CINXE.COM
Search results for: defect mode
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: defect mode</title> <meta name="description" content="Search results for: defect mode"> <meta name="keywords" content="defect mode"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="defect mode" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="defect mode"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2411</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: defect mode</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2231</span> Comparing Community Detection Algorithms in Bipartite Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Khademi">Ehsan Khademi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Jalili"> Mahdi Jalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the special features of bipartite networks, they are common in many systems. Real-world bipartite networks may show community structure, similar to what one can find in one-mode networks. However, the interpretation of the community structure in bipartite networks is different as compared to one-mode networks. In this manuscript, we compare a number of available methods that are frequently used to discover community structure of bipartite networks. These networks are categorized into two broad classes. One class is the methods that, first, transfer the network into a one-mode network, and then apply community detection algorithms. The other class is the algorithms that have been developed specifically for bipartite networks. These algorithms are applied on a model network with prescribed community structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20detection" title="community detection">community detection</a>, <a href="https://publications.waset.org/abstracts/search?q=bipartite%20networks" title=" bipartite networks"> bipartite networks</a>, <a href="https://publications.waset.org/abstracts/search?q=co-clustering" title=" co-clustering"> co-clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=modularity" title=" modularity"> modularity</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20projection" title=" network projection"> network projection</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20networks" title=" complex networks"> complex networks</a> </p> <a href="https://publications.waset.org/abstracts/14451/comparing-community-detection-algorithms-in-bipartite-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2230</span> An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Nezarat">Amin Nezarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Naeime%20Seifadini"> Naeime Seifadini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=predicting" title="predicting">predicting</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20trip" title=" urban trip"> urban trip</a> </p> <a href="https://publications.waset.org/abstracts/123355/an-improved-convolution-deep-learning-model-for-predicting-trip-mode-scheduling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2229</span> 3D Guidance of Unmanned Aerial Vehicles Using Sliding Mode Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zamurad%20Shah">M. Zamurad Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kemal%20Ozgoren"> M. Kemal Ozgoren</a>, <a href="https://publications.waset.org/abstracts/search?q=Raza%20Samar"> Raza Samar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a 3D guidance scheme for Unmanned Aerial Vehicles (UAVs). The proposed guidance scheme is based on the sliding mode approach using nonlinear sliding manifolds. Generalized 3D kinematic equations are considered here during the design process to cater for the coupling between longitudinal and lateral motions. Sliding mode based guidance scheme is then derived for the multiple-input multiple-output (MIMO) system using the proposed nonlinear manifolds. Instead of traditional sliding surfaces, nonlinear sliding surfaces are proposed here for performance and stability in all flight conditions. In the reaching phase control inputs, the bang-bang terms with signum functions are accompanied with proportional terms in order to reduce the chattering amplitudes. The Proposed 3D guidance scheme is implemented on a 6-degrees-of-freedom (6-dof) simulation of a UAV and simulation results are presented here for different 3D trajectories with and without disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicles" title="unmanned aerial vehicles">unmanned aerial vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20guidance" title=" 3D guidance"> 3D guidance</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20sliding%20manifolds" title=" nonlinear sliding manifolds"> nonlinear sliding manifolds</a> </p> <a href="https://publications.waset.org/abstracts/14296/3d-guidance-of-unmanned-aerial-vehicles-using-sliding-mode-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2228</span> A Hybrid Model for Secure Protocol Independent Multicast Sparse Mode and Dense Mode Protocols in a Group Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Jimah">M. S. Jimah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Achuenu"> A. C. Achuenu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Momodu"> M. Momodu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Group communications over public infrastructure are prone to a lot of security issues. Existing network protocols like Protocol Independent Multicast Sparse Mode (PIM SM) and Protocol Independent Multicast Dense Mode (PIM DM) do not have inbuilt security features. Therefore, any user or node can easily access the group communication as long as the user can send join message to the source nodes, the source node then adds the user to the network group. In this research, a hybrid method of salting and hashing to encrypt information in the source and stub node was designed, and when stub nodes need to connect, they must have the appropriate key to join the group network. Object oriented analysis design (OOAD) was the methodology used, and the result shows that no extra controlled bandwidth overhead cost was added by encrypting and the hybrid model was more securing than the existing PIM SM, PIM DM and Zhang secure PIM SM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20communications" title="group communications">group communications</a>, <a href="https://publications.waset.org/abstracts/search?q=multicast" title=" multicast"> multicast</a>, <a href="https://publications.waset.org/abstracts/search?q=PIM%20SM" title=" PIM SM"> PIM SM</a>, <a href="https://publications.waset.org/abstracts/search?q=PIM%20DM" title=" PIM DM"> PIM DM</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption" title=" encryption"> encryption</a> </p> <a href="https://publications.waset.org/abstracts/89976/a-hybrid-model-for-secure-protocol-independent-multicast-sparse-mode-and-dense-mode-protocols-in-a-group-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2227</span> Prostheticly Oriented Approach for Determination of Fixture Position for Facial Prostheses Retention in Cases with Atypical and Combined Facial Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.Veselova">K. A.Veselova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.Gromova"> N. V.Gromova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20N.Antonova"> I. N.Antonova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20N.%20Kalakutskii"> I. N. Kalakutskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many diseases and incidents that may result facial defects and deformities: cancer, trauma, burns, congenital anomalies, and autoimmune diseases. In some cases, patient may acquire atypically extensive facial defect, including more than one anatomical region or, by contrast, atypically small defect (e.g. partial auricular defect). The anaplastology gives us opportunity to help patient with facial disfigurement in cases when plastic surgery is contraindicated. Using of implant retention for facial prosthesis is strongly recommended because improves both aesthetic and functional results and makes using of the prosthesis more comfortable. Prostheticly oriented fixture position is extremely important for aesthetic and functional long-term result; however, the optimal site for fixture placement is not clear in cases with atypical configuration of facial defect. The objective of this report is to demonstrate challenges in fixture position determination we have faced with and offer the solution. In this report, four cases of implant-supported facial prosthesis are described. Extra-oral implants with four millimeter length were used in all cases. The decision regarding the quantity of surgical stages was based on anamnesis of disease. Facial prostheses were manufactured according to conventional technique. Clinical and technological difficulties and mistakes are described, and prostheticly oriented approach for determination of fixture position is demonstrated. The case with atypically large combined orbital and nasal defect resulting after arteriovenous malformation is described: the correct positioning of artificial eye was impossible due to wrong position of the fixture (with suprastructure) located in medial aspect of supraorbital rim. The suprastructure was unfixed and this fixture wasn`t used for retention in order to achieve appropriate artificial eye placement and better aesthetic result. In other case with small partial auricular defect (only helix and antihelix were absent) caused by squamoized cell carcinoma T1N0M0 surgical template was used to avoid the difficulties. To achieve the prostheticly oriented fixture position in case of extremely small defect the template was made on preliminary cast using vacuum thermoforming method. Two radiopaque markers were incorporated into template in preferable for fixture placement positions taking into account future prosthesis configuration. The template was put on remaining ear and cone-beam CT was performed to insure, that the amount of bone is enough for implant insertion in preferable position. Before the surgery radiopaque markers were extracted and template was holed for guide drill. Fabrication of implant-retained facial prostheses gives us opportunity to improve aesthetics, retention and patients’ quality of life. But every inaccuracy in planning leads to challenges on surgery and prosthetic stages. Moreover, in cases with atypically small or extended facial defects prostheticly oriented approach for determination of fixture position is strongly required. The approach including surgical template fabrication is effective, easy and cheap way to avoid mistakes and unpredictable result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaplastology" title="anaplastology">anaplastology</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20prosthesis" title=" facial prosthesis"> facial prosthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=implant-retained%20facial%20prosthesis." title=" implant-retained facial prosthesis."> implant-retained facial prosthesis.</a>, <a href="https://publications.waset.org/abstracts/search?q=maxillofacil%20prosthese" title=" maxillofacil prosthese"> maxillofacil prosthese</a> </p> <a href="https://publications.waset.org/abstracts/167742/prostheticly-oriented-approach-for-determination-of-fixture-position-for-facial-prostheses-retention-in-cases-with-atypical-and-combined-facial-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2226</span> Accelerated Expansion of a Matter-Antimatter Universe and Gravity as an Electromagnetic Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maarten%20J.%20Van%20der%20Burgt">Maarten J. Van der Burgt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A universe containing matter and antimatter can only exist when matter and antimatter repel each other. Such a system, where like attracts like and like repels unlike, will always expand. Calculations made for such a symmetric universe demonstrate that the expansion is consistent with Hubble’s law, the observed increase in the expansion velocity with time, the initial high acceleration and the foam structure of the universe. Conversely, these observations can be considered as proof for a symmetrical universe and for antimatter possessing a negative gravitational mass. A second proof can be found by reinterpreting the behavior of relativistic moving charged particles. Attributing their behavior to a charge defect of √(1-v2/c2) instead of to a mass defect of 1/√(1-v2/c2) makes it plausible that gravitation is an electromagnetic force, as already suggested by Feynman. This would automatically imply that antimatter has a negative gravitational mass. These proofs underpin the untenability of the Weak Equivalence Principle which states that in a gravitational field all structure less point-like particles follow the same path. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=celestial%20mechanics" title="celestial mechanics">celestial mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmology" title=" cosmology"> cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitation%20astrophysics" title=" gravitation astrophysics"> gravitation astrophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=origin%20of%20structure" title=" origin of structure"> origin of structure</a>, <a href="https://publications.waset.org/abstracts/search?q=miscellaneous%20%28matter%20and%20antimatter%29" title=" miscellaneous (matter and antimatter)"> miscellaneous (matter and antimatter)</a> </p> <a href="https://publications.waset.org/abstracts/57939/accelerated-expansion-of-a-matter-antimatter-universe-and-gravity-as-an-electromagnetic-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2225</span> Control of Proton Exchange Membrane Fuel Cell Power System Using PI and Sliding Mode Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Derbeli">Mohamed Derbeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Maissa%20Farhat"> Maissa Farhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Barambones"> Oscar Barambones</a>, <a href="https://publications.waset.org/abstracts/search?q=Lassaad%20Sbita"> Lassaad Sbita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional controller (PI) applied to a DC/DC boost converter for the improvement and optimization of the Proton Exchange Membrane Fuel Cell (PEMFC) system efficiency, cannot attain a good performance effect. Thus, due to its advantages comparatively with the PI controller, this paper interest is focused on the use of the sliding mode controller (SMC), Stability of the closed loop system is analytically proved using Lyapunov approach for the proposed controller. The model and the controllers are implemented in the MATLAB and SIMULINK environment. A comparison of results indicates that the suggested approach has considerable advantages compared to the traditional controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC%2FDC%20boost%20converter" title="DC/DC boost converter">DC/DC boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=PEMFC" title=" PEMFC"> PEMFC</a>, <a href="https://publications.waset.org/abstracts/search?q=PI%20controller" title=" PI controller"> PI controller</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20controller" title=" sliding mode controller"> sliding mode controller</a> </p> <a href="https://publications.waset.org/abstracts/60160/control-of-proton-exchange-membrane-fuel-cell-power-system-using-pi-and-sliding-mode-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2224</span> Supply Chain Analysis with Product Returns: Pricing and Quality Decisions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingming%20Leng">Mingming Leng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wal-Mart has allocated considerable human resources for its quality assurance program, in which the largest retailer serves its supply chains as a quality gatekeeper. Asda Stores Ltd., the second largest supermarket chain in Britain, is now investing £27m in significantly increasing the frequency of quality control checks in its supply chains and thus enhancing quality across its fresh food business. Moreover, Tesco, the largest British supermarket chain, already constructed a quality assessment center to carry out its gatekeeping responsibility. Motivated by the above practices, we consider a supply chain in which a retailer plays the gatekeeping role in quality assurance by identifying defects among a manufacturer's products prior to selling them to consumers. The impact of a retailer's gatekeeping activity on pricing and quality assurance in a supply chain has not been investigated in the operations management area. We draw a number of managerial insights that are expected to help practitioners judiciously consider the quality gatekeeping effort at the retail level. As in practice, when the retailer identifies a defective product, she immediately returns it to the manufacturer, who then replaces the defect with a good quality product and pays a penalty to the retailer. If the retailer does not recognize a defect but sells it to a consumer, then the consumer will identify the defect and return it to the retailer, who then passes the returned 'unidentified' defect to the manufacturer. The manufacturer also incurs a penalty cost. Accordingly, we analyze a two-stage pricing and quality decision problem, in which the manufacturer and the retailer bargain over the manufacturer's average defective rate and wholesale price at the first stage, and the retailer decides on her optimal retail price and gatekeeping intensity at the second stage. We also compare the results when the retailer performs quality gatekeeping with those when the retailer does not. Our supply chain analysis exposes some important managerial insights. For example, the retailer's quality gatekeeping can effectively reduce the channel-wide defective rate, if her penalty charge for each identified de-fect is larger than or equal to the market penalty for each unidentified defect. When the retailer imple-ments quality gatekeeping, the change in the negotiated wholesale price only depends on the manufac-turer's 'individual' benefit, and the change in the retailer's optimal retail price is only related to the channel-wide benefit. The retailer is willing to take on the quality gatekeeping responsibility, when the impact of quality relative to retail price on demand is high and/or the retailer has a strong bargaining power. We conclude that the retailer's quality gatekeeping can help reduce the defective rate for consumers, which becomes more significant when the retailer's bargaining position in her supply chain is stronger. Retailers with stronger bargaining powers can benefit more from their quality gatekeeping in supply chains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bargaining" title="bargaining">bargaining</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=pricing" title=" pricing"> pricing</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/48749/supply-chain-analysis-with-product-returns-pricing-and-quality-decisions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2223</span> The Effect of Tip Parameters on Vibration Modes of Atomic Force Microscope Cantilever</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Shekarzadeh">Mehdi Shekarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pejman%20Taghipour%20Birgani"> Pejman Taghipour Birgani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of mass and height of tip on the flexural vibration modes of an atomic force microscope (AFM) rectangular cantilever is analyzed. A closed-form expression for the sensitivity of vibration modes is derived using the relationship between the resonant frequency and contact stiffness of cantilever and sample. Each mode has a different sensitivity to variations in surface stiffness. This sensitivity directly controls the image resolution. It is obtained an AFM cantilever is more sensitive when the mass of tip is lower and the first mode is the most sensitive mode. Also, the effect of changes of tip height on the flexural sensitivity is negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscope" title="atomic force microscope">atomic force microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20vibration" title=" flexural vibration"> flexural vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=cantilever" title=" cantilever"> cantilever</a> </p> <a href="https://publications.waset.org/abstracts/32866/the-effect-of-tip-parameters-on-vibration-modes-of-atomic-force-microscope-cantilever" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2222</span> First Principle-Based Dft and Microkinetic Simulation of Co-Conversion of Carbon Dioxide and Methane on Single Iridium Atom Doped Hematite with Surface Oxygen Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kefale%20W.%20Yizengaw">Kefale W. Yizengaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Delele%20Worku%20Ayele"> Delele Worku Ayele</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The catalytic co-conversion of CO₂ and CH₄ to value-added compounds has become one of the promising approaches to addressing global climate change by having valuable fossil fuels. Thedirect co-conversion of CO₂ and CH₄ to value-added compounds is attractive but tremendously challenging because of both molecules' thermodynamic stability and kinetic inertness. In the present study, a single iridium atom doped and a single oxygen atom defect hematite (110)surface model catalyst, which can comprehend direct C–O coupling based on simultaneous activation of CO2 and CH4 was studied using density functional theory plus U (DFT + U)calculations. The presence of dual active sites on the Ir/Fe₂O₃(110)-OV surface catalyst enablesCO₂ activation on the Ir site and CH₄ activation at the defect site. The electron analysis for the theco-adsorption of CO₂ and CH₄ deals with the electron redistribution on the surface and clearly shows the synergistic effect for simultaneous CO₂ and CH₄ activation on Ir/α- Fe₂O₃(110)-OVsurface. The microkinetic analysis shows that the dissociation of CH4 to CH3 * and H* plays an excellent role in the C–O coupling. The coverage analysis for the intermediate products of the microkinetic simulation results indicates that C–O coupling is the reaction limiting step. Finally, after the CH₃O* intermediate product species is produced, the radical hydrogen species spontaneously diffuse to the CH3O* intermediate product to form methanol at around 490 [K]. The present work provides mechanistic and kinetic insights into the direct C–O coupling of CO₂and CH₄, which could help design more-efficient catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-conversion" title="co-conversion">co-conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=C%E2%80%93O%20coupling" title=" C–O coupling"> C–O coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=doping" title=" doping"> doping</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20vacancy" title=" oxygen vacancy"> oxygen vacancy</a>, <a href="https://publications.waset.org/abstracts/search?q=microkinetic" title=" microkinetic"> microkinetic</a> </p> <a href="https://publications.waset.org/abstracts/158456/first-principle-based-dft-and-microkinetic-simulation-of-co-conversion-of-carbon-dioxide-and-methane-on-single-iridium-atom-doped-hematite-with-surface-oxygen-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2221</span> Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Kumar">Rakesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Electricwala"> Fatima Electricwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BRTS" title="BRTS">BRTS</a>, <a href="https://publications.waset.org/abstracts/search?q=private%20modes" title=" private modes"> private modes</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20choice%20models" title=" mode choice models"> mode choice models</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20footprint" title=" ecological footprint"> ecological footprint</a> </p> <a href="https://publications.waset.org/abstracts/6459/impact-of-proposed-modal-shift-from-private-users-to-bus-rapid-transit-system-an-indian-city-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2220</span> Modelling and Simulation of Single Mode Optical Fiber Directional Coupler for Medical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shilpa%20Kulkarni">Shilpa Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujata%20Patrikar"> Sujata Patrikar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A single-mode fiber directional coupler is modeled and simulated for its application in medical field. Various fiber devices based on evanescent field absorption, interferometry, couplers, resonators, tip coated fibers, etc, have been developed so far, suitable for medical application. This work focuses on the possibility of sensing by single mode fiber directional coupler. In the preset work, a fiber directional coupler is modeled to detect the changes taking place in the surrounding medium optoelectronically. In this work, waveguiding characteristics of the fiber are studied in depth. The sensor is modeled and simulated by finding photocurrent, sensitivity and detection limit by varying various parameters of the directional coupler. The device is optimized for the best possible output. It is found that the directional coupler shows measurable photocurrents and good sensitivity with coupling length in micrometers. It is thus a miniature device, hence, suitable for medical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20mode%20fiber%20directional%20coupler" title="single mode fiber directional coupler">single mode fiber directional coupler</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation%20of%20fiber%20directional%20coupler%20sensor" title=" modeling and simulation of fiber directional coupler sensor"> modeling and simulation of fiber directional coupler sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=biomolecular%20sensing" title=" biomolecular sensing"> biomolecular sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20sensor%20device" title=" medical sensor device"> medical sensor device</a> </p> <a href="https://publications.waset.org/abstracts/84917/modelling-and-simulation-of-single-mode-optical-fiber-directional-coupler-for-medical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2219</span> Correlation between Defect Suppression and Biosensing Capability of Hydrothermally Grown ZnO Nanorods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayoorika%20%20Shukla">Mayoorika Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramila%20Jakhar"> Pramila Jakhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Tejendra%20Dixit"> Tejendra Dixit</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Palani"> I. A. Palani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vipul%20Singh"> Vipul Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosensors are analytical devices with wide range of applications in biological, chemical, environmental and clinical analysis. It comprises of bio-recognition layer which has biomolecules (enzymes, antibodies, DNA, etc.) immobilized over it for detection of analyte and transducer which converts the biological signal into the electrical signal. The performance of biosensor primarily the depends on the bio-recognition layer and therefore it has to be chosen wisely. In this regard, nanostructures of metal oxides such as ZnO, SnO2, V2O5, and TiO2, etc. have been explored extensively as bio-recognition layer. Recently, ZnO has the attracted attention of researchers due to its unique properties like high iso-electric point, biocompatibility, stability, high electron mobility and high electron binding energy, etc. Although there have been many reports on usage of ZnO as bio-recognition layer but to the authors’ knowledge, none has ever observed correlation between optical properties like defect suppression and biosensing capability of the sensor. Here, ZnO nanorods (ZNR) have been synthesized by a low cost, simple and low-temperature hydrothermal growth process, over Platinum (Pt) coated glass substrate. The ZNR have been synthesized in two steps viz. initially a seed layer was coated over substrate (Pt coated glass) followed by immersion of it into nutrient solution of Zinc nitrate and Hexamethylenetetramine (HMTA) with in situ addition of KMnO4. The addition of KMnO4 was observed to have a profound effect over the growth rate anisotropy of ZnO nanostructures. Clustered and powdery growth of ZnO was observed without addition of KMnO4, although by addition of it during the growth, uniform and crystalline ZNR were found to be grown over the substrate. Moreover, the same has resulted in suppression of defects as observed by Normalized Photoluminescence (PL) spectra since KMnO4 is a strong oxidizing agent which provides an oxygen rich growth environment. Further, to explore the correlation between defect suppression and biosensing capability of the ZNR Glucose oxidase (Gox) was immobilized over it, using physical adsorption technique followed by drop casting of nafion. Here the main objective of the work was to analyze effect of defect suppression over biosensing capability, and therefore Gox has been chosen as model enzyme, and electrochemical amperometric glucose detection was performed. The incorporation of KMnO4 during growth has resulted in variation of optical and charge transfer properties of ZNR which in turn were observed to have deep impact on biosensor figure of merits. The sensitivity of biosensor was found to increase by 12-18 times, due to variations introduced by addition of KMnO4 during growth. The amperometric detection of glucose in continuously stirred buffer solution was performed. Interestingly, defect suppression has been observed to contribute towards the improvement of biosensor performance. The detailed mechanism of growth of ZNR along with the overall influence of defect suppression on the sensing capabilities of the resulting enzymatic electrochemical biosensor and different figure of merits of the biosensor (Glass/Pt/ZNR/Gox/Nafion) will be discussed during the conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensors" title="biosensors">biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=KMnO4" title=" KMnO4"> KMnO4</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanorods" title=" ZnO nanorods"> ZnO nanorods</a> </p> <a href="https://publications.waset.org/abstracts/76244/correlation-between-defect-suppression-and-biosensing-capability-of-hydrothermally-grown-zno-nanorods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2218</span> Assessing Effectiveness of Schema Mode Therapy and Emotionally Focused Couples Therapy in Attachment Styles among Couples with Marital Conflict</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Johari%20Fard">Reza Johari Fard</a>, <a href="https://publications.waset.org/abstracts/search?q=Najmeh%20Cheraghi"> Najmeh Cheraghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Ehtesham%20Zadeh"> Parvin Ehtesham Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Parviz%20Asgari"> Parviz Asgari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate and comparison of the effectiveness of schema mode therapy and emotionally focused couples therapy in attachment styles (secure, avoidant, and anxious) in couples with marital conflict in a quasiexperimental method in a pretest, posttest, and follow up design with a control group. The statistical population of the study included all the couples with marital conflict who visited the Mehrana counseling center in 2019 in Ahvaz, Iran 45 couples were selected by voluntary sampling method and randomly divided into two experimental groups and one control group (15 pairs in each group). The participants completed the Adult Attachment Scale (Hazan and Shaver). The experimental groups underwent schema mode therapy and emotionally focused couples therapy for 12 sessions, but the control group did not receive any intervention. The data were analyzed by the statistical analysis of repeated measures in SPSS-19 software. The results showed that both schema mode therapy and emotionally focused couples therapy are effective in increasing the secure attachment style and reducing avoidant and ambivalent attachment styles in couples with marital conflict. There was no significant difference between the schema mode therapy group and the emotionally focused couple's therapy group in attachment styles. Therefore, it is recommended that therapists and family counselors use these therapies along with other therapeutic interventions to increase secure attachment styles and reduce marital conflicts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=schema%20mode%20therapy" title="schema mode therapy">schema mode therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=emotional%20focused%20couple%20therapy" title=" emotional focused couple therapy"> emotional focused couple therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=attachment%20styles" title=" attachment styles"> attachment styles</a>, <a href="https://publications.waset.org/abstracts/search?q=marital%20conflict" title=" marital conflict"> marital conflict</a> </p> <a href="https://publications.waset.org/abstracts/165233/assessing-effectiveness-of-schema-mode-therapy-and-emotionally-focused-couples-therapy-in-attachment-styles-among-couples-with-marital-conflict" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2217</span> Agritourism Development Mode Study in Rural Area of Boshan China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lingfei%20Sun">Lingfei Sun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the significant value of ecology, the strategic planning for ecological civilization construction was mentioned in the 17th and 18th National Congress of the Communist Party of China. How to generate economic value based on the environmental capacity is not only an economic decision but also a political decision to make. Boshan took the full use of “Ecology” and transformed it as an inexhaustible green resource to benefit people, reflecting the sustainable value of new agriculture development mode. The Strawberry Harvest Festival and Blueberry Harvest Festival hosted approximately 96,000 and 54,000 leisure tourists respectively in 2014. For the Kiwi Harvest Festival in August 2014, in average, it attracted about 4600 tourists per day, which generated daily kiwi sales of 50,000 lbs and 3 million RMB (About 476,000 USD) of daily revenue. The purpose of this study is to elaborate the modes of agritourism development, by analyzing the cases in rural area of Boshan, China. Interviews with the local government officers were applied to discover operation mode of agritourism operation. The financial data was used to demonstrate the strength of government policy and improvement of the income of rural people. The result indicated that there are mainly three types of modes: the Intensive Mode, the Model Mode and the Mixed Mode, supported by case study respectively. With the boom of tourism, the development of agritourism in Boshan relies on the agriculture encouraging policy of China and the effort of local government; meanwhile, large scale of cultivation and the product differentiation are the crucial elements for the success of rural agritourism projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=agritourism" title=" agritourism"> agritourism</a>, <a href="https://publications.waset.org/abstracts/search?q=economy" title=" economy"> economy</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20area%20development" title=" rural area development"> rural area development</a> </p> <a href="https://publications.waset.org/abstracts/41424/agritourism-development-mode-study-in-rural-area-of-boshan-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2216</span> The Exploitation of Balancing an Inverted Pendulum System Using Sliding Mode Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheren%20H.%20Salah">Sheren H. Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Y.%20Ben%20Sasi"> Ahmed Y. Ben Sasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inverted pendulum system is a classic control problem that is used in universities around the world. It is a suitable process to test prototype controllers due to its high non-linearities and lack of stability. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. This paper presents the possibility of balancing an inverted pendulum system using sliding mode control (SMC). The goal is to determine which control strategy delivers better performance with respect to pendulum’s angle and cart's position. Therefore, proportional-integral-derivative (PID) is used for comparison. Results have proven SMC control produced better response compared to PID control in both normal and noisy systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverted%20pendulum%20%28IP%29" title="inverted pendulum (IP)">inverted pendulum (IP)</a>, <a href="https://publications.waset.org/abstracts/search?q=proportional-integral%20derivative%20%28PID%29" title=" proportional-integral derivative (PID)"> proportional-integral derivative (PID)</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control%20%28SMC%29" title=" sliding mode control (SMC)"> sliding mode control (SMC)</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20and%20control%20engineering" title=" systems and control engineering"> systems and control engineering</a> </p> <a href="https://publications.waset.org/abstracts/12504/the-exploitation-of-balancing-an-inverted-pendulum-system-using-sliding-mode-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2215</span> Design and Implementation of a Nano-Power Wireless Sensor Device for Smart Home Security</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Chi%20Chang">Chia-Chi Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most battery-driven wireless sensor devices will enter in sleep mode as soon as possible to extend the overall lifetime of a sensor network. It is necessary to turn off unnecessary radio and peripheral functions, especially the radio unit always consumes more energy than other components during wireless communication. The microcontroller is the most important part of the wireless sensor device. It is responsible for the manipulation of sensing data and communication protocols. The microcontroller always has different sleep modes, each with a different level of energy usage. The deeper the sleep, the lower the energy consumption. Most wireless sensor devices can only enter the sleep mode: the external low-frequency oscillator is still running to wake up the sleeping microcontroller when the sleep timer expires. In this paper, our sensor device can enter the extended sleep mode: none of the oscillator is running and the wireless sensor device has the nanoampere consumption and self-awaking ability. Finally, these wireless sensor devices were deployed in a smart home security network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=battery-driven" title=" battery-driven"> battery-driven</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20mode" title=" sleep mode"> sleep mode</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20security" title=" home security"> home security</a> </p> <a href="https://publications.waset.org/abstracts/68538/design-and-implementation-of-a-nano-power-wireless-sensor-device-for-smart-home-security" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2214</span> Fuzzy Sliding Mode Control of a Flexible Structure for Vibration Suppression Using MFC Actuator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinsiang%20Shaw">Jinsiang Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Chieh%20Tseng"> Shih-Chieh Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active vibration control is good for low frequency excitation, with advantages of light weight and adaptability. This paper use a macro-fiber composite (MFC) actuator for vibration suppression in a cantilevered beam due to its higher output force to suppress the disturbance. A fuzzy sliding mode controller is developed and applied to this system. Experimental results illustrate that the controller and MFC actuator are very effective in attenuating the structural vibration near the first resonant freuqency. Furthermore, this controller is shown to outperform the traditional skyhook controller, with nearly 90% of the vibration suppressed at the first resonant frequency of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuzzy%20sliding%20mode%20controller" title="Fuzzy sliding mode controller">Fuzzy sliding mode controller</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-fiber-composite%20actuator" title=" macro-fiber-composite actuator"> macro-fiber-composite actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=skyhook%20controller" title=" skyhook controller"> skyhook controller</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20suppression" title=" vibration suppression"> vibration suppression</a> </p> <a href="https://publications.waset.org/abstracts/25138/fuzzy-sliding-mode-control-of-a-flexible-structure-for-vibration-suppression-using-mfc-actuator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2213</span> Assessment of the Readiness of Institutions and Undergraduates’ Attitude to Online Learning Mode in Nigerian Universities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adedolapo%20Taiwo%20Adeyemi">Adedolapo Taiwo Adeyemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Success%20Ayodeji%20Fasanmi"> Success Ayodeji Fasanmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emergence of the coronavirus pandemic and the rate of the spread affected a lot of activities across the world. This led to the introduction of online learning modes in several countries after institutions were shut down. Unfortunately, most public universities in Nigeria could not switch to the online mode because they were not prepared for it, as they do not have the technological capacity to support a full online learning mode. This study examines the readiness of university and the attitude of undergraduates towards online learning mode in Obafemi Awolowo University (OAU), Ile Ife. It investigated the skills and competencies of students for online learning as well as the university’s readiness towards online learning mode; the effort was made to identify challenges of online teaching and learning in the study area, and suggested solutions were advanced. OAU was selected because it is adjudged to be the leading Information and Communication Technology (ICT) driven institution in Nigeria. The descriptive survey research design was used for the study. A total of 256 academic staff and 1503 undergraduates were selected across six faculties out of the thirteen faculties in the University. Two set of questionnaires were used to get responses from the selected respondents. The result showed that students have the skills and competence to operate e-learning facilities but are faced with challenges such as high data cost, erratic power supply, and lack of gadgets, among others. The study found out that the university was not prepared for online learning mode as it lacks basic technological facilities to support it. The study equally showed that while lecturers possess certain skills in using some e-learning applications, they were limited by the unavailability of online support gadgets, poor internet connectivity, and unstable power supply. Furthermore, the assessment of student attitude towards online learning mode shows that the students found the online learning mode very challenging as they had to bear the huge cost of data. Lecturers also faced the same challenge as they had to pay a lot to buy data, and the networks were sometimes unstable. The study recommended that adequate funding needs to be provided to public universities by the government while the management of institutions must build technological capacities to support online learning mode in the hybrid form and on a full basis in case of future emergencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=universities" title="universities">universities</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20learning" title=" online learning"> online learning</a>, <a href="https://publications.waset.org/abstracts/search?q=undergraduates" title=" undergraduates"> undergraduates</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude" title=" attitude"> attitude</a> </p> <a href="https://publications.waset.org/abstracts/154642/assessment-of-the-readiness-of-institutions-and-undergraduates-attitude-to-online-learning-mode-in-nigerian-universities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2212</span> Comparison of Artificial Neural Networks and Statistical Classifiers in Olive Sorting Using Near-Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I%CC%87smail%20Kavd%C4%B1r">İsmail Kavdır</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Burak%20B%C3%BCy%C3%BCkcan"> M. Burak Büyükcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Kurtulmu%C5%9F"> Ferhat Kurtulmuş</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Table olive is a valuable product especially in Mediterranean countries. It is usually consumed after some fermentation process. Defects happened naturally or as a result of an impact while olives are still fresh may become more distinct after processing period. Defected olives are not desired both in table olive and olive oil industries as it will affect the final product quality and reduce market prices considerably. Therefore it is critical to sort table olives before processing or even after processing according to their quality and surface defects. However, doing manual sorting has many drawbacks such as high expenses, subjectivity, tediousness and inconsistency. Quality criterions for green olives were accepted as color and free of mechanical defects, wrinkling, surface blemishes and rotting. In this study, it was aimed to classify fresh table olives using different classifiers and NIR spectroscopy readings and also to compare the classifiers. For this purpose, green (Ayvalik variety) olives were classified based on their surface feature properties such as defect-free, with bruised defect and with fly defect using FT-NIR spectroscopy and classification algorithms such as artificial neural networks, ident and cluster. Bruker multi-purpose analyzer (MPA) FT-NIR spectrometer (Bruker Optik, GmbH, Ettlingen Germany) was used for spectral measurements. The spectrometer was equipped with InGaAs detectors (TE-InGaAs internal for reflectance and RT-InGaAs external for transmittance) and a 20-watt high intensity tungsten–halogen NIR light source. Reflectance measurements were performed with a fiber optic probe (type IN 261) which covered the wavelengths between 780–2500 nm, while transmittance measurements were performed between 800 and 1725 nm. Thirty-two scans were acquired for each reflectance spectrum in about 15.32 s while 128 scans were obtained for transmittance in about 62 s. Resolution was 8 cm⁻¹ for both spectral measurement modes. Instrument control was done using OPUS software (Bruker Optik, GmbH, Ettlingen Germany). Classification applications were performed using three classifiers; Backpropagation Neural Networks, ident and cluster classification algorithms. For these classification applications, Neural Network tool box in Matlab, ident and cluster modules in OPUS software were used. Classifications were performed considering different scenarios; two quality conditions at once (good vs bruised, good vs fly defect) and three quality conditions at once (good, bruised and fly defect). Two spectrometer readings were used in classification applications; reflectance and transmittance. Classification results obtained using artificial neural networks algorithm in discriminating good olives from bruised olives, from olives with fly defect and from the olive group including both bruised and fly defected olives with success rates respectively changing between 97 and 99%, 61 and 94% and between 58.67 and 92%. On the other hand, classification results obtained for discriminating good olives from bruised ones and also for discriminating good olives from fly defected olives using the ident method ranged between 75-97.5% and 32.5-57.5%, respectfully; results obtained for the same classification applications using the cluster method ranged between 52.5-97.5% and between 22.5-57.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20classifiers" title=" statistical classifiers"> statistical classifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=NIR%20spectroscopy" title=" NIR spectroscopy"> NIR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectance" title=" reflectance"> reflectance</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a> </p> <a href="https://publications.waset.org/abstracts/74775/comparison-of-artificial-neural-networks-and-statistical-classifiers-in-olive-sorting-using-near-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2211</span> A Nanofi Brous PHBV Tube with Schwann Cell as Artificial Nerve Graft Contributing to Rat Sciatic Nerve Regeneration across a 30-Mm Defect Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmaeil%20Biazar">Esmaeil Biazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nanofibrous PHBV nerve conduit has been used to evaluate its efficiency based on the promotion of nerve regeneration in rats. The designed conduits were investigated by physical, mechanical and microscopic analyses. The conduits were implanted into a 30-mm gap in the sciatic nerves of the rats. Four months after surgery, the regenerated nerves were evaluated by macroscopic assessments and histology. This polymeric conduit had sufficiently high mechanical properties to serve as a nerve guide. The results demonstrated that in the nanofibrous graft with cells, the sciatic nerve trunk had been reconstructed with restoration of nerve continuity and formatted nerve fibers with myelination. For the grafts especially the nanofibrous conduits with cells, muscle cells of gastrocnemius on the operated side were uniform in their size and structures. This study proves the feasibility of artificial conduit with Schwann cells for nerve regeneration by bridging a longer defect in a rat model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sciatic%20regeneration" title="sciatic regeneration">sciatic regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=Schwann%20cell" title=" Schwann cell"> Schwann cell</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20conduit" title=" artificial conduit"> artificial conduit</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrous%20PHBV" title=" nanofibrous PHBV"> nanofibrous PHBV</a>, <a href="https://publications.waset.org/abstracts/search?q=histological%20assessments" title=" histological assessments"> histological assessments</a> </p> <a href="https://publications.waset.org/abstracts/21190/a-nanofi-brous-phbv-tube-with-schwann-cell-as-artificial-nerve-graft-contributing-to-rat-sciatic-nerve-regeneration-across-a-30-mm-defect-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2210</span> Defect Correlation of Computed Tomography and Serial Sectioning in Additively Manufactured Ti-6Al-4V</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bryce%20R.%20Jolley">Bryce R. Jolley</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Uchic"> Michael Uchic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents initial results toward the correlative characterization of inherent defects of Ti-6Al-4V additive manufacture (AM). X-Ray Computed Tomography (CT) defect data are compared and correlated with microscopic photographs obtained via automated serial sectioning. The metal AM specimen was manufactured out of Ti-6Al-4V virgin powder to specified dimensions. A post-contour was applied during the fabrication process with a speed of 1050 mm/s, power of 260 W, and a width of 140 µm. The specimen was stress relief heat-treated at 16°F for 3 hours. Microfocus CT imaging was accomplished on the specimen within a predetermined region of the build. Microfocus CT imaging was conducted with parameters optimized for Ti-6Al-4V additive manufacture. After CT imaging, a modified RoboMet. 3D version 2 was employed for serial sectioning and optical microscopy characterization of the same predetermined region. Automated montage capture with sub-micron resolution, bright-field reflection, 12-bit monochrome optical images were performed in an automated fashion. These optical images were post-processed to produce 2D and 3D data sets. This processing included thresholding and segmentation to improve visualization of defect features. The defects observed from optical imaging were compared and correlated with the defects observed from CT imaging over the same predetermined region of the specimen. Quantitative results of area fraction and equivalent pore diameters obtained via each method are presented for this correlation. It is shown that Microfocus CT imaging does not capture all inherent defects within this Ti-6Al-4V AM sample. Best practices for this correlative effort are also presented as well as the future direction of research resultant from this current study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacture" title="additive manufacture">additive manufacture</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20serial%20sectioning" title=" automated serial sectioning"> automated serial sectioning</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=nondestructive%20evaluation" title=" nondestructive evaluation"> nondestructive evaluation</a> </p> <a href="https://publications.waset.org/abstracts/129043/defect-correlation-of-computed-tomography-and-serial-sectioning-in-additively-manufactured-ti-6al-4v" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2209</span> Alternating Electric fields-Induced Senescence in Glioblastoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ho%20Kim">Eun Ho Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovations have conjured up a mode of treating GBM cancer cells in the newly diagnosed patients in a period of 4.9 months at an improved median OS, which brings along only a few minor side effects in the phase III of the clinical trial. This mode has been termed the Alternating Electric Fields (AEF). The study at hand is aimed at determining whether the AEF treatment is beneficial in sensitizing the GBM cancer cells through the process of increasing the AEF –induced senescence. The methodology to obtain the findings for this research ranged across various components, such as obtaining and testing SA-β-gal staining, flow cytometry, Western blotting, morphology, and Positron Emission Tomography (PET) / Computed Tomography (CT), immunohistochemical staining and microarray. The number of cells that displayed a senescence-specific morphology and positive SA-ß-Gal activity gradually increased up to 5 days. These results suggest that p16, p21 and p27 are essential regulators of AEF -induced senescence via NF-κB activation. The results showed that the AEF treatment is functional in enhancing the AEF –induced senescence in the GBM cells via an apoptosis- independent mechanism. This research concludes that this mode of treatment is a trustworthy protocol that can be effectively employed to overcome the limitations of the conventional mode of treatment on GBM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternating%20electric%20fields" title="alternating electric fields">alternating electric fields</a>, <a href="https://publications.waset.org/abstracts/search?q=senescence" title=" senescence"> senescence</a>, <a href="https://publications.waset.org/abstracts/search?q=glioblastoma" title=" glioblastoma"> glioblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20death" title=" cell death"> cell death</a> </p> <a href="https://publications.waset.org/abstracts/172464/alternating-electric-fields-induced-senescence-in-glioblastoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2208</span> Particle Swarm Optimization Based Vibration Suppression of a Piezoelectric Actuator Using Adaptive Fuzzy Sliding Mode Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Siang%20Shaw">Jin-Siang Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Moya%20Caceres"> Patricia Moya Caceres</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Xiang%20Xu"> Sheng-Xiang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to integrate the particle swarm optimization (PSO) method with the adaptive fuzzy sliding mode controller (AFSMC) to achieve vibration attenuation in a piezoelectric actuator subject to base excitation. The piezoelectric actuator is a complicated system made of ferroelectric materials and its performance can be affected by nonlinear hysteresis loop and unknown system parameters and external disturbances. In this study, an adaptive fuzzy sliding mode controller is proposed for the vibration control of the system, because the fuzzy sliding mode controller is designed to tackle the unknown parameters and external disturbance of the system, and the adaptive algorithm is aimed for fine-tuning this controller for error converging purpose. Particle swarm optimization method is used in order to find the optimal controller parameters for the piezoelectric actuator. PSO starts with a population of random possible solutions, called particles. The particles move through the search space with dynamically adjusted speed and direction that change according to their historical behavior, allowing the values of the particles to quickly converge towards the best solutions for the proposed problem. In this paper, an initial set of controller parameters is applied to the piezoelectric actuator which is subject to resonant base excitation with large amplitude vibration. The resulting vibration suppression is about 50%. Then PSO is applied to search for an optimal controller in the neighborhood of this initial controller. The performance of the optimal fuzzy sliding mode controller found by PSO indeed improves up to 97.8% vibration attenuation. Finally, adaptive version of fuzzy sliding mode controller is adopted for further improving vibration suppression. Simulation result verifies the performance of the adaptive controller with 99.98% vibration reduction. Namely the vibration of the piezoelectric actuator subject to resonant base excitation can be completely annihilated using this PSO based adaptive fuzzy sliding mode controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20fuzzy%20sliding%20mode%20controller" title="adaptive fuzzy sliding mode controller">adaptive fuzzy sliding mode controller</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20actuator" title=" piezoelectric actuator"> piezoelectric actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20suppression" title=" vibration suppression"> vibration suppression</a> </p> <a href="https://publications.waset.org/abstracts/99760/particle-swarm-optimization-based-vibration-suppression-of-a-piezoelectric-actuator-using-adaptive-fuzzy-sliding-mode-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2207</span> Shame and Pride in Moral Self-Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matt%20Stichter">Matt Stichter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Moral development requires learning from one’s failures, but that turnsout to be especially challenging when dealing with moral failures. The distress prompted by moral failure can cause responses ofdefensiveness or disengagement rather than attempts to make amends and work on self-change. The most potentially distressing response to moral failure is a shame. However, there appears to be two different senses of “shame” that are conflated in the literature, depending on whether the failure is appraised as the result of a global and unalterable self-defect, or a local and alterable self-defect. One of these forms of shame does prompt self-improvement in response to moral failure. This occurs if one views the failure as indicating only a specific (local) defect in one’s identity, where that’s something repairable, rather than asanoverall(orglobal)defectinyouridentity that can’t be fixed. So, if the whole of one’s identity as a morally good person isn’t being called into question, but only a part, then that is something one could work on to improve. Shame, in this sense, provides motivation for self-improvement to fix this part oftheselfinthe long run, and this would be important for moral development. One factor that looks to affect these different self-attributions in the wake of moral failure can be found in mindset theory, as reactions to moral failure in these two forms of shame are similar to how those with a fixed or growth mindset of their own abilities, such as intelligence, react to failure. People fall along a continuum with respect to how they view abilities – it is more of a fixed entity that you cannot do much to change, or it is malleable such that you can train to improve it. These two mindsets, ‘fixed’ versus ‘growth’, have different consequences for how we react to failure – a fixed mindset leads to maladaptive responses because of feelings of helplessness to do better; whereas a growth mindset leads to adaptive responses where a person puts forth effort to learn how to act better the next time. Here we can see the parallels between a fixed mindset of one’s own (im)morality, as the way people respond to shame when viewed as indicating a global and unalterable self-defect parallels the reactions people have to failure when they have a fixed mindset. In addition, it looks like there may be a similar structure to pride. Pride is, like shame, a self-conscious emotion that arises from internal attributions about the self as being the cause of some event. There are also paradoxical results from research on pride, where pride was found to motivate pro-social behavior in some cases but aggression in other cases. Research suggests that there may be two forms of pride, authentic and hubristic, that are also connected to different self-attributions, depending on whether one is feeling proud about a particular (local) aspect of the self versus feeling proud about the whole of oneself (global). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotion" title="emotion">emotion</a>, <a href="https://publications.waset.org/abstracts/search?q=mindset" title=" mindset"> mindset</a>, <a href="https://publications.waset.org/abstracts/search?q=moral%20development" title=" moral development"> moral development</a>, <a href="https://publications.waset.org/abstracts/search?q=moral%20psychology" title=" moral psychology"> moral psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=pride" title=" pride"> pride</a>, <a href="https://publications.waset.org/abstracts/search?q=shame" title=" shame"> shame</a>, <a href="https://publications.waset.org/abstracts/search?q=self-regulation" title=" self-regulation"> self-regulation</a> </p> <a href="https://publications.waset.org/abstracts/158275/shame-and-pride-in-moral-self-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2206</span> Non-Linear Control Based on State Estimation for the Convoy of Autonomous Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M-M.%20Mohamed%20Ahmed">M-M. Mohamed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacer%20K.%20M%E2%80%99Sirdi"> Nacer K. M’Sirdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Naamane"> Aziz Naamane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a longitudinal and lateral control approach based on a nonlinear observer is proposed for a convoy of autonomous vehicles to follow a desired trajectory. To authors best knowledge, this topic has not yet been sufficiently addressed in the literature for the control of multi vehicles. The modeling of the convoy of the vehicles is revisited using a robotic method for simulation purposes and control design. With these models, a sliding mode observer is proposed to estimate the states of each vehicle in the convoy from the available sensors, then a sliding mode control based on this observer is used to control the longitudinal and lateral movement. The validation and performance evaluation are done using the well-known driving simulator Scanner-Studio. The results are presented for different maneuvers of 5 vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=convoy" title=" convoy"> convoy</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20control" title=" non-linear control"> non-linear control</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20observer" title=" non-linear observer"> non-linear observer</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode" title=" sliding mode"> sliding mode</a> </p> <a href="https://publications.waset.org/abstracts/111128/non-linear-control-based-on-state-estimation-for-the-convoy-of-autonomous-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2205</span> Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20Bohata">Jan Bohata</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Zvanovec"> Stanislav Zvanovec</a>, <a href="https://publications.waset.org/abstracts/search?q=Matej%20Komanec"> Matej Komanec</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Jaros"> Jakub Jaros</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Hruby"> David Hruby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title="optical fiber">optical fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20mode%20dispersion" title=" polarization mode dispersion"> polarization mode dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=harsh%20environment" title=" harsh environment"> harsh environment</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a> </p> <a href="https://publications.waset.org/abstracts/67340/special-single-mode-fiber-tests-of-polarization-mode-dispersion-changes-in-a-harsh-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2204</span> A Problem with IFOC and a New PWM Based 180 Degree Conduction Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Nasir">Usman Nasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Minxiao%20Han"> Minxiao Han</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20R.%20Kazmi"> S. M. R. Kazmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three phase inverters being used today are based on field orientation control (FOC) and sine wave PWM (SPWM) techniques because 120 degree or 180 degree conduction methods produce high value of THD (total harmonic distortion) in the power system. The indirect field orientation control (IFOC) method is difficult to implement in real systems due to speed sensor accuracy issue. This paper discusses the problem with IFOC and a PWM based 180 degree conduction mode for the three phase inverter. The modified control method improves THD and this paper also compares the results obtained using modified control method with the conventional 180 degree conduction mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=three%20phase%20inverters" title="three phase inverters">three phase inverters</a>, <a href="https://publications.waset.org/abstracts/search?q=IFOC" title=" IFOC"> IFOC</a>, <a href="https://publications.waset.org/abstracts/search?q=THD" title=" THD"> THD</a>, <a href="https://publications.waset.org/abstracts/search?q=sine%20wave%20PWM%20%28SPWM%29" title=" sine wave PWM (SPWM)"> sine wave PWM (SPWM)</a> </p> <a href="https://publications.waset.org/abstracts/11281/a-problem-with-ifoc-and-a-new-pwm-based-180-degree-conduction-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2203</span> Analysis of Vertical Hall Effect Device Using Current-Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kim%20Jin%20Sup">Kim Jin Sup</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a vertical hall effect device using current-mode. Among different geometries that have been studied and simulated using COMSOL Multiphysics, optimized cross-shaped model displayed the best sensitivity. The cross-shaped model emerged as the optimum plate to fit the lowest noise and residual offset and the best sensitivity. The symmetrical cross-shaped hall plate is widely used because of its high sensitivity and immunity to alignment tolerances resulting from the fabrication process. The hall effect device has been designed using a 0.18-μm CMOS technology. The simulation uses the nominal bias current of 12μA. The applied magnetic field is from 0 mT to 20 mT. Simulation results achieved in COMSOL and validated with respect to the electrical behavior of equivalent circuit for Cadence. Simulation results of the one structure over the 13 available samples shows for the best geometry a current-mode sensitivity of 6.6 %/T at 20mT. Acknowledgment: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertical%20hall%20device" title="vertical hall device">vertical hall device</a>, <a href="https://publications.waset.org/abstracts/search?q=current-mode" title=" current-mode"> current-mode</a>, <a href="https://publications.waset.org/abstracts/search?q=crossed-shaped%20model" title=" crossed-shaped model"> crossed-shaped model</a>, <a href="https://publications.waset.org/abstracts/search?q=CMOS%20technology" title=" CMOS technology"> CMOS technology</a> </p> <a href="https://publications.waset.org/abstracts/59413/analysis-of-vertical-hall-effect-device-using-current-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2202</span> Control of Spherical Robot with Sliding Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Khajepour">Roya Khajepour</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20B.%20Novinzadeh"> Alireza B. Novinzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major issue with spherical robot is it surface shape, which is not always predictable. This means that given only the dynamic model of the robot, it is not possible to control the robot. Due to the fact that in certain conditions it is not possible to measure surface friction, control methods must be prepared for these conditions. Moreover, although spherical robot never becomes unstable or topples thanks to its special shape, since it moves by rolling it has a non-holonomic constraint at point of contact and therefore it is considered a non-holonomic system. Existence of such a point leads to complexity and non-linearity of robot's kinematic equations and makes the control problem difficult. Due to the non-linear dynamics and presence of uncertainty, the sliding-mode control is employed. The proposed method is based on Lyapunov Theory and guarantees system stability. This controller is insusceptible to external disturbances and un-modeled dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode" title="sliding mode">sliding mode</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20robot" title=" spherical robot"> spherical robot</a>, <a href="https://publications.waset.org/abstracts/search?q=non-holomonic%20constraint" title=" non-holomonic constraint"> non-holomonic constraint</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20stability" title=" system stability"> system stability</a> </p> <a href="https://publications.waset.org/abstracts/27170/control-of-spherical-robot-with-sliding-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=6" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=80">80</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=81">81</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=defect%20mode&page=8" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>