mechanical Properties of ECAP-Biomedical Titanium Materials: A Review </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Talib%20Mohammed">Mohsin Talib Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20A.%20Khan"> Zahid A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20N.%20Siddiquee"> Arshad N. Siddiquee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wide use of titanium (Ti) materials in medicine gives impetus to a search for development new techniques with elevated properties such as strength, corrosion resistance and Young's modulus close to that of bone tissue. This article presents the most recent state of the art on the use of equal channel angular pressing (ECAP) technique in evolving mechanical characteristics of the ultrafine-grained bio-grade Ti materials. Over past few decades, research activities in this area have grown enormously and have produced interesting results, including achieving the combination of conflicting properties that are desirable for biomedical applications by severe plastic deformation (SPD) processing. A comprehensive review of the most recent work in this area is systematically presented. The challenges in processing ultrafine-grained Ti materials are identified and discussed. An overview of the biomedical Ti alloys processed with ECAP technique is given in this review, along with a summary of their effect on the important mechanical properties that can be achieved by SPD processing. The paper also offers insights in the mechanisms underlying SPD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title="mechanical properties">mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications "> biomedical applications </a> </p> <a href="https://publications.waset.org/abstracts/27848/mechanical-properties-of-ecap-biomedical-titanium-materials-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Mechanical and Physical Properties of Aluminum Composite Reinforced with Carbon Nano Tube Dispersion via Ultrasonic and Ball Mill Attrition after Sever Plastic Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Zare">Hassan Zare</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Jahedi"> Mohammad Jahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Toroghinejad"> Mohammad Reza Toroghinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Meratian"> Mahmoud Meratian</a>, <a href="https://publications.waset.org/abstracts/search?q=Marko%20Knezevic"> Marko Knezevic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the carbon nanotube (CNT) reinforced Al matrix nanocomposites were fabricated by ECAP. Equal Channel Angular Pressing (ECAP) process is one of the most important methods for powder densification due to the presence of shear strain. This method samples with variety passes (one, two, four and eight passes) in C route were prepared at room temperature. A few study about metal matrix nanocomposite reinforced carbon nanotube done, the reaction intersection of interface and carbon nanotube cause to reduce the efficiency of nanocomposite. In this paper, we checked mechanical and physical properties of aluminum-CNT composite that manufactured by ECAP when the composite is deformed. The non-agglomerated CNTs were distributed homogeneously with 2% consolidation in the Aluminum matrix. The ECAP process was performed on the both monolithic and composite with distributed CNT samples for 8 passes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title="powder metallurgy">powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20mill%20attrition" title=" ball mill attrition"> ball mill attrition</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a> </p> <a href="https://publications.waset.org/abstracts/60010/mechanical-and-physical-properties-of-aluminum-composite-reinforced-with-carbon-nano-tube-dispersion-via-ultrasonic-and-ball-mill-attrition-after-sever-plastic-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Al-Mufadi">F. Al-Mufadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Djavanroodi"> F. Djavanroodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPD" title="SPD">SPD</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20Al" title=" pure Al"> pure Al</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/10280/finite-element-modeling-and-mechanical-properties-of-aluminum-proceed-by-equal-channel-angular-pressing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Effect of Molybdenum Addition to Aluminum Grain Refined by Titanium Plus Boron on Its Grain Size and Mechanical Characteristics in the Cast and After Pressing by the Equal Channel Angular Pressing Conditions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20O.%20Zaid">A. I. O. Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Attieh"> A. M. Attieh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20A.%20Al%20Qawabah"> S. M. A. Al Qawabah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum and its alloys solidify in columnar structure with large grain size which tends to reduce their mechanical strength and surface quality. They are, therefore, grain refined by addition of either titanium or titanium plus boron to their melt before solidification. Equal channel angular pressing, ECAP, process is a recent forming method for producing heavy plastic deformation in materials. In this paper, the effect of molybdenum addition to aluminum grain refined by Ti+B on its metallurgical and mechanical characteristics are investigated in the as cast condition and after pressing by the ECAP process. It was found that addition of Mo or Ti+B alone or together to aluminum resulted in grain refining of its microstructure in the as cast condition, as the average grain size was reduced from 139 micron to 46 micron when Mo and Ti+B are added together. Pressing by the ECAP process resulted in further refinement of the microstructure where 32 micron of average grain size was achieved in Al and the Al-Mo microalloy. Regarding the mechanical strength, addition of Mo or Ti+B alone to Al resulted in deterioration of its mechanical behavior but resulted in enhancement of its mechanical behavior when added together, increase of 10% in flow stress was achieved at 20% strain. However, pressing by ECAP addition of Mo or Ti+B alone to Al resulted in enhancement of its mechanical strength but reduced its strength when added together. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECAP" title="ECAP">ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=cast" title=" cast"> cast</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=Mo%20grain%20refiner" title=" Mo grain refiner "> Mo grain refiner </a> </p> <a href="https://publications.waset.org/abstracts/9994/effect-of-molybdenum-addition-to-aluminum-grain-refined-by-titanium-plus-boron-on-its-grain-size-and-mechanical-characteristics-in-the-cast-and-after-pressing-by-the-equal-channel-angular-pressing-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Effect of Hot Equal Channel Angular Pressing Process on Mechanical Properties of Commercial Pure Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ata%20Khalkhkali%20Sharifi">Seyed Ata Khalkhkali Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamhossein%20Majzoubi"> Gholamhossein Majzoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Abroush"> Farhad Abroush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developing mechanical properties of pure titanium has been reviewed in this paper by using ECAP process. At the first step of this article, the experimental samples were prepared as mentioned in the standards. Then pure grade 2 Ti was processed via equal-channel angular pressing (ECAp) for 2 passes following route-A at 400°C. After processing, the microstructural evolution, tensile, fatigue, hardness properties and wear behavior were investigated. Finally, the effect of ECAP process on these samples was analyzed. The results showed improvement in strength values with a slight decrease in ductility. The analysis on 30 points within the sample showed hardness increase in each pass. Also, it was concluded that fatigue properties were increased too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equal-channel%20angular%20pressing" title="equal-channel angular pressing">equal-channel angular pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20materials%20and%20applications" title=" engineering materials and applications"> engineering materials and applications</a> </p> <a href="https://publications.waset.org/abstracts/4117/effect-of-hot-equal-channel-angular-pressing-process-on-mechanical-properties-of-commercial-pure-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Enhancement of Mechanical and Dissolution Properties of a Cast Magnesium Alloy via Equal Angular Channel Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tim%20Dunne">Tim Dunne</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiaxiang%20Ren"> Jiaxiang Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhao"> Lei Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Cheng"> Peng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Song"> Yi Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Liu"> Yu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenhan%20Yue"> Wenhan Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongwen%20Yang"> Xiongwen Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two decades of the Shale Revolution has transforming transformed the global energy market, in part by the adaption of multi-stage dissolvable frac plugs. Magnesium has been favored for the bulk of plugs, requiring development of materials to suit specific field requirements. Herein, the mechanical and dissolution results from equal channel angular pressing (ECAP) of two cast dissolvable magnesium alloy are described. ECAP was selected as a route to increase the mechanical properties of two formulations of dissolvable magnesium, as solutionizing failed. In this study, 1&rdquo; square cross section samples cast Mg alloys formulations containing rare earth were processed at temperatures ranging from 200 to 350 &deg;C, at a rate of 0.005&rdquo;/s, with a backpressure from 0 to 70 MPa, in a brass, or brass + graphite sheet. Generally, the yield and ultimate tensile strength (UTS) doubled for all. For formulation DM-2, the yield increased from 100 MPa to 250 MPa; UTS from 175 MPa to 325 MPa, but the strain fell from 2 to 1%. Formulation DM-3 yield increased from 75 MPa to 200 MPa, UTS from 150 MPa to 275 MPa, with strain increasing from 1 to 3%. Meanwhile, ECAP has also been found to reduce the dissolution rate significantly. A microstructural analysis showed grain refinement of the alloy and the movement of secondary phases away from the grain boundary. It is believed that reconfiguration of the grain boundary phases increased the mechanical properties and decreased the dissolution rate. ECAP processing of dissolvable high rare earth content magnesium is possible despite the brittleness of the material. ECAP is a possible processing route to increase mechanical properties for dissolvable aluminum alloys that do not extrude. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equal%20channel%20angular%20processing" title="equal channel angular processing">equal channel angular processing</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolvable%20magnesium" title=" dissolvable magnesium"> dissolvable magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=frac%20plug" title=" frac plug"> frac plug</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/132877/enhancement-of-mechanical-and-dissolution-properties-of-a-cast-magnesium-alloy-via-equal-angular-channel-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Magnesium Alloys Containing Y, Gd and Ca with Enhanced Ignition Temperature and Mechanical Properties for Aviation Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Kub%C3%A1sek">Jiří Kubásek</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Min%C3%A1rik"> Peter Minárik</a>, <a href="https://publications.waset.org/abstracts/search?q=Kl%C3%A1ra%20Hosov%C3%A1"> Klára Hosová</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20%C5%A0a%C5%A1ek"> Stanislav Šašek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Vesel%C3%BD"> Jozef Veselý</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Str%C3%A1sk%C3%A1"> Jitka Stráská</a>, <a href="https://publications.waset.org/abstracts/search?q=Drahom%C3%ADr%20Dvorsk%C3%BD"> Drahomír Dvorský</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalibor%20Vojt%C4%9Bch"> Dalibor Vojtěch</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1%20Jane%C4%8Dek"> Miloš Janeček</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mg-2Y-2Gd-1Ca and Mg-4Y-4Gd-2Ca alloys were processed by extrusion or equal channel angular pressing (ECAP) to analyse the effect of the microstructure on ignition temperature, mechanical properties and corrosion resistance. The alloys are characterized by good mechanical properties and exceptionally high ignition temperature, which is a critical safety measure. The effect of extrusion and ECAP on the microstructure, mechanical properties and ignition temperature was studied. The obtained results indicated a substantial effect of the processing conditions on the average grain size, the recrystallized fraction and texture formation. Both alloys featured a high strength, depending on the composition and processing condition, and a high ignition temperature of ≈1100 °C (Mg-4Y-4Gd-2Ca) and ≈950 °C (Mg-2Y-2Gd-1Ca), which was attributed to the synergic effect of Y, Gd and Ca oxides, with the dominant effect of Y₂O₃. The achieved combination of enhanced mechanical properties and the ignition temperature makes these alloys a prominent candidate for aircraft applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title="magnesium alloys">magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20ignition%20temperature" title=" enhanced ignition temperature"> enhanced ignition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a> </p> <a href="https://publications.waset.org/abstracts/157860/magnesium-alloys-containing-y-gd-and-ca-with-enhanced-ignition-temperature-and-mechanical-properties-for-aviation-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Al-Mufadi">Fahad Al-Mufadi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Djavanroodi"> F. Djavanroodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultra-fine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20 mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPD" title="SPD">SPD</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=pure%20cu" title=" pure cu"> pure cu</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20property" title=" impact property"> impact property</a> </p> <a href="https://publications.waset.org/abstracts/3553/effect-of-equal-channel-angular-pressing-process-on-impact-property-of-pure-copper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Equal Channel Angular Pressing of Al1050 Sheets: Experimental and Finite Element Survey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20M.%20Keshtiban">P. M. Keshtiban</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zdshakoyan"> M. Zdshakoyan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Faragi"> G. Faragi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different severe plastic deformation (SPD) methods are the most successful ways to build nano-structural materials from coarse grain samples without changing the cross-sectional area. One of the most widely used methods in the SPD process is equal channel angler pressing (ECAP). In this paper, ECAP process on Al1050 sheets was evaluated at room temperature by both experiments and finite element method. Since, one of the main objectives of SPD processes is to achieve high equivalent plastic strain (PEEQ) in one cycle, the values of PEEQ obtained by finite element simulation. Also, force-displacement curve achieved by FEM. To study the changes of mechanical properties, micro-hardness tests were conducted on samples and improvement in the mechanical properties were investigated. Results show that there is the good proportion between FEM, theory and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AL1050" title="AL1050">AL1050</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a> </p> <a href="https://publications.waset.org/abstracts/37584/equal-channel-angular-pressing-of-al1050-sheets-experimental-and-finite-element-survey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Numerical Investigation of Material Behavior During Non-Equal Channel Multi Angular Extrusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20El-Asfoury">Mohamed S. El-Asfoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdel-Moneim"> Ahmed Abdel-Moneim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20N.%20A.%20Nasr"> Mohamed N. A. Nasr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study uses finite element modeling to investigate and analyze a modified form of the from the conventional equal channel multi-angular pressing (ECMAP), using non-equal channels, on the workpiece material plastic deformation. The modified process non-equal channel multi-angular extrusion (NECMAE) is modeled using two-dimensional plane strain finite element model built using the commercial software ABAQUS. The workpiece material used is pure aluminum. The model was first validated by comparing its results to analytical solutions for single-pass equal channel angular extrusion (ECAP), as well as previously published data. After that, the model was used to examine the effects of different % of reductions of the area (for the second stage) on material plastic deformation, corner gap, and required the load. Three levels of reduction in the area were modeled; 10%, 30%, and 50%, and compared to single-pass and double-pass ECAP. Cases with a higher reduction in the area were found to have smaller corner gaps, higher and much uniform plastic deformation, as well as higher required loads. The current results are mainly attributed to the back pressure effects exerted by the second stage, as well as strain hardening effects experienced during the first stage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-equal%20channel%20angular%20extrusion" title="non-equal channel angular extrusion">non-equal channel angular extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-pass" title=" multi-pass"> multi-pass</a>, <a href="https://publications.waset.org/abstracts/search?q=sever%20plastic%20deformation" title=" sever plastic deformation"> sever plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=back%20pressure" title=" back pressure"> back pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=Finite%20Element%20Modelling%20%28FEM%29" title=" Finite Element Modelling (FEM)"> Finite Element Modelling (FEM)</a> </p> <a href="https://publications.waset.org/abstracts/15028/numerical-investigation-of-material-behavior-during-non-equal-channel-multi-angular-extrusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Effect of Addition of Some Rare Earth Materials to Zinc Aluminum Alloy ZA-22</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adnan%20I.%20O.%20Zaid">Adnan I. O. Zaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc aluminum alloys are versatile materials which are widely used in manufacturing several parts in the automobile and aircraft industries. The effect of grain refinement of these alloys by rare earth elements on their mechanical characteristics is scarce. The equal channel angular pressing is relatively recent method for producing severe plastic deformation in materials subjected to it resulting in refinement of their structure and enhancement of their mechanical characteristics. The phase diagram of these alloys indicates that large dendrites of large grain size can be formed during their solidification of the cast which tends to deteriorate their mechanical strength and surface quality. To overcome this problem they are normally grain refined by either titanium or titanium + boron to their melt prior to solidification. In this paper, comparison between the effect of adding either titanium, (Ti), titanium+boron, (Ti+B), or Molybdenum, Mo, to zinc-aluminum22, alloy, (ZA22) on its metallurgical and mechanical characteristics in the cast condition and after pressing by the ECAP process is investigated. It was found that addition of either Ti, Ti+B, or Mo to the ZA22 alloy in the cast condition resulted in refining of their structure being more refined by the addition of Mo, then .Ti+B and less refining by Ti addition. Furthermore, the ECAP process resulted in further refinement of the alloy micro structure except in case of Ti+B addition where poisoning i.e. coarsening of the grains has occurred. Regarding the addition of these element on the mechanical behavior; it was found that addition of Ti Or Ti+B resulted in little enhancement of the alloy strength factor and its flow stress at 20% true strain; whereas, the addition of resulted in deteriorating of its mechanical behavior as % decrease in the strength factor and % in its flow stress of 20%. As for the strain hardening index; addition of any of these elements resulted in decreasing the strain hardening index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=addition" title="addition">addition</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20refinement" title=" grain refinement"> grain refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characteristics" title=" mechanical characteristics"> mechanical characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=ZA-22" title=" ZA-22"> ZA-22</a>, <a href="https://publications.waset.org/abstracts/search?q=Zinc-%20aluminum%20alloy" title=" Zinc- aluminum alloy "> Zinc- aluminum alloy </a> </p> <a href="https://publications.waset.org/abstracts/34046/the-effect-of-addition-of-some-rare-earth-materials-to-zinc-aluminum-alloy-za-22" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Bake Hardening Behavior of Ultrafine Grained and Nano-Grained AA6061 Aluminum Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Alihosseini">Hamid Alihosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Dehghani"> Kamran Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of grain size of AA6061 aluminum on the bake hardening have been investigated. The grains of sample sheets refined by applying 4, 8, and 12 passes of ECAP and their microstructures and mechanical properties were investigated. EBSD and TEM studies of the sheets showed grain refinement, and the EBSD micrograph of the alloy ECAPed for 12 passes showed nano-grained (NG) ∼95nm in size. Then, the bake hardenability of processed sheet was compared by pre-straining to 6% followed by baking at 200°C for 20 min. The results show that in case of baking at 200°C, there was an increase about 108%, 93%, and 72% in the bake hardening for 12, 8, and 4 passes, respectively. The maximum in bake hardenability (120 MPa) and final yield stress (583 MPa) were pertaining to the ultra-fine grain specimen pre-strained 6% followed by baking at 200◦C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bake%20hardening" title="bake hardening">bake hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20grain" title=" ultrafine grain"> ultrafine grain</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20grain" title=" nano grain"> nano grain</a>, <a href="https://publications.waset.org/abstracts/search?q=AA6061%20aluminum" title=" AA6061 aluminum"> AA6061 aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/33963/bake-hardening-behavior-of-ultrafine-grained-and-nano-grained-aa6061-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Jump-Like Deformation of Ultrafinegrained AZ31 at Temperature 4,2 - 0,5 K</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Zabrodin">Pavel Zabrodin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drawback of magnesium alloys is poor plasticity, which complicates the forming. Effective way of improving the properties of the cast magnesium alloy AZ31 (3 wt. % Al, 0.8 wt. % Zn, 0.2 wt. % Mn)) is to combine hot extrusion at 350°C and equal-channel angular pressing (ECAP) at 180°C. Because of reduced grain sizes, changes in the nature of the grain boundaries, and enhancement of a texture that favors basal dislocation glide, after this kind of processing, increase yield stress and ductility. For study of the effect of microstructure on the mechanisms for plastic deformation, there is some interest in investigating the mechanical properties of the ultrafinegrained (UFG) Mg alloy at low temperatures, before and after annealing. It found that the amplitude and statistics at the low-temperature jump-like deformation the Mg alloy of dependent on microstructure. Reduction of the average density of dislocations and grain growth during annealing causing a reduction in the amplitude of the jump-like deformation and changes in the distribution of surges in amplitude. It found that the amplitude and statistics at the low-temperature jump-like deformation UFG alloy dependent on temperature of deformation. Plastic deformation of UFG alloy at a temperature of 10 K occurs uniformly - peculiarities is not observed. Increasing of the temperature of deformation from 4,2 to 0,5 K is causing a reduction in the amplitude and increasing the frequency of the jump-like deformation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jump-like%20deformation" title="jump-like deformation">jump-like deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature" title=" low temperature"> low temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloy" title=" magnesium alloy"> magnesium alloy</a> </p> <a href="https://publications.waset.org/abstracts/53749/jump-like-deformation-of-ultrafinegrained-az31-at-temperature-42-05-k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Determination of Strain Rate Sensitivity (SRS) for Grain Size Variants on Nanocrystalline Materials Produced by ARB and ECAP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20B.%20Sob">P. B. Sob</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Tengen"> T. B. Tengen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Alugongo"> A. A. Alugongo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical behavior of 6082T6 aluminum is investigated at different temperatures. The strain rate sensitivity is investigated at different temperatures on the grain size variants. The sensitivity of the measured grain size variants on 3-D grain is discussed. It is shown that the strain rate sensitivities are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the strain rate sensitivities vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results, it is shown that the variation of strain rate sensitivity with temperature suggests that the strain rate sensitivity at the low and the high temperature ends of the 6082T6 aluminum range is different. The obtained results revealed transition at different temperature from negative strain rate sensitivity as temperature increased on the grain size variants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20materials" title="nanostructured materials">nanostructured materials</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size%20variants" title=" grain size variants"> grain size variants</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate%20sensitivity" title=" strain rate sensitivity"> strain rate sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/36624/determination-of-strain-rate-sensitivity-srs-for-grain-size-variants-on-nanocrystalline-materials-produced-by-arb-and-ecap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The High Strength Biocompatible Wires of Commercially Pure Titanium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Pal%C3%A1n">J. Palán</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zemko"> M. Zemko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050&nbsp;MPa. Ti Grade 4 reaches ultimate strengths of up to 1250&nbsp;MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CONFORM" title="CONFORM">CONFORM</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20swaging" title=" rotary swaging"> rotary swaging</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a> </p> <a href="https://publications.waset.org/abstracts/73209/the-high-strength-biocompatible-wires-of-commercially-pure-titanium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Effect of Hybrid SPD Process on Mechanical Properties, Drawability, and Plastic Anisotropy of DC03 Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karolina%20Kowalczyk-Skoczylas">Karolina Kowalczyk-Skoczylas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The hybrid SPD process called DRECE (Dual Rolls Equal Channel Extrusion) combines the concepts of ECAP method and CONFORM extrusion, and is intended for processing sheet-metal workpieces. The material in the fоrm оf a metal strip is subjected tо plastic defоrmation by passing thrоugh the shaping tоol at a given angle α. Importantly, in this process the dimensions of the metal strip dо nоt change after the pass is cоmpleted. Subsequent DRECE passes allоw fоr increasing the effective strain in the tested material. The methоd has a significant effect оn the micrоstructure and mechanical prоperties оf the strip. The experimental tests have been conducted on the unconventional DRECE device in VŠB Ostrava, the Czech Republic. The DC03 steel strips have been processed in several passes - up to six. Then, both Erichsen cupping tests as well as static tensile tests have been performed to evaluate the effect of DRECE process on drawability, plastic anisotropy and mechanical properties of the investigated steel. Both yield strength and ultimate tensile strength increase significantly after consecutive passes. Drawability decreases slightly after the first and second pass. Then it stabilizes on a reasonably high level, which means that the steel is characterized by useful drawability for technological processes. It was investigated in the material is characterized by a normal anisotropy. In the microstructure, an intensification of the development of microshear bands and their mutual intersection is observed, which leads to the fragmentation of the grain into smaller volumes and, consequently, to the formation of an ultrafine grained structure. "The project was co-financed by the European Union within the programme "The European Funds for Śląsk (Silesia) 2021-2027". <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SPD%20process" title="SPD process">SPD process</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon%20steel" title=" low carbon steel"> low carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20deformation" title=" plastic deformation"> plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20evolution" title=" microstructure evolution"> microstructure evolution</a> </p> <a href="https://publications.waset.org/abstracts/193428/the-effect-of-hybrid-spd-process-on-mechanical-properties-drawability-and-plastic-anisotropy-of-dc03-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10