CINXE.COM
Линейная форма — Википедия
<!DOCTYPE html> <html class="client-nojs" lang="ru" dir="ltr"> <head> <meta charset="UTF-8"> <title>Линейная форма — Википедия</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )ruwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","январь","февраль","март","апрель","май","июнь","июль","август","сентябрь","октябрь","ноябрь","декабрь"],"wgRequestId":"6c3f45f5-6b17-416c-9f03-be20380ccff7","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Линейная_форма","wgTitle":"Линейная форма","wgCurRevisionId":108997840,"wgRevisionId":108997840,"wgArticleId":157365,"wgIsArticle":true, "wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Линейная алгебра","Функционалы","Функции"],"wgPageViewLanguage":"ru","wgPageContentLanguage":"ru","wgPageContentModel":"wikitext","wgRelevantPageName":"Линейная_форма","wgRelevantArticleId":157365,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":108997840,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ru","pageLanguageDir":"ltr","pageVariantFallbacks":"ru"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[], "wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q261527","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.common-site":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.styles.legacy":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready", "ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.collapserefs","ext.gadget.directLinkToCommons","ext.gadget.referenceTooltips","ext.gadget.logo","ext.gadget.edittop","ext.gadget.navboxDefaultGadgets","ext.gadget.wikibugs","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ru&modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&only=styles&skin=vector"> <script async="" src="/w/load.php?lang=ru&modules=startup&only=scripts&raw=1&skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ru&modules=ext.gadget.common-site&only=styles&skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=ru&modules=site.styles&only=styles&skin=vector"> <noscript><link rel="stylesheet" href="/w/load.php?lang=ru&modules=noscript&only=styles&skin=vector"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Линейная форма — Википедия"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ru.m.wikipedia.org/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0"> <link rel="alternate" type="application/x-wiki" title="Править" href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Википедия (ru)"> <link rel="EditURI" type="application/rsd+xml" href="//ru.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ru.wikipedia.org/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ru"> <link rel="alternate" type="application/atom+xml" title="Википедия — Atom-лента" href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Линейная_форма rootpage-Линейная_форма skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Линейная форма</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">Материал из Википедии — свободной энциклопедии</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Перейти к навигации</a> <a class="mw-jump-link" href="#searchInput">Перейти к поиску</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ru" dir="ltr"><p><b>Лине́йная форма, лине́йный функционал</b> (также используются термины <b>1-форма</b>, <b>ковектор</b>, <b>ковариантный вектор</b>) — <a href="/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%BE%D0%B5_%D0%BE%D1%82%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5" title="Линейное отображение">линейное отображение</a>, действующее из <a href="/wiki/%D0%92%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Векторное пространство">векторного пространства</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> над <a href="/wiki/%D0%9F%D0%BE%D0%BB%D0%B5_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Поле (алгебра)">полем</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> в поле <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. Условие линейности заключается в выполнении следующих двух свойств: </p> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f+g)=\Phi (f)+\Phi (g),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>+</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f+g)=\Phi (f)+\Phi (g),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eae4bad9762fc03daf2a0eb57207730722edf684" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.677ex; height:2.843ex;" alt="{\displaystyle \Phi (f+g)=\Phi (f)+\Phi (g),}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (\alpha f)=\alpha \,\Phi (f)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>α<!-- α --></mi> <mspace width="thinmathspace" /> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (\alpha f)=\alpha \,\Phi (f)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aeb9be5e4ab181b540529d32875f887ebf63c1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.993ex; height:2.843ex;" alt="{\displaystyle \Phi (\alpha f)=\alpha \,\Phi (f)}"></span></dd></dl></dd></dl> <p>для любых двух векторов <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f,g\in L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>∈<!-- ∈ --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f,g\in L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9298b55809468fbcdd4954498fae4f426c37b785" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.852ex; height:2.509ex;" alt="{\displaystyle f,g\in L}"></span> и любого <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha \in K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>∈<!-- ∈ --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha \in K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3581f6410248bed60440badc5bd362ca1cc8c82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.394ex; height:2.176ex;" alt="{\displaystyle \alpha \in K}"></span>. Таким образом, линейная форма (линейный функционал) является частным случаем понятия <a href="/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D1%8B%D0%B9_%D0%BE%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%BE%D1%80" class="mw-redirect" title="Линейный оператор">линейного оператора</a>, действующего из одного векторного пространства в другое векторное пространство: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L_{K}\to M_{K}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L_{K}\to M_{K}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88d4742143eb71bcfcf6219328a6b7bf4ecfd6ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.837ex; height:2.509ex;" alt="{\displaystyle L_{K}\to M_{K}}"></span>, рассматриваемых над одним и тем же полем <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. Именно, в случае линейной формы (линейного функционала) векторное пространство <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{K}=K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </msub> <mo>=</mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{K}=K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dcd82ed2852551bee1330cb3c93e872e75a7cc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.112ex; height:2.509ex;" alt="{\displaystyle M_{K}=K}"></span>. </p><p>Термин <i>линейная форма</i> обычно используют в алгебре и алгебраической геометрии, чаще всего говоря при этом о конечномерных векторных пространствах. С алгебраической точки зрения линейная форма представляет собой частный случай более общего понятия <a href="/wiki/%D0%94%D0%B8%D1%84%D1%84%D0%B5%D1%80%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Дифференциальная форма"><i>k</i>-формы</a> при <i>k=</i>1. </p><p>Термин <i>линейный функционал</i> распространён в <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7" title="Функциональный анализ">функциональном анализе</a>, причем чаще всего речь идет о бесконечномерных векторных пространствах, элементами которых являются функции того или иного класса, и термин <i>функционал</i> подчеркивает то, что рассматривается функция (отображение), аргументом которой являются функции. В качестве поля <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> чаще всего используются поля <a href="/wiki/%D0%92%D0%B5%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0" class="mw-redirect" title="Вещественные числа"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span></a> или <a href="/wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D0%BB%D0%B5%D0%BA%D1%81%D0%BD%D1%8B%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%B0" class="mw-redirect" title="Комплексные числа"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9add4085095b9b6d28d045fd9c92c2c09f549a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {C} }"></span></a>. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="ru" dir="ltr"><h2 id="mw-toc-heading">Содержание</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Примеры"><span class="tocnumber">1</span> <span class="toctext">Примеры</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Свойства"><span class="tocnumber">2</span> <span class="toctext">Свойства</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Связанные_понятия"><span class="tocnumber">3</span> <span class="toctext">Связанные понятия</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#См._также"><span class="tocnumber">4</span> <span class="toctext">См. также</span></a></li> <li class="toclevel-1 tocsection-5"><a href="#Литература"><span class="tocnumber">5</span> <span class="toctext">Литература</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Примечания"><span class="tocnumber">6</span> <span class="toctext">Примечания</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Примеры"><span id=".D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.80.D1.8B"></span>Примеры</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&veaction=edit&section=1" title="Редактировать раздел «Примеры»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=edit&section=1" title="Редактировать код раздела «Примеры»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Примеры линейных форм для конечномерных векторных пространств</b>: </p> <ul><li>Простейшим примером линейной формы является <a href="/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Линейная функция">линейная</a> однородная функция одного вещественного или комплексного переменного:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y=kx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>=</mo> <mi>k</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y=kx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5958cb79293b9343fde39cd04f87f73e40a8de6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.442ex; height:2.509ex;" alt="{\displaystyle y=kx.}"></span></dd></dl></dd></dl> <ul><li><a href="/wiki/%D0%A1%D0%BA%D0%B0%D0%BB%D1%8F%D1%80%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" title="Скалярное произведение">Скалярное произведение</a> аргумента на произвольный вектор является линейной формой:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (\mathbf {x} )=\mathbf {a} \cdot \mathbf {x} =a_{1}x_{1}+a_{2}x_{2}+\dots +a_{n}x_{n}.\qquad (*)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> <mspace width="2em" /> <mo stretchy="false">(</mo> <mo>∗<!-- ∗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (\mathbf {x} )=\mathbf {a} \cdot \mathbf {x} =a_{1}x_{1}+a_{2}x_{2}+\dots +a_{n}x_{n}.\qquad (*)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49aa478162d7fc64b2ff56f49a14e4ec9f9a17b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:49.713ex; height:2.843ex;" alt="{\displaystyle \Phi (\mathbf {x} )=\mathbf {a} \cdot \mathbf {x} =a_{1}x_{1}+a_{2}x_{2}+\dots +a_{n}x_{n}.\qquad (*)}"></span></dd></dl></dd> <dd>Более того, в случае любого конечномерного пространства <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> все линейные формы на нём имеют вид <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (*)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>∗<!-- ∗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (*)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fae74f24018ce1ff0dc698dbe8181555eb4cd768" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.972ex; height:2.843ex;" alt="{\displaystyle (*)}"></span>. Это позволяет отождествить каждую линейную форму <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (\mathbf {x} )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">x</mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (\mathbf {x} )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24456514d4d4c7d8e48a78f19906cd67c3655f63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.898ex; height:2.843ex;" alt="{\displaystyle \Phi (\mathbf {x} )}"></span> с вектором <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathbf {a} }\in L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mrow> <mo>∈<!-- ∈ --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathbf {a} }\in L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c62a0319f3fc09654817ea9193f408adad610ee5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.723ex; height:2.176ex;" alt="{\displaystyle {\mathbf {a} }\in L}"></span>, причем указанное соответствие взаимно однозначно.</dd></dl> <p><b>Примеры линейных функционалов для функциональных пространств</b>: </p> <ul><li>Пусть пространство <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> состоит из функций <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, непрерывных на множестве <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>. Тогда для любых <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{i}\in \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{i}\in \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f51860120a1318097185c5ccc1257b504bde33a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.648ex; height:2.509ex;" alt="{\displaystyle x_{i}\in \Omega }"></span> выражения <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=f(x_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=f(x_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e47c624888148740052efac23fa39a8b19cb7ae6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.336ex; height:2.843ex;" alt="{\displaystyle \Phi (f)=f(x_{0})}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=\alpha _{1}f(x_{1})+\alpha _{2}f(x_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=\alpha _{1}f(x_{1})+\alpha _{2}f(x_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec264c1ee21d786d0200070f72c2a423e0ef200e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.732ex; height:2.843ex;" alt="{\displaystyle \Phi (f)=\alpha _{1}f(x_{1})+\alpha _{2}f(x_{2})}"></span> задают линейные функционалы на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>.</li> <li>Пусть пространство <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> состоит из функций <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, <i>n</i> раз непрерывно дифференцируемых на множестве <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>. Выражение</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=\sum _{i=0}^{n}\alpha _{i}{\frac {d^{i}f}{dx^{i}}}(x_{i}),\quad x_{i}\in \Omega ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mspace width="1em" /> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∈<!-- ∈ --></mo> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=\sum _{i=0}^{n}\alpha _{i}{\frac {d^{i}f}{dx^{i}}}(x_{i}),\quad x_{i}\in \Omega ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e49a3af4447b266dd2e8cc957aac08b51e643c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.665ex; height:6.843ex;" alt="{\displaystyle \Phi (f)=\sum _{i=0}^{n}\alpha _{i}{\frac {d^{i}f}{dx^{i}}}(x_{i}),\quad x_{i}\in \Omega ,}"></span></dd></dl></dd> <dd>задаёт линейный функционал на <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>.</dd></dl> <ul><li>Одним из важнейших примеров линейного функционала служит <a href="/wiki/%D0%A1%D0%BA%D0%B0%D0%BB%D1%8F%D1%80%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D0%B8%D0%B7%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" title="Скалярное произведение">скалярное произведение</a> вектора-аргумента <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\in L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>∈<!-- ∈ --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\in L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2099323e5ab48f498d97fee07668d7b9be961e81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.702ex; height:2.509ex;" alt="{\displaystyle f\in L}"></span> и некоторого фиксированного вектора <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi \in L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ϕ<!-- ϕ --></mi> <mo>∈<!-- ∈ --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi \in L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49fa28274587bed0a674e4c874ba8069ee1645a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.809ex; height:2.509ex;" alt="{\displaystyle \phi \in L}"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=\langle f,\phi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>f</mi> <mo>,</mo> <mi>ϕ<!-- ϕ --></mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=\langle f,\phi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28d07d3446e0af5c34161e270618171b287c4c8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.372ex; height:2.843ex;" alt="{\displaystyle \Phi (f)=\langle f,\phi \rangle }"></span>. В функциональном анализе часто рассматриваются векторные пространства, состоящие из интегрируемых функций, а скалярное произведение задаётся с помощью интеграла (обычно используется <a href="/wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB_%D0%9B%D0%B5%D0%B1%D0%B5%D0%B3%D0%B0" title="Интеграл Лебега">интеграл Лебега</a>). В этом случае приведенная выше формула для линейного функционала принимает вид</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=\int _{\Omega }f(x)\phi (x)d\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=\int _{\Omega }f(x)\phi (x)d\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/082665a239986e36840ee4ae04031b2fe3a2a687" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.567ex; height:5.676ex;" alt="{\displaystyle \Phi (f)=\int _{\Omega }f(x)\phi (x)d\omega }"></span>.</dd></dl></dd> <dd>Такие линейные функционалы используются, например, при определении <a href="/wiki/%D0%9F%D1%80%D0%B5%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5_%D0%A4%D1%83%D1%80%D1%8C%D0%B5" title="Преобразование Фурье">преобразования Фурье</a>.</dd></dl> <ul><li>Пусть <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\colon L\to L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>:<!-- : --></mo> <mi>L</mi> <mo stretchy="false">→<!-- → --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\colon L\to L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e222b53b565633f4da3e93ea4dbdb5e13b25d98f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.557ex; height:2.176ex;" alt="{\displaystyle A\colon L\to L}"></span> — линейный оператор, отображающие в себя векторное пространство <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>, которое состоит из функций, интегрируемых на некотором множестве <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>. Тогда выражение</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=\int _{\Omega }Af(x)\phi (x)d\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </msub> <mi>A</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=\int _{\Omega }Af(x)\phi (x)d\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27194a15b3b5eccad04d8822288c328d96ea50ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.31ex; height:5.676ex;" alt="{\displaystyle \Phi (f)=\int _{\Omega }Af(x)\phi (x)d\omega }"></span>.</dd></dl></dd> <dd>задаёт линейный функционал на пространстве <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>. Примеры таких линейных функционалов: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=\int _{\Omega }f(x)d\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=\int _{\Omega }f(x)d\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3541f1fb45f6e3fd784daf552002742bf05abf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.042ex; height:5.676ex;" alt="{\displaystyle \Phi (f)=\int _{\Omega }f(x)d\omega }"></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=\int _{\Omega }f(x)\phi (x)d\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>ϕ<!-- ϕ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=\int _{\Omega }f(x)\phi (x)d\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/082665a239986e36840ee4ae04031b2fe3a2a687" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.567ex; height:5.676ex;" alt="{\displaystyle \Phi (f)=\int _{\Omega }f(x)\phi (x)d\omega }"></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=\int _{\Omega }{\Bigl (}\sum _{i=0}^{n}\alpha _{i}{\frac {d^{i}f}{dx^{i}}}(x){\Bigr )}\,d\omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">Ω<!-- Ω --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>ω<!-- ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=\int _{\Omega }{\Bigl (}\sum _{i=0}^{n}\alpha _{i}{\frac {d^{i}f}{dx^{i}}}(x){\Bigr )}\,d\omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fdd9d31b2ba662f39529a9f00f4a73a3e32ffa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.524ex; height:6.843ex;" alt="{\displaystyle \Phi (f)=\int _{\Omega }{\Bigl (}\sum _{i=0}^{n}\alpha _{i}{\frac {d^{i}f}{dx^{i}}}(x){\Bigr )}\,d\omega }"></span>.</dd></dl></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Свойства"><span id=".D0.A1.D0.B2.D0.BE.D0.B9.D1.81.D1.82.D0.B2.D0.B0"></span>Свойства</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&veaction=edit&section=2" title="Редактировать раздел «Свойства»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=edit&section=2" title="Редактировать код раздела «Свойства»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Множество всех линейных форм на векторном пространстве <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> само является векторным пространством относительно операций сложения и умножения на элементы из поля <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>. Это пространство называется <a href="/wiki/%D0%A1%D0%BE%D0%BF%D1%80%D1%8F%D0%B6%D0%B5%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" class="mw-redirect" title="Сопряженное пространство">сопряженным</a> к <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> и обозначается <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\ast }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\ast }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d41573c31065b02d734e38991d958e953314aac6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.343ex;" alt="{\displaystyle L^{\ast }}"></span><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup>. Векторы сопряжённого пространства принято называть <i>ковекторами</i>. В квантовой механике также принято использовать термины <a href="/wiki/%D0%91%D1%80%D0%B0_%D0%B8_%D0%BA%D0%B5%D1%82" title="Бра и кет">бра-векторы и кет-векторы</a> для обозначения векторов исходного пространства и ковекторов.</li> <li>Если размерность <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \dim L=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>L</mi> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \dim L=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/088d326deb99f23438bf05da6d11915e49e79259" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.338ex; height:2.176ex;" alt="{\displaystyle \dim L=n}"></span> (конечна), то при выборе в пространстве <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> некоторого <a href="/wiki/%D0%91%D0%B0%D0%B7%D0%B8%D1%81" title="Базис">базиса</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{1},\ldots ,e_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{1},\ldots ,e_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c60c38b7e2450d62e9dc496b89f8e5c96c77cecf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.618ex; height:2.009ex;" alt="{\displaystyle e_{1},\ldots ,e_{n}}"></span> любая линейная форма записывается в виде <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (x)=a_{1}x_{1}+\cdots +a_{n}x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (x)=a_{1}x_{1}+\cdots +a_{n}x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68e0a2bb3c078de1d94471c3db29cb3ab4871c56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.984ex; height:2.843ex;" alt="{\displaystyle \Phi (x)=a_{1}x_{1}+\cdots +a_{n}x_{n}}"></span>, где вектор <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=x_{1}e_{1}+\cdots +x_{n}e_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=x_{1}e_{1}+\cdots +x_{n}e_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc852ab4bfc1487c565c2d41be74401a949c416e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.204ex; height:2.343ex;" alt="{\displaystyle x=x_{1}e_{1}+\cdots +x_{n}e_{n}}"></span> и набор коэффициентов <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bc77764b2e74e64a63341054fa90f3e07db275f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.029ex; height:2.009ex;" alt="{\displaystyle a_{i}}"></span> однозначно определяет данную форму. Форма <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79e4f01c93494fbb5dcd75761f4468121b00b294" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.817ex; height:2.843ex;" alt="{\displaystyle \Phi (x)}"></span> задаётся набором своих координат <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bc77764b2e74e64a63341054fa90f3e07db275f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.029ex; height:2.009ex;" alt="{\displaystyle a_{i}}"></span> в некотором базисе сопряжённого пространства <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\ast }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\ast }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d41573c31065b02d734e38991d958e953314aac6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.343ex;" alt="{\displaystyle L^{\ast }}"></span>, который называется <i>взаимным</i> или <i>двойственным</i> к базису <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{1},\ldots ,e_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{1},\ldots ,e_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c60c38b7e2450d62e9dc496b89f8e5c96c77cecf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.618ex; height:2.009ex;" alt="{\displaystyle e_{1},\ldots ,e_{n}}"></span>. Тем самым, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \dim L^{*}=n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \dim L^{*}=n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcab9599a776bfe02b4b343a612ca12ae0d7b8fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.393ex; height:2.343ex;" alt="{\displaystyle \dim L^{*}=n}"></span><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup>.</li> <li>Если размерность <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \dim L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \dim L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5dd69f16e9e027243138622dc4f6c64cc46676f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.845ex; height:2.176ex;" alt="{\displaystyle \dim L}"></span> конечна, то <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\ast }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\ast }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d41573c31065b02d734e38991d958e953314aac6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.637ex; height:2.343ex;" alt="{\displaystyle L^{\ast }}"></span> <a href="/wiki/%D0%98%D0%B7%D0%BE%D0%BC%D0%BE%D1%80%D1%84%D0%B8%D0%B7%D0%BC" title="Изоморфизм">изоморфно</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>, однако в бесконечномерном случае это не так. В конечномерном случае второе сопряженное пространство <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (L^{\ast })^{\ast }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (L^{\ast })^{\ast }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0cef89c861a9617b5552258db8e99e701d79b52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.501ex; height:2.843ex;" alt="{\displaystyle (L^{\ast })^{\ast }}"></span> естественно отождествляется с исходным пространством <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup>. В бесконечномерном случае условие, что пространство <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> изоморфно <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (L^{\ast })^{\ast }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (L^{\ast })^{\ast }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0cef89c861a9617b5552258db8e99e701d79b52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.501ex; height:2.843ex;" alt="{\displaystyle (L^{\ast })^{\ast }}"></span>, весьма нетривиально, такие пространства называют <i>рефлексивными</i><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup>.</li> <li><a href="/wiki/%D0%AF%D0%B4%D1%80%D0%BE_(%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0)" title="Ядро (алгебра)">Ядро</a> линейной формы (линейного функционала) — векторное подпространство. Если пространство <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> конечномерно, ядро линейной формы, не равной тождественно нулю, является <a href="/wiki/%D0%93%D0%B8%D0%BF%D0%B5%D1%80%D0%BF%D0%BB%D0%BE%D1%81%D0%BA%D0%BE%D1%81%D1%82%D1%8C" title="Гиперплоскость">гиперплоскостью</a> в <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span>. В частности, при <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \dim L=3}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>dim</mi> <mo>⁡<!-- --></mo> <mi>L</mi> <mo>=</mo> <mn>3</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \dim L=3}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1faa996a8a002e3ced868de66481d9eaeec7c1c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.106ex; height:2.176ex;" alt="{\displaystyle \dim L=3}"></span> ядро линейной формы <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (x)=a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (x)=a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0be3a3dfed74e00a3371147094e2f9539e5824e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.861ex; height:2.843ex;" alt="{\displaystyle \Phi (x)=a_{1}x_{1}+a_{2}x_{2}+a_{3}x_{3}=0}"></span>, где <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a_{1}|+|a_{2}|+|a_{3}|\neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≠<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a_{1}|+|a_{2}|+|a_{3}|\neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca1e5c38be5982a7e96203914b732b5335bcffb2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.675ex; height:2.843ex;" alt="{\displaystyle |a_{1}|+|a_{2}|+|a_{3}|\neq 0}"></span>, — плоскость в трёхмерном пространстве, причем коэффициенты <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bc77764b2e74e64a63341054fa90f3e07db275f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.029ex; height:2.009ex;" alt="{\displaystyle a_{i}}"></span> суть координаты нормального вектора плоскости.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Связанные_понятия"><span id=".D0.A1.D0.B2.D1.8F.D0.B7.D0.B0.D0.BD.D0.BD.D1.8B.D0.B5_.D0.BF.D0.BE.D0.BD.D1.8F.D1.82.D0.B8.D1.8F"></span>Связанные понятия</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&veaction=edit&section=3" title="Редактировать раздел «Связанные понятия»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=edit&section=3" title="Редактировать код раздела «Связанные понятия»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>При изучении бесконечномерных функциональных пространствах особую роль играют <b><a href="/wiki/%D0%9D%D0%B5%D0%BF%D1%80%D0%B5%D1%80%D1%8B%D0%B2%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F#Обобщения" title="Непрерывная функция">непрерывные</a> линейные функционалы</b>, иначе называемые <a href="/wiki/%D0%9E%D0%B1%D0%BE%D0%B1%D1%89%D1%91%D0%BD%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Обобщённая функция">обобщёнными функциями</a>. Свойство непрерывности линейного функционала зависит от класса функций (пространства), на котором он действует. Так, нетрудно видеть, что некоторые из приведённых выше функционалов <a href="/wiki/%D0%9D%D0%B5%D0%BF%D1%80%D0%B5%D1%80%D1%8B%D0%B2%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F#Обобщения" title="Непрерывная функция">не непрерывны</a> при действии на разрывные функции (можно легко привести такие примеры). Однако на <a href="/wiki/%D0%A1%D0%B5%D0%BF%D0%B0%D1%80%D0%B0%D0%B1%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Сепарабельное пространство">сепарабельных пространствах</a> — то есть в наиболее употребительном и конструктивно разработанном случае — все они непрерывны.</li> <li><a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%BF%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B9_%D0%A0%D0%B8%D1%81%D0%B0" class="mw-redirect" title="Теорема представлений Риса">Теорема представлений Риса</a> утверждает, что каждый непрерывный линейный функционал в <a href="/wiki/%D0%93%D0%B8%D0%BB%D1%8C%D0%B1%D0%B5%D1%80%D1%82%D0%BE%D0%B2%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" title="Гильбертово пространство">гильбертовом пространстве</a> может быть представлен в виде аналогичном <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (*)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>∗<!-- ∗ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (*)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fae74f24018ce1ff0dc698dbe8181555eb4cd768" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.972ex; height:2.843ex;" alt="{\displaystyle (*)}"></span> через скалярное произведение с некоторым элементом этого пространства.</li> <li>Используя <a href="/wiki/%D0%9E%D0%B1%D0%BE%D0%B1%D1%89%D1%91%D0%BD%D0%BD%D0%B0%D1%8F_%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Обобщённая функция">обобщённые функции</a>, в частности <a href="/wiki/%D0%94%D0%B5%D0%BB%D1%8C%D1%82%D0%B0-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Дельта-функция">дельта-функцию Дирака</a> и её производные, можно многие линейные функционалы, в частности из приведённых в качестве примеров выше, представить в виде <a href="/wiki/%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB#Виды_функционалов" title="Функционал">интегральных функционалов</a>, например:</li></ul> <dl><dd><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (f)=f(1)-f(0)=\int _{-\infty }^{+\infty }\delta (x-1)f(x)dx-\int _{-\infty }^{+\infty }\delta (x-0)f(x)dx=\int _{-\infty }^{+\infty }(\delta (x-1)-\delta (x))f(x)dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Φ<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>−<!-- − --></mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>0</mn> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (f)=f(1)-f(0)=\int _{-\infty }^{+\infty }\delta (x-1)f(x)dx-\int _{-\infty }^{+\infty }\delta (x-0)f(x)dx=\int _{-\infty }^{+\infty }(\delta (x-1)-\delta (x))f(x)dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/376a8ede36206e812b6aa8be83f7cbd5cdf28730" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:100.169ex; height:6.176ex;" alt="{\displaystyle \Phi (f)=f(1)-f(0)=\int _{-\infty }^{+\infty }\delta (x-1)f(x)dx-\int _{-\infty }^{+\infty }\delta (x-0)f(x)dx=\int _{-\infty }^{+\infty }(\delta (x-1)-\delta (x))f(x)dx}"></span>.</dd></dl></dd> <dd>В обычном абстрактном определении обобщённой функции она и определяется просто как непрерывный линейный функционал (в традиционном понимании и записи функционал порождается подразумеваемым интегрированием с обобщённой функцией).</dd></dl> <div class="mw-heading mw-heading2"><h2 id="См._также"><span id=".D0.A1.D0.BC._.D1.82.D0.B0.D0.BA.D0.B6.D0.B5"></span>См. также</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&veaction=edit&section=4" title="Редактировать раздел «См. также»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=edit&section=4" title="Редактировать код раздела «См. также»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%D0%91%D0%B8%D0%BB%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Билинейная форма">Билинейная форма</a></li> <li><a href="/wiki/%D0%9F%D0%BE%D0%BB%D1%83%D1%82%D0%BE%D1%80%D0%B0%D0%BB%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Полуторалинейная форма">Полуторалинейная форма</a></li> <li><a href="/wiki/%D0%A1%D0%BE%D0%BF%D1%80%D1%8F%D0%B6%D1%91%D0%BD%D0%BD%D0%BE%D0%B5_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%BE" class="mw-redirect" title="Сопряжённое пространство">Сопряжённое пространство</a></li> <li><a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%A5%D0%B0%D0%BD%D0%B0_%E2%80%94_%D0%91%D0%B0%D0%BD%D0%B0%D1%85%D0%B0" title="Теорема Хана — Банаха">Теорема Хана — Банаха</a></li> <li><a href="/wiki/%D0%A1%D0%BB%D0%B0%D0%B1%D0%B0%D1%8F_%D1%81%D1%85%D0%BE%D0%B4%D0%B8%D0%BC%D0%BE%D1%81%D1%82%D1%8C" title="Слабая сходимость">Слабая сходимость</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Литература"><span id=".D0.9B.D0.B8.D1.82.D0.B5.D1.80.D0.B0.D1.82.D1.83.D1.80.D0.B0"></span>Литература</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&veaction=edit&section=5" title="Редактировать раздел «Литература»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=edit&section=5" title="Редактировать код раздела «Литература»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><i>Кострикин А. И., Манин Ю. И.</i> Линейная алгебра и геометрия, — М.: Наука, 1986.</li> <li><i><a href="/wiki/%D0%A8%D0%B0%D1%84%D0%B0%D1%80%D0%B5%D0%B2%D0%B8%D1%87,_%D0%98%D0%B3%D0%BE%D1%80%D1%8C_%D0%A0%D0%BE%D1%81%D1%82%D0%B8%D1%81%D0%BB%D0%B0%D0%B2%D0%BE%D0%B2%D0%B8%D1%87" title="Шафаревич, Игорь Ростиславович">Шафаревич И. Р.</a>, Ремизов А. О.</i> Линейная алгебра и геометрия, — Физматлит, Москва, 2009.</li> <li><i><a href="/wiki/%D0%9B%D1%8E%D1%81%D1%82%D0%B5%D1%80%D0%BD%D0%B8%D0%BA,_%D0%9B%D0%B0%D0%B7%D0%B0%D1%80%D1%8C_%D0%90%D1%80%D0%BE%D0%BD%D0%BE%D0%B2%D0%B8%D1%87" title="Люстерник, Лазарь Аронович">Люстерник Л. А.</a>, <a href="/wiki/%D0%A1%D0%BE%D0%B1%D0%BE%D0%BB%D0%B5%D0%B2,_%D0%92%D0%BB%D0%B0%D0%B4%D0%B8%D0%BC%D0%B8%D1%80_%D0%98%D0%B2%D0%B0%D0%BD%D0%BE%D0%B2%D0%B8%D1%87_(%D0%BC%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA)" title="Соболев, Владимир Иванович (математик)">Соболев В. И.</a></i> Элементы функционального анализа, — М.: Наука, 1965.</li> <li><i><a href="/wiki/%D0%9A%D0%B0%D0%BD%D1%82%D0%BE%D1%80%D0%BE%D0%B2%D0%B8%D1%87,_%D0%9B%D0%B5%D0%BE%D0%BD%D0%B8%D0%B4_%D0%92%D0%B8%D1%82%D0%B0%D0%BB%D1%8C%D0%B5%D0%B2%D0%B8%D1%87" title="Канторович, Леонид Витальевич">Канторович Л. В.</a>, <a href="/wiki/%D0%90%D0%BA%D0%B8%D0%BB%D0%BE%D0%B2,_%D0%93%D0%BB%D0%B5%D0%B1_%D0%9F%D0%B0%D0%B2%D0%BB%D0%BE%D0%B2%D0%B8%D1%87" title="Акилов, Глеб Павлович">Акилов Г. П.</a></i>, Функциональный анализ, I изд., М., 1977.</li> <li><i><a href="/wiki/%D0%9A%D0%BE%D0%BB%D0%BC%D0%BE%D0%B3%D0%BE%D1%80%D0%BE%D0%B2,_%D0%90%D0%BD%D0%B4%D1%80%D0%B5%D0%B9_%D0%9D%D0%B8%D0%BA%D0%BE%D0%BB%D0%B0%D0%B5%D0%B2%D0%B8%D1%87" title="Колмогоров, Андрей Николаевич">Колмогоров А. Н.</a>, <a href="/wiki/%D0%A4%D0%BE%D0%BC%D0%B8%D0%BD,_%D0%A1%D0%B5%D1%80%D0%B3%D0%B5%D0%B9_%D0%92%D0%B0%D1%81%D0%B8%D0%BB%D1%8C%D0%B5%D0%B2%D0%B8%D1%87" title="Фомин, Сергей Васильевич">Фомин С. В.</a></i> Элементы теории функций и функционального анализа. — Любое издание.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Примечания"><span id=".D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.87.D0.B0.D0.BD.D0.B8.D1.8F"></span>Примечания</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&veaction=edit&section=6" title="Редактировать раздел «Примечания»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=edit&section=6" title="Редактировать код раздела «Примечания»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns" style="list-style-type: decimal;"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><i>Шафаревич И. Р., Ремизов А. О.</i> Линейная алгебра и геометрия. — гл. III, § 3.7. — М.: Физматлит, 2009.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><i>Шафаревич И. Р., Ремизов А. О.</i> Линейная алгебра и геометрия. — гл. III, стр. 131. — М.: Физматлит, 2009.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><i>Шафаревич И. Р., Ремизов А. О.</i> Линейная алгебра и геометрия. — гл. III, стр. 132. — М.: Физматлит, 2009.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><i>Колмогоров А. Н., Фомин С. В.</i> Элементы теории функций и функционального анализа. — Любое издание.</span> </li> </ol></div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Источник — <a dir="ltr" href="https://ru.wikipedia.org/w/index.php?title=Линейная_форма&oldid=108997840">https://ru.wikipedia.org/w/index.php?title=Линейная_форма&oldid=108997840</a></div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D0%B8" title="Служебная:Категории">Категории</a>: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0" title="Категория:Линейная алгебра">Линейная алгебра</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8B" title="Категория:Функционалы">Функционалы</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A4%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8" title="Категория:Функции">Функции</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Навигация</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Персональные инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Страница участника для моего IP">Вы не представились системе</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D1%91_%D0%BE%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" title="Страница обсуждений для моего IP [n]" accesskey="n"><span>Обсуждение</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D0%B9_%D0%B2%D0%BA%D0%BB%D0%B0%D0%B4" title="Список правок, сделанных с этого IP-адреса [y]" accesskey="y"><span>Вклад</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BE%D0%B7%D0%B4%D0%B0%D1%82%D1%8C_%D1%83%D1%87%D1%91%D1%82%D0%BD%D1%83%D1%8E_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D1%8C&returnto=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F+%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Мы предлагаем вам создать учётную запись и войти в систему, хотя это и не обязательно."><span>Создать учётную запись</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%92%D1%85%D0%BE%D0%B4&returnto=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F+%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Здесь можно зарегистрироваться в системе, но это необязательно. [o]" accesskey="o"><span>Войти</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Пространства имён</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Просмотреть контентную страницу [c]" accesskey="c"><span>Статья</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/%D0%9E%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5:%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" rel="discussion" title="Обсуждение основной страницы [t]" accesskey="t"><span>Обсуждение</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">русский</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Просмотры</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0"><span>Читать</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&veaction=edit" title="Редактировать данную страницу [v]" accesskey="v"><span>Править</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=edit" title="Править исходный текст этой страницы [e]" accesskey="e"><span>Править код</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=history" title="Журнал изменений страницы [h]" accesskey="h"><span>История</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Больше возможностей" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ещё</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Поиск</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Искать в Википедии" aria-label="Искать в Википедии" autocapitalize="sentences" title="Искать в Википедии [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Служебная:Поиск"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Найти страницы, содержащие указанный текст" value="Найти"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Перейти к странице, имеющей в точности такое название" value="Перейти"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Навигация</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу [z]" accesskey="z"><span>Заглавная страница</span></a></li><li id="n-content" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%B4%D0%B5%D1%80%D0%B6%D0%B0%D0%BD%D0%B8%D0%B5"><span>Содержание</span></a></li><li id="n-featured" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%98%D0%B7%D0%B1%D1%80%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8" title="Статьи, считающиеся лучшими статьями проекта"><span>Избранные статьи</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Посмотреть случайно выбранную страницу [x]" accesskey="x"><span>Случайная статья</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%A2%D0%B5%D0%BA%D1%83%D1%89%D0%B8%D0%B5_%D1%81%D0%BE%D0%B1%D1%8B%D1%82%D0%B8%D1%8F" title="Статьи о текущих событиях в мире"><span>Текущие события</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_ru.wikipedia.org&uselang=ru" title="Поддержите нас"><span>Пожертвовать</span></a></li> </ul> </div> </nav> <nav id="p-participation" class="mw-portlet mw-portlet-participation vector-menu-portal portal vector-menu" aria-labelledby="p-participation-label" > <h3 id="p-participation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Участие</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BE%D0%B1_%D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B0%D1%85" title="Сообщить об ошибке в этой статье"><span>Сообщить об ошибке</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0:%D0%92%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5"><span>Как править статьи</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="О проекте, о том, чем здесь можно заниматься, а также — где что находится"><span>Сообщество</span></a></li><li id="n-forum" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A4%D0%BE%D1%80%D1%83%D0%BC" title="Форум участников Википедии"><span>Форум</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8" title="Список последних изменений [r]" accesskey="r"><span>Свежие правки</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9D%D0%BE%D0%B2%D1%8B%D0%B5_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список недавно созданных страниц"><span>Новые страницы</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0" title="Место расположения Справки"><span>Справка</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D1%81%D1%8B%D0%BB%D0%BA%D0%B8_%D1%81%D1%8E%D0%B4%D0%B0/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Список всех страниц, ссылающихся на данную [j]" accesskey="j"><span>Ссылки сюда</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D1%8F%D0%B7%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" rel="nofollow" title="Последние изменения в страницах, на которые ссылается эта страница [k]" accesskey="k"><span>Связанные правки</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BF%D0%B5%D1%86%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список служебных страниц [q]" accesskey="q"><span>Служебные страницы</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&oldid=108997840" title="Постоянная ссылка на эту версию страницы"><span>Постоянная ссылка</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=info" title="Подробнее об этой странице"><span>Сведения о странице</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A6%D0%B8%D1%82%D0%B0%D1%82%D0%B0&page=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&id=108997840&wpFormIdentifier=titleform" title="Информация о том, как цитировать эту страницу"><span>Цитировать страницу</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:UrlShortener&url=https%3A%2F%2Fru.wikipedia.org%2Fwiki%2F%25D0%259B%25D0%25B8%25D0%25BD%25D0%25B5%25D0%25B9%25D0%25BD%25D0%25B0%25D1%258F_%25D1%2584%25D0%25BE%25D1%2580%25D0%25BC%25D0%25B0"><span>Получить короткий URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:QrCode&url=https%3A%2F%2Fru.wikipedia.org%2Fwiki%2F%25D0%259B%25D0%25B8%25D0%25BD%25D0%25B5%25D0%25B9%25D0%25BD%25D0%25B0%25D1%258F_%25D1%2584%25D0%25BE%25D1%2580%25D0%25BC%25D0%25B0"><span>Скачать QR-код</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Печать/экспорт</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:DownloadAsPdf&page=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&action=show-download-screen" title="Скачать эту страницу как файл PDF"><span>Скачать как PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&printable=yes" title="Версия этой страницы для печати [p]" accesskey="p"><span>Версия для печати</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">В других проектах</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q261527" title="Ссылка на связанный элемент репозитория данных [g]" accesskey="g"><span>Элемент Викиданных</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">На других языках</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%B0%E0%A7%88%E0%A6%96%E0%A6%BF%E0%A6%95_%E0%A6%AB%E0%A6%BE%E0%A6%82%E0%A6%B6%E0%A6%A8%E0%A6%BE%E0%A6%B2" title="রৈখিক ফাংশনাল — бенгальский" lang="bn" hreflang="bn" data-title="রৈখিক ফাংশনাল" data-language-autonym="বাংলা" data-language-local-name="бенгальский" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Forma_lineal" title="Forma lineal — каталанский" lang="ca" hreflang="ca" data-title="Forma lineal" data-language-autonym="Català" data-language-local-name="каталанский" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Line%C3%A1rn%C3%AD_funkcion%C3%A1l" title="Lineární funkcionál — чешский" lang="cs" hreflang="cs" data-title="Lineární funkcionál" data-language-autonym="Čeština" data-language-local-name="чешский" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Linearform" title="Linearform — немецкий" lang="de" hreflang="de" data-title="Linearform" data-language-autonym="Deutsch" data-language-local-name="немецкий" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Linear_form" title="Linear form — английский" lang="en" hreflang="en" data-title="Linear form" data-language-autonym="English" data-language-local-name="английский" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es badge-Q70893996 mw-list-item" title=""><a href="https://es.wikipedia.org/wiki/Funcional_lineal" title="Funcional lineal — испанский" lang="es" hreflang="es" data-title="Funcional lineal" data-language-autonym="Español" data-language-local-name="испанский" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AD%D8%A7%D9%84%D8%AA_%D8%AE%D8%B7%DB%8C" title="حالت خطی — персидский" lang="fa" hreflang="fa" data-title="حالت خطی" data-language-autonym="فارسی" data-language-local-name="персидский" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Forme_lin%C3%A9aire" title="Forme linéaire — французский" lang="fr" hreflang="fr" data-title="Forme linéaire" data-language-autonym="Français" data-language-local-name="французский" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Line%C3%A1ris_forma" title="Lineáris forma — венгерский" lang="hu" hreflang="hu" data-title="Lineáris forma" data-language-autonym="Magyar" data-language-local-name="венгерский" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Funzionale_lineare" title="Funzionale lineare — итальянский" lang="it" hreflang="it" data-title="Funzionale lineare" data-language-autonym="Italiano" data-language-local-name="итальянский" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%B7%9A%E5%9E%8B%E6%B1%8E%E5%87%BD%E6%95%B0" title="線型汎函数 — японский" lang="ja" hreflang="ja" data-title="線型汎函数" data-language-autonym="日本語" data-language-local-name="японский" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lineaire_functionaal" title="Lineaire functionaal — нидерландский" lang="nl" hreflang="nl" data-title="Lineaire functionaal" data-language-autonym="Nederlands" data-language-local-name="нидерландский" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Line%C3%A6r_funksjonal" title="Lineær funksjonal — норвежский букмол" lang="nb" hreflang="nb" data-title="Lineær funksjonal" data-language-autonym="Norsk bokmål" data-language-local-name="норвежский букмол" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B2%E0%A9%80%E0%A8%A8%E0%A9%80%E0%A8%85%E0%A8%B0_%E0%A8%85%E0%A8%95%E0%A8%BE%E0%A8%B0" title="ਲੀਨੀਅਰ ਅਕਾਰ — панджаби" lang="pa" hreflang="pa" data-title="ਲੀਨੀਅਰ ਅਕਾਰ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="панджаби" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Forma_liniowa" title="Forma liniowa — польский" lang="pl" hreflang="pl" data-title="Forma liniowa" data-language-autonym="Polski" data-language-local-name="польский" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Forma_linear" title="Forma linear — португальский" lang="pt" hreflang="pt" data-title="Forma linear" data-language-autonym="Português" data-language-local-name="португальский" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Line%C3%A1rny_funkcion%C3%A1l" title="Lineárny funkcionál — словацкий" lang="sk" hreflang="sk" data-title="Lineárny funkcionál" data-language-autonym="Slovenčina" data-language-local-name="словацкий" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9B%D1%96%D0%BD%D1%96%D0%B9%D0%BD%D0%B0_%D1%84%D0%BE%D1%80%D0%BC%D0%B0" title="Лінійна форма — украинский" lang="uk" hreflang="uk" data-title="Лінійна форма" data-language-autonym="Українська" data-language-local-name="украинский" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Phi%E1%BA%BFm_h%C3%A0m_tuy%E1%BA%BFn_t%C3%ADnh" title="Phiếm hàm tuyến tính — вьетнамский" lang="vi" hreflang="vi" data-title="Phiếm hàm tuyến tính" data-language-autonym="Tiếng Việt" data-language-local-name="вьетнамский" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%B7%9A%E6%80%A7%E6%B3%9B%E5%87%BD" title="線性泛函 — китайский" lang="zh" hreflang="zh" data-title="線性泛函" data-language-autonym="中文" data-language-local-name="китайский" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q261527#sitelinks-wikipedia" title="Править ссылки на другие языки" class="wbc-editpage">Править ссылки</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Эта страница в последний раз была отредактирована 29 августа 2020 в 17:28.</li> <li id="footer-info-copyright">Текст доступен по <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ru">лицензии Creative Commons «С указанием авторства — С сохранением условий» (CC BY-SA)</a>; в отдельных случаях могут действовать дополнительные условия. <span class="noprint">Подробнее см. <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/ru">Условия использования</a>.</span><br /> Wikipedia® — зарегистрированный товарный знак некоммерческой организации <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/ru/">«Фонд Викимедиа» (Wikimedia Foundation, Inc.)</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/ru">Политика конфиденциальности</a></li> <li id="footer-places-about"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5">Описание Википедии</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D1%82%D0%BA%D0%B0%D0%B7_%D0%BE%D1%82_%D0%BE%D1%82%D0%B2%D0%B5%D1%82%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D0%B8">Отказ от ответственности</a></li> <li id="footer-places-contact"><a href="//ru.wikipedia.org/wiki/Википедия:Контакты">Свяжитесь с нами</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Policy:Universal_Code_of_Conduct/ru">Кодекс поведения</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Разработчики</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ru.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Заявление о куки</a></li> <li id="footer-places-mobileview"><a href="//ru.m.wikipedia.org/w/index.php?title=%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Мобильная версия</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-6z6cl","wgBackendResponseTime":185,"wgPageParseReport":{"limitreport":{"cputime":"0.079","walltime":"0.203","ppvisitednodes":{"value":525,"limit":1000000},"postexpandincludesize":{"value":385,"limit":2097152},"templateargumentsize":{"value":0,"limit":2097152},"expansiondepth":{"value":6,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":4528,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 15.933 1 Шаблон:Примечания","100.00% 15.933 1 -total"]},"scribunto":{"limitreport-timeusage":{"value":"0.002","limit":"10.000"},"limitreport-memusage":{"value":594289,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-6b6c9bdc8b-tgl9v","timestamp":"20241103032536","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u041b\u0438\u043d\u0435\u0439\u043d\u0430\u044f \u0444\u043e\u0440\u043c\u0430","url":"https:\/\/ru.wikipedia.org\/wiki\/%D0%9B%D0%B8%D0%BD%D0%B5%D0%B9%D0%BD%D0%B0%D1%8F_%D1%84%D0%BE%D1%80%D0%BC%D0%B0","sameAs":"http:\/\/www.wikidata.org\/entity\/Q261527","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q261527","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"\u0424\u043e\u043d\u0434 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0430","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-02-23T22:20:06Z"}</script> </body> </html>