CINXE.COM

Search results for: microalgal biomass

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: microalgal biomass</title> <meta name="description" content="Search results for: microalgal biomass"> <meta name="keywords" content="microalgal biomass"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="microalgal biomass" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="microalgal biomass"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1047</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: microalgal biomass</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> Nutrient Removal and Microalgal Biomass Growth of Chlorella Vulgaris in Response to Centrate Wastewater Loadings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lingfeng%20Wang">Lingfeng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhipeng%20Chen"> Zhipeng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuang%20Qiu"> Shuang Qiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijian%20Ge"> Shijian Ge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of wastewater, with four different nutrient loadings, from synthetic centrate on biomass production of Chlorella vulgaris, nutrient removal, microalgal settling, and lipid production were investigated in photobioreactors under both batches and, subsequently, semi-continuous operations. At higher centrate concentration factors (17.2% and 36.2%), hydraulic retention time and pH adjustments could be employed to sustain acceptable microalgal growth rates and wastewater treatment. Similar nutrient removals efficiencies (>95%) and biomass production (0.42-0.51 g/L) were observed for the four centrate concentrations. Both the lipid productivity and lipid content decreased with increasing nutrient loading in the wastewater. The results also demonstrated that the mass ratio of carbohydrate to protein could provide a good indication of microalgal settling performance, rather than sole component composition or total extracellular polymeric substances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid%20production" title="lipid production">lipid production</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title=" nutrient removal"> nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/94539/nutrient-removal-and-microalgal-biomass-growth-of-chlorella-vulgaris-in-response-to-centrate-wastewater-loadings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> Studies of Lactose Utilization in Microalgal Isolate for Further Use in Dairy By-Product Bioconversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergejs%20Kolesovs">Sergejs Kolesovs</a>, <a href="https://publications.waset.org/abstracts/search?q=Armands%20Vigants"> Armands Vigants</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of dairy industry by-products and wastewater as a cheap substrate for microalgal growth is gaining recognition. However, the mechanisms of lactose utilization remain understudied, limiting the potential of successful microalgal biomass production using various dairy by-products, such as whey and permeate. The necessity for microalgae to produce a specific enzyme, β-galactosidase, requires the selection of suitable strains. This study focuses on a freshwater microalgal isolate's ability to grow on a semi-synthetic medium supplemented with lactose. After 10 days of agitated cultivation, an axenic microalgal isolate achieved significantly higher biomass production under mixotrophic growth conditions (0.86 ± 0.07 g/L, dry weight) than heterotrophic growth (0.46 ± 0.04 g/L). Moreover, mixotrophic cultivation had significantly higher biomass production compared to photoautotrophic growth (0.67 ± 0.05 g/L). The activity of β-galactosidase was detected in both supernatant and microalgal biomass under mixotrophic and heterotrophic growth conditions, showing the potential of extracellular and intracellular mechanisms of enzyme production. However, the main limiting factor in this study was the increase of pH values during the cultivation, significantly reducing the activity of the β-galactosidase enzyme after 3rd day of cultivation. It highlights the need for stricter control of growth parameters to ensure the enzyme's activity. Further research will assess the isolate's suitability for dairy by-product bioconversion and biomass composition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=lactose" title=" lactose"> lactose</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a>, <a href="https://publications.waset.org/abstracts/search?q=permeate" title=" permeate"> permeate</a>, <a href="https://publications.waset.org/abstracts/search?q=beta-galactosidase" title=" beta-galactosidase"> beta-galactosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=mixotrophy" title=" mixotrophy"> mixotrophy</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophy" title=" heterotrophy"> heterotrophy</a> </p> <a href="https://publications.waset.org/abstracts/185298/studies-of-lactose-utilization-in-microalgal-isolate-for-further-use-in-dairy-by-product-bioconversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Kassim">M. A. Kassim</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Potumarthi"> R. Potumarthi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tanksale"> A. Tanksale</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Srivatsa"> S. C. Srivatsa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhattacharya"> S. Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass" title="microalgal biomass">microalgal biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20saccharification" title=" enzymatic saccharification"> enzymatic saccharification</a>, <a href="https://publications.waset.org/abstracts/search?q=biobutanol" title=" biobutanol"> biobutanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/12717/enzymatic-saccharification-of-dilute-alkaline-pre-treated-microalgal-tetraselmis-suecica-biomass-for-biobutanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> Fuel Quality of Biodiesel from Chlorella protothecoides Microalgae Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Kumar">Mukesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahendra%20Pal%20Sharma"> Mahendra Pal Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Depleting fossil fuel resources coupled with serious environmental degradation has led to the search for alternative resources for biodiesel production as a substitute of Petro-diesel. Currently, edible, non-edible oils and microalgal plant species are cultivated for biodiesel production. Looking at the demerits of edible and non-edible oil resources, the focus is being given to grow microalgal species having high oil productivities, less maturity time and less land requirement. Out of various microalgal species, Chlorella protothecoides is considered as the most promising species for biodiesel production owing to high oil content (58 %), faster growth rate (24–48 h) and high biomass productivity (1214 mg/l/day). The present paper reports the results of optimization of reaction parameters of transesterification process as well as the kinetics of transesterification with 97% yield of biodiesel. The measurement of fuel quality of microalgal biodiesel shows that the biodiesel exhibit very good oxidation stability (O.S) of 7 hrs, more than ASTM D6751 (3 hrs) and EN 14112 (6 hrs) specifications. The CP and PP of 0 and -3 °C are finding as per ASTM D 2500-11 and ASTM D 97-12 standards. These results show that the microalgal biodiesel does not need any enhancement in O.S & CFP and hence can be recommended to be directly used as MB100 or its blends into diesel engine operation. Further, scope is available for the production of binary blends using poor quality biodiesel for engine operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20quality" title="fuel quality">fuel quality</a>, <a href="https://publications.waset.org/abstracts/search?q=methyl%20ester%20yield" title=" methyl ester yield"> methyl ester yield</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a> </p> <a href="https://publications.waset.org/abstracts/58274/fuel-quality-of-biodiesel-from-chlorella-protothecoides-microalgae-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> Lipidomic Profiling of Chlorella sp. and Scenedesmus abundans towards Deciphering Phospholipids and Glycolipids under Nitrogen Limited Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Singh">J. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20Dubey"> Swati Dubey</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Singh"> R. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microalgal strains can accumulate greatly enhanced levels of lipids under nitrogen-deficient condition, making these as one of the most promising sustainable sources for biofuel production. High-grade biofuel production from microalgal biomass could be facilitated by analysing the lipid content of the microalgae and enumerating its dynamics under varying nutrient conditions. In the present study, a detailed investigation of changes in lipid composition in Chlorella species and Scenedesmus abundans in response to nitrogen limited condition was performed to provide novel mechanistic insights into the lipidome during stress conditions. The mass spectroscopic approaches mainly LC-MS and GC-MS were employed for lipidomic profiling in both the microalgal strains. The analyses of lipid profiling using LC-MS revealed distinct forms of lipids mainly phospho- and glycolipids, including betaine lipids, and various other forms of lipids in both the microalgal strains. As detected, an overall decrease in polar lipids was observed. However, GC-MS analyses had revealed that the synthesis of the storage lipid i.e. triacylglycerol (TAG) was substantially stimulated in both the strains under nitrogen limited conditions. The changes observed in the overall fatty acid profile were primarily due to the decrease in proportion of polar lipids to TAGs. This study had enabled in analysing a detailed and orchestrated form of lipidomes in two different microalgal strains having potential for biodiesel production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS" title=" LC-MS"> LC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/74880/lipidomic-profiling-of-chlorella-sp-and-scenedesmus-abundans-towards-deciphering-phospholipids-and-glycolipids-under-nitrogen-limited-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> Effect of Nitrogen and Carbon Sources on Growth and Lipid Production from Mixotrophic Growth of Chlorella sp. KKU-S2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratanaporn%20Leesing">Ratanaporn Leesing</a>, <a href="https://publications.waset.org/abstracts/search?q=Thidarat%20Papone"> Thidarat Papone</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiyaporn%20Puangbut"> Mutiyaporn Puangbut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixotrophic cultivation of the isolated freshwater microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass and lipid productions, different concentration of glucose as carbon substrate, different nitrogen source and concentrations were investigated. Using 1.0g/L of NaNO3 as nitrogen source, the maximum biomass yield of 10.04g/L with biomass productivity of 1.673g/L d was obtained using 40g/L glucose, while a biomass of 7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d were found when using the initial concentration of glucose at 20, 30 and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 0.158 and 0.094 were observed when glucose concentration was 20, 30, 40 and 50 g/L, respectively. The results obtained from the study shows that mixotrophic culture of Chlorella sp. KKU-S2 is a desirable cultivation process for microbial lipid and biomass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixotrophic%20cultivation" title="mixotrophic cultivation">mixotrophic cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal%20lipid" title=" microalgal lipid"> microalgal lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20sp.%20KKU-S2" title=" Chlorella sp. KKU-S2"> Chlorella sp. KKU-S2</a> </p> <a href="https://publications.waset.org/abstracts/5171/effect-of-nitrogen-and-carbon-sources-on-growth-and-lipid-production-from-mixotrophic-growth-of-chlorella-sp-kku-s2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> Microalgae for Plant Biostimulants on Whey and Dairy Wastewaters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergejs%20Kolesovs">Sergejs Kolesovs</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavels%20Semjonovs"> Pavels Semjonovs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey and dairy wastewaters if disposed in the environment without proper treatment, cause serious environmental risks contributing to overall and particular environmental pollution and climate change. Biological treatment of wastewater is considered to be most eco-friendly approach, as compared to the chemical treatment methods. Research shows, that dairy wastewater can potentially be remediated by use of microalgae thussignificantly reducing the content of carbohydrates, P, N, K and other pollutants. Moreover, it has been shown, that use of dairy wastewaters results in higher microalgae biomass production. In recent decades microalgal biomass has entailed a big interest for its potential applications in pharmaceuticals, biomedicine, health supplementation, cosmetics, animal feed, plant protection, bioremediation and biofuels. It was shown, that lipids productivity on whey and dairy wastewater is higher as compared with standard cultivation media and occurred without the necessity of inducing specific stress conditions such as N starvation. Moreover, microalgae biomass production as usually associated with high production costs may benefit from perspective of both reasons – enhanced microalgae biomass or target substances productivity on cheap growth substrate and effective management of whey and dairy wastewaters, which issignificant for decrease of total production costs in both processes. Obviously, it became especially important when large volume and low cost industrial microalgal biomass production is anticipated for further use in agriculture of crops as plant growth stimulants, biopesticides soil fertilisers or remediating solutions. Environmental load of dairy wastewaters can be significantly decreased when microalgae are grown in coculture with other microorganisms. This enhances the utilisation of lactose, which is main C source in whey and dairy wastewaters when it is not metabolised easily by most microalgal species chosen. Our study showsthat certain microalgae strains can be used in treatment of residual sugars containing industrial wastewaters and decrease of their concentration thus approving that further extensive research on dairy wastewaters pre-treatment optionsfor effective cultivation of microalgae, carbon uptake and metabolism, strain selection and choice of coculture candidates is needed for further optimisation of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgae" title="microalgae">microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20wastewaters" title=" dairy wastewaters"> dairy wastewaters</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20biostimulants" title=" plant biostimulants"> plant biostimulants</a> </p> <a href="https://publications.waset.org/abstracts/153094/microalgae-for-plant-biostimulants-on-whey-and-dairy-wastewaters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1040</span> Sustainable Energy Production from Microalgae in Queshm Island, Persian Gulf </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Moazami">N. Moazami</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ranjbar"> R. Ranjbar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ashori"> A. Ashori </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Out of hundreds of microalgal strains reported, only very few of them are capable for production of high content of lipid. Therefore, the key technical challenges include identifying the strains with the highest growth rates and oil contents with adequate composition, which were the main aims of this work. From 147 microalgae screened for high biomass and oil productivity, the Nannochloropsis sp. PTCC 6016, which attained 52% lipid content, was selected for large scale cultivation in Persian Gulf Knowledge Island. Nannochloropsis strain PTCC 6016 belongs to Eustigmatophyceae (Phylum heterokontophyta) isolated from Mangrove forest area of Qheshm Island and Persian Gulf (Iran) in 2008. The strain PTCC 6016 had an average biomass productivity of 2.83 g/L/day and 52% lipid content. The biomass productivity and the oil production potential could be projected to be more than 200 tons biomass and 100000 L oil per hectare per year, in an outdoor algal culture (300 day/year) in the Persian Gulf climate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuels" title="biofuels">biofuels</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=Nannochloropsis" title=" Nannochloropsis"> Nannochloropsis</a>, <a href="https://publications.waset.org/abstracts/search?q=raceway%20open%20pond" title=" raceway open pond"> raceway open pond</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-jet" title=" bio-jet"> bio-jet</a> </p> <a href="https://publications.waset.org/abstracts/12748/sustainable-energy-production-from-microalgae-in-queshm-island-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1039</span> Optimization of Biomass Production and Lipid Formation from Chlorococcum sp. Cultivation on Dairy and Paper-Pulp Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20C.%20Ngerem">Emmanuel C. Ngerem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-increasing depletion of the dominant global form of energy (fossil fuels) calls for the development of sustainable and green alternative energy sources such as bioethanol, biohydrogen, and biodiesel. The production of the major biofuels relies on biomass feedstocks that are mainly derived from edible food crops and some inedible plants. One suitable feedstock with great potential as raw material for biofuel production is microalgal biomass. Despite the tremendous attributes of microalgae as a source of biofuel, their cultivation requires huge volumes of freshwater, thus posing a serious threat to commercial-scale production and utilization of algal biomass. In this study, a multi-media wastewater mixture for microalgae growth was formulated and optimized. Moreover, the obtained microalgae biomass was pre-treated to reduce sugar recovery and was compared with previous studies on microalgae biomass pre-treatment. The formulated and optimized mixed wastewater media for biomass and lipid accumulation was established using the simplex lattice mixture design. Based on the superposition approach of the potential results, numerical optimization was conducted, followed by the analysis of biomass concentration and lipid accumulation. The coefficients of regression (R²) of 0.91 and 0.98 were obtained for biomass concentration and lipid accumulation models, respectively. The developed optimization model predicted optimal biomass concentration and lipid accumulation of 1.17 g/L and 0.39 g/g, respectively. It suggested 64.69% dairy wastewater (DWW) and 35.31% paper and pulp wastewater (PWW) mixture for biomass concentration, 34.21% DWW, and 65.79% PWW for lipid accumulation. Experimental validation generated 0.94 g/L and 0.39 g/g of biomass concentration and lipid accumulation, respectively. The obtained microalgae biomass was pre-treated, enzymatically hydrolysed, and subsequently assessed for reducing sugars. The optimization of microwave pre-treatment of Chlorococcum sp. was achieved using response surface methodology (RSM). Microwave power (100 – 700 W), pre-treatment time (1 – 7 min), and acid-liquid ratio (1 – 5%) were selected as independent variables for RSM optimization. The optimum conditions were achieved at microwave power, pre-treatment time, and acid-liquid ratio of 700 W, 7 min, and 32.33:1, respectively. These conditions provided the highest amount of reducing sugars at 10.73 g/L. Process optimization predicted reducing sugar yields of 11.14 g/L on microwave-assisted pre-treatment of 2.52% HCl for 4.06 min at 700 watts. Experimental validation yielded reducing sugars of 15.67 g/L. These findings demonstrate that dairy wastewater and paper and pulp wastewater that could pose a serious environmental nuisance. They could be blended to form a suitable microalgae growth media, consolidating the potency of microalgae as a viable feedstock for fermentable sugars. Also, the outcome of this study supports the microalgal wastewater biorefinery concept, where wastewater remediation is coupled with bioenergy production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20cultivation" title="wastewater cultivation">wastewater cultivation</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20design" title=" mixture design"> mixture design</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title=" nutrient removal"> nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=Chlorococcum" title=" Chlorococcum"> Chlorococcum</a>, <a href="https://publications.waset.org/abstracts/search?q=raceway%20pond" title=" raceway pond"> raceway pond</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentable%20sugar" title=" fermentable sugar"> fermentable sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/189025/optimization-of-biomass-production-and-lipid-formation-from-chlorococcum-sp-cultivation-on-dairy-and-paper-pulp-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1038</span> Evaluation of Biomass Introduction Methods in Coal Co-Gasification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruwaida%20Abdul%20Rasid">Ruwaida Abdul Rasid</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevin%20J.%20Hughes"> Kevin J. Hughes</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Henggs"> Peter J. Henggs</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Pourkashanian"> Mohamed Pourkashanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heightened concerns over the amount of carbon emitted from coal-related processes are generating shifts to the application of biomass. In co-gasification, where coal is gasified along with biomass, the biomass may be fed together with coal (co-feeding) or an independent biomass gasifier needs to be integrated with the coal gasifier. The main aim of this work is to evaluate the biomass introduction methods in coal co-gasification. This includes the evaluation of biomass concentration input (B0 to B100) and its gasification performance. A process model is developed and simulated in Aspen HYSYS, where both coal and biomass are modeled according to its ultimate analysis. It was found that the syngas produced increased with increasing biomass content for both co-feeding and independent schemes. However, the heating values and heat duties decreases with biomass concentration as more CO2 are produced from complete combustion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspen%20HYSYS" title="aspen HYSYS">aspen HYSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=co-gasification%20modelling" title=" co-gasification modelling"> co-gasification modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/17080/evaluation-of-biomass-introduction-methods-in-coal-co-gasification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1037</span> Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsin-Yueh%20Chang">Hsin-Yueh Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-Chen%20Liao"> Pin-Chen Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo-Shu%20Chang"> Jo-Shu Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Yen%20Chen"> Chun-Yen Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20microalga%20Thrasutochytrium%20sp.%20BM2" title="heterotrophic microalga Thrasutochytrium sp. BM2">heterotrophic microalga Thrasutochytrium sp. BM2</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal%20lipid" title=" microalgal lipid"> microalgal lipid</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20glycerol" title=" crude glycerol"> crude glycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation%20strategy" title=" fermentation strategy"> fermentation strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a> </p> <a href="https://publications.waset.org/abstracts/107365/using-optimal-cultivation-strategies-for-enhanced-biomass-and-lipid-production-of-an-indigenous-thraustochytrium-sp-bm2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1036</span> Biomass Availability Matrix: Methodology to Define High Level Biomass Availability for Bioenergy Purposes, a Quebec Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camilo%20Perez%20Lee">Camilo Perez Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Lefsrud"> Mark Lefsrud</a>, <a href="https://publications.waset.org/abstracts/search?q=Edris%20Madadian"> Edris Madadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Yves%20Roy"> Yves Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass availability is one of the most important aspects to consider when determining the proper location of potential bioenergy plants. Since this aspect has a direct impact on biomass transportation and storage, biomass availability greatly influences the operational cost. Biomass availability is more than the quantity available on a specific region; other elements such as biomass accessibility and potential play an important role. Accessibility establishes if the biomass could be extracted and conveyed easily considering factors such as biomass availability, infrastructure condition and other operational issues. On the other hand, biomass potential is defined as the capacity of a specific region to scale the usage of biomass as an energy source, move from another energy source or to switch the type of biomass to increase their biomass availability in the future. This paper defines methodologies and parameters in order to determine the biomass availability within the administrative regions of the province of Quebec; firstly by defining the forestry, agricultural, municipal solid waste and energy crop biomass availability per administrative region, next its infrastructure accessibility and lastly defining the region potential. Thus, these data are processed to create a biomass availability matrix allowing to define the overall biomass availability per region and to determine the most optional candidates for bioenergy plant location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=bioenergy" title=" bioenergy"> bioenergy</a>, <a href="https://publications.waset.org/abstracts/search?q=accessibility" title=" accessibility"> accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20potential" title=" biomass potential"> biomass potential</a> </p> <a href="https://publications.waset.org/abstracts/4941/biomass-availability-matrix-methodology-to-define-high-level-biomass-availability-for-bioenergy-purposes-a-quebec-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1035</span> Biomass For Energy In Improving Sustainable Economic Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahiru%20Muhammad">Dahiru Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Danladi"> Muhammad Danladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yahaya"> Muhammad Yahaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Garba"> Adamu Garba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains, in brief, the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=economic" title=" economic"> economic</a> </p> <a href="https://publications.waset.org/abstracts/160578/biomass-for-energy-in-improving-sustainable-economic-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1034</span> Biomass Energy in Improving Sustainable Economic Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dahiru%20Muhammad">Dahiru Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Danladi"> Muhammad Danladi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Garba"> Adamu Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yahaya"> Muhammad Yahaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper put forward the potentialities of biomass for energy as divers means of sustainable economic development. The paper explains in brief the ways or methods that are used to generate energy from biomass, such as combustion, pyrolysis, anaerobic, and gasification, and also how biomass for energy can enhance the sustainable economic development of a Nation. Currently, the nation depends on fossil fuels as a sources of generating its energy which is finite and deflectable with time, while on the other hand, biomass is an alternative and endless product which consists of a forest biomass, agricultural residues, and energy crops. Finally, recommendations and conclusion were made on the role of biomass for energy in improving sustainable economic development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=economic" title=" economic"> economic</a>, <a href="https://publications.waset.org/abstracts/search?q=development" title=" development"> development</a> </p> <a href="https://publications.waset.org/abstracts/160583/biomass-energy-in-improving-sustainable-economic-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1033</span> Biodiesel Production from Fruit Pulp of Cassia fistula L. Using Green Microalga Chlorella minutissima</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Chandra">Rajesh Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20K.%20Ghosh"> Uttam K. Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study demonstrates microalgal bio-diesel generation from a cheap, abundant, non-edible fruit pulp of Cassia fistula L. The Cassia fistula L. fruit pulp aqueous extract (CFAE) was utilized as a growth medium for cultivation of microalga Chlorella minutissima (C. minutissima). This microalga accumulated a high amount of lipids when cultivated with CFAE as a source of nutrition in comparison to BG-11 medium. Different concentrations (10, 20, 30, 40 and 50%) of CFAE diluted with distilled water were used to cultivate microalga. Effects of light intensity and photoperiod were also observed on biomass and lipid yield of microalga. Light intensity of 8000 lux with a photoperiod of 18 h resulted in maximum biomass and lipid yield of 1.28 ± 0.03 and 0.3968 ± 0.05 g/L, respectively when cultivated with 40% CFAE. Fatty acid methyl ester (FAME) profile of bio-diesel obtained shown the presence of myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), and gondoic acid (C20:1), as major fatty acids. These facts reflect that the fruit pulp of Cassia fistula L. can be used for cultivation of C. minutissima. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-diesel" title=" bio-diesel"> bio-diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassia%20fistula%20L." title=" Cassia fistula L."> Cassia fistula L.</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20minutissima" title=" C. minutissima"> C. minutissima</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a> </p> <a href="https://publications.waset.org/abstracts/104778/biodiesel-production-from-fruit-pulp-of-cassia-fistula-l-using-green-microalga-chlorella-minutissima" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1032</span> Modelling and Simulation of Biomass Pyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Ahuja">P. Ahuja</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20S.%20Sai%20Krishna"> K. S. S. Sai Krishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a concern over the energy shortage in the modern societies as it is one of the primary necessities. Renewable energy, mainly biomass, is found to be one feasible solution as it is inexhaustible and clean energy source all over the world. Out of various methods, thermo chemical conversion is considered to be the most common and convenient method to extract energy from biomass. The thermo-chemical methods that are employed are gasification, liquefaction and combustion. On gasification biomass yields biogas, on liquefaction biomass yields bio-oil and on combustion biomass yields bio-char. Any attempt to biomass gasification, liquefaction or combustion calls for a good understanding of biomass pyrolysis. So, Irrespective of the method used the first step towards the thermo-chemical treatment of biomass is pyrolysis. Pyrolysis mainly converts the solid mass into liquid with gas and residual char as the byproducts. Liquid is used for the production of heat, power and many other chemicals whereas the gas and char can be used as fuels to generate heat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidisation" title=" fluidisation"> fluidisation</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/24385/modelling-and-simulation-of-biomass-pyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1031</span> Desodesmus sp.: A Potential Micro Alga to Treat the Textile Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thirunavoukkarasu%20Manikkannan">Thirunavoukkarasu Manikkannan</a>, <a href="https://publications.waset.org/abstracts/search?q=Karpanai%20Selvan%20Balasubramanian"> Karpanai Selvan Balasubramanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile industry is the one of the most important industrial sector in India. It accounts for 5% of total Gross Domestic Product (GDP) in the country. A Textile industry consumes large quantities of water (~250 m3/ton of product) and they generate almost ~90% of wastewater from its consumption. The problem is alarming and requires proper treatment process to acquire dual benefit of Zero Liquid Discharge and no contamination to the environment. Here we describe the process by which the textile wastewater can be reused. We have collected the textile wastewater in and around Ayyampettai area of Tamilnadu, India. Among different microalgal strains used, Desodesmus sp. collected at Manali, Chennai, Tamilnadu, India was able to lessen the colour of the waste water in 12-15 hrs of its growth, COD around 81.7%, Dissolved solid reduction was 28 ± 0.5 %, Suspended solid was reduced to 40.5 ± 0.3 %, Dye degradation was 50-78%. Further, Desodesmus sp. able to achieve the biomass of 0.9 ± 0.2 g/L (dry weight) in two weeks’ time, the Chl a content was 11 mg/L. It infers that this algal strain able to utilize the textile wastewater as source for growth and algal biomass production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desodesmus%20sp." title="Desodesmus sp.">Desodesmus sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/85485/desodesmus-sp-a-potential-micro-alga-to-treat-the-textile-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1030</span> Microbial Removal of Polycyclic Aromatic Hydrocarbons from Petroleum Refinery Sludge: A Consortial Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dheepshika%20Kodieswaran">Dheepshika Kodieswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The persisting problem in the world that continuously impose our planet at risk is the increasing amounts of recalcitrant. One such issue is the disposal of the Petroleum Refinery Sludge (PRS) which constitutes hydrocarbons that are hazardous to terrestrial and aquatic life. The comparatively safe approach to handling these wastes is by microbial degradation, while the other chemical and physical methods are either expensive and/or produce secondary pollutants. The bacterial and algal systems have different pathways for the degradation of hydrocarbons, and their growth rates vary. This study shows how different bacterial and microalgal strains degrade the polyaromatic hydrocarbon PAHs individually and their symbiotic influence on degradation as well. In this system, the metabolites and gaseous exchange help each other in growth. This method using also aids in the accumulation of lipids in microalgal cells and from which bio-oils can also be extracted. The bacterial strains used in this experiment are reported to be indigenous strains isolated from PRS. The target PAH studied were anthracene and pyrene for a period of 28 days. The PAH degradation kinetics best fitted the Gompertz model, and the order of the kinetics, rate constants, and half-life was determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20refinery%20sludge" title="petroleum refinery sludge">petroleum refinery sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=co-culturing" title=" co-culturing"> co-culturing</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20hydrocarbons" title=" polycyclic hydrocarbons"> polycyclic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgal-bacterial%20consortia" title=" microalgal-bacterial consortia"> microalgal-bacterial consortia</a> </p> <a href="https://publications.waset.org/abstracts/158365/microbial-removal-of-polycyclic-aromatic-hydrocarbons-from-petroleum-refinery-sludge-a-consortial-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1029</span> The Temperature Influence for Gasification in the Advanced Biomass Gasifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narsimhulu%20Sanke">Narsimhulu Sanke</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20Reddy"> D. N. Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is to discuss about the influence of the temperature in the advanced biomass gasifier for gasification, when tested four different biomass fuels individually in the gasification laboratory of Centre for Energy Technology (CET). The gasifier is developed in CET to test any kind of biomass fuel for gasification without changing the gasifier. The gasifier can be used for batch operations and observed and found that there were no operational problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20fuels" title="biomass fuels">biomass fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20downdraft%20gasifier" title=" advanced downdraft gasifier"> advanced downdraft gasifier</a>, <a href="https://publications.waset.org/abstracts/search?q=tar" title=" tar"> tar</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title=" renewable energy sources"> renewable energy sources</a> </p> <a href="https://publications.waset.org/abstracts/13216/the-temperature-influence-for-gasification-in-the-advanced-biomass-gasifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1028</span> Root Biomass Growth in Different Growth Stages of Wheat and Barley Cultivars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Akman">H. Akman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Topal"> A. Topal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work was conducted in greenhouse conditions in order to investigate root biomass growth of two bread wheat, two durum wheat and two barley cultivars that were grown in irrigated and dry lands, respectively. This work was planned with four replications at a Completely Randomized Block Design in 2011-2012 growing season. In the study, root biomass growth was evaluated at stages of stem elongation, complete of anthesis and full grain maturity. Results showed that there were significant differences between cultivars grown at dry and irrigated lands in all growth stages in terms of root biomass (P < 0.01). According to research results, all of growth stages, dry typed-bread and durum wheats generally had higher root biomass than irrigated typed-cultivars, furthermore that dry typed-barley cultivar, had higher root biomass at GS 31 and GS 69, however lower at GS 92 than Larende. In all cultivars, root biomass increased between GS 31 and GS 69 so that dry typed-cultivars had more root biomass increase than irrigated typed-cultivars. Root biomass of bread wheat increased between GS 69 and GS 92, however root biomass of barley and durum wheat decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bread%20and%20durum%20wheat" title="bread and durum wheat">bread and durum wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20biomass" title=" root biomass"> root biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20growth%20stage" title=" different growth stage"> different growth stage</a> </p> <a href="https://publications.waset.org/abstracts/20561/root-biomass-growth-in-different-growth-stages-of-wheat-and-barley-cultivars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1027</span> Research Facility Assessment for Biomass Combustion in Moving Grate Furnaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Gallucci">Francesco Gallucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariangela%20Salerno"> Mariangela Salerno</a>, <a href="https://publications.waset.org/abstracts/search?q=Ettore%20Guerriero"> Ettore Guerriero</a>, <a href="https://publications.waset.org/abstracts/search?q=Manfredi%20Amalfi"> Manfredi Amalfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giancarlo%20Chiatti"> Giancarlo Chiatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Fulvio%20Palmieri"> Fulvio Palmieri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the experimental activities on a biomass combustion test-bed. More in detail, experimental campaigns have been devoted to investigate the operation of a biomass moving grate furnace. A research-oriented facility based on a moving grate furnace (350kW) has been set up in order to perform experimental activities in a wide range of test configurations. The paper reports the description of the complete biomass-plant and the assessment of the system operation. As the first step, the chemical and physical properties of the used wooden biomass have been preliminarily investigated. Once the biomass fuel has been characterized, investigations have been devoted to point out the operation of the furnace. It has been operated at full load, highlighting the influence of biomass combustion parameters on particulate matter and gaseous emission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants" title=" pollutants"> pollutants</a> </p> <a href="https://publications.waset.org/abstracts/60942/research-facility-assessment-for-biomass-combustion-in-moving-grate-furnaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1026</span> S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhalasa%20Iyer">Madhalasa Iyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofuel" title="biofuel">biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=co-culture" title=" co-culture"> co-culture</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20cerevisiae" title=" S. cerevisiae"> S. cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/154085/s-cerevisiae-strains-co-cultured-with-isochrysis-galbana-create-greater-biomass-for-biofuel-production-than-nannochloropsis-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1025</span> Identification of the Microalgae Species in a Wild Mix Culture Acclimated to Landfill Leachate and Ammonia Removal Performances in a Microbubble Assisted Photobioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neslihan%20Ozman%20Say">Neslihan Ozman Say</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%20Gilmour"> Jim Gilmour</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Desai"> Pratik Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Zimmerman"> William Zimmerman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Landfill leachate treatment has been attracting researchers recently for various environmental and economical reasons. Leachate discharge to receiving waterbodies without treatment causes serious detrimental effects including partial oxygen depletion due to high biological oxygen demand (BOD) and chemical oxygen demand (COD) concentrations besides toxicity of heavy metals it contains and high ammonia concentrations. In this study, it is aimed to show microalgal ammonia removal performances of a wild microalgae consortia as an alternative treatment method and determine the dominant leachate tolerant species for this consortia. For the microalgae species identification experiments a microalgal consortium which has been isolated from a local pond in Sheffield inoculated in %5 diluted raw landfill leachate and acclimated to the leachate by batch feeding for a month. In order to determine the most tolerant microalgal consortium, four different untreated landfill leachate samples have been used as diluted in four different ratios as 5%, 10%, 20%, and 40%. Microalgae cell samples have been collected from all experiment sets and have been examined by using 18S rDNA sequencing and specialised gel electrophoresis which are adapted molecular biodiversity methods. The best leachate tolerant algal consortium is being used in order to determine ammonia removal performances of the culture in a microbubble assisted photobioreactor (PBR). A porous microbubble diffuser which is supported by a fluidic oscillator is being used for dosing CO₂ and air mixture in the PBR. It is known that high mass transfer performance of microbubble technology provides a better removal efficiency and a better mixing in the photobioreactor. Ammonia concentrations and microalgal growth are being monitored for PBR currently. It is aimed to present all the results of the study in final paper submission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia%20removal%20from%20leachate" title="ammonia removal from leachate">ammonia removal from leachate</a>, <a href="https://publications.waset.org/abstracts/search?q=landfill%20leachate%20treatment" title=" landfill leachate treatment"> landfill leachate treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae%20species%20identification" title=" microalgae species identification"> microalgae species identification</a>, <a href="https://publications.waset.org/abstracts/search?q=microbubble%20assisted%20photobioreactors" title=" microbubble assisted photobioreactors"> microbubble assisted photobioreactors</a> </p> <a href="https://publications.waset.org/abstracts/103287/identification-of-the-microalgae-species-in-a-wild-mix-culture-acclimated-to-landfill-leachate-and-ammonia-removal-performances-in-a-microbubble-assisted-photobioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1024</span> Removal of Tar Contents in Syngas by Using Different Fuel from Downdraft Biomass Gasification System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Awais">Muhammad Awais</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Li"> Wei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Anjum%20Munir"> Anjum Munir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass gasification is a process of converting solid biomass ingredients into a combustible gas which can be used in electricity generation. Regardless of their applications in many fields, biomass gasification technology is still facing many cleaning issues of syngas. Tar production in biomass gasification process is one of the biggest challenges for this technology. The aimed of this study is to evaluate the tar contents in syngas produced from wood chips, corn cobs, coconut shells and mixture of corn cobs and wood chips as biomass fuel and tar removal efficiency of different cleaning units integrated with gassifier. Performance of different cleaning units, i.e., cyclone separator, wet scrubber, biomass filter, and auxiliary filter was tested under two biomass fuels. Results of this study indicate that wood chips produced less tar of 1736 mg/Nm³ as compared to corn cobs which produced tor 2489 mg/Nm³. It is also observed that coconut shells produced a high amount of tar. It was observed that when wood chips were used as a fuel, syngas tar contents were reduced from 6600 to 112 mg/Nm³ while in case of corn cob, they were reduced from 7500 mg/Nm³ to 220 mg/Nm³. Overall tar removal efficiencies of cyclone separator, wet scrubber, biomass filter, and auxiliary filter was 72%, 63%, 74%, 35% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=tar" title=" tar"> tar</a>, <a href="https://publications.waset.org/abstracts/search?q=cleaning%20system" title=" cleaning system"> cleaning system</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass%20filter" title=" biomass filter"> biomass filter</a> </p> <a href="https://publications.waset.org/abstracts/104807/removal-of-tar-contents-in-syngas-by-using-different-fuel-from-downdraft-biomass-gasification-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1023</span> Application of Biomass Ashes as Supplementary Cementitious Materials in the Cement Mortar Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20%C5%A0upi%C4%87">S. Šupić</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Male%C5%A1ev"> M. Malešev</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Radonjanin"> V. Radonjanin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Radeka"> M. Radeka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Laban"> M. Laban</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of low cost and environmentally friendly products represents an important step for developing countries. Biomass is one of the largest renewable energy sources, and Serbia is among the top European countries in terms of the amount of available and unused biomass. Substituting cement with the ashes obtained by the combustion of biomass would reduce the negative impact of concrete industry on the environment and would provide a waste valorization by the reuse of this type of by-product in mortars and concretes manufacture. The study contains data on physical properties, chemical characteristics and pozzolanic properties of obtained biomass ashes: wheat straw ash and mixture of wheat and soya straw ash in Serbia, which were, later, used as supplementary cementitious materials in preparation of mortars. Experimental research of influence of biomass ashes on physical and mechanical properties of cement mortars was conducted. The results indicate that the biomass ashes can be successfully used in mortars as substitutes of cement without compromising their physical and mechanical performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=ash" title=" ash"> ash</a>, <a href="https://publications.waset.org/abstracts/search?q=cementitious%20material" title=" cementitious material"> cementitious material</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a> </p> <a href="https://publications.waset.org/abstracts/83379/application-of-biomass-ashes-as-supplementary-cementitious-materials-in-the-cement-mortar-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1022</span> Physico-Chemical Characterization of an Algerian Biomass: Application in the Adsorption of an Organic Pollutant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djelloul%20Addad">Djelloul Addad</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Belkhadem%20Mokhtari"> Fatiha Belkhadem Mokhtari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to study the retention of methylene blue (MB) by biomass. The Biomass is characterized by X-ray diffraction (XRD), infrared absorption (IRTF). Results show that the biomass contains organic and mineral substances. The effect of certain physicochemical parameters on the adsorption of MB is studied (effect of the pH). This study shows that the increase in the initial concentration of MB leads to an increase in the adsorbed quantity. The adsorption efficiency of MB decreases with increasing biomass mass. The adsorption kinetics show that the adsorption is rapid, and the maximum amount is reached after 120 min of contact time. It is noted that the pH has no great influence on the adsorption. The isotherms are best modelled by the Langmuir model. The adsorption kinetics follow the pseudo-second-order model. The thermodynamic study of adsorption shows that the adsorption is spontaneous and exothermic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes" title="dyes">dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=langmuir" title=" langmuir"> langmuir</a> </p> <a href="https://publications.waset.org/abstracts/184434/physico-chemical-characterization-of-an-algerian-biomass-application-in-the-adsorption-of-an-organic-pollutant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1021</span> Oxygen Enriched Co-Combustion of Sub-Bituminous Coal/Biomass Waste Fuel Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaouki%20Ghenai">Chaouki Ghenai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational Fluid Dynamic analysis of co-combustion of coal/biomass waste fuel blends is presented in this study. The main objective of this study is to investigate the effects of biomass portions (0%, 10%, 20%, 30%: weight percent) blended with coal and oxygen concentrations (21% for air, 35%, 50%, 75% and 100 % for pure oxygen) on the combustion performance and emissions. The goal is to reduce the air emissions from power plants coal combustion. Sub-bituminous Nigerian coal with calorific value of 32.51 MJ/kg and sawdust (biomass) with calorific value of 16.68 MJ/kg is used in this study. Coal/Biomass fuel blends co-combustion is modeled using mixture fraction/pdf approach for non-premixed combustion and Discrete Phase Modeling (DPM) to predict the trajectories and the heat/mass transfer of the fuel blend particles. The results show the effects of oxygen concentrations and biomass portions in the coal/biomass fuel blends on the gas and particles temperatures, the flow field, the devolitization and burnout rates inside the combustor and the CO2 and NOX emissions at the exit from the combustor. The results obtained in the course of this study show the benefits of enriching combustion air with oxygen and blending biomass waste with coal for reducing the harmful emissions from coal power plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-combustion" title="co-combustion">co-combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20blends" title=" fuel blends"> fuel blends</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20emissions" title=" air emissions"> air emissions</a> </p> <a href="https://publications.waset.org/abstracts/39208/oxygen-enriched-co-combustion-of-sub-bituminous-coalbiomass-waste-fuel-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1020</span> The Gasification of Fructose in Supercritical Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyh-Ming%20Chern">Shyh-Ming Chern</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Y.%20Cheng"> H. Y. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass is renewable and sustainable. As an energy source, it will not release extra carbon dioxide into the atmosphere. Hence, tremendous efforts have been made to develop technologies capable of transforming biomass into suitable forms of bio-fuel. One of the viable technologies is gasifying biomass in supercritical water (SCW), a green medium for reactions. While previous studies overwhelmingly selected glucose as a model compound for biomass, the present study adopted fructose for the sake of comparison. The gasification of fructose in SCW was investigated experimentally to evaluate the applicability of supercritical water processes to biomass gasification. Experiments were conducted with an autoclave reactor. Gaseous product mainly consists of H2, CO, CO2, CH4 and C2H6. The effect of two major operating parameters, the reaction temperature (673-873 K) and the dosage of oxidizing agent (0-0.5 stoichiometric oxygen), on the product gas composition, yield and heating value was also examined, with the reaction pressure fixed at 25 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fructose" title=" fructose"> fructose</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20water" title=" supercritical water "> supercritical water </a> </p> <a href="https://publications.waset.org/abstracts/9573/the-gasification-of-fructose-in-supercritical-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1019</span> Phytochemicals, Antimicrobial and Antioxidant Screening of Marine Microalgal Strain, Amphora Sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Beekrum">S. Beekrum</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Odhav"> B. Odhav</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Lalloo"> R. Lalloo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20A.%20Amonsou"> E. A. Amonsou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Marine microalgae are rich sources of novel and biologically active metabolites; therefore they may be used in the food industry as natural food ingredients and functional foods. They have several biological applications related to health benefits, among others. The aim of the study focused on the screening of phytochemicals from Amphora sp. biomass extracts, and to examine the in vitro antioxidant and antimicrobial potential. Amphora sp. biomass was obtained from CSIR (South Africa) and methanol, hexane and water extracts were prepared. The in vitro antimicrobial effect of extracts were tested against some pathogens (Staphylococcus aureus, Listeria monocytogenes, Bacillus subtilis, Salmonella enteritidis, Escherichia coli, Pseudomonas aeruginosa and Candida albicans), using the disc diffusion assay. Qualitative analyses of phytochemicals were conducted by chemical tests. The present investigation revealed that all extracts showed relatively strong antibacterial activity against most of the tested bacteria. The highest phenolic content was found in the methanolic extract. Results of the DPPH assay showed that the biomass contained strong antioxidant capacity, 79% in the methanolic extract and 85% in the hexane extract. Extracts have displayed effectively reducing power and superoxide anion radical scavenging activity. Results of this study have highlighted potential antioxidant activity in the methanol and hexane extracts. The results of the phytochemical screening showed the presence of terpenoids and sterols with potential applications as food flavorants and functional foods, respectively. The use of Amphora sp. as a natural antioxidant source and a potential source of antibacterial compounds and phytochemicals in the food industry appears promising and should be investigated further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=cymbella" title=" cymbella"> cymbella</a> </p> <a href="https://publications.waset.org/abstracts/52747/phytochemicals-antimicrobial-and-antioxidant-screening-of-marine-microalgal-strain-amphora-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1018</span> Analyzing the Effects of Real Income and Biomass Energy Consumption on Carbon Dioxide (CO2) Emissions: Empirical Evidence from the Panel of Biomass-Consuming Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyup%20Dogan">Eyup Dogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This empirical aims to analyze the impacts of real income and biomass energy consumption on the level of emissions in the EKC model for the panel of biomass-consuming countries over the period 1980-2011. Because we detect the presence of cross-sectional dependence and heterogeneity across countries for the analyzed data, we use panel estimation methods robust to cross-sectional dependence and heterogeneity. The CADF and the CIPS panel unit root tests indicate that carbon emissions, real income and biomass energy consumption are stationary at the first-differences. The LM bootstrap panel cointegration test shows that the analyzed variables are cointegrated. Results from the panel group-mean DOLS and the panel group-mean FMOLS estimators show that increase in biomass energy consumption decreases CO2 emissions and the EKC hypothesis is validated. Therefore, countries are advised to boost their production and increase the use of biomass energy for lower level of emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20energy" title="biomass energy">biomass energy</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20emissions" title=" CO2 emissions"> CO2 emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=EKC%20model" title=" EKC model"> EKC model</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20dependence" title=" cross-sectional dependence"> cross-sectional dependence</a> </p> <a href="https://publications.waset.org/abstracts/52904/analyzing-the-effects-of-real-income-and-biomass-energy-consumption-on-carbon-dioxide-co2-emissions-empirical-evidence-from-the-panel-of-biomass-consuming-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10