CINXE.COM
Search results for: moving bed biofilm reactor
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: moving bed biofilm reactor</title> <meta name="description" content="Search results for: moving bed biofilm reactor"> <meta name="keywords" content="moving bed biofilm reactor"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="moving bed biofilm reactor" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="moving bed biofilm reactor"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1890</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: moving bed biofilm reactor</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1890</span> Contribution of Soluble Microbial Products on Dissolved Organic Nitrogen in Wastewater Effluent from Moving Bed Biofilm Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boonsiri%20Dandumrongsin">Boonsiri Dandumrongsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Halis%20Simsek"> Halis Simsek</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaiwat%20Rongsayamanont"> Chaiwat Rongsayamanont</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dissolved organic nitrogen (DON) is known as one of the persistence nitrogenous pollutant being originated from secondary treated effluent of municipal sewage treatment plant. However, effect of key system operating condition on the fate and behavior of residual DON in the treated effluent is still not known. This study aims to investigate effect of organic loading rate (OLR) on the residual level of DON in the biofilm reactor effluent. Synthetic municipal wastewater was fed into moving bed biofilm reactors at OLR of 1.6x10-3 and 3.2x10-3 kg SCOD/m3-d. The results showed higher organic removal efficiency was found in the reactor operating at higher OLR. However, DON was observed at higher value in the effluent of the higher OLR reactor than that of the lower OLR reactor evidencing a clear influence of OLR on the residual DON level in the treated effluent of the biofilm reactors. It is possible that the lower DON being observed in the reactor at lower OLR is likely to be a result of providing the microbe with the additional period for utilizing the refractory DON molecules during operation at lower organic loading. All the experiments were repeated using raw wastewaters and similar trend was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolved%20organic%20nitrogen" title="dissolved organic nitrogen">dissolved organic nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20retention%20time" title=" hydraulic retention time"> hydraulic retention time</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor" title=" moving bed biofilm reactor"> moving bed biofilm reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=soluble%20microbial%20products" title=" soluble microbial products"> soluble microbial products</a> </p> <a href="https://publications.waset.org/abstracts/71660/contribution-of-soluble-microbial-products-on-dissolved-organic-nitrogen-in-wastewater-effluent-from-moving-bed-biofilm-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1889</span> Metagenomics Profile during the Bioremediation of Fischer-Tropsch Derived Short-Chain Alcohols and Volatile Fatty Acids Using a Moving Bed Biofilm Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mabtho%20Moreroa-Monyelo">Mabtho Moreroa-Monyelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Ijoma"> Grace Ijoma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosina%20Nkuna"> Rosina Nkuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Tonderayi%20Matambo"> Tonderayi Matambo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A moving bed biofilm reactor (MBBR) was used for the bioremediation of high strength chemical oxygen demand (COD) Fisher-Tropsch (FT) wastewater. The aerobic MBBR system was operated over 60 days. For metagenomics profile assessment of the targeted 16S sequence of bacteria involved in the bioremediation of the chemical compounds, sludge samples were collected every second day of operation. Parameters such as pH and COD were measured daily to compare the system efficiency as the changedin microbial diversity progressed. The study revealed that pH was a contributing factor to microbial diversity, which further affected the efficiency of the MBBR system. The highest COD removal rate of 86.4% was achieved at pH 8.3. It was observed that when there was more, A higher bacterial diversity led to an improvement in the reduction of COD. Furthermore, an OTUof 4530 was obtained, which were divided into 12 phyla, 27 classes, 44 orders, 74 families, and 138 genera across all sludge samples from the MBBR. A determination of the relative abundance of microorganisms at phyla level indicates that the most abundant phylum on day it was Firmicutes (50%); thereafter, the most abundant phylum changed toProteobacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=fischer-tropsch%20wastewater" title=" fischer-tropsch wastewater"> fischer-tropsch wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor" title=" moving bed biofilm reactor"> moving bed biofilm reactor</a> </p> <a href="https://publications.waset.org/abstracts/150542/metagenomics-profile-during-the-bioremediation-of-fischer-tropsch-derived-short-chain-alcohols-and-volatile-fatty-acids-using-a-moving-bed-biofilm-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1888</span> Up-Flow Sponge Submerged Biofilm Reactor for Municipal Sewage Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saber%20A.%20El-Shafai">Saber A. El-Shafai</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20M.%20Zahid"> Waleed M. Zahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An up-flow submerged biofilm reactor packed with sponge was investigated for sewage treatment. The reactor was operated two cycles as single aerobic (1-1 at 3.5 L/L.d HLR and 1-2 at 3.8 L/L.day HLR) and four cycles as single anaerobic/aerobic reactor; 2-1 and 2-2 at low HLR (3.7 and 3.5 L/L.day) and 2-3 and 2-4 at high HLR (5.1 and 5.4 L/L.day). During the aerobic cycles, 50% effluent recycling significantly reduces the system performance except for phosphorous. In case of the anaerobic/aerobic reactor, the effluent recycling, significantly improves system performance at low HLR while at high HLR only phosphorous removal was improved. Excess sludge production was limited to 0.133 g TSS/g COD with better sludge volume index (SVI) in case of anaerobic/aerobic cycles; (54.7 versus 58.5 ml/g). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic" title="aerobic">aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%2Faerobic" title=" anaerobic/aerobic"> anaerobic/aerobic</a>, <a href="https://publications.waset.org/abstracts/search?q=up-flow" title=" up-flow"> up-flow</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20biofilm" title=" submerged biofilm"> submerged biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge" title=" sponge"> sponge</a> </p> <a href="https://publications.waset.org/abstracts/62018/up-flow-sponge-submerged-biofilm-reactor-for-municipal-sewage-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1887</span> In-Situ Sludge Minimization Using Integrated Moving Bed Biofilm Reactor for Industrial Wastewater Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Sodhi">Vijay Sodhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Charanjit%20Singh"> Charanjit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Neelam%20Sodhi"> Neelam Sodhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Puneet%20P.%20S.%20Cheema"> Puneet P. S. Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Reena%20Sharma"> Reena Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mithilesh%20K.%20Jha"> Mithilesh K. Jha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management and secure disposal of the biosludge generated from widely commercialized conventional activated sludge (CAS) treatments become a potential environmental issue. Thus, a sustainable technological upgradation to the CAS for sludge yield minimization has recently been gained serious attention of the scientific community. A number of recently reported studies effectively addressed the remedial technological advancements that in monopoly limited to the municipal wastewater. Moreover, the critical review of the literature signifies side-stream sludge minimization as a complex task to maintain. In this work, therefore, a hybrid moving bed biofilm reactor (MBBR) configuration (named as AMOMOX process) for in-situ minimization of the excess biosludge generated from high organic strength tannery wastewater has been demonstrated. The AMOMOX collectively stands for anoxic MBBR (as AM), aerobic MBBR (OM) and an oxic CAS (OX). The AMOMOX configuration involved a combined arrangement of an anoxic MBBR and oxic MBBR coupled with the aerobic CAS. The AMOMOX system was run in parallel with an identical CAS reactor. Both system configurations were fed with same influent to judge the real-time operational changes. For the AMOMOX process, the strict maintenance of operational strategies resulted about 95% removal of NH4-N and SCOD from tannery wastewater. Here, the nourishment of filamentous microbiota and purposeful promotion of cell-lysis effectively sustained sludge yield (Yobs) lowering upto 0.51 kgVSS/kgCOD. As a result, the volatile sludge scarcity apparent in the AMOMOX system succeeded upto 47% reduction of the excess biosludge. The corroborated was further supported by FE-SEM imaging and thermogravimetric analysis. However, the detection of microbial strains habitat underlying extended SRT (23-26 days) of the AMOMOX system would be the matter of further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tannery%20wastewater" title="tannery wastewater">tannery wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor" title=" moving bed biofilm reactor"> moving bed biofilm reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=sludhe%20yield" title=" sludhe yield"> sludhe yield</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20minimization" title=" sludge minimization"> sludge minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20retention%20time" title=" solids retention time"> solids retention time</a> </p> <a href="https://publications.waset.org/abstracts/167992/in-situ-sludge-minimization-using-integrated-moving-bed-biofilm-reactor-for-industrial-wastewater-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1886</span> Increased Nitrogen Removal in Cold Deammonification Biofilm Reactor (9-15°C) by Smooth Temperature Decreasing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivar%20Zekker">Ivar Zekker</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergo%20Rikmann"> Ergo Rikmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Anni%20Mandel"> Anni Mandel</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20Raudkivi"> Markus Raudkivi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristel%20Kroon"> Kristel Kroon</a>, <a href="https://publications.waset.org/abstracts/search?q=Liis%20Loorits"> Liis Loorits</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrus%20Seiman"> Andrus Seiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannu%20Fritze"> Hannu Fritze</a>, <a href="https://publications.waset.org/abstracts/search?q=Priit%20Vabam%C3%A4e"> Priit Vabamäe</a>, <a href="https://publications.waset.org/abstracts/search?q=Toomas%20Tenno"> Toomas Tenno</a>, <a href="https://publications.waset.org/abstracts/search?q=Taavo%20Tenno"> Taavo Tenno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anaerobic ammonium oxidation (anammox) and nitritation-anammox (deammonification) processes are widely used for N-rich wastewater treatment nowadays. A deammonification moving bed biofilm reactor (MBBR) with a high maximum total nitrogen removal rate (TNRR) of 1.5 g N m-2 d-1 was started up and similarly high TNRR was sustained at low temperature of 15°C. During biofilm cultivation, temperature in MBBR was lowered by 0.5° C week-1 sustaining the high TNRR. To study the short-term effect of temperature on the TNRR, a series of batch-scale experiments performed showed sufficient TNRRs even at 9-15° C (4.3-5.4 mg N L-1 h-1, respectively). After biomass was adapted to lower temperature (15°C), the TNRR increase at lower temperature (15°C) was relatively higher (15-20%) than with biomass adapted to higher temperatures (17-18°C). Anammox qPCR showed increase of Candidatus Brocadia quantities from 5×103 to 1×107 anammox gene copies g-1 TSS despite temperature lowered to 15°C. Modeling confirmed causes of stable and unstable periods in the reactor and in batch test high Arrhenius constant of 29.7 kJ mol-1 of the process as high as at 100 mg NO2--N L-1 were determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deammonification" title="deammonification">deammonification</a>, <a href="https://publications.waset.org/abstracts/search?q=reject%20water" title=" reject water"> reject water</a>, <a href="https://publications.waset.org/abstracts/search?q=intermittent%20aeration" title=" intermittent aeration"> intermittent aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite%20inhibition" title=" nitrite inhibition"> nitrite inhibition</a> </p> <a href="https://publications.waset.org/abstracts/15511/increased-nitrogen-removal-in-cold-deammonification-biofilm-reactor-9-15c-by-smooth-temperature-decreasing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1885</span> Minimum Biofilm Inhibitory Concentration of Lysostaphin on Clinical Isolates of Methicillin Resistant Staphylococcus aureus (MRSA)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Nagalakshmi">N. Nagalakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Indira%20Bairy"> Indira Bairy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Atulya"> M. Atulya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jesil%20Mathew"> Jesil Mathew </a> </p> <p class="card-text"><strong>Abstract:</strong></p> S. aureus has the ability to colonize and form biofilms on implanted biomaterials, which is difficult to disrupt, and current antimicrobial therapies for biofilms have largely proven unsuccessful in complete eradication of biofilm. The present study is aimed to determine the lysostaphin activity against biofilm producing MRSA clinical strains. The minimum biofilm inhibition activity of lysostaphin was studied against twelve strong biofilm producing isolates. The biofilm was produced in 96-wells micro-titer plate and biofilm was treated with lysostaphin (0.5 to 16 µg/ml), vancomycin (0.5 to 64 µg/ml) and linezolid (0.5 to 64 µg/ml). The biofilm inhibitory concentration of lysostaphin was found between 4 to 8 µg/ml whereas vancomycin and linezolid inhibited at concentration between 32 to 64 µg/ml. Results indicate that lysostaphin as potential antimicrobial activity against biofilm at lower concentration is comparable with routine antibiotics like vancomycin and linezolid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=lysostaphin" title=" lysostaphin"> lysostaphin</a>, <a href="https://publications.waset.org/abstracts/search?q=MRSA" title=" MRSA"> MRSA</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20biofilm%20inhibitory%20concentration" title=" minimum biofilm inhibitory concentration "> minimum biofilm inhibitory concentration </a> </p> <a href="https://publications.waset.org/abstracts/13150/minimum-biofilm-inhibitory-concentration-of-lysostaphin-on-clinical-isolates-of-methicillin-resistant-staphylococcus-aureus-mrsa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1884</span> Determination of Biofilm Formation in Different Clinical Candida Species and Investigation of Effects of Some Plant Substances on These Biofilms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcan%20Sahal">Gulcan Sahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Isil%20Seyis%20Bilkay"> Isil Seyis Bilkay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Candida species which often exist as commensal microorganisms in healthy individuals are major causes of important infections, especially in AIDS and immunocompromised patients, by means of their biofilm formation abilities. Therefore, in this study, determination of biofilm formation in different clinical strains of Candida species, investigation of strong biofilm forming Candida strains, examination of clinical information of each strong and weak biofilm forming Candida strains and investigation of some plant substances’ effects on biofilm formation of strong biofilm forming strains were aimed. In this respect, biofilm formation of Candida strains was analyzed via crystal violet binding assay. According to our results, biofilm levels of strains belong to different Candida species were different from each other. Additionally, it is also found that some plant substances effect biofilm formation. All these results indicate that, as well as C. albicans strains, other non-albicans Candida species also emerge as causative agents of infections and have biofilm formation abilities. In addition, usage of some plant substances in different concentrations may provide a new treatment against biofilm related Candida infections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-biofilm" title="anti-biofilm">anti-biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm%20formation" title=" biofilm formation"> biofilm formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Candida%20species" title=" Candida species"> Candida species</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystems%20engineering" title=" biosystems engineering"> biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/8322/determination-of-biofilm-formation-in-different-clinical-candida-species-and-investigation-of-effects-of-some-plant-substances-on-these-biofilms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1883</span> Investigation of Biofilm Formation in Clinical Strains of Klebsiella pneumoniae and Klebsiella rhinoscleromatis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcan%20Sahal">Gulcan Sahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nermin%20Hande%20Avcioglu"> Nermin Hande Avcioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Isil%20Seyis%20Bilkay"> Isil Seyis Bilkay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Klebsiella species which are natural colonizers of human upper respiratory and human gastrointestinal tracts are also responsible for every reoccurring nosocomial infections by means of having ability to form slimy layers known as biofilm on many surfaces. Therefore, in this study, investigation of biofilm formation in K. pneumoniae and K. rhinoscleromatis and examination of each Klebsiella strains’ clinical information in the light of their biofilm formation results were aimed. In this respect, biofilm formation of Klebsiella strains was analyzed via crystal violet binding assay. According to our results, biofilm formation levels of K. pneumoniae and K. rhinoscleromatis strains were different from each other. Additionally, in comparison to K. rhinoscleromatis strains, K. pneumoniae was observed to include higher amounts of strong biofilm forming strains. Besides, it was also seen that clinical information of patients from which strong biofilm forming Klebsiella strains were isolated were similar to each other. Our results indicate that there should be more precautions against K. pneumoniae which includes higher amount of strong biofilm forming strains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm%20formation" title="biofilm formation">biofilm formation</a>, <a href="https://publications.waset.org/abstracts/search?q=Klebsiella%20pneumoniae" title=" Klebsiella pneumoniae"> Klebsiella pneumoniae</a>, <a href="https://publications.waset.org/abstracts/search?q=Klebsiella%20rhinoscleromatis" title=" Klebsiella rhinoscleromatis"> Klebsiella rhinoscleromatis</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystems%20engineering" title=" biosystems engineering"> biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/8310/investigation-of-biofilm-formation-in-clinical-strains-of-klebsiella-pneumoniae-and-klebsiella-rhinoscleromatis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1882</span> Stability of a Biofilm Reactor Able to Degrade a Mixture of the Organochlorine Herbicides Atrazine, Simazine, Diuron and 2,4-Dichlorophenoxyacetic Acid to Changes in the Composition of the Supply Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Nava-Arenas">I. Nava-Arenas</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Ruiz-Ordaz"> N. Ruiz-Ordaz</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Galindez-Mayer"> C. J. Galindez-Mayer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Luna-Guido"> M. L. Luna-Guido</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20Ruiz-L%C3%B3pez"> S. L. Ruiz-López</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cabrera-Orozco"> A. Cabrera-Orozco</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nava-Arenas"> D. Nava-Arenas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the most important herbicides, the organochlorine compounds are of considerable interest due to their recalcitrance to the chemical, biological, and photolytic degradation, their persistence in the environment, their mobility, and their bioacummulation. The most widely used herbicides in North America are primarily 2,4-dichlorophenoxyacetic acid (2,4-D), the triazines (atrazine and simazine), and to a lesser extent diuron. The contamination of soils and water bodies frequently occurs by mixtures of these xenobiotics. For this reason, in this work, the operational stability to changes in the composition of the medium supplied to an aerobic biofilm reactor was studied. The reactor was packed with fragments of volcanic rock that retained a complex microbial film, able to degrade a mixture of organochlorine herbicides atrazine, simazine, diuron and 2,4-D, and whose members have microbial genes encoding the main catabolic enzymes atzABCD, tfdACD and puhB. To acclimate the attached microbial community, the biofilm reactor was fed continuously with a mineral minimal medium containing the herbicides (in mg•L-1): diuron, 20.4; atrazine, 14.2, simazine, 11.4, and 2,4-D, 59.7, as carbon and nitrogen sources. Throughout the bioprocess, removal efficiencies of 92-100% for herbicides, 78-90% for COD, 92-96% for TOC and 61-83% for dehalogenation were reached. In the microbial community, the genes encoding catabolic enzymes of different herbicides tfdACD, puhB and, occasionally, the genes atzA and atzC were detected. After the acclimatization, the triazine herbicides were eliminated from the mixture formulation. Volumetric loading rates of the mixture 2,4-D and diuron were continuously supplied to the reactor (1.9-21.5 mg herbicides •L-1 •h-1). Along the bioprocess, the removal efficiencies obtained were 86-100% for the mixture of herbicides, 63-94% for for COD, 90-100% for COT, and dehalogenation values of 63-100%. It was also observed that the genes encoding the enzymes in the catabolism of both herbicides, tfdACD and puhB, were consistently detected; and, occasionally, the atzA and atzC. Subsequently, the triazine herbicide atrazine and simazine were restored to the medium supply. Different volumetric charges of this mixture were continuously fed to the reactor (2.9 to 12.6 mg herbicides •L-1 •h-1). During this new treatment process, removal efficiencies of 65-95% for the mixture of herbicides, 63-92% for COD, 66-89% for TOC and 73-94% of dehalogenation were observed. In this last case, the genes tfdACD, puhB and atzABC encoding for the enzymes involved in the catabolism of the distinct herbicides were consistently detected. The atzD gene, encoding the cyanuric hydrolase enzyme, could not be detected, though it was determined that there was partial degradation of cyanuric acid. In general, the community in the biofilm reactor showed some catabolic stability, adapting to changes in loading rates and composition of the mixture of herbicides, and preserving their ability to degrade the four herbicides tested; although, there was a significant delay in the response time to recover to degradation of the herbicides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm%20reactor" title=" biofilm reactor"> biofilm reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20community" title=" microbial community"> microbial community</a>, <a href="https://publications.waset.org/abstracts/search?q=organochlorine%20herbicides" title=" organochlorine herbicides"> organochlorine herbicides</a> </p> <a href="https://publications.waset.org/abstracts/7490/stability-of-a-biofilm-reactor-able-to-degrade-a-mixture-of-the-organochlorine-herbicides-atrazine-simazine-diuron-and-24-dichlorophenoxyacetic-acid-to-changes-in-the-composition-of-the-supply-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1881</span> Biofilm Formation Due to the Proteome Changes Of Enterococcus Faecium in Response to Sub-Mic of Gentamicin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Abbasi">Amin Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Asghari%20Ozma"> Mahdi Asghari Ozma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Objective:Enterococcus faecium is a normal flora of the human gastrointestinal tract that causes infection in the host body under conditions such as biofilm formation, in which the use of antibiotics causes changes in these pathogenic mechanisms. In this study, we aimed to evaluate comprehensively the changes in E.faecium when exposed to sub-MIC of the gentamicin,especiallythe biofilm formation rate. Materials and Methods: For this study, the keywords "Enterococcus faecium ", "Biofilm", and "Gentamicin" in the databases PubMed, Google Scholar, Sid, and MagIran between 2015 and 2021 were searched, and 14 articles were chosen, studied, and analyzed. Results: Gentamicin significantly had increased biofilm formation in most of the isolates in the studies. Increased expression of the genes (efaA and esp) and proteins involved in biofilm formation and decreased expression of the genes (gelE and cylA) involved in spreading and proteins involved in metabolism and cell division in E.faecium were the most significant cause of the biofilm formation, which were increased in sub-MIC gentamicin-treated situation. Conclusion: Inadequate use of gentamicin intensify biofilm formation of E.faecium, which can make the treatment of infections caused by this bacterium difficult. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=enterococcus%20faecium" title=" enterococcus faecium"> enterococcus faecium</a>, <a href="https://publications.waset.org/abstracts/search?q=gentamicin" title=" gentamicin"> gentamicin</a>, <a href="https://publications.waset.org/abstracts/search?q=proteome" title=" proteome"> proteome</a> </p> <a href="https://publications.waset.org/abstracts/150995/biofilm-formation-due-to-the-proteome-changes-of-enterococcus-faecium-in-response-to-sub-mic-of-gentamicin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1880</span> Biofilm Is Facilitator for Microplastic Ingestion in Green Mussel Perna Viridis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yixuan%20Wang">Yixuan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Y.%20Wong"> A. C. Y. Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Y.%20Chiu"> J. M. Y. Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Cheung"> S. G. Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After being released into the ocean, microplastics (MPs) are quickly colonized by microbes. The biofilm that forms on MPs alters their characteristics and perplexes users, including filter-feeders, some of whom choose to eat MPs that have biofilm. It has been proposed that filter feeders like mussels and other bivalves could serve as bioindicators of MP pollution. Mussels are considered selective feeders with particle sorting capability. Two sizes (27-32 µm and 90-106 µm), shapes (microspheres and microfibers), and types (polyethylene, polystyrene and polyester) of MPs were available for the green mussel, Perna viridis, at three concentrations (100 P/ml, 1000 P/ml and 10,000 P/ml). These MPs were incubated in the sea for 0, 3 or 14 days for biofilm development. The presence of the biofilm significantly affected the ingestion of MPs, and the mussels preferred MPs with biofilm, with a higher preference observed for biofilm with a longer incubation period. Additionally, the ingestion rate varied with the interaction between the concentration, size and form of MPs. The findings are discussed in relation to the possibility that mussels serve as MP bioindicators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20miroplastics" title="marine miroplastics">marine miroplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=bioindicator" title=" bioindicator"> bioindicator</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20mussel%20perna%20viridis" title=" green mussel perna viridis"> green mussel perna viridis</a> </p> <a href="https://publications.waset.org/abstracts/183324/biofilm-is-facilitator-for-microplastic-ingestion-in-green-mussel-perna-viridis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1879</span> Reduction of Biofilm Formation in Closed Circuit Cooling Towers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Turetgen">Irfan Turetgen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Closed-circuit cooling towers are cooling units that operate according to the indirect cooling principle. Unlike the open-loop cooling tower, the filler material includes a closed-loop water-operated heat exchanger. The main purpose of this heat exchanger is to prevent the cooled process water from contacting with the external environment. In order to ensure that the hot water is cooled, the water is cooled by the air flow and the circulation water of the tower as it passes through the pipe. They are now more commonly used than open loop cooling towers that provide cooling with plastic filling material. As with all surfaces in contact with water, there is a biofilm formation on the outer surface of the pipe. Although biofilm has been studied very well on plastic surfaces in open loop cooling towers, studies on biofilm layer formed on the heat exchangers of the closed circuit tower have not been found. In the recent study, natural biofilm formation was observed on the heat exchangers of the closed loop tower for 6 months. At the same time, nano-silica coating, which is known to reduce the formation of the biofilm layer, a comparison was made between the two different surfaces in terms of biofilm formation potential. Test surfaces were placed into biofilm reactor along with the untreated control coupons up to 6-months period for biofilm maturation. Natural bacterial communities were monitored to analyze the impact to mimic the real-life conditions. Surfaces were monthly analyzed in situ for their microbial load using epifluorescence microscopy. Wettability is known to play a key role in biofilm formation on surfaces, because characteristics of surface properties affect the bacterial adhesion. Results showed that surface-conditioning with nano-silica significantly reduce (up to 90%) biofilm formation. Easy coating process is a facile and low-cost method to prepare hydrophobic surface without any kinds of expensive compounds or methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilms" title="biofilms">biofilms</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20towers" title=" cooling towers"> cooling towers</a>, <a href="https://publications.waset.org/abstracts/search?q=fill%20material" title=" fill material"> fill material</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20silica" title=" nano silica"> nano silica</a> </p> <a href="https://publications.waset.org/abstracts/102512/reduction-of-biofilm-formation-in-closed-circuit-cooling-towers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1878</span> Recovery of Helicobacter Pylori from Stagnant and Moving Water Biofilms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Zafar">Maryam Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajida%20Rasheed"> Sajida Rasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Hashmi"> Imran Hashmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water as an environmental reservoir is reported to act as a habitat and transmission route to microaerophilic bacteria such as Heliobacter pylori. It has been studied that in biofilms are the predominant dwellings for the bacteria to grow in water and protective reservoir for numerous pathogens by protecting them against harsh conditions, such as shear stress, low carbon concentration and less than optimal temperature. In this study, influence of these and many other parameters was studied on H. pylori in stagnant and moving water biofilms both in surface and underground aquatic reservoirs. H. pylori were recovered from pipe of different materials such as Polyvinyl Chloride, Polypropylene and Galvanized iron pipe cross sections from an urban water distribution network. Biofilm swabbed from inner cross section was examined by molecular biology methods coupled with gene sequencing and H. pylori 16S rRNA peptide nucleic acid probe showing positive results for H. pylori presence. Studies showed that pipe material affect growth of biofilm which in turn provide additional survival mechanism for pathogens like H. pylori causing public health concerns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20sequencing" title=" gene sequencing"> gene sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=heliobacter%20pylori" title=" heliobacter pylori"> heliobacter pylori</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20materials" title=" pipe materials"> pipe materials</a> </p> <a href="https://publications.waset.org/abstracts/37768/recovery-of-helicobacter-pylori-from-stagnant-and-moving-water-biofilms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1877</span> Treatment of Septic Tank Effluent Using Moving Bed Biological Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fares%20Almomani">Fares Almomani</a>, <a href="https://publications.waset.org/abstracts/search?q=Majeda%20Khraisheh"> Majeda Khraisheh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20%20Bhosale"> Rahul Bhosale</a>, <a href="https://publications.waset.org/abstracts/search?q=Anand%20Kumar"> Anand Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ujjal%20Gosh"> Ujjal Gosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Septic tanks (STs) are very commonly used wastewater collection systems in the world especially in rural areas. In this study, the use of moving bed biological reactors (MBBR) for the treatment of septic tanks effluents (STE) was studied. The study was included treating septic tank effluent from one house hold using MBBRs. Significant ammonia removal rate was observed in all the reactors throughout the 180 days of operation suggesting that the MBBRs were successful in reducing the concentration of ammonia from septic tank effluent. The average ammonia removal rate at 25◦C for the reactor operated at hydraulic retention time of 5.7 hr (R1) was 0.540 kg-N/m3and for the reactor operated at hydraulic retention time of 13.3hr (R2) was 0.279 kg-N/m3. Ammonia removal rates were decreased to 0.3208 kg-N/m3 for R1 and 0.212 kg-N/m3 for R3 as the temperature of reactor was decreased to 8 ◦C. A strong correlation exists between theta model and the rates of ammonia removal for the reactors operated in continuous flow. The average ϴ values for the continuous flow reactors during the temperature change from 8°C to 20 °C were found to be 1.053±0.051. MBBR technology can be successfully used as a polishing treatment for septic tank effluent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=septic%20tanks" title="septic tanks">septic tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20biological%20reactors" title=" moving biological reactors"> moving biological reactors</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification" title=" nitrification"> nitrification</a> </p> <a href="https://publications.waset.org/abstracts/58765/treatment-of-septic-tank-effluent-using-moving-bed-biological-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1876</span> Clustered Regularly Interspaced Short Palindromic Repeats Interference (CRISPRi): An Approach to Inhibit Microbial Biofilm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azna%20Zuberi">Azna Zuberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofilm is a sessile bacterial accretion in which bacteria adapts different physiological and morphological behavior from planktonic form. It is the root cause of about 80% microbial infections in human. Among them, E. coli biofilms are most prevalent in medical devices associated nosocomial infections. The objective of this study was to inhibit biofilm formation by targeting LuxS gene, involved in quorum sensing using CRISPRi. luxS is a synthase, involved in the synthesis of Autoinducer-2(AI-2), which in turn guides the initial stage of biofilm formation. To implement CRISPRi system, we have synthesized complementary sgRNA to target gene sequence and co-expressed with dCas9. Suppression of luxS was confirmed through qRT-PCR. The effect of luxS gene on biofilm inhibition was studied through crystal violet assay, XTT reduction assay and scanning electron microscopy. We conclude that CRISPRi system could be a potential strategy to inhibit bacterial biofilm through mechanism base approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPRi" title=" CRISPRi"> CRISPRi</a>, <a href="https://publications.waset.org/abstracts/search?q=luxS" title=" luxS"> luxS</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial" title=" microbial"> microbial</a> </p> <a href="https://publications.waset.org/abstracts/81079/clustered-regularly-interspaced-short-palindromic-repeats-interference-crispri-an-approach-to-inhibit-microbial-biofilm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1875</span> Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junior%20B.%20N.%20Adohinzin">Junior B. N. Adohinzin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ling%20Xu"> Ling Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen. Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor%20%28MBR%29" title="membrane bioreactor (MBR)">membrane bioreactor (MBR)</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor%20%28MBBR%29" title=" moving bed biofilm reactor (MBBR)"> moving bed biofilm reactor (MBBR)</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients%20removal" title=" nutrients removal"> nutrients removal</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20nitrification%20and%20denitrification" title=" simultaneous nitrification and denitrification"> simultaneous nitrification and denitrification</a> </p> <a href="https://publications.waset.org/abstracts/10455/nutrients-removal-control-via-an-intermittently-aerated-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1874</span> Revealing Insights into the Mechanisms of Biofilm Adhesion on Surfaces in Crude Oil Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjer%20Didouh">Hadjer Didouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hadj%20Meliani"> Mohammed Hadj Meliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzaddine%20Sameut%20Bouhaik"> Izzaddine Sameut Bouhaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study employs a multidisciplinary approach to investigate the intricate processes governing biofilm-surface interactions. Results indicate that surface properties significantly influence initial microbial attachment, with materials characterized by increased roughness and hydrophobicity promoting enhanced biofilm adhesion. Moreover, the chemical composition of materials plays a crucial role in impacting the development of biofilms. Environmental factors, such as temperature fluctuations and nutrient availability, were identified as key determinants affecting biofilm formation dynamics. Advanced imaging techniques revealed complex three-dimensional biofilm structures, emphasizing microbial communication and cooperation within these networks. These findings offer practical implications for industries operating in crude oil environments, guiding the selection and design of materials to mitigate biofilm-related challenges and enhance operational efficiency in such settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm%20adhesion" title="biofilm adhesion">biofilm adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20properties" title=" surface properties"> surface properties</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20environments" title=" crude oil environments"> crude oil environments</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20interactions" title=" microbial interactions"> microbial interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=multidisciplinary%20investigation" title=" multidisciplinary investigation"> multidisciplinary investigation</a> </p> <a href="https://publications.waset.org/abstracts/179807/revealing-insights-into-the-mechanisms-of-biofilm-adhesion-on-surfaces-in-crude-oil-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1873</span> Effect of Lemongrass Oil Containing Polycaprolactone Nanofibers on Biofilm Formation of Proteus mirabilis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcan%20Sahal">Gulcan Sahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Nasseri"> Behzad Nasseri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Ebrahimi"> Ali Akbar Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isil%20Seyis%20Bilkay"> Isil Seyis Bilkay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proteus mirabilis strains which are natural colonizers of healthy individuals’ gastrointestinal tract are also known as common causes of catheter-associated urinary tract infections. Nowadays, as a result of an increased resistance to various antimicrobial drugs, there has been a growing interest in natural products. Therefore, the aim of this study is to investigate biofilm formation of P. mirabilis strains on lemongrass oil containing polycaprolactone nanofibers. Polycaprolactone nanofibers with different lemongrass oil concentrations were successfully prepared by electrospinning and biofilm formation of P. mirabilis on these nanofibers were determined by ‘Crystal Violet Staining Assay’. According to our results, polycaprolactone nanofibers with some lemongrass oil concentrations, decreased biofilm formation of P. mirabilis and this effect increased in parallel with the increase in lemongrass oil concentration. Our results indicate that, polycaprolactone nanofibers with some concentrations of lemongrass oil may provide a treatment against catheter-associated urinary tract infections by means of causing an inhibition on biofilm formation of P. mirabilis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-biofilm" title="anti-biofilm">anti-biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm%20formation" title=" biofilm formation"> biofilm formation</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibers" title=" nanofibers"> nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=proteus%20mirabilis" title=" proteus mirabilis"> proteus mirabilis</a> </p> <a href="https://publications.waset.org/abstracts/55250/effect-of-lemongrass-oil-containing-polycaprolactone-nanofibers-on-biofilm-formation-of-proteus-mirabilis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1872</span> Isolation of a Bacterial Community with High Removal Efficiencies of the Insecticide Bendiocarb</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eusebio%20A.%20Jim%C3%A9nez-Ar%C3%A9valo">Eusebio A. Jiménez-Arévalo</a>, <a href="https://publications.waset.org/abstracts/search?q=Deifilia%20Ahuatzi-Chac%C3%B3n"> Deifilia Ahuatzi-Chacón</a>, <a href="https://publications.waset.org/abstracts/search?q=Juvencio%20Gal%C3%ADndez-Mayer"> Juvencio Galíndez-Mayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Cleotilde%20Ju%C3%A1rez-Ram%C3%ADrez"> Cleotilde Juárez-Ramírez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nora%20Ruiz-Ordaz"> Nora Ruiz-Ordaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bendiocarb is a known toxic xenobiotic that presents acute and chronic risks for freshwater invertebrates and estuarine and marine biota; thus, the treatment of water contaminated with the insecticide is of concern. In this paper, a bacterial community with the capacity to grow in bendiocarb as its sole carbon and nitrogen source was isolated by enrichment techniques in batch culture, from samples of a composting plant located in the northeast of Mexico City. Eight cultivable bacteria were isolated from the microbial community, by PCR amplification of 16 rDNA; <em>Pseudoxanthomonas spadix</em> (NC_016147.2, 98%), <em>Ochrobacterium anthropi</em> (NC_009668.1, 97%), <em>Staphylococcus capitis</em> (NZ_CP007601.1, 99%), <em>Bosea thiooxidans</em>. (NZ_LMAR01000067.1, 99%), <em>Pseudomonas denitrificans</em>. (NC_020829.1, 99%), <em>Agromyces </em>sp. (NZ_LMKQ01000001.1, 98%), <em>Bacillus thuringiensis</em>. (NC_022873.1, 97%), <em>Pseudomonas alkylphenolia </em>(NZ_CP009048.1, 98%). NCBI accession numbers and percentage of similarity are indicated in parentheses. These bacteria were regarded as the isolated species for having the best similarity matches. The ability to degrade bendiocarb by the immobilized bacterial community in a packed bed biofilm reactor, using as support volcanic stone fragments (tezontle), was evaluated. The reactor system was operated in batch using mineral salts medium and 30 mg/L of bendiocarb as carbon and nitrogen source. With this system, an overall removal efficiency (η<sub>bend</sub>) rounding 90%, was reached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bendiocarb" title="bendiocarb">bendiocarb</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm%20reactor" title=" biofilm reactor"> biofilm reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbamate%20insecticide" title=" carbamate insecticide"> carbamate insecticide</a> </p> <a href="https://publications.waset.org/abstracts/55702/isolation-of-a-bacterial-community-with-high-removal-efficiencies-of-the-insecticide-bendiocarb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55702.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1871</span> Fabrication of a Continuous Flow System for Biofilm Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Jibrin%20Ndejiko">Mohammed Jibrin Ndejiko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern and current models such as flow cell technology which enhances a non-destructive growth and inspection of the sessile microbial communities revealed a great understanding of biofilms. A continuous flow system was designed to evaluate possibility of biofilm formation by Escherichia coli DH5α on the stainless steel (type 304) under continuous nutrient supply. The result of the colony forming unit (CFU) count shows that bacterial attachment and subsequent biofilm formation on stainless steel coupons with average surface roughness of 1.5 ± 1.8 µm and 2.0 ± 0.09 µm were both significantly higher (p ≤ 0.05) than those of the stainless steel coupon with lower surface roughness of 0.38 ± 1.5 µm. These observations support the hypothesis that surface profile is one of the factors that influence biofilm formation on stainless steel surfaces. The SEM and FESEM micrographs of the stainless steel coupons also revealed the attached Escherichia coli DH5α biofilm and dehydrated extracellular polymeric substance on the stainless steel surfaces. Thus, the fabricated flow system represented a very useful tool to study biofilm formation under continuous nutrient supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=flowcell" title=" flowcell"> flowcell</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=coupon" title=" coupon"> coupon</a> </p> <a href="https://publications.waset.org/abstracts/49119/fabrication-of-a-continuous-flow-system-for-biofilm-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1870</span> Effect of Ethanol and Betadine on the Preformed Biofilm of Staphylococcus Aureus Isolated from Urinary Catheter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kara%20Terki%20Ibtissem">Kara Terki Ibtissem</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassaine%20Hafida"> Hassaine Hafida</a>, <a href="https://publications.waset.org/abstracts/search?q=Bellifa%20Samia"> Bellifa Samia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Staphylococcus aureus is one of the species that are most frequently isolated from urinary catheters. The ability to produce a biofilm is an important step in the pathogenesis of these staphylococci; biofilm formation is strongly dependent on the environmental conditions it also depends on the different parameters these biofilms are subjected to. Antiseptics, including ethanol and betadine, are used in clinical practice for disinfection and infection prevention. Recent studies, however, demonstrate that disinfectants may enhance biofilm production in Staphylococci. Methods: In this study, 48 staphylococcus aureus isolated from urinary catheters at the University Hospital Center of Sidi Bel Abbes (in Northwestern Algeria) were analyzed to detect the formation of biofilm by culture on Red Congo Agar (RCA), the Tube Method (TM) and tissue Culture Plate (TCP) techniques, this last was also used to investigate the effect of ethanol and Betadine on the preformed biofilm In a second time to know which environment is most favorable to the formation of the biofilm we perform a statistical test based on the student test by the software R. Results: It has been found that 23 strains produced a bacterial slime on the Congo red medium, 5 strains produced a biofilm by the tube method, 2 of which are highly productive. In addition, 7 strains produced a biofilm on polystyrene micro-plates; this number was higher in the presence of ethanol 70% and ethanol 90% with 19 and 11 biofilm-producing strains, respectively. On the other hand, no biofilm was formed in the presence of Betadine. Conclusion: It is important to examine the response of biofilms following an imposed external constraint, such as disinfectants, in order to develop new strategies to combat bacterial biofilms but also to better control their formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title="staphylococcus aureus">staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20catheter" title=" urinary catheter"> urinary catheter</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a> </p> <a href="https://publications.waset.org/abstracts/184021/effect-of-ethanol-and-betadine-on-the-preformed-biofilm-of-staphylococcus-aureus-isolated-from-urinary-catheter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1869</span> Influence of Bacterial Motility on Biofilm Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Cheng">Li Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Yilei"> Zhang Yilei</a>, <a href="https://publications.waset.org/abstracts/search?q=Cohen%20Yehuda"> Cohen Yehuda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two motility mechanisms were introduced into iDynoMiCs software, which adopts an individual-based modeling method. Based on the new capabilities, along with the pressure motility developed before, influence of bacterial motility on biofilm formation was studied. Simulation results were evaluated both qualitatively through 3D structure inspections and quantitatively by parameter characterizations. It was showed that twitching motility increased the biofilm surface irregularity probably due to movement of cells towards higher nutrient concentration location whereas free motility, on the other hand, could make biofilms flatter and smoother relatively. Pressure motility showed no significant influence in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iDynoMics" title="iDynoMics">iDynoMics</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm%20structure" title=" biofilm structure"> biofilm structure</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20motility" title=" bacterial motility"> bacterial motility</a>, <a href="https://publications.waset.org/abstracts/search?q=motility%20mechanisms" title=" motility mechanisms"> motility mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/12773/influence-of-bacterial-motility-on-biofilm-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1868</span> Binding of Avian Excreta-Derived Enteroccoci to a Streptococcocus mutans: Implications for Avian to Human Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20K.%20Jolley">Richard K. Jolley</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20A.%20Coffman"> Jonathan A. Coffman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since Enterococci has been implicated in oral disease, we hypothesized the transmission of avian Enterococci to humans via fecal-oral transmission facilitated by adherence to dental plaque. To demonstrate the capability of Enterococci to bind to a dental plaque we filtered avian excreta and incubated the filtrate on a sucrose-induced, Streptococcus mutans biofilm. The biofilm was washed several times with a detergent to remove bacteria binding non-specifically to the biofilm, DNA was isolated from the biofilm, 16S rDNA was amplified, sequenced by Ion Torrent DNA sequencing and analyzed with bioinformatics. Enterococci and other known bacterial pathogens were shown to adhere to the biofilm. Culturing the washed biofilm with Bile Esculin Azide (BEA) agar also confirmed the presence of Enterococci as verified with Sanger sequencing. The results suggest that Enteroccoci in avian excreta has the ability to adhere to human dental plaque and may be a mechanism of entry when humans encounter contaminated aerosols, water or food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enterococci" title="Enterococci">Enterococci</a>, <a href="https://publications.waset.org/abstracts/search?q=avian%20excreta" title=" avian excreta"> avian excreta</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20plaque" title=" dental plaque"> dental plaque</a>, <a href="https://publications.waset.org/abstracts/search?q=NGS" title=" NGS"> NGS</a> </p> <a href="https://publications.waset.org/abstracts/107231/binding-of-avian-excreta-derived-enteroccoci-to-a-streptococcocus-mutans-implications-for-avian-to-human-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1867</span> Kinetics of Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Retno%20A.%20S.%20Lestari">Retno A. S. Lestari</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahyudi%20B.%20Sediawan"> Wahyudi B. Sediawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Syamsiah"> Siti Syamsiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarto"> Sarto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur-oxidizing bacteria were isolated and then grown on salak fruit seeds forming a biofilm on the surface. Their performances in sulfide removal were experimentally observed. In doing so, the salak fruit seeds containing biofilm were then used as packing material in a cylinder. Biogas obtained from biological treatment, which contains 27.95 ppm of hydrogen sulfide was flown through the packed bed. The hydrogen sulfide from the biogas was absorbed in the biofilm and then degraded by the microbes in the biofilm. The hydrogen sulfide concentrations at a various axial position and various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. Since the biofilm is very thin, the sulfide concentration in the Biofilm at a certain axial position is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The values of the parameters were also obtained by curve-fitting. The accuracy of the model proposed was tested by comparing the calculation results using the model with the experimental data obtained. It turned out that the model proposed can describe the removal of sulfide liquid using bio-filter in the packed bed. The biofilter could remove 89,83 % of the hydrogen sulfide in the feed at 2.5 hr of operation and biogas flow rate of 30 L/hr. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfur-oxidizing%20bacteria" title="sulfur-oxidizing bacteria">sulfur-oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=salak%20fruit%20seeds" title=" salak fruit seeds"> salak fruit seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20material" title=" packing material"> packing material</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/41726/kinetics-of-hydrogen-sulfide-removal-from-biogas-using-biofilm-on-packed-bed-of-salak-fruit-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1866</span> Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Retno%20A.%20S.%20Lestari">Retno A. S. Lestari</a>, <a href="https://publications.waset.org/abstracts/search?q=Wahyudi%20B.%20Sediawan"> Wahyudi B. Sediawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Syamsiah"> Siti Syamsiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarto"> Sarto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulfur-oxidizing%20bacteria" title="Sulfur-oxidizing bacteria">Sulfur-oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=snakefruits%20seeds" title=" snakefruits seeds"> snakefruits seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=packing%20material" title=" packing material"> packing material</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a> </p> <a href="https://publications.waset.org/abstracts/27439/hydrogen-sulfide-removal-from-biogas-using-biofilm-on-packed-bed-of-salak-fruit-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1865</span> Broad Spectrum Biofilm Inhibition by Chitosanase Purified from Bacillus licheniformis Isolated from Spoilt Vegetables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahira%20Nsayef%20Muslim">Sahira Nsayef Muslim</a>, <a href="https://publications.waset.org/abstracts/search?q=Israa%20M.%20S.%20Al-Kadmy"> Israa M. S. Al-Kadmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadheema%20Hammood%20Hussein"> Nadheema Hammood Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Naseer%20Mohammed%20Ali"> Alaa Naseer Mohammed Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Buthainah%20Mohammed%20Taha"> Buthainah Mohammed Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayim%20Sabah%20Abbood"> Rayim Sabah Abbood</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Naji%20Aziz"> Sarah Naji Aziz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel strain of Bacillus licheniformis isolated from spoilt cucumber and pepper samples have the ability to produce the chitosanase enzyme when grown on chitosan substrate. Chitosanase was purified to homogeneity with a recovery yield of 35.71% and 5.5 fold of purification by using ammonium sulfate at 45% saturation followed by ion exchange chromatography on DEAE-cellulose column and gel filtration chromatography on Sephadex G-100 column. The purified chitosanase inhibited the biofilm formation ability for all Gram-negative and Gram-positive biofilm-forming bacteria (biofilm producers) after using Congo Red agar and Microtiter plates methods. Highly antibiofilm of chitosanase recorded against Pseudomonas aeruginosa followed by Klebsiella pneumoniae with reduction of biofilm formation ratio to 22 and 29%, respectively compared with (100)% of control. Thus, chitosanase has promising benefit as antibiofilm agent against biofilm forming pathogenic bacteria and has promising application as alternative antibiofilm agents to combat the growing number of multidrug-resistant pathogen-associated infections, especially in situation where biofilms are involved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosanase" title="chitosanase">chitosanase</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20licheniformis" title=" Bacillus licheniformis"> Bacillus licheniformis</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables" title=" vegetables"> vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a> </p> <a href="https://publications.waset.org/abstracts/56330/broad-spectrum-biofilm-inhibition-by-chitosanase-purified-from-bacillus-licheniformis-isolated-from-spoilt-vegetables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1864</span> Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamieh">A. Hamieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Olama"> Z. Olama</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Holail"> H. Holail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20free%20supernatant" title=" cell free supernatant"> cell free supernatant</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title=" distribution system"> distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20acidophilus" title=" lactobacillus acidophilus"> lactobacillus acidophilus</a>, <a href="https://publications.waset.org/abstracts/search?q=streptomyces%20sp" title=" streptomyces sp"> streptomyces sp</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a> </p> <a href="https://publications.waset.org/abstracts/36546/biological-treatment-of-bacterial-biofilms-from-drinking-water-distribution-system-in-lebanon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1863</span> Antibacterial and Anti-Biofilm Activity of Papain Hydrolysed Camel Milk Whey and Its Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdel-Hamid">M. Abdel-Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Saporito"> P. Saporito</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Mateiu"> R. V. Mateiu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Osman"> A. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Romeih"> E. Romeih</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jenssen"> H. Jenssen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Camel milk whey (CMW) was hydrolyzed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial and anti-biofilm activity of the CMW, Camel milk whey hydrolysate (CMWH) and the obtained SEC-fractions was assessed against Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA). SEC-F2 (fraction 2) exhibited antibacterial effectiveness against MRSA and P. aeruginosa with the minimum inhibitory concentration of 0.31 and 0.156 mg/ml, respectively. Furthermore, SEC-F2 significantly decreased biofilm biomass by 71% and 83 % for MRSA and P. aeruginosa in a crystal violet microplate assay. Scanning electron microscopy showed that the SEC-F2 caused changes in the treated bacterial cells. Additionally, LC/MS analysis was used to characterize the peptides of SEC-F2. Two major peptides were detected in SEC-F2 having masses of 414.05 Da and 456.06 Da. In conclusion, this study has demonstrated that hydrolysis of CMW with papain generates small and extremely potent antibacterial and anti-biofilm peptides against both MRSA and P. aeruginosa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel%20milk" title="camel milk">camel milk</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20proteins" title=" whey proteins"> whey proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20peptide" title=" antibacterial peptide"> antibacterial peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-biofilm" title=" anti-biofilm"> anti-biofilm</a> </p> <a href="https://publications.waset.org/abstracts/90413/antibacterial-and-anti-biofilm-activity-of-papain-hydrolysed-camel-milk-whey-and-its-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1862</span> Exploring Attachment Mechanisms of Sulfate-Reducing Bacteria Biofilm to X52 Carbon Steel and Effective Mitigation Through Moringa Oleifera Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjer%20Didouh">Hadjer Didouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hadj%20Melliani"> Mohammed Hadj Melliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzeddine%20Sameut%20Bouhaik"> Izzeddine Sameut Bouhaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion is a serious problem in industrial installations or metallic transport pipes. Corrosion is an interfacial process controlled by several parameters. The presence of microorganisms affects the kinetics of corrosion. This type of corrosion is often referred as bio-corrosion or corrosion influenced by microorganisms (MIC). The action of a microorganism or a bacterium is carried out by the formation of biofilm following its attachment to the metal surface. The formation of biofilm isolates the metal surface from its environment and allows the bacteria to control the parameters of the metal/bacteria interface. Biofilm formation by sulfate-reducing bacteria (SRB) X52 steel, poses substantial challenges in oil and gas industry SONATRACH of Algeria. This research delves into the complex attachment mechanisms employed by SRB biofilm on X52 carbon steel and investigates strategies for effective mitigation using biocides. The exploration commences by elucidating the underlying mechanisms facilitating SRB biofilm adhesion to X52 carbon steel, considering factors such as surface morphology, electrostatic interactions, and microbial extracellular substances. Advanced microscopy and spectroscopic techniques provide a support to the attachment processes, laying the foundation for targeted mitigation strategies. The use of 100 ppm of Moringa Oleifera extract biocide as a promising approach to control and prevent SRB biofilm formation on X52 carbon steel surfaces. Green extract undergo evaluation for their effectiveness in disrupting biofilm development while ensuring the integrity of the steel substrate. Systematic analysis is conducted on the biocide's impact on the biofilm's structural integrity, microbial viability, and overall attachment strength. This two-pronged investigation aims to deepen our comprehension of SRB biofilm dynamics and contribute to the development of effective strategies for mitigating its impact on X52 carbon steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-corrosion" title="bio-corrosion">bio-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=attachement" title=" attachement"> attachement</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%2Fbacteria%20interface" title=" metal/bacteria interface"> metal/bacteria interface</a> </p> <a href="https://publications.waset.org/abstracts/191067/exploring-attachment-mechanisms-of-sulfate-reducing-bacteria-biofilm-to-x52-carbon-steel-and-effective-mitigation-through-moringa-oleifera-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1861</span> Exploring Attachment Mechanisms of Sulfate-Reducing Bacteria Biofilm to X52 Carbon Steel and Effective Mitigation Through Moringa Oleifera Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadjer%20Didouh">Hadjer Didouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Hadj%20Melliani"> Mohammed Hadj Melliani</a>, <a href="https://publications.waset.org/abstracts/search?q=Izzeddine%20Sameut%20Bouhaik"> Izzeddine Sameut Bouhaik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Corrosion is a serious problem in industrial installations or metallic transport pipes. Corrosion is an interfacial process controlled by several parameters. The presence of microorganisms affects the kinetics of corrosion. This type of corrosion is often referred to as bio-corrosion or corrosion influenced by microorganisms (MIC). The action of a microorganism or a bacterium is carried out by the formation of biofilm following its attachment to the metal surface. The formation of biofilm isolates the metal surface from its environment and allows the bacteria to control the parameters of the metal/bacteria interface. Biofilm formation by sulfate-reducing bacteria (SRB) X52 steel poses substantial challenges in the oil and gas industry SONATRACH of Algeria. This research delves into the complex attachment mechanisms employed by SRB biofilm on X52 carbon steel and investigates innovative strategies for effective mitigation using biocides. The exploration commences by elucidating the underlying mechanisms facilitating SRB biofilm adhesion to X52 carbon steel, considering factors such as surface morphology, electrostatic interactions, and microbial extracellular substances. Advanced microscopy and spectroscopic techniques provide support to the attachment processes, laying the foundation for targeted mitigation strategies. The use of 100 ppm of Moringa Oleifera extract biocide as a promising approach to control and prevent SRB biofilm formation on X52 carbon steel surfaces. Green extracts undergo evaluation for their effectiveness in disrupting biofilm development while ensuring the integrity of the steel substrate. Systematic analysis is conducted on the biocide's impact on the biofilm's structural integrity, microbial viability, and overall attachment strength. This two-pronged investigation aims to deepen our comprehension of SRB biofilm dynamics and contribute to the development of effective strategies for mitigating its impact on X52 carbon steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attachment" title="attachment">attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-corrosion" title=" bio-corrosion"> bio-corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%2Fbacteria%20interface" title=" metal/bacteria interface"> metal/bacteria interface</a> </p> <a href="https://publications.waset.org/abstracts/178854/exploring-attachment-mechanisms-of-sulfate-reducing-bacteria-biofilm-to-x52-carbon-steel-and-effective-mitigation-through-moringa-oleifera-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=63">63</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20bed%20biofilm%20reactor&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>