CINXE.COM
Search results for: nuclear
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nuclear</title> <meta name="description" content="Search results for: nuclear"> <meta name="keywords" content="nuclear"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nuclear" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nuclear"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 899</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nuclear</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">719</span> Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djalal%20Hamed">Djalal Hamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buoyancy%20force" title="buoyancy force">buoyancy force</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20force" title=" friction force"> friction force</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20hydraulic%20analysis" title=" thermal hydraulic analysis"> thermal hydraulic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20heated%20rectangular%20channel" title=" vertical heated rectangular channel"> vertical heated rectangular channel</a> </p> <a href="https://publications.waset.org/abstracts/84661/steady-state-natural-convection-in-vertical-heated-rectangular-channel-between-two-vertical-parallel-mtr-type-fuel-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">718</span> A Computational Study of N–H…O Hydrogen Bonding to Investigate Cooperative Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Setareh%20Shekarsaraei">Setareh Shekarsaraei</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjan%20Moridi"> Marjan Moridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20L.%20Hadipour"> Nasser L. Hadipour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, nuclear magnetic resonance spectroscopy and nuclear quadrupole resonance spectroscopy parameters of 14N (Nitrogen in imidazole ring) in N–H…O hydrogen bonding for Histidine hydrochloride monohydrate were calculated via density functional theory. We considered a five-molecule model system of Histidine hydrochloride monohydrate. Also, we examined the trends of environmental effect on hydrogen bonds as well as cooperativity. The functional used in this research is M06-2X which is a good functional and the obtained results have shown good agreement with experimental data. This functional was applied to calculate the NMR and NQR parameters. Some correlations among NBO parameters, NMR, and NQR parameters have been studied which have shown the existence of strong correlations among them. Furthermore, the geometry optimization has been performed using M062X/6-31++G(d,p) method. In addition, in order to study cooperativity and changes in structural parameters, along with increase in cluster size, natural bond orbitals have been employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonding" title="hydrogen bonding">hydrogen bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory%20%28DFT%29" title=" density functional theory (DFT)"> density functional theory (DFT)</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20bond%20orbitals%20%28NBO%29" title=" natural bond orbitals (NBO)"> natural bond orbitals (NBO)</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperativity%20effect" title=" cooperativity effect"> cooperativity effect</a> </p> <a href="https://publications.waset.org/abstracts/18049/a-computational-study-of-n-ho-hydrogen-bonding-to-investigate-cooperative-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">717</span> Real-Time Compressive Strength Monitoring for NPP Concrete Construction Using an Embedded Piezoelectric Self-Sensing Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junkyeong%20Kim">Junkyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seunghee%20Park"> Seunghee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ju-Won%20Kim"> Ju-Won Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Myung-Sug%20Cho"> Myung-Sug Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, demands for the construction of Nuclear Power Plants (NPP) using high strength concrete (HSC) has been increased. However, HSC might be susceptible to brittle fracture if the curing process is inadequate. To prevent unexpected collapse during and after the construction of HSC structures, it is essential to confirm the strength development of HSC during the curing process. However, several traditional strength-measuring methods are not effective and practical. In this study, a novel method to estimate the strength development of HSC based on electromechanical impedance (EMI) measurements using an embedded piezoelectric sensor is proposed. The EMI of NPP concrete specimen was tracked to monitor the strength development. In addition, cross-correlation coefficient was applied in sequence to examine the trend of the impedance variations more quantitatively. The results confirmed that the proposed technique can be applied successfully monitoring of the strength development during the curing process of HSC structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20curing" title="concrete curing">concrete curing</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20piezoelectric%20sensor" title=" embedded piezoelectric sensor"> embedded piezoelectric sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20power%20plant" title=" nuclear power plant"> nuclear power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sensing%20impedance" title=" self-sensing impedance "> self-sensing impedance </a> </p> <a href="https://publications.waset.org/abstracts/2720/real-time-compressive-strength-monitoring-for-npp-concrete-construction-using-an-embedded-piezoelectric-self-sensing-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">716</span> Analysis of Nuclear Power Plant Operator Activities and Risk Factors Using an EEG System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Gaber">John Gaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Ahmed"> Youssef Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20A.Gabbar"> Hossam A.Gabbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Ren"> Jing Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclear Power Plant (NPP) operators have a large responsibility on their shoulders. They must allow the plant to generate a high amount of energy while inspecting and maintaining the safety of the plant. This type of occupation comes with high amounts of mental fatigue, and a small mistake can have grave consequences. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue. This requires an analysis of the tasks and mental models of the NPP operator, as well as risk factors on mental fatigue and attention that NPP operators face when performing their tasks. The brain waves generated from experiencing mental fatigue can then be monitored for. These factors are analyzed, developing an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention start affecting their performance in task completion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG" title="EEG">EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant%20operator" title=" power plant operator"> power plant operator</a>, <a href="https://publications.waset.org/abstracts/search?q=psychology" title=" psychology"> psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20analysis" title=" task analysis"> task analysis</a> </p> <a href="https://publications.waset.org/abstracts/154276/analysis-of-nuclear-power-plant-operator-activities-and-risk-factors-using-an-eeg-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">715</span> Identification of Target Receptor Compound 10,11-Dihidroerisodin as an Anti-Cancer Candidate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srie%20Rezeki%20Nur%20Endah">Srie Rezeki Nur Endah</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa%20Mardianingrum"> Richa Mardianingrum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is one of the most feared diseases and is considered the leading cause of death worldwide. Generally, cancer drugs are synthetic drugs with relatively more expensive prices and have harmful side effects, so many people turn to traditional medicine, for example by utilizing herbal medicine. Erythrina poeppigiana is one of the plants that can be used as a medicinal plant containing 10,11-dihidroerisodin compounds that are useful anticancer etnofarmakologi. The purpose of this study was to identify the target of 10,11 dihydroerisodin receptor compound as in silico anticancer candidate. The pure isolate was tested physicochemically by MS (Mass Spectrometry), UV-Vis (Ultraviolet – Visible), IR (Infra Red), 13C-NMR (Carbon-13 Nuclear Magnetic Resonance), 1H-NMR (Hydrogen-1 Nuclear Magnetic Resonance), to obtain the structure of 10,11-dihydroerisodin alkaloid compound then identified to target receptors in silico. From the results of the study, it was found that 10,11-dihydroerisodin compound can work on the Serine / threonine-protein kinase Chk1 receptor that serves as an anti-cancer candidate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-cancer" title="anti-cancer">anti-cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Erythrina%20poeppigiana" title=" Erythrina poeppigiana"> Erythrina poeppigiana</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20receptor" title=" target receptor"> target receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=10" title=" 10"> 10</a>, <a href="https://publications.waset.org/abstracts/search?q=11-%20dihidroerisodin" title="11- dihidroerisodin">11- dihidroerisodin</a> </p> <a href="https://publications.waset.org/abstracts/92293/identification-of-target-receptor-compound-1011-dihidroerisodin-as-an-anti-cancer-candidate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">714</span> The Model Establishment and Analysis of TRACE/MELCOR for Kuosheng Nuclear Power Plant Spent Fuel Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Hsu">W. S. Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Chiang"> Y. Chiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Tseng"> Y. S. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang"> J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuosheng nuclear power plant (NPP) is a BWR/6 plant in Taiwan. There is more concern for the safety of NPPs in Taiwan after Japan Fukushima NPP disaster occurred. Hence, in order to estimate the safety of Kuosheng NPP spent fuel pool (SFP), by using TRACE, MELCOR, and SNAP codes, the safety analysis of Kuosheng NPP SFP was performed. There were two main steps in this research. First, the Kuosheng NPP SFP models were established. Second, the transient analysis of Kuosheng SFP was done by TRACE and MELCOR under the cooling system failure condition (Fukushima-like condition). The results showed that the calculations of MELCOR and TRACE were very similar in this case, and the fuel uncover happened roughly at 4<sup>th</sup> day after the failure of cooling system. The above results indicated that Kuosheng NPP SFP may be unsafe in the case of long-term SBO situation. In addition, future calculations were needed to be done by the other codes like FRAPTRAN for the cladding calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TRACE" title="TRACE">TRACE</a>, <a href="https://publications.waset.org/abstracts/search?q=MELCOR" title=" MELCOR"> MELCOR</a>, <a href="https://publications.waset.org/abstracts/search?q=SNAP" title=" SNAP"> SNAP</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20pool" title=" spent fuel pool"> spent fuel pool</a> </p> <a href="https://publications.waset.org/abstracts/57025/the-model-establishment-and-analysis-of-tracemelcor-for-kuosheng-nuclear-power-plant-spent-fuel-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">713</span> The Phosphatidate Phosphatase Pah1 and Its Regulator Nem1/spo7 Protein Phosphatase Required for Nucleophagy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arifur%20Rahman">Muhammad Arifur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Talukdar%20M.%20Waliullah"> Talukdar M. Waliullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Ushimaru"> Takashi Ushimaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nucleophagy selectively degrades nuclear materials, especially nucleolus after nutrient starvation or inactivation of TORC1 kinase in budding yeast. Budding yeast phosphatidate (PA) phosphatase Pah1 that converts PA to diacylglycerol is essential for partitioning of lipid precursors between membrane and storage that is crucial for many aspects of cell growth and development. Pah1 is required for nuclear/ER membrane biogenesis and vacuole function, but whether Pah1 and its activator Nem1/Spo7 protein phosphatase complex are involved in autophagy is largely unknown. Loss of Pah1 causes expansion of the nucleus and fragmentation of the vacuole. Here we show that Pah1 is required for bulk autophagy and nucleophagy after TORC1 inactivation. Loss of Pah1 impaired nucleophagy severely and bulk autophagy to a lesser extent. Loss of the Pah1 activator Nem1-Spo7 protein phosphatase exhibited similar features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autophagy" title="autophagy">autophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Nem1%2FSpo7%20phosphatase" title=" Nem1/Spo7 phosphatase"> Nem1/Spo7 phosphatase</a>, <a href="https://publications.waset.org/abstracts/search?q=Pah1" title=" Pah1"> Pah1</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleophagy" title=" nucleophagy"> nucleophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=TORC1" title=" TORC1"> TORC1</a> </p> <a href="https://publications.waset.org/abstracts/70943/the-phosphatidate-phosphatase-pah1-and-its-regulator-nem1spo7-protein-phosphatase-required-for-nucleophagy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">712</span> Preliminary Study on the Removal of Solid Uranium Compound in Nuclear Fuel Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bai%20Zhiwei">Bai Zhiwei</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Shuxia"> Zhang Shuxia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> By sealing constraint, the system of nuclear fuel production penetrates a trace of air in during its service. The vapor in the air can react with material in the system and generate solid uranium compounds. These solid uranium compounds continue to accumulate and attached to the production equipment and pipeline of system, which not only affects the operation reliability of production equipment and give off radiation hazard as well after system retired. Therefore, it is necessary to select a reasonable method to remove it. Through the analysis of physicochemical properties of solid uranium compounds, halogenated fluoride compounds are selected as a cleaning agent, which can remove solid uranium compounds effectively. This paper studied the related chemical reaction under the condition of static test and results show that the selection of high fluoride halogen compounds can be removed solid uranium compounds completely. The study on the influence of reaction pressure with the reaction rate discovered a phenomenon that the higher the pressure, the faster the reaction rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluoride%20halogen%20compound" title="fluoride halogen compound">fluoride halogen compound</a>, <a href="https://publications.waset.org/abstracts/search?q=remove" title=" remove"> remove</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20uranium%20compound" title=" solid uranium compound"> solid uranium compound</a> </p> <a href="https://publications.waset.org/abstracts/49109/preliminary-study-on-the-removal-of-solid-uranium-compound-in-nuclear-fuel-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">711</span> Radionuclides Transport Phenomena in Vadose Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Testoni">R. Testoni</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Levizzari"> R. Levizzari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Salve"> M. De Salve</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radioactive waste management is fundamental to safeguard population and environment by radiological risks. Environmental assessment of a site, where nuclear activities are located, allows understanding the hydro geological system and the radionuclides transport in groundwater and subsoil. Use of dedicated software is the basis of transport phenomena investigation and for dynamic scenarios prediction; this permits to understand the evolution of accidental contamination events, but at the same time the potentiality of the software itself can be verified. The aim of this paper is to perform a numerical analysis by means of HYDRUS 1D code, so as to evaluate radionuclides transport in a nuclear site in Piedmont region (Italy). In particular, the behaviour in vadose zone was investigated. An iterative assessment process was performed for risk assessment of radioactive contamination. The analysis therein developed considers the following aspects: i) hydro geological site characterization; ii) individuation of the main intrinsic and external site factors influencing water flow and radionuclides transport phenomena; iii) software potential for radionuclides leakage simulation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HYDRUS%201D" title="HYDRUS 1D">HYDRUS 1D</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides%20transport%20phenomena" title=" radionuclides transport phenomena"> radionuclides transport phenomena</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20characterization" title=" site characterization"> site characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20protection" title=" radiation protection"> radiation protection</a> </p> <a href="https://publications.waset.org/abstracts/6338/radionuclides-transport-phenomena-in-vadose-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">710</span> Transcriptomine: The Nuclear Receptor Signaling Transcriptome Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Scott%20A.%20Ochsner">Scott A. Ochsner</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20M.%20Watkins"> Christopher M. Watkins</a>, <a href="https://publications.waset.org/abstracts/search?q=Apollo%20McOwiti"> Apollo McOwiti</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20L.%20Steffen%20Lauren%20B.%20Becnel"> David L. Steffen Lauren B. Becnel</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20J.%20McKenna"> Neil J. McKenna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding signaling by nuclear receptors (NRs) requires an appreciation of their cognate ligand- and tissue-specific transcriptomes. While target gene regulation data are abundant in this field, they reside in hundreds of discrete publications in formats refractory to routine query and analysis and, accordingly, their full value to the NR signaling community has not been realized. One of the mandates of the Nuclear Receptor Signaling Atlas (NURSA) is to facilitate access of the community to existing public datasets. Pursuant to this mandate we are developing a freely-accessible community web resource, Transcriptomine, to bring together the sum total of available expression array and RNA-Seq data points generated by the field in a single location. Transcriptomine currently contains over 25,000,000 gene fold change datapoints from over 1200 contrasts relevant to over 100 NRs, ligands and coregulators in over 200 tissues and cell lines. Transcriptomine is designed to accommodate a spectrum of end users ranging from the bench researcher to those with advanced bioinformatic training. Visualization tools allow users to build custom charts to compare and contrast patterns of gene regulation across different tissues and in response to different ligands. Our resource affords an entirely new paradigm for leveraging gene expression data in the NR signaling field, empowering users to query gene fold changes across diverse regulatory molecules, tissues and cell lines, target genes, biological functions and disease associations, and that would otherwise be prohibitive in terms of time and effort. Transcriptomine will be regularly updated with gene lists from future genome-wide expression array and expression-sequencing datasets in the NR signaling field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=target%20gene%20database" title="target gene database">target gene database</a>, <a href="https://publications.waset.org/abstracts/search?q=informatics" title=" informatics"> informatics</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptomics" title=" transcriptomics"> transcriptomics</a> </p> <a href="https://publications.waset.org/abstracts/6275/transcriptomine-the-nuclear-receptor-signaling-transcriptome-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6275.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">709</span> Coated Chromium Thin Film on Zirconium for Corrosion Resistance of Nuclear Fuel Rods by Plasma Focus Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Raeisdana">Amir Raeisdana</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Sohrabi"> Davood Sohrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Nohekhan"> Mojtaba Nohekhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameneh%20Kargarian"> Ameneh Kargarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ghapanvari"> Maryam Ghapanvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Aslezaeem"> Alireza Aslezaeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improvement of zirconium properties by chromium coating and nitrogen implantation is ideal to protect the nuclear fuel rods against corrosion and secondary hydrogenation. Metallic chromium (Cr) has attracted attention as a potential coating material on zirconium alloys, to limit external cladding corrosion. In this research, high energy plasma focus device was used to coat the chromium and implant the nitrogen ions in the zirconium substrate. This device emits high-energy nitrogen ions of 10 keV-1 MeV and with a flux of 10^16 ions/cm^2 in each shot toward the target so it is attractive for implantation on the substrate materials at the room temperature. Six zirconium samples in 2cm×2cm dimensions with 1mm thickness were located at a distance of 20cm from the place where the pinch is formed. The experiments are carried out in 0.5 mbar of the nitrogen gas pressure and 15 kV of the charging voltage. Pure Cr disc was installed on the anode head for sputtering of the chromium and deposition on zirconium substrate. When the pinch plasma column decays due to various instabilities, intense and high-energy N2 ions are accelerated towards the zirconium substrate also sputtered Cr is deposited on the zirconium substrate. XRD and XRF analysis were used to study the structural properties of the samples. XRF analysis indicates 77.1% of Zr and 11.1% of Cr in the surface of the sample. XRD spectra shows the formation of ZrN, CrN and CrZr composites after nitrogen implantation and chromium coating. XRD spectra shows the chromium peak height equal to 152.80 a.u. for the major sample (θ=0֯) and 92.99 a.u. for the minor sample (θ=6֯), so implantation and coating along the main axis of the device is significantly more than other directions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZrN%20and%20CrN%20and%20CrZr%20composites" title="ZrN and CrN and CrZr composites">ZrN and CrN and CrZr composites</a>, <a href="https://publications.waset.org/abstracts/search?q=angular%20distribution%20for%20Cr%20deposition%20rate" title=" angular distribution for Cr deposition rate"> angular distribution for Cr deposition rate</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium%20corrosion%20resistance" title=" zirconium corrosion resistance"> zirconium corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20rods" title=" nuclear fuel rods"> nuclear fuel rods</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20focus%20device" title=" plasma focus device"> plasma focus device</a> </p> <a href="https://publications.waset.org/abstracts/190103/coated-chromium-thin-film-on-zirconium-for-corrosion-resistance-of-nuclear-fuel-rods-by-plasma-focus-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">708</span> Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venkat%20S.%20Somayajula">Venkat S. Somayajula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical features <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20long-short%20term%20memory%20neural%20network" title="Bayesian long-short term memory neural network">Bayesian long-short term memory neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=borehole%20temperature" title=" borehole temperature"> borehole temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20surface%20temperature%20history" title=" ground surface temperature history"> ground surface temperature history</a>, <a href="https://publications.waset.org/abstracts/search?q=paleoclimate%20cycle" title=" paleoclimate cycle"> paleoclimate cycle</a> </p> <a href="https://publications.waset.org/abstracts/124063/ground-surface-temperature-history-prediction-using-long-short-term-memory-neural-network-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">707</span> CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20T.%20Ku">Y. T. Ku</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Chen"> S. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Wang"> J. R. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Shih"> C. Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20F.%20Chang"> Y. F. Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=BWR" title=" BWR"> BWR</a>, <a href="https://publications.waset.org/abstracts/search?q=decommissioning" title=" decommissioning"> decommissioning</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20pool" title=" upper pool"> upper pool</a> </p> <a href="https://publications.waset.org/abstracts/92505/cfd-simulation-for-flow-behavior-in-boiling-water-reactor-vessel-and-upper-pool-under-decommissioning-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">706</span> SUMOylation Enhances Nurr1/1a Mediated Transactivation in a Neuronal Cell Type</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jade%20Edey">Jade Edey</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Bennett"> Andrew Bennett</a>, <a href="https://publications.waset.org/abstracts/search?q=Gareth%20Hathway"> Gareth Hathway</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclear receptor-related 1 protein (also known as Nurr1 or NR4A2) is an orphan nuclear receptor which plays a vital role in the development, survival and maintenance of dopaminergic (DA) neurons particularly in the substantia nigra (SN). Increasing research has investigated Nurr1’s additional role within microglia and astrocytes where it has been suggested to act as a negative regulator of inflammation; potentially offering neuroprotection. Considering both DA neurodegeneration and neuroinflammation are commonly accepted constituents of Parkinson’s Disease (PD), understanding the mechanisms by which Nurr1 regulates inflammatory processes could provide an attractive therapeutic target. Nurr1 regulates inflammation via a transrepressive mechanism possibly dependent upon SUMOylation. In addition, Nurr1 can transactivate numerous genes involved in DA synthesis, such as Tyrosine Hydroxylase (TH). A C-terminal splice variant of Nurr1, Nurr-1a, has been reported in both neuronal and glial cells. However, research into its transcriptional activity is minimal. We employed in vitro methods such as SUMO-Pulldown experiments alongside Luciferase reporter assays to investigate the SUMOylation status and transactivation capabilities of Nurr1 and Nurr-1a respectively. The SUMO-Pulldown assay demonstrated Nurr-1a undergoes significantly more SUMO modification than its full-length variant. Consequently, despite having less transcriptional activation than Nurr1, Nurr1a may play a more prominent role in repression of microglial inflammation. Contrary to published literature we also identified that SUMOylation enhances transcriptional activation by Nurr1 and Nurr1a. SUMOylation-dependent increases in Nurr1 and Nurr1a transcriptional activation were only evident in neuronal SHSY5Y cells but not in HEK293 cells. This research provides novel insight into the regulation of Nurr-1a and indicates differential effects of SUMOylation dependent regulation in neuronal and inflammatory cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20receptors" title="nuclear receptors">nuclear receptors</a>, <a href="https://publications.waset.org/abstracts/search?q=Parkinson%E2%80%99s%20disease" title=" Parkinson’s disease"> Parkinson’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptional%20regulation" title=" transcriptional regulation"> transcriptional regulation</a> </p> <a href="https://publications.waset.org/abstracts/144056/sumoylation-enhances-nurr11a-mediated-transactivation-in-a-neuronal-cell-type" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">705</span> Usage of Military Continuity Management System for Supporting of Emergency Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radmila%20Hajkova">Radmila Hajkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Palecek"> Jiri Palecek</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Malachova"> Hana Malachova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20Oulehlova"> Alena Oulehlova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ensuring of continuity of business is the basic strategy of every company. Continuity of organization activities includes comprehensive procedures that help in solving unexpected situations of natural and anthropogenic character (for example flood, blaze, economic situations). Planning of continuity operations is a process that helps identify critical processes and implement plans for the security and recovery of key processes. The aim of this article demonstrates application of system approach to managing business continuity called business continuity management systems in military issues. This article describes the life cycle of business continuity management which is based on the established cycle PDCA (plan-do-check-act). After this is carried out by activities which are making by the University of Defence during activation of forces and means of the Integrated rescue system in case of emergencies - accidents at a nuclear power plant in Czech republic. Activities of various stages of deployment earmarked forces and resources are managed and evaluated by using MCMS application (military continuity management system). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20continuity%20management%20system" title="business continuity management system">business continuity management system</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20management" title=" emergency management"> emergency management</a>, <a href="https://publications.waset.org/abstracts/search?q=military" title=" military"> military</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20safety" title=" nuclear safety"> nuclear safety</a> </p> <a href="https://publications.waset.org/abstracts/41005/usage-of-military-continuity-management-system-for-supporting-of-emergency-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">704</span> Improvements in Transient Testing in The Transient REActor Test (TREAT) with a Choice of Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20Aryal">Harish Aryal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safe and reliable operation of nuclear reactors has always been one of the topmost priorities in the nuclear industry. Transient testing allows us to understand the time-dependent behavior of the neutron population in response to either a planned change in the reactor conditions or unplanned circumstances. These unforeseen conditions might occur due to sudden reactivity insertions, feedback, power excursions, instabilities, and accidents. To study such behavior, we need transient testing, which is like car crash testing, to estimate the durability and strength of a car design. In nuclear designs, such transient testing can simulate a wide range of accidents due to sudden reactivity insertions and helps to study the feasibility and integrity of the fuel to be used in certain reactor types. This testing involves a high neutron flux environment and real-time imaging technology with advanced instrumentation with appropriate accuracy and resolution to study the fuel slumping behavior. With the aid of transient testing and adequate imaging tools, it is possible to test the safety basis for reactor and fuel designs that serves as a gateway in licensing advanced reactors in the future. To that end, it is crucial to fully understand advanced imaging techniques both analytically and via simulations. This paper presents an innovative method of supporting real-time imaging of fuel pins and other structures during transient testing. The major fuel-motion detection device that is studied in this dissertation is the Hodoscope which requires collimators. This paper provides 1) an MCNP model and simulation of a Transient Reactor Test (TREAT) core with a central fuel element replaced by a slotted fuel element that provides an open path between test samples and a hodoscope detector and 2) a choice of good filter to improve image resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hodoscope" title="hodoscope">hodoscope</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20testing" title=" transient testing"> transient testing</a>, <a href="https://publications.waset.org/abstracts/search?q=collimators" title=" collimators"> collimators</a>, <a href="https://publications.waset.org/abstracts/search?q=MCNP" title=" MCNP"> MCNP</a>, <a href="https://publications.waset.org/abstracts/search?q=TREAT" title=" TREAT"> TREAT</a>, <a href="https://publications.waset.org/abstracts/search?q=hodogram" title=" hodogram"> hodogram</a>, <a href="https://publications.waset.org/abstracts/search?q=filters" title=" filters"> filters</a> </p> <a href="https://publications.waset.org/abstracts/167624/improvements-in-transient-testing-in-the-transient-reactor-test-treat-with-a-choice-of-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">703</span> Toward Understanding the Glucocorticoid Receptor Network in Cancer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Srivastava">Swati Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Mattia%20Lauriola"> Mattia Lauriola</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuval%20Gilad"> Yuval Gilad</a>, <a href="https://publications.waset.org/abstracts/search?q=Adi%20Kimchi"> Adi Kimchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yosef%20Yarden"> Yosef Yarden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The glucocorticoid receptor (GR) has been proposed to play important, but incompletely understood roles in cancer. Glucocorticoids (GCs) are widely used as co-medication of various carcinomas, due to their ability to reduce the toxicity of chemotherapy. Furthermore, GR antagonism has proven to be a strategy to treat triple negative breast cancer and castration-resistant prostate cancer. These observations suggest differential GR involvement in cancer subtypes. The goal of our study has been to elaborate the current understanding of GR signaling in tumor progression and metastasis. Our study involves two cellular models, non-tumorigenic breast epithelial cells (MCF10A) and Ewing sarcoma cells (CHLA9). In our breast cell model, the results indicated that the GR agonist dexamethasone inhibits EGF-induced mammary cell migration, and this effect was blocked when cells were stimulated with a GR antagonist, namely RU486. Microarray analysis for gene expression revealed that the mechanism underlying inhibition involves dexamenthasone-mediated repression of well-known activators of EGFR signaling, alongside with enhancement of several EGFR’s negative feedback loops. Because GR mainly acts primarily through composite response elements (GREs), or via a tethering mechanism, our next aim has been to find the transcription factors (TFs) which can interact with GR in MCF10A cells.The TF-binding motif overrepresented at the promoter of dexamethasone-regulated genes was predicted by using bioinformatics. To validate the prediction, we performed high-throughput Protein Complementation Assays (PCA). For this, we utilized the Gaussia Luciferase PCA strategy, which enabled analysis of protein-protein interactions between GR and predicted TFs of mammary cells. A library comprising both nuclear receptors (estrogen receptor, mineralocorticoid receptor, GR) and TFs was fused to fragments of GLuc, namely GLuc(1)-X, X-GLuc(1), and X-GLuc(2), where GLuc(1) and GLuc(2) correspond to the N-terminal and C-terminal fragments of the luciferase gene.The resulting library was screened, in human embryonic kidney 293T (HEK293T) cells, for all possible interactions between nuclear receptors and TFs. By screening all of the combinations between TFs and nuclear receptors, we identified several positive interactions, which were strengthened in response to dexamethasone and abolished in response to RU486. Furthermore, the interactions between GR and the candidate TFs were validated by co-immunoprecipitation in MCF10A and in CHLA9 cells. Currently, the roles played by the uncovered interactions are being evaluated in various cellular processes, such as cellular proliferation, migration, and invasion. In conclusion, our assay provides an unbiased network analysis between nuclear receptors and other TFs, which can lead to important insights into transcriptional regulation by nuclear receptors in various diseases, in this case of cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epidermal%20growth%20factor" title="epidermal growth factor">epidermal growth factor</a>, <a href="https://publications.waset.org/abstracts/search?q=glucocorticoid%20receptor" title=" glucocorticoid receptor"> glucocorticoid receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20complementation%20assay" title=" protein complementation assay"> protein complementation assay</a>, <a href="https://publications.waset.org/abstracts/search?q=transcription%20factor" title=" transcription factor"> transcription factor</a> </p> <a href="https://publications.waset.org/abstracts/56709/toward-understanding-the-glucocorticoid-receptor-network-in-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">702</span> Phylogenetic Relationships of Aproaerema Simplexella (Walker) and the Groundnut Leaf Miner Aproaerema Modicella (Deventer) (Lepidoptera: Gelechiidae) Collected from Australia, India, Mozambique, and South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makhosi%20Buthelezi">Makhosi Buthelezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mitochondrial DNA cytochrome c oxidase I (COI) gene analyses linked the South African groundnut leaf miner (GLM) to the Australian soya bean moth Aproaerema simplexella (Walker) and Indian Aproaerema modicella (Deventer). Thus, the genetic relatedness of GLM, A. simplexela, and A. modicella was examined by performing mitochondrial and nuclear (COI, cytochrome oxidase subunit II (COII), mitochondrial cytochrome b (CYTB), nuclear ribosomal 28S (28S) and intergenic spacer elongation factor-1 alpha ( EF-1 ALPHA) on 44 specimens collected from South Africa, four from Mozambique, and three each from single locations in India and Australia. Phylogenetic analyses were conducted using the Maximum Parsimony (MP) and Neighbour-Joining (NJ) methods. All of the datasets of the five DNA gene regions that were sequenced were also analyzed using the Basic Local Alignment Search Tool (BLAST) to find the closest matches for inclusion in the phylogenetic trees as outgroups and for purposes of information. In the phylogenetic trees for COI, COII, cytb and EF-1 ALPHA, a similar pattern was observed in the way that the sequences assembled into different groups; i.e., some sequences of A. simplexella from Australia were grouped separately from the others, but some Australian sequences grouped with those of the GLM from South Africa, India, and Mozambique. In the phylogenetic tree for 28S, all sequences from South Africa, Australia, India, and Mozambique grouped together and formed one group. For COI, genetic pairwise distance ranged from 0.97 to 3.60 %, for COII it ranged from 0.19% to 2.32%, for cytb it ranged from 0.25 to 9.77% and for EF-1 ALPHA it ranged 0.48 to 6.99%. Results of this study indicate that these populations are genetically related and presumably constitute a single species. Thus, further molecular and morphological studies need to be undertaken in order to resolve this apparent conundrum on the taxonomy of these populations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aproaerema%20modicella" title="aproaerema modicella">aproaerema modicella</a>, <a href="https://publications.waset.org/abstracts/search?q=aproaerema%20simplexella" title=" aproaerema simplexella"> aproaerema simplexella</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20DNA" title=" mitochondrial DNA"> mitochondrial DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20DNA" title=" nuclear DNA"> nuclear DNA</a> </p> <a href="https://publications.waset.org/abstracts/106498/phylogenetic-relationships-of-aproaerema-simplexella-walker-and-the-groundnut-leaf-miner-aproaerema-modicella-deventer-lepidoptera-gelechiidae-collected-from-australia-india-mozambique-and-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">701</span> Iran and the Security of the Gulf Cooperation Council States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Alshalan">Ibrahim Alshalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Islamic Republic of Iran is one of the greatest and most powerful countries, not only in the Arabian Gulf but in the entire Middle East region. However, the Iranian regime, which came to power as a result of the 1979 revolution that resulted in overthrowing the Shah Mohammad Reza Pahlavi, has been the biggest source of threat to the stability of the Middle East since the revolution until this day. It has ambitions to dominate the neighboring Arab countries, especially Iraq, Syria, Lebanon, Yemen and Bahrain. Iran has bad relationships with countries of the Gulf Cooperation Council (GCC), which includes Saudi Arabia, United Arab Emirates, Kuwait, Qatar, Oman and Bahrain. The main objective of this paper is to shed light on the deteriorating political relations between the Iranian regime on one hand and the GCC on the other, especially Saudi Arabia which is witnessing more challenges as a result of Iran's determination to develop its nuclear program. Another important objective of this paper is to identify the Iranian role in the creation of the hotbeds of conflict in addition to its responsibility for some of the region's problems. It also aims to answer the question; why does Iran insist on developing its controversial nuclear program? <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iran" title="Iran">Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=GCC" title=" GCC"> GCC</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulf" title=" Gulf"> Gulf</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/26485/iran-and-the-security-of-the-gulf-cooperation-council-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">700</span> Assessment of Nuclear Medicine Radiation Protection Practices Among Radiographers and Nurses at a Small Nuclear Medicine Department in a Tertiary Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nyathi%20Mpumelelo%3B%20Moeng%20Thabiso%20Maria">Nyathi Mpumelelo; Moeng Thabiso Maria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND AND OBJECTIVES: Radiopharmaceuticals are used for diagnosis, treatment, staging and follow up of various diseases. However, there is concern that the ionizing radiation (gamma rays, α and ß particles) emitted by radiopharmaceuticals may result in exposure of radiographers and nurses with limited knowledge of the principles of radiation protection and safety, raising the risk of cancer induction. This study aimed at investigation radiation safety awareness levels among radiographers and nurses at a small tertiary hospital in South Africa. METHODS: An analytical cross-sectional study. A validated two-part questionnaire was implemented to consenting radiographers and nurses working in a Nuclear Medicine Department. Part 1 gathered demographic information (age, gender, work experience, attendance to/or passing ionizing radiation protection courses). Part 2 covered questions related to knowledge and awareness of radiation protection principles. RESULTS: Six radiographers and five nurses participated (27% males and 73% females). The mean age was 45 years (age range 20-60 years). The study revealed that neither professional development courses nor radiation protection courses are offered at the Nuclear Medicine Department understudy. However, 6/6 (100%) radiographers exhibited a high level of awareness of radiation safety principles on handling and working with radiopharmaceuticals which correlated to their years of experience. As for nurses, 4/5 (80%) showed limited knowledge and awareness of radiation protection principles irrespective of the number of years in the profession. CONCLUSION: Despite their major role of caring for patients undergoing diagnostic and therapeutic treatments, the nurses showed limited knowledge of ionizing radiation and associated side effects. This was not surprising since they never received any formal basic radiation safety course. These findings were not unique to this Centre. A study conducted in a Kuwaiti Radiology Department also established that the vast majority of nurses did not understand the risks of working with ionizing radiation. Similarly, nurses in an Australian hospital exhibited knowledge limitations. However, nursing managers did provide the necessary radiation safety training when requested. In Guatemala and Saudi Arabia, where there was shortage of professional radiographers, nurses underwent radiography training, a course that equipped them with basic radiation safety principles. The radiographers in the Centre understudy unlike others in various parts of the world demonstrated substantial knowledge and awareness on radiation protection. Radiations safety courses attended when an opportunity arose played a critical role in their awareness. The knowledge and awareness levels of these radiographers were comparable to their counterparts in Sudan. However, it was much more above that of their counterparts in Jordan, Nigeria, Nepal and Iran who were found to have limited awareness and inadequate knowledge on radiation dose. Formal radiation safety and awareness courses and workshops can play a crucial role in raising the awareness of nurses and radiographers on radiation safety for their personal benefit and that of their patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation%20safety" title="radiation safety">radiation safety</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20awareness" title=" radiation awareness"> radiation awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20medicine" title=" nuclear medicine"> nuclear medicine</a> </p> <a href="https://publications.waset.org/abstracts/170681/assessment-of-nuclear-medicine-radiation-protection-practices-among-radiographers-and-nurses-at-a-small-nuclear-medicine-department-in-a-tertiary-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">699</span> Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manh-Dung%20Ho">Manh-Dung Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Van-Giap%20Pham"> Van-Giap Pham</a>, <a href="https://publications.waset.org/abstracts/search?q=Van-Doanh%20Ho"> Van-Doanh Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Quang-Thien%20Tran"> Quang-Thien Tran</a>, <a href="https://publications.waset.org/abstracts/search?q=Tuan-Anh%20Tran"> Tuan-Anh Tran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20activation%20analysis" title="neutron activation analysis">neutron activation analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=k0-based%20method" title=" k0-based method"> k0-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=k0%20factor" title=" k0 factor"> k0 factor</a>, <a href="https://publications.waset.org/abstracts/search?q=Q0%20factor" title=" Q0 factor"> Q0 factor</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20resonance%20energy" title=" effective resonance energy"> effective resonance energy</a> </p> <a href="https://publications.waset.org/abstracts/148104/review-of-k0-factors-and-related-nuclear-data-of-the-selected-radionuclides-for-use-in-k0-naa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">698</span> The Dynamic Cone Penetration Test: A Review of Its Correlations and Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20M.%20Hamid">Abdulrahman M. Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic Cone Penetration Test (DCPT) is widely used for field quality assessment of soils. Its application to predict the engineering properties of soil is globally promoted by the fact that it is difficult to obtain undisturbed soil samples, especially when loose or submerged sandy soil is encountered. Detailed discussion will be presented on the current development of DCPT correlations with resilient modulus, relative density, California Bearing Ratio (CBR), unconfined compressive strength and shear strength that have been developed for different materials in both the laboratory and field, as well as on the usage of DCPT in quality control of compaction of earth fills and performance evaluation of pavement layers. In addition, the relationship of the DCPT with other instruments such as falling weight deflectometer, nuclear gauge, soil stiffens gauge, and plate load test will be reported. Lastely, the application of DCPT in Saudi Arabia in recent years will be addressed in this manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20cone%20penetration%20test" title="dynamic cone penetration test">dynamic cone penetration test</a>, <a href="https://publications.waset.org/abstracts/search?q=falling%20weight%20deflectometer" title=" falling weight deflectometer"> falling weight deflectometer</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20gauge" title=" nuclear gauge"> nuclear gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stiffens%20gauge" title=" soil stiffens gauge"> soil stiffens gauge</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=automated%20dynamic%20cone%20penetration" title=" automated dynamic cone penetration"> automated dynamic cone penetration</a> </p> <a href="https://publications.waset.org/abstracts/30274/the-dynamic-cone-penetration-test-a-review-of-its-correlations-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">697</span> Microstructural and Mechanical Characterization of a 16MND5 Steel Manufactured by Innovative WAAM SAW Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Villaret">F. Villaret</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Jacot"> I. Jacot</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Shen"> Y. Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kong"> Z. Kong</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20XU"> T. XU</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Wang"> Y. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lu"> D. Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wire Arc Additive Manufacturing (WAAM) allows the rapid production of large, homogeneous parts with complex geometry. However, in the nuclear field, parts can reach dimensions of ten to a hundred tons. In this case, the usual WAAM TIG or CMT processes do not have sufficient deposition rates to consider the manufacture of parts of such dimensions within a reasonable time. The submerged arc welding process (SAW, Submerged Arc Welding) allows much higher deposition rates. Although there are very few references to this process for additive manufacturing in the literature, it has been used for a long time for the welding and coating of nuclear power plant vessels, so this process is well-known and mastered as a welding process. This study proposes to evaluate the SAW process as an additive manufacturing technique by taking as an example a low-alloy steel of type 16MND5. In the first step, a parametric study allowed the evaluation of the effect of the different parameters and the deposition rate on the geometry of the beads and their microstructure. Larger parts were also fabricated and characterized by metallography and mechanical tests (tensile, impact, toughness). The effect of different heat treatments on the microstructure is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WAAM" title="WAAM">WAAM</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20alloy%20steel" title=" low alloy steel"> low alloy steel</a>, <a href="https://publications.waset.org/abstracts/search?q=submerged%20arc" title=" submerged arc"> submerged arc</a>, <a href="https://publications.waset.org/abstracts/search?q=caracterization" title=" caracterization"> caracterization</a> </p> <a href="https://publications.waset.org/abstracts/162029/microstructural-and-mechanical-characterization-of-a-16mnd5-steel-manufactured-by-innovative-waam-saw-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">696</span> Plastic Strain Accumulation Due to Asymmetric Cyclic Loading of Zircaloy-2 at 400°C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Rajpurohit">R. S. Rajpurohit</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20C.%20Santhi%20Srinivas"> N. C. Santhi Srinivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vakil%20Singh"> Vakil Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asymmetric stress cycling leads to accumulation of plastic strain which is called as ratcheting strain. The problem is generally associated with nuclear fuel cladding materials used in nuclear power plants and pressurized pipelines. In the present investigation, asymmetric stress controlled fatigue tests were conducted with three different parameters namely, mean stress, stress amplitude and stress rate (keeping two parameters constant and varying third parameter) to see the plastic strain accumulation and its effect on fatigue life and deformation behavior of Zircaloy-2 at 400°C. The tests were conducted with variable mean stress (45-70 MPa), stress amplitude (95-120 MPa) and stress rate (30-750 MPa/s) and tested specimens were characterized using transmission and scanning electron microscopy. The experimental results show that with the increase in mean stress and stress amplitude, the ratcheting strain accumulation increases with reduction in fatigue life. However, increase in stress rate leads to improvement in fatigue life of the material due to small ratcheting strain accumulation. Fractographs showed a decrease in area fraction of fatigue failed region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20cyclic%20loading" title="asymmetric cyclic loading">asymmetric cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ratcheting%20fatigue" title=" ratcheting fatigue"> ratcheting fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20stress" title=" mean stress"> mean stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20amplitude" title=" stress amplitude"> stress amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20rate" title=" stress rate"> stress rate</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20strain" title=" plastic strain"> plastic strain</a> </p> <a href="https://publications.waset.org/abstracts/70722/plastic-strain-accumulation-due-to-asymmetric-cyclic-loading-of-zircaloy-2-at-400c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> Feasibility Study to Enhance the Heat Transfer in a Typical Pressurized Water Reactor by Ribbed Spacer Grids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghadbane">A. Ghadbane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Bouaziz"> M. N. Bouaziz</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hanini"> S. Hanini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Baggoura"> B. Baggoura</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abbaci"> M. Abbaci </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spacer grids are used to fix the rods bundle in a nuclear reactor core also act as turbulence-enhancing devices to improve the heat transfer from the hot surfaces of the rods to the surrounding coolant stream. Therefore, the investigation of thermal-hydraulic characteristics inside the rod bundles is important for optima design and safety operation of a nuclear reactor power plant. This contribution presents a feasibility study to use the ribbed spacer grids as mixing devices. The present study evaluates the effects of different ribbed spacer grids configurations on flow pattern and heat transfer in the downstream of the mixing devices in a 2 x 2 rod bundle array. This is done by obtaining velocity and pressure fields, turbulent intensity and the heat transfer coefficient using a three-dimensional CFD analysis. Numerical calculations are performed by employing K-ε turbulent model. The computational results obtained are promising and the comparison with standard spacer grids shows a clear difference which required the experimental approach to validate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PWR%20fuel%20assembly" title="PWR fuel assembly">PWR fuel assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=spacer%20grid" title=" spacer grid"> spacer grid</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20vane" title=" mixing vane"> mixing vane</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20flow" title=" swirl flow"> swirl flow</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20heat%20transfer" title=" turbulent heat transfer"> turbulent heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/16937/feasibility-study-to-enhance-the-heat-transfer-in-a-typical-pressurized-water-reactor-by-ribbed-spacer-grids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">694</span> Balanced Ischemia Misleading to a False Negative Myocardial Perfusion Imaging (Stress) Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devam%20Sheth">Devam Sheth </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclear imaging with stress myocardial perfusion (stress test) is the preferred first line investigation for noninvasive evaluation of ischaemic heart condition. The sensitivity of this test is close to 90 % making it a very reliable test. However, rarely it gives a false negative result which can be explained by the phenomenon termed as “balanced ischaemia”. We present the case of a 78 year Caucasian female without any significant past cardiac history, who presents with chest pain and shortness of breath since one day. The initial ECG and cardiac enzymes were non-impressive. Few hours later, she had some substernal chest pain along with some ST segment depression in the lateral leads. Stress test comes back negative for any significant perfusion defects. However, given her typical symptoms, she underwent a cardiac catheterization which revealed significant triple vessel disease mandating her to get a bypass surgery. This unusual phenomenon of false nuclear stress test in the setting of positive ECG changes can be explained only by balanced ischemia wherein due to global myocardial ischemia, the stress test fails to reveal relative perfusion defects in the affected segments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balanced" title="balanced">balanced</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20positive" title=" false positive"> false positive</a>, <a href="https://publications.waset.org/abstracts/search?q=ischemia" title=" ischemia"> ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=myocardial%20perfusion%20imaging" title=" myocardial perfusion imaging"> myocardial perfusion imaging</a> </p> <a href="https://publications.waset.org/abstracts/49756/balanced-ischemia-misleading-to-a-false-negative-myocardial-perfusion-imaging-stress-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> Improvement of Bone Scintography Image Using Image Texture Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yousif%20Mohamed%20Y.%20Abdallah">Yousif Mohamed Y. Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Eltayeb%20Wagallah"> Eltayeb Wagallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image enhancement allows the observer to see details in images that may not be immediately observable in the original image. Image enhancement is the transformation or mapping of one image to another. The enhancement of certain features in images is accompanied by undesirable effects. To achieve maximum image quality after denoising, a new, low order, local adaptive Gaussian scale mixture model and median filter were presented, which accomplishes nonlinearities from scattering a new nonlinear approach for contrast enhancement of bones in bone scan images using both gamma correction and negative transform methods. The usual assumption of a distribution of gamma and Poisson statistics only lead to overestimation of the noise variance in regions of low intensity but to underestimation in regions of high intensity and therefore to non-optional results. The contrast enhancement results were obtained and evaluated using MatLab program in nuclear medicine images of the bones. The optimal number of bins, in particular the number of gray-levels, is chosen automatically using entropy and average distance between the histogram of the original gray-level distribution and the contrast enhancement function’s curve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20scan" title="bone scan">bone scan</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20medicine" title=" nuclear medicine"> nuclear medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing%20technique" title=" image processing technique"> image processing technique</a> </p> <a href="https://publications.waset.org/abstracts/13956/improvement-of-bone-scintography-image-using-image-texture-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Genotoxic and Cytotoxic Effects of Methidathion Pesticide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Y.%20Alfaifi">Mohammad Y. Alfaifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methidathion (MTD) (Trade name Supracide®) is a non-systemic organophosphorus insecticide used intensively worldwide including Saudi Arabia. However, there is a lack in published studies about it's genotoxicity. In this study we evaluated MTD toxicity in rat bone marrow cells (in vivo) and in lymphocytes (in vitro) using different doses based on LD50. MNNCE (Micronucleated normocromatic erythrocytes) and MNPCE (Micronucleated polychromatic erythrocytes), NDI (Nuclear division index) and NDCI (nuclear division cytotoxicity index), necrotic and apoptotic cells were recorded in rat's bone marrow samples. CA, MI (number of cells undergoing mitosis) necrotic, and apoptotic cells recorded in lymphocytes. Results showed that there was a slight increase in the frequency of micronucleated bone marrow cells. However, no structural chromosomal aberrations were detected in vivo or in vitro. On the other hand, the results showed significant increase in necrotic and apoptotic cells following MTD administration in a dose-dependent manner comparing to positive and negative control groups. In light of these results, MTD can be considered highly cytotoxic and moderate genotoxic, and precaution should be taken when using MTD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=methidathion" title="methidathion">methidathion</a>, <a href="https://publications.waset.org/abstracts/search?q=micronucleus" title=" micronucleus"> micronucleus</a>, <a href="https://publications.waset.org/abstracts/search?q=NDI" title=" NDI"> NDI</a>, <a href="https://publications.waset.org/abstracts/search?q=NDCI" title=" NDCI"> NDCI</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosomal%20aberrations" title=" chromosomal aberrations"> chromosomal aberrations</a> </p> <a href="https://publications.waset.org/abstracts/2877/genotoxic-and-cytotoxic-effects-of-methidathion-pesticide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> Applying the Crystal Model to Different Nuclear Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amar">A. Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The angular distributions of the nuclear systems under consideration have been analyzed in the framework of the optical model (OM), where the real part was taken in the crystal model form. A crystal model (CM) has been applied to deuteron elastically scattered by ⁶,⁷Li and ⁹Be. A crystal model (CM) + distorted-wave Born approximation (DWBA) + dynamic polarization potential (DPP) potential has been applied to deuteron elastically scattered by ⁶,⁷Li and 9Be. Also, a crystal model has been applied to ⁶Li elastically scattered by ¹⁶O and ²⁸Sn in addition to the ⁷Li+⁷Li system and the ¹²C(alpha,⁸Be) ⁸Be reaction. The continuum-discretized coupled-channels (CDCC) method has been applied to the ⁷Li+⁷Li system and agreement between the crystal model and the continuum-discretized coupled-channels (CDCC) method has been observed. In general, the models succeeded in reproducing the differential cross sections at the full angular range and for all the energies under consideration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20model%20%28OM%29" title="optical model (OM)">optical model (OM)</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20model%20%28CM%29" title=" crystal model (CM)"> crystal model (CM)</a>, <a href="https://publications.waset.org/abstracts/search?q=distorted-wave%20born%20approximation%20%28DWBA%29" title=" distorted-wave born approximation (DWBA)"> distorted-wave born approximation (DWBA)</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20polarization%20potential%20%28DPP%29" title=" dynamic polarization potential (DPP)"> dynamic polarization potential (DPP)</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20continuum-discretized%20coupled-channels%20%28CDCC%29%20method" title=" the continuum-discretized coupled-channels (CDCC) method"> the continuum-discretized coupled-channels (CDCC) method</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20deuteron%20elastically%20scattered%20by%20%E2%81%B6" title=" and deuteron elastically scattered by ⁶"> and deuteron elastically scattered by ⁶</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%81%B7Li%20and%20%E2%81%B9Be" title="⁷Li and ⁹Be">⁷Li and ⁹Be</a> </p> <a href="https://publications.waset.org/abstracts/177307/applying-the-crystal-model-to-different-nuclear-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> A Study on Long Life Hybrid Battery System Consists of Ni-63 Betavoltaic Battery and All Solid Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bosung%20Kim">Bosung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Youngmok%20Yun"> Youngmok Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Lee"> Sungho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanseok%20Park"> Chanseok Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a limitation to power supply and operation by the chemical or physical battery in the space environment. Therefore, research for utilizing nuclear energy in the universe has been in progress since the 1950s, around the major industrialized countries. In this study, the self-rechargeable battery having a long life relative to the half-life of the radioisotope is suggested. The hybrid system is composed of betavoltaic battery, all solid battery and energy harvesting board. Betavoltaic battery can produce electrical power at least 10 years over using the radioisotope from Ni-63 and the silicon-based semiconductor. The electrical power generated from the betavoltaic battery is stored in the all-solid battery and stored power is used if necessary. The hybrid system board is composed of input terminals, boost circuit, charging terminals and output terminals. Betavoltaic and all solid batteries are connected to the input and output terminal, respectively. The electric current of 10 µA is applied to the system board by using the high-resolution power simulator. The system efficiencies are measured from a boost up voltage of 1.8 V, 2.4 V and 3 V, respectively. As a result, the efficiency of system board is about 75% after boosting up the voltage from 1V to 3V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotope" title="isotope">isotope</a>, <a href="https://publications.waset.org/abstracts/search?q=betavoltaic" title=" betavoltaic"> betavoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear" title=" nuclear"> nuclear</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a> </p> <a href="https://publications.waset.org/abstracts/50011/a-study-on-long-life-hybrid-battery-system-consists-of-ni-63-betavoltaic-battery-and-all-solid-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=6" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=29">29</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=30">30</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nuclear&page=8" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>